TY - THES A1 - Zwicker, Benjamin T1 - Design of a bunch shape monitor for high current LINACs at GSI N2 - Im Rahmen des FAIR Projektes wurde ein neuartiger Prototyp eines nicht strahlzerstörenden Bunch Struktur Monitors (BSM) am GSI UNILAC entwickelt. Ziel ist es, ein zuverlässiges Diagnosegerät zu entwickeln, welches die longitudinale Struktur der Ionenbunche innerhalb des LINACs untersuchen kann. Notwendig ist hierbei eine effektive Zeitauflösung deutlich unter 100 ps, bei möglichst wenigen Makropuls Mittelungen. Nach der erfolgreichen Inbetriebnahme soll der BSM Prototyp dazu dienen, die Umsetzbarkeit eines weiteren nichtinvasiven Geräts für den geplanten Proton-LINAC bei FAIR mit einer notwendigen Zeitauflösung von 10 ps zu beurteilen. Die numerische Simulation von Materialien, welche dem Hochstrom-Ionenstrahl ausgesetzt sind, zeigten einen sehr hohen thermischen Stress. Daher wurde der Ansatz eines nicht strahlzerstörenden Diagnosegerätes verfolgt. Das Design beruht auf der Erzeugung von Sekundärelektronen durch Strahl-Restgas Kollisionen im Strahlrohr. Durch das Anlegen eines homogenen Hochspannungspotentials von bis zu -31 kV, wird ein Elektronenstrahl erzeugt, welcher die zeitliche Struktur des Ionenbunches trägt. Die zeitliche Information des Elektronenstrahles wird beim Durchfliegen eines HF-Ablenkers, welcher resonant an die 36 MHz des Beschleunigers gekoppelt ist, in eine räumliche Intensitätsverteilung umgewandelt. Anschließend wird die Elektronenverteilung auf einem bildgebenden MCP-Phosphor-Detektor durch eine CCD-Kamera detektiert und in die Bunch Struktur überführt. Intensive Untersuchungen der BSM Eigenschaften ergaben eine höchste Auflösung von 37 ±6.3 ps bei gleichzeitig akzeptabler Intensität auf dem MCP-Detektor. Unter anderem wurden auch stabile Einzelschussmessungen durchgeführt, welche für die Profilmessung nur einen einzelnen Makropuls benötigten, statt über typischerweise 8-32 Pulse zu mitteln. Durch die systematische Manipulation der Bunchlänge durch einen Rebuncher sind nicht gaußförmige Profile von 280 ps bis 650 ps detektiert worden, welche als Studie für eine Emittanzbestimmung genutzt worden sind. In Abhängigkeit des Analyseverfahrens sind Werte von εGauss = 1.42 ±0.14 keV/u ns bis εSD = 3.03 ±0.33 keV/u ns für die Emittanz bestimmt worden. Des Weiteren ist ein Finite-Elemente Modell erstellt worden, um die Zeitstruktur der Sekundärelektronen innerhalb des elektronenoptischen Systems zu bestimmen. Für das Setup mit der höchsten Auflösung von 37 ps ergab sich eine zusätzliche Zeitverbreiterung von 5.6 ps, welche nur geringfügig die experimentell bestimmte Auflösung verschlechtert. Der nicht strahlzerstörende BSM liefert eine ausreichend hohe zeitliche Auflösung für detailreiche Untersuchung der longitudinalen Bunchstruktur, ohne negative Einflüsse auf den Ionenstrahl auszuüben. Fortgeschrittene Messungen, wie longitudinale Emittanzbestimmung und Makropulsanalysen, sind möglich und werden dazu beitragen, die LINAC Strukturen besser zu verstehen und weiter zu optimieren. Obwohl bei der Umsetzung des Arbeitsprinzips für den geplanten Proton-LINAC die veränderten Strahlparameter berücksichtigt werden müssen, zeigen die Ergebnisse, wie die Zeitstrukturuntersuchung und die erreichte Phasenauflösung von 0.5° bei 36 MHz, dass zeitliche Auflösungen bei Aufrechterhaltung der Phasenauflösung von bis zu 10 ps für einen neuen BSM Prototypen möglich sind. Y1 - 2016 UR - http://publikationen.ub.uni-frankfurt.de/frontdoor/index/index/docId/41388 UR - https://nbn-resolving.org/urn:nbn:de:hebis:30:3-413883 CY - Frankfurt am Main ER -