TY - THES A1 - Schweitzer, Claude T1 - Räumliche und elektronische Struktur angeregter Komplexe bei der Sensibilisierung und Desaktivierung von Singulettsauerstoff N2 - Der erste Teil der Arbeit beschäftigt sich mit dem Vergleich der Charge Transfer induzierten Prozesse bei der Löschung von Triplett angeregten Sensibilisatoren durch Sauerstoff mit den Charge Transfer induzierten Prozessen bei der Löschung von Singulettsauerstoff durch die gleichen Sensibilisatoren im Grundzustand. Dazu wurden die Geschwindigkeitskonstanten für beide Prozesse in verschiedenen Lösungsmitteln unterschiedlicher Polarität sowie notwendige photophysikalische Parameter wie Triplettenergien und Triplettquantenausbeuten bestimmt. Für eine Reihe von Naphthalin- und Biphenylderivaten kann erstmals gezeigt werden, daß die Geschwindigkeitskonstanten für beide Charge Transfer Prozesse eindeutig durch eine gemeinsame Marcus Abhängigkeit von der Freien Enthalpie für die Bildung eines Ionenpaares beschrieben werden können. Weiterhin wird am Beispiel der Naphthalinderivate gezeigt, daß die Dipolmomente der Übergangszustände der Reaktion von aus Aromat und Sauerstoff gebildeten Encounter-Komplexen zu Charge Transfer-Komplexen bei beiden Prozessen den gleichen Wert besitzen. Diese Ergebnisse werden durch einen gemeinsamen Desaktivierungskanal erklärt: beide Prozesse verlaufen über angeregte Komplexe mit der gleichen supra-supra Struktur. Dabei ergibt sich ein konsistentes Bild. Es wird gezeigt, daß der Charge Transfer Charakter für beide Prozesse im Einklang mit den Erwartungen mit steigernder Lösungsmittelpolarität ansteigt und wesentlich größer ist als bisher in der Literatur vermutet. Die Reorganisationsenergie wird für beide Prozesse in einen lösungsmittelunabhängigen intramolekularen und einen lösungsmittelabhängigen Beitrag aufgeteilt. Dabei stellt sich heraus, daß die leicht höheren Werte für die Naphthalinderivate durch höhere intramolekulare Reorganisationsenergien verursacht werden. Dies wird durch eine größere Delokalisation der aromatischen Elektronen erklärt. Ganz anders verhalten sich Benzophenonderivate. Zwar ist die Abhängigkeit der Geschwindigkeitskonstanten der Charge Transfer induzierten Löschung von O2(1Δg) durch die Benzophenonderivate im Grundzustand nahezu identisch mit der Abhängigkeit der Naphthalin- und Biphenylderivate. Jedoch weichen die Geschwindigkeitskonstanten der Charge Transfer induzierten Desaktivierung der Triplettzustände der Benzophenonderivate durch O2 enorm von der für ππ* Sensibilisatoren gefundenen gemeinsamen Korrelation ab. Hauptsächlich im endergonischen Bereich liegen die Werte um mehrere Größenordnungen höher. Andererseits wird ein wesentlich geringerer Charge Transfer Beitrag zur Geschwindigkeitskonstante festgestellt. Relativ große intramolekulare Reorganisationsenergien zeigen, daß bei der Desaktivierung der Komplexe von Triplett angeregtem Benzophenon und Sauerstoff große Änderungen der Bindungslängen stattfinden. Dies führt zu einer Verschiebung der Potentialkurve des angeregten Komplexes, verglichen mit der des Grundzustandskomplexes, und somit zu großen Franck-Condon Faktoren und zu hohen Geschwindigkeitskonstanten für die Desaktivierung in die Grundzustände im Bereich hoher Triplettenergien. Es wird gezeigt, daß die räumliche Struktur der angeregten Komplexe aus Keton und Sauerstoff für dieses Verhalten verantwortlich ist. Diese Ergebnisse führen zu einem plausiblen Mechanismus, der die niedrigen Effizienzen der Bildung von Singulettsauerstoff bei der Löschung von nπ* angeregten Ketonen erstmals zwanglos erklärt. Im zweiten Teil der Arbeit wird die Abhängigkeit der Geschwindigkeitskonstanten der Bildung von O2(1Σg+), O2(1Δg) und O2(3Σg-) bei der Löschung von ππ* angeregten Triplettzuatänden durch Sauerstoff von der Freien Enthalpie ΔGCET für die Bildung eines Ionenpaares und von der Überschußenergie ΔE für die Bildung des jeweiligen Zustands von O2 untersucht. Zur Bestimmung dieser Geschwindigkeitskonstanten wird ein Aufbau zur zeitgleichen Detektion der O2(1Σg+ 􀂤 1Δg) Fluoreszenz, der O2(1Σg+ 􀂤 3Σg-) Phosphoreszenz und der O2(1Δg 􀂤 3Σg-) Phosphoreszenz erstellt. Mit diesem Aufbau wird eine Reihe von Sensibilisatoren mit sehr unterschiedlichen Oxidationspotentialen, Triplettenergien und Strukturen in Tetrachlorkohlenstoff untersucht. Es wird gezeigt, daß die Geschwindigkeitskonstanten kT 1Σ, kT 1Δ und kT 3Σ der Bildung von O2(1Σg+), O2(1Δg) und O2(3Σg-) zusammen mit den Werten für alle bisher mit der gleichen Methode untersuchten Sensibilisatoren durch eine gemeinsame Abhängigkeit von ΔGCET und ΔE beschrieben werden können. Dies bedeutet, daß kT 1Σ, kT 1Δ und kT 3Σ hauptsächlich durch die Triplettenergie und das Oxidationspotential des Sensibilisators bestimmt werden, und daß die Variation der molekularen Struktur nur eine untergeordnete Rolle spielt. Damit wird es zum ersten Mal möglich, die Geschwindigkeitskonstanten der Bildung von O2(1Σg+), O2(1Δg) und O2(3Σg-) bei der Löschung von ππ* Triplettzuständen durch Sauerstoff in Tetrachlorkohlenstoff für beliebige Sensibilisatoren mit hinreichender Genauigkeit vorauszusagen. Y1 - 2001 UR - http://publikationen.ub.uni-frankfurt.de/frontdoor/index/index/docId/1940 UR - https://nbn-resolving.org/urn:nbn:de:hebis:30-34831 N1 - Diese Dissertation steht leider (aus urheberrechtlichen Gründen) nicht im Volltext im WWW zur Verfügung, die CD-ROM kann (auch über Fernleihe) bei der UB Frankfurt am Main ausgeliehen werden. SP - 1 EP - 198 PB - Univ.-Bibliothek CY - Frankfurt am Main ER -