TY - THES A1 - Breiner, Tobias Christopher T1 - Dreidimensionale virtuelle Organismen N2 - Die vorliegende Arbeit befasst sich mit der Generierung virtueller Organismen respektive mit der dreidimensionalen Nachbildung anatomischer Strukturen von Pflanzen, Tieren, Menschen und imaginärer Wesen per Computer. Berücksichtigt werden dabei sowohl die verschiedenen Aspekte der Visualisierung, der Modellierung, der Animation sowie der Wachstums-, Deformations- und Bewegungssimulation. Dazu wird zuerst eine umfassende State-of-the-Art-Analyse konventioneller Methoden zur Organismengenerierung durchgeführt. Im Laufe dieser Analyse werden die Defizite herkömmlicher Verfahren aufgezeigt und damit eine gezielte Anforderungsanalyse für neue Verfahren erstellt. Mit Hilfe dieser Anforderungsanalyse wurde nach neuen Lösungsansätzen gesucht. Besonders hilfreich hat sich in diesem Zusammenhang die Frankfurter Organismus- und Evolutionstheorie erwiesen. Gemäß dieser Theorie stellen Organismen aus biomechanischer Sicht komplexe hydropneumatische Konstruktionen dar. Ihre Körperformen und Bewegungen werden weitgehend durch stabilisierende, kräfteerzeugende und kräfteübertragende Strukturen generiert, die den Gesetzen der klassischen Hydropneumatik folgen. So entstand die Idee, Organismen auf der anatomischen Ebene als eine komplexe Hierarchie unterschiedlicher hydropneumatischer Einheiten anzusehen, welche mechanisch miteinander interagieren. Diese Sichtweise liefert die Grundlage für ein neues biologisches Simulationsmodell. Es erlaubt der Computergraphik, sowohl die Form eines Organismus zu beschreiben als auch sein Verhalten bezüglich seiner Bewegungsabläufe, seiner evolutionären Formveränderungen, seiner Wachstumsprozesse und seiner Reaktion auf externe mechanische Krafteinwirkungen numerisch zu simulieren. Aufbauend auf diesem biologischen Simulationsmodell wurde ein neues Verfahren (Quaoaring) entwickelt und implementiert, das es erlaubt, beliebige organische Einheiten interaktiv in Echtzeit zu modellieren. Gleichzeitig ermöglicht dieses Verfahren die Animation von Bewegungen, Wachstumsprozessen und sogar evolutionären Entwicklungen. Die Animation verhält sich dabei im Wesentlichen biologisch stringent, z.B. wird das interne Volumen während komplexer Bewegungsabläufe konstant gehalten. Die größte Stärke der neuen Modellierungs- und Animationstechnik ist die holistische Verschmelzung des biologischen Simulationsmodells mit einem computergraphischen Geometriemodell. Dieses erlaubt dem Modellierer, biologische Konzepte für die Beschreibung der Form und anderer Attribute einer organischen Einheit zu verwenden. Darüber hinaus ermöglicht es die Animation des geometrischen Modells durch einfache Parameterspezifikation auf einer hohen Abstraktionsebene. Dazu wird ein utorenprozess beschrieben, wie Quaoaring für Modellierungs- und Animationszwecke verwendet werden kann. Es werden Aspekte der prototypischen Implementierung der Quaoaringtechnologie behandelt und über die Ergebnisse berichtet, die bei der Implementierung und der Anwendung dieses Softwareframeworks gewonnen wurden. Schließlich wird die Quaoaringtechnologie in ihrem technologischen Kontext beleuchtet, um ihr Zukunftspotential einzuschätzen. Y1 - 2005 UR - http://publikationen.ub.uni-frankfurt.de/frontdoor/index/index/docId/2635 UR - https://nbn-resolving.org/urn:nbn:de:hebis:30-27671 ER -