TY - THES A1 - Hanekop, Nils T1 - Strukturbiologische Charakterisierung des ABC-Transporters LmrA aus L. lactis und des Substratbindeproteins EhuB aus S. meliloti N2 - ATP-binding cassette (ABC) Transporter sind ubiquitäre Membranproteine, die die Hydrolyse von ATP in der Regel an die Translokation unterschiedlichster Substrate über biologische Membranen koppeln. Sie bilden eine der größten Familien von aktiven Transportern, werden in allen drei Reichen des Lebens gefunden und sind an einer Vielzahl physiologischer und pathophysiologischer Vorgänge beteiligt. Auf Grund ihrer zentralen Bedeutung für viele zelluläre Prozesse wurden in der hier vorliegenden Arbeit ausgewählte ABC-Transporter bzw. ihre Komponenten strukturell untersucht, mit dem Ziel einen Beitrag zur Aufklärung ihrer molekularen Mechanismen zu leisten. Das erste untersuchte System war der MDR-ABC-Transporter LmrA aus L. lactis, der auf Grund seiner funktionalen Austauschbarkeit mit dem humanen P-Glykoprotein ein geeignetes Modellsystem zur strukturellen Untersuchung dieser medizinisch relevanten Klasse von ABC-Transportern darstellte. In einem ersten Schritt zu seiner Kristallisation wurde durch die Analyse von 43 Protein-Detergens-Kombinationen eine für strukturbiologische Untersuchungen geeignete Proteinpräparation etabliert. Unter Verwendung von FOS-CHOLINE-16 wurde eine bis zur Homogenität gereinigte, monodisperse und stabile Proteinlösung zur Kristallisation gewonnen, mit der eine breit angelegte Analyse des n-dimensionalen Kristallisationsraums von LmrA durchgeführt wurde. Im Zuge der Analyse von insgesamt 9600 Bedingungen wurden vier verschiedene Kristallformen erhalten. Die Datenaufnahme lieferte für die Kristallform 2 unter Verwendung von Synchrotronstrahlung eine schwache Streuung bis zu einer Auflösung von 20 Å. In einem weiteren Projekt wurden die molekularen Grundlagen der Substratspezifität des ABC-Importers Ehu aus S. meliloti untersucht. Hierfür wurde die Kristallstruktur seines Substratbindeproteins EhuB im Komplex mit den kompatiblen Soluten Ectoin bzw. Hydroxyectoin mit einer Auflösung von 1,9 Å bzw. 2,5 Å gelöst. Die beiden erhaltenen Strukturen zeigten einen für Substratbindeproteine der Gruppe II typischen Aufbau aus zwei globulären Domänen, die durch zwei Segmente der Polypeptidkette verbunden wurden. Die Substratbindungsstelle von EhuB war, wie für Substratbindeproteine erwartet, in der Spalte zwischen den beiden globulären Domänen lokalisiert. Ihre Analyse zeigte eine Interaktion des Proteins mit der negativ geladenen Carboxylat-Gruppe der Substrate durch die Bildung von Salzbrücken mit der Seitenkette von Arg85 sowie mittels Wasserstoffbrückenbindungen mit den Hauptketten-Stickstoffatomen von Phe80 und Thr133. Im Unterschied dazu waren für die Bindung des kationischen Anteils der Substrate wesentlich seine Wechselwirkungen mit den aromatischen Resten Phe24, Tyr60 und Phe80 verantwortlich, die durch ihre räumliche Anordnung eine optimale Bindungsstelle für die delokalisierte positive Ladung der Substrate bildeten. Die Bedeutung dieser wahrscheinlich auf Kation-TT und van der Waals Interaktionen beruhenden Wechselwirkungen für die Substratbindung konnten – aufbauend auf der Kristallstruktur – in Kooperation mit der Arbeitsgruppe von Prof. E. Bremer (Universität Marburg) bestätigt werden. Neben den beschriebenen Interaktionen wurde der kationische Anteil der Substrate durch zwei Salzbrücken mit der Seitenkette von Glu21 sowie durch eine Wasserstoffbrückenbindung mit der Hauptketten-Carbonyl-Funktion von Gly78 gebunden. Bei der Bindung des Substrats Hydroxyectoin wurde im Vergleich zu Ectoin eine zusätzliche Wasserstoffbrückenbindung zwischen der Seitenkette von Glu134 und der lediglich in diesem Substrat vorhandenen Hydroxyl-Gruppe beobachtet, die für die dreieinhalbfach höhere Bindungsaffinität von EhuB für Hydroxyectoin gegenüber Ectoin verantwortlich zu sein scheint. Der Vergleich der an der Substratbindung beteiligten Interaktionen in EhuB mit den ebenfalls für kompatible Solute spezifischen Substratbindeproteinen ProX aus E. coli, ProX aus A. fulgidus und OpuAC aus B. subtilis enthüllte gemeinsame Prinzipen der untersuchten Proteine zur Bindung dieser Klasse von Substraten. Von besonderer Bedeutung waren dabei die von bestimmten aromatischen Resten ausgehenden Wechselwirkungen mit dem kationischen Anteil der Substrate, die wahrscheinlich auf Kation-TT und van der Waals Interaktionen beruhen. Im Detail zeigten die Substratbindungsstellen der untersuchten Proteine jedoch signifikante Unterschiede, die eine Anpassung an die für ihre Aufgabe benötigte Bindungsaffinität und das zu bindende Substrat zu sein scheinen. Y1 - 2006 UR - http://publikationen.ub.uni-frankfurt.de/frontdoor/index/index/docId/2316 UR - https://nbn-resolving.org/urn:nbn:de:hebis:30-30849 ER -