Simulationen zur Messung von Elektron-Positron-Paaren im ALICE-Experiment

  • Im Rahmen dieser Arbeit wurde die Analyse von Dielektronen im Bereich niedriger Massen für zwei unterschiedliche Magnetfeldstärken des ALICE-L3-Magneten untersucht. Hierfür wurden zwei Arten von Simulationen, volle Simulationen und schnelle Simulationen, jeweils für die Magnetfeldeinstellungen 0, 2 T und 0, 5 T erstellt und verglichen. Zunächst wurde die Konsistenz der vollen und schnellen Simulationen anhand von Monte Carlo Truth Spektren überprüft. Es zeigte sich eine gute Übereinstimmung der invarianten Massenspektren mit Ausnahme der f-Resonanz, die in den schnellen Simulationen fast 3-mal höher lag. Dann wurden die vollen Simulationen der Magnetfeldeinstellung 0, 5 T mit ALICEMessdaten desselben Magnetfeldes verglichen. Hierbei zeigte sich, dass die Messdaten im Hinblick auf die Transversalimpulsverteilung der einzelnen Elektronen um einen Faktor 1, 2 bis 2 und im Hinblick auf die Transversalimpulsverteilung der Paare um einen Faktor 2 bis 2, 5 über den Simulationen lagen. Dies konnte zum Teil auf eine Kontamination durch Pionen zurückgeführt werden. Das Signal-Untergrund-Verhältnis war mit 0, 99 für die Simulationen 6-mal größer als das der Messdaten mit 0, 16. Die normierte Signifikanz der Simulationen von 0, 0044 lag 3,5-mal über dem Wert 0, 0012 der Messdaten. Für die schnellen Simulationen wurden die Effizienzen für einzelne Elektronen benötigt. Diese wurden mithilfe von Boxensimulationen erstellt. Es wurde zwischen den Elektronidentifikationsmethoden TOF optional und TOF required und den Magnetfeldstärken 0, 2 T und 0, 5 T unterschieden. Die Boxensimulationen ergaben, dass bei einem Magnetfeld von 0, 2 T insgesamt mehr Elektronen rekonstruiert und identifiziert werden konnten. Außerdem konnte die Analyse zu niedrigeren Transversalimpulsen hin ausgedehnt werden. Die schnellen Simulationen zeigten, dass eine Reduktion des Magnetfeldes von 0, 5 T auf 0, 2 T eine Erhöhung der Anzahl an gemessenen Paaren um einem Faktor 2, 0 für die Elektronidentifikation TOF optional und um einem Faktor 6, 0 für die Elektronidentifikation TOF required zur Folge hat. Die vollen Simulationen der Elektronidentifikation TOF optional ergaben nach Reduktion des Magnetfeldes eine Verbesserung des Signal-zu-Untergrund-Verhältnisses um 11% von 0, 98 auf 1, 11. Die Signifikanz konnte von 0, 0043 auf 0, 0060, d.h. um 40%, verbessert werden. Für die Elektronidentifikation TOF required erhielt man ein Signal-zu-Untergrund-Verhältnis von 16, 5 (0, q 2 T) und 19, 1 (0, 2 T). Jedoch war die normierte Signifikanz (sgn = sqrt((s exp 2)/2*B)* (1/sqrt(NEv)))) für das reduzierte Magnetfeld 100% höher und lag bei 0, 086, während sie für 0, 5 T einen Wert von 0, 0043 hatte. In der vorliegenden Arbeit konnte gezeigt werden, dass eine Reduktion der Magnetfeldstärke des ALICE-L3-Magneten von 0, 5 T auf 0, 2 T zu Verbesserungen in der Messung von Elektron-Positron-Paaren führt. Als Fazit kann angenommen werden, dass eine Datennahme bei einem reduzierten Magnetfeld von 0, 2 T sinnvoll erscheint.
  • The study of dielectrons is an important tool for obtaining information from all phases of ultra-relativistic collisions as they do not undergo strong interactions. The major obstacles in the measurement of dielectrons are the relatively small signal and large combinatorial background, such that one needs a large acceptance and a good particle identification at low transverse momentum. This thesis investigates the impact and opportunities of a lower magnetic field in the central barrel of ALICE. It presents detailed studies with two different types of simulation to understand and quantify the effect. In the first type, the full chain of simulation was used: pp collisions were generated with the event generator PYTHIA6 and propagated in a detailed simulation of the ALICE-setup with GEANT3. Finally, the particles were reconstructed with the ALICE tracking software within AliRoot. As this procedure requires a huge amount of CPU time a large number of events were produced with fast simulations. These are based on a parameterization of particle spectra and detector responses. The consistency of the two types of simulation to each other and to data is discussed. Furthermore, for both types of simulation two different methods of electron identification are used and compared. It can be shown that a reduction of the field yields a two to six times higher dielectron signal and an increase of the normalized significance by a factor of 1.4 to 2.0 depending on the electron identification method.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Ole Djürko HinrichsGND
URN:urn:nbn:de:hebis:30:3-258687
Document Type:Master's Thesis
Language:German
Date of Publication (online):2012/08/27
Year of first Publication:2012
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2012/04/30
Release Date:2013/11/14
Page Number:100
HeBIS-PPN:35298028
Institutes:Physik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Sammlungen:Universitätspublikationen
Licence (German):License LogoDeutsches Urheberrecht