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Zusammenfassung

Als Perpetuity wird vor allem in der Versicherungs- und Finanzmathematik eine Zu-

fallsvariable X auf R bezeichnet, deren Verteilung implizit durch eine stochastische

Fixpunktgleichung der Form X
d
= AX + b charakterisiert ist. Dabei ist (A, b) ein

Vektor von Zufallsvariablen, der unabhängig von X ist. Abhängigkeiten zwischen A

und b sind jedoch erlaubt.

Bedingungen für die Existenz und Eindeutigkeit von Lösungen solcher Fixpunktglei-

chungen sind bereits seit längerem bekannt. Für eine große Klasse dieser Perpetuities

existieren Tail-Abschätzungen. Ziel dieser Arbeit ist es, den zentralen Bereich solcher

Verteilungen zu untersuchen. Dazu wird ein Algorithmus für die Approximation der

Verteilungsfunktionen und gegebenenfalls der Dichten von einer möglichst großen

Klasse solcher Perpetuities entwickelt. Um für diese Approximationen explizite Feh-

lerschranken anzugeben, muss der Stetigkeitsmodul der approximierten Funktion

abgeschätzt werden. Für eine spezielle Klasse von Fixpunktgleichungen werden uni-

verselle Abschätzungen angegeben, im Allgemeinen muss eine solche Abschätzung je-

doch für den Einzelfall hergeleitet werden. Dies wird exemplarisch an einem Beispiel

aus der probabilistischen Analyse von Algorithmen durchgeführt, für das auch der

Algorithmus implementiert und eine Tafel der Verteilungsfunktion generiert wird.

Um die Qualität der erhaltenen Fehlerschranken und die praktische Verwendbarkeit

des Algorithmus zu beurteilen, werden abschließend einige Beispiele untersucht, in

denen die Dichten oder zumindest gewisse Eigenschaften bereits bekannt sind. Hier-

bei zeigt sich, dass die theoretischen Fehlerschranken stets deutlich unterschritten

werden und die Approximation in praktikabler Laufzeit bereits sehr gut Ergebnisse

liefert.

Der verwendete Algorithmus beruht auf einem bekannten Verfahren, das jedoch für

eine andere Klasse von Fixpunktgleichungen entwickelt wurde. Bei der Anpassung

an den hier betrachteten Fall konnte eine wesentliche Verbesserung erreicht werden,

die sich auch auf den ursprünglichen Algorithmus übertragen lässt.
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1 Introduction

1 Introduction

In probability theory, a perpetuity denotes a random variable X in R that satisfies

the stochastic fixed-point equation

X
d
= AX + b, (1)

where (A, b) is a vector of random variables which is independent of X, whereas

dependence between A and b is allowed. The symbol
d
= denotes that left and right

hand side in (1) are identically distributed. The notion of perpetuity extends directly

to the multivariate case, where X and b are random vectors in Rd and A is a random

d×dmatrix. In th is work, we will however restrict ourselves to the univariate case.

Perpetuities arise in various different contexts:

• In discrete mathematics, perpetuities arise as the limit distributions of certain

count statistics of decomposable combinatorial structures such as random per-

mutations or random integers. In these areas, perpetuities (in particular the

Dickman distribution) often arise via relationships to the GEM and Poisson-

Dirichlet distributions. The Dickman distribution is a prototypical perpetuity,

obtained from (1) by setting A = b = U with U being uniformly distributed on

the unit interval [0, 1]; see Arratia, Barbour, and Tavaré (2003) for perpetu-

ities, GEM and Poisson-Dirichlet distribution in the context of combinatorial

structures; see Donnelly and Grimmett (1993) for occurrences in probabilistic

number theory.

• In the probabilistic analysis of algorithms, perpetuities come up as limit distri-

butions of certain cost measures of recursive algorithms such as the selection

algorithm Quickselect, see e.g. Hwang and Tsai (2002) or Mahmoud, Modar-

res, and Smythe (1995).

• In insurance and financial mathematics, a perpetuity represents the value of a

commitment to make regular payments, where b represents the payment and

A a discount factor both being subject to random fluctuation; see, e.g. Goldie

and Maller (2000) or Embrechts, Klüppelberg, and Mikosch (1997, Section

8.4).

• Further, less systematic occurrences in connection with interval splitting pro-

cedures are discussed in Section 4.1.

As perpetuities are given implicitly by their fixed point characterization (1), prop-

erties of their distributions are not directly amenable. However, various questions

about perpetuities have already been settled. Necessary and sufficient conditions
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on (A, b) for the fixed-point equation (1) to uniquely determine a probability dis-

tribution are discussed in Vervaat (1979) and Goldie and Maller (2000). Vervaat’s

argument can be found in Section 2.1. The tail behavior of perpetuities has been

studied for certain cases in Goldie and Grübel (1996).

In the present work, we are interested in the central region of the distributions. The

aim is to approximate perpetuities, in particular their distribution functions and

their Lebesgue densities (if they exist).

To find a solution of (1), one approach is to define a mapping T on the spaceM of

probability distributions, by

T :M→M, µ 7→ L(AY + b),

where Y is independent of (A, b), and L(Y ) = µ. Then, L(X) is a fixed-point

of T if and only if X satisfies (1). To approximate L(X), we iterate T , starting

with some distribution µ0. In Section 2.1, we discuss sufficient conditions on A

and b for the convergence of this approximation and the uniqueness of the fixed-

point and these are the cases considered subsequently. However, it is generally not

possible to algorithmically compute the iterations of T exactly, when at least one of

the occurring distributions is continuous. We will therefore follow the approach in

Devroye and Neininger (2002) and use discrete approximations (A(n), b(n)) of (A, b),

which become more accurate for increasing n, to approximate T by a mapping T̃ (n),

defined by

T̃ (n) :M→M, µ 7→ L
(
A(n)Y + b(n)

)
,

where again Y is independent of (A(n), b(n)) and L(Y ) = µ.

Although this approach can be translated into an algorithm, the running time of such

an algorithm, starting with a simple distribution, e.g. the Dirac measure in E[X], is

typically exponential. To allow for an efficient computation of the approximation,

we introduce a further discretisation step 〈·〉n, explained in detail in Section 2.4 and

define

T (n) :M→M, µ 7→ L
(〈
A(n)Y + b(n)

〉
n

)
,

where Y is independent of (A(n), b(n)) and L(Y ) = µ. In Section 2.2, we give

conditions for T (n)◦ T (n−1)◦ · · · ◦ T (1)(µ0) to converge to the solution of (1). To this

aim, we derive a rate of convergence in the minimal Lp metric `p, defined on the

spaceMp of probability measures on R with finite p-th moment by

`p(ν, µ) := inf
{∥∥V −W∥∥

p
: L(V ) = ν,L(W ) = µ

}
, for ν, µ ∈Mp (2)

in Section 2.2.1. To get an explicit error bound for the distribution function, we then

convert this in Section 2.2.2 into a rate of convergence in the Kolmogorov metric %,

3



1 Introduction

defined by

%(ν, µ) := sup
x∈R

∣∣Fν(x)− Fµ(x)
∣∣ ,

where Fν , Fµ denote the distribution functions of ν, µ ∈ M. This implies explicit

rates of convergence for distribution function and density, depending on the corre-

sponding moduli of continuity of the fixed-point.

Such explicit rates for an approximation of the density can be used for perfect

simulation from the distribution of the fixed-point using von Neumann’s rejection

method, see Devroye (2001), where the densities of certain perpetuities are approx-

imated using a different approach based on characteristic functions and restricted

to infinitely divisible distributions.

For the moduli of continuity needed, we find global bounds for perpetuities with

b ≡ 1 in Section 2.3. For cases with random b, these moduli of continuity have to be

derived individually. One example, connected to the selection algorithm Quickselect,

is worked out in detail in Section 3, which is a main part of this work.

An implementation of an approximation of the form T (n)◦· · ·◦T (1)(µ0) can be found

in Section 2.4, where we also analyze its complexity. As a measure of the complexity

of the approximation, we use the number of steps needed to obtain an accuracy of

order O(1/n). Although we generally follow the approach in Devroye and Neininger

(2002), we can improve the complexity significantly by using different discretisations.

For the approximation of the distribution function to an accuracy of O(1/n) in a

typical case, we obtain a complexity of O(n1+ε) for any ε > 0. In comparison, the

algorithm described in Devroye and Neininger (2002), which originally was designed

for a different class of fixed-point equations, would lead to a complexity of O(n4+ε),

if applied to our cases. For the approximation of the density to an accuracy of order

O(1/n), we obtain a complexity of O(n2+ε) compared to O(n8+ε) for the algorithm

in Devroye and Neininger (2002).

In Section 4, we apply the algorithm to some exemplary fixed-point equations, for

which the solutions are more or less explicitly known. This enables us to compare

the theoretical results to the actual error and to get an idea of the accuracy that

can be attained with feasible running times.
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2 Approximation

2.1 Vervaat: conditions for existence and uniqueness of

solutions

Following Vervaat (1979), we find sufficient conditions on A and b for the existence

and uniqueness of solutions of the fixed-point equation (1). A complete charac-

terization of the existence of solutions of (1) can be found in Goldie and Maller

(2000).

Theorem 2.1 (Vervaat 1979). Let A, b be real-valued random variables satisfying

−∞ ≤ E
[
log |A|

]
< 0 and E

[
log+|b|

]
<∞,

where log denotes the natural logarithm and log+x := 0 ∨ log x for x ∈ R+. Then,

fixed-point equation (1) has a solution and this solution is unique in distribution.

Proof. Let (Ai, bi)i∈N be a sequence of independent and identically distributed (iid)

copies of (A, b), and µ := E
[
log |A|

]
. Then, the strong law of large numbers implies

1

n

n∑
k=1

log |Ak| → µ a.s. (3)

For any real-valued random variable X0, we define the sequence (Xn(X0))n by

Xn(X0) := An ·Xn−1(X0) + bn for n ≥ 2, X1(X0) := A1X0 + b1, (4)

so

Xn(X0) = bn + Anbn−1 + AnAn−1bn−2 + · · ·+ An · · ·A2b1 + An · · ·A1X0.

To show uniqueness of the limit, we compare with the sequence for a different starting

point X ′
0, but the same sequence (Ai, bi), and get

Xn(X0)−Xn(X ′
0) =

(
n∏

k=1

Ak

)
(X0 −X ′

0) .

Now (3) implies ∣∣∣∣∣
n∏

k=1

Ak

∣∣∣∣∣
1/n

−−→
n→∞

eµ a.s., (5)

and using that µ is negative, we get
n∏

k=1

Ak −−→
n→∞

0 a.s. (6)

So if
(
Xn(X0)

)
n

converges in distribution for one X0, it converges for every X0, and
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2 Approximation

this limit is unique in distribution. But if X is a solution of the fixed-point equation,

we have Xn(X)
d
= X for all n, so this implies that the fixed-point of the equation is

unique in distribution.

To show existence of the fixed-point, we define a new sequence of random variables

(Yn)n∈N by

Y0 := 0, Yn :=
n∑

k=1

A1 · · ·Ak−1bk for n ≥ 1

and observe that

Xn(X0) = bn + Anbn−1 + AnAn−1bn−2 + · · ·+ An · · ·A2b1 + An · · ·A1X0

d
= b1 + A1b2 + A1A2b3 + · · ·+ A1 · · ·An−1bn + A1 · · ·AnX0

= Yn +

(
n∏

k=1

Ak

)
X0.

So using (6) it is sufficient to show that the infinite series

lim
n→∞

Yn =
∞∑

k=1

A1 · · ·Ak−1bk (7)

converges almost surely.

The bk are iid, so E
[
log+ |b|

]
<∞ implies that for all a > 1,

∞∑
k=1

P
[
|bk| ≥ ak

]
=

∞∑
k=1

P
[
log |bk| ≥ k log a

]
=

∞∑
k=1

P
[
log+|b| ≥ k log a

]
≤ 1

log a
E
[
log+|b|

]
<∞.

Using Borel-Cantelli for the events Ak :=
{
|bk| ≥ ak

}
, we get

P
[∣∣bn∣∣1/n ≥ a infinitely often

]
= 0

for all a > 1, so lim sup
∣∣bn∣∣1/n≤1 almost surely. Combining this with (5) and using

that µ is negative, we get

lim sup
n→∞

∣∣A1 · · ·An−1bn
∣∣1/n ≤ eµ < 1 a.s.

So by Cauchy’s root criterion series (7) converges almost surely.
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2.2 Rates of convergence

Corollary 2.2. If the conditions of Theorem 2.1 are satisfied, Xn(X0) converges in

distribution for all real-valued random variables X0.

Remark 2.3. The conditions of Theorem 2.1 are satisfied, if

‖A‖p < 1 and ‖b‖p <∞ (8)

for any p ≥ 1, as we can see using Jensen’s inequality. Then the series given

in (7) also converges in p-th mean and E[|X|p] is finite. The moments E[Xj] for

j = 1, 2, . . . , bpc are uniquely determined by

E
[
Xj
]

=

j∑
k=0

(
j

k

)
E
[
AkBj−k

]
E
[
Xk
]

for j = 1, 2, . . . , bpc . (9)

In the following, we will always work with fixed-point equations satisfying the con-

ditions of this remark for some p ∈ N.

2.2 Rates of convergence

To obtain an algorithmically computable approximation of the solution of the fixed-

point equation (1), we use an approximation of the sequence defined in (4). Therefore

we replace the iid. copies of (A, b) by a sequence of independent discrete approxi-

mations (A(n), b(n)), converging to (A, b) in p-th mean for n → ∞. To reduce the

complexity, we introduce a further discretisation step 〈·〉n, that reduces the number

of values attained by Xn. A concrete implementation of such discretisations can be

found in the next section. Putting this together, we obtain

X̃n := A(n)Xn−1 + b(n) (10)

Xn :=
〈
X̃n

〉
n
. (11)

We assume that the discretisations A(n), b(n) and 〈·〉n satisfy∥∥A(n) − A
∥∥

p
≤ RA(n) (12)∥∥b(n) − b

∥∥
p
≤ Rb(n) (13)∥∥∥〈X̃n

〉
n
− X̃n

∥∥∥
p
≤ RX(n), (14)

for some error functions RA, Rb and RX , which we will specify later.

Furthermore, we assume that there is some ξ̄p < 1, such that

‖A‖p≤ ξ̄p and
∥∥A(n)

∥∥
p
≤ ξ̄p for all n. (15)

This is always possible for sufficiently large n, as we assume that ‖A‖p < 1, hence

this is no real restriction on the choice of discretisations but can be reached by

appropriately shifting the indices.
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2 Approximation

2.2.1 Minimal Lp metric

We now derive a rate of convergence for this discrete approximation in the `p metric.

To find explicit estimates, we have to specify functions RA, Rb, and RX in (12)–(14),

and we will carry this out for polynomial discretisation (R(n) = O(n−r)) as well as

exponential discretisation (R(n) = O(γ−n)).

For simplicity, we use the shorthand notation `p(X, Y ) := `p(L(X),L(Y )).

Lemma 2.4. Let (Xn) be defined by (10) and (11), ξ̄p as in (15). Then

`p(Xn, X) ≤ ξ̄
n
p ‖X − EX‖p +

n−1∑
i=0

ξ̄
i
pR(n− i), (16)

where R(n) := RX(n) +RA(n) ‖X‖p +Rb(n) for the error functions in (12)–(14).

Proof. We have

`p(Xn, X) ≤ `p(Xn, X̃n) + `p(X̃n, X)

≤
∥∥∥〈X̃n

〉
n
− X̃n

∥∥∥
p
+ `p(X̃n, X). (17)

The first term is bounded by (14) and for the second term we get

`p(X̃n, X) ≤
∥∥∥X̃n −X

∥∥∥
p

=
∥∥A(n)Xn−1 + b(n) − AX − b

∥∥
p

≤
∥∥A(n)Xn−1 − AX

∥∥
p
+
∥∥b(n) − b

∥∥
p

=
∥∥A(n)(Xn−1 −X)− (A− A(n))X

∥∥
p
+
∥∥b(n) − b

∥∥
p

≤
∥∥A(n)

∥∥
p
‖Xn−1 −X‖p +

∥∥A− A(n)
∥∥

p
‖X‖p +

∥∥b(n) − b
∥∥

p
,

where in the last step we use that A(n) and (Xn−1−X) as well as (A−A(n)) and X

are independent by assumption.

Now we use the important property of `p that the infimum in definition (2) is

attained, see Bickel and Freedman (1981). We use a so called optimal coupling

of Xn−1 and X, for example by taking U ∼ unif[0, 1] independent of
(
A(n), b(n)

)
and (A, b) and then setting Xn−1 := F−1

Xn−1
(U) and X := F−1

X (U), where F−1
Y is

the generalized inverse of the distribution function of Y , and get ‖Xn−1 −X‖p =

`p(Xn−1, X). Combining this with (17) and using the bounds given in (12)–(15), we

obtain

`p(Xn, X) ≤ RX(n) + ξ̄p `p(Xn−1, X) +RA(n) ‖X‖p +Rb(n),

and the claim then follows by induction, finally using X0 = E[X].
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2.2 Rates of convergence

To make this estimates explicit we have to specify functions for RA(n), Rb(n), and

RX(n). We will do so in two different ways, one representing a polynomial discreti-

sation of the corresponding random variables and one representing an exponential

discretisation. Although we get better asymptotic results for the second case, we

will see in the examples that when we are actually implementing the approximation

on recent hardware, the first approach is superior.

Corollary 2.5. Let (Xn) be defined by (10) and (11), ξ̄p as in (15), and assume

RA(n) ≤ CA ·
1

nr
, Rb(n) ≤ Cb ·

1

nr
, RX(n) ≤ CX ·

1

nr
,

for some r ≥ 1. Then, we get

`p(Xn, X) ≤ Cr ·
1

nr
,

where

Cr :=
r · ‖X − EX‖p
er · log

(
1/ξ̄p

) +
r!
(
CX + Cb + CA ‖X‖p

)
(
1− ξ̄p

)r+1 (18)

Proof. Using Lemma 2.4 we get

`p(Xn, X) ≤ ξ̄
n
p ‖X − EX‖p + (CX + CA ‖X‖p + Cb)

n−1∑
i=0

ξ̄
i
p

(n− i)r . (19)

To see that both summands are of order n−r, we can extend the argumentation in

Lemma 4 of Devroye and Neininger (2002) to get

ξ̄
n
p ≤

r

er log
(
1/ξ̄p

) · 1

nr
and (20)

n−1∑
i=0

ξ̄
i
p

(n− i)r ≤
r!(

1− ξ̄p

)r+1 ·
1

nr
for 0 < ξ̄p < 1, n ≥ 1. (21)

Remark 2.6. The estimates in (20) and (21) are not sharp. However, here we

are only interested in the order of magnitude. When evaluating the error in the

examples, we will always use equation (19) directly.
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2 Approximation

Corollary 2.7. Let (Xn) be defined by (10) and (11), ξ̄p as in (15), and assume

RA(n) ≤ CA ·
1

γn
, Rb(n) ≤ Cb ·

1

γn
, RX(n) ≤ CX ·

1

γn
,

for some γ < 1/ξ̄p. Then, we get

`p(Xn, X) ≤ Cγ ·
1

γn
,

where

Cγ := ‖X − EX‖p +

(
CX + Cb + CA ‖X‖p

)
1− ξ̄pγ

. (22)

Proof. Using Lemma 2.4 we get

`p(Xn, X) ≤ ξ̄
n
p ‖X − EX‖p + (CX + CA ‖X‖p + Cb)γ

−n

n−1∑
i=0

ξ̄
i
pγ

i, (23)

and the assumption on γ implies that both summands are O(γ−n) with the constant

given in the lemma.

2.2.2 Kolmogorov metric

If we know some properties of the distribution of the fixed point, we can transform

the rate of convergence in the `p metric into a rate for the Kolmogorov metric.

Lemma 2.8. Let Xn be defined by (10) and (11) and X have a bounded density fX .

Then, the distance in the Kolmogorov metric can be bounded by

%(Xn, X) ≤
(
Cr (p+ 1)1/p ‖fX‖∞

)p/(p+1)

· n−r·p/(p+1)

with r ≥ 1 and Cr defined in (18).

Proof. We use Lemma 5.1 in Fill and Janson (2002), which states, that for X with

bounded density fX and any Y ,

%(Y,X) ≤
(
(p+ 1)1/p ‖fX‖∞ · `p(Y,X)

)p/(p+1)

for p ≥ 1.

Using Corollary 2.5, we get the stated result.
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2.2 Rates of convergence

In some cases, we can give a similar bound, although the density of X is not bounded

or no explicit bound is known. Instead, it is sufficient to know a bound for the

modulus of continuity of the distribution function FX of X, defined by

∆FX
(δ) := sup

x∈R

∣∣FX(x+ δ)− FX(x)
∣∣ .

Remark 2.9. Lemma 5.1 in Fill and Janson (2002) can easily be extended to cases,

when the modulus of continuity of the distribution function of X can be bounded

by ∆FX
(δ) ≤ c · δα for some α ∈ (0, 1], c ∈ R+. Then,

%(Y,X) ≤
(( p

α
+ 1
)1/p

· c1/α · `p(Y,X)

)pα/(p+α)

for p ≥ 1.

2.2.3 Approximation of the density

To approximate the density of the fixed-point, we define

fn(x) =
Fn(x+ δn)− Fn(x− δn)

2δn
, (24)

where Fn is the distribution function of Xn. For this approximation we can give a

rate of convergence, depending on the modulus of continuity of the density of the

fixed-point, which is defined by

∆fX
(δ) := sup

u,v∈R
|u−v|≤δ

∣∣fX(u)− fX(v)
∣∣

Lemma 2.10. Let X have a density fX with modulus of continuity ∆fX
and let

(Xn) be defined by (10) and (11). Then, for fn defined by (24),∥∥fn − fX

∥∥
∞ ≤

1

δn
%(Xn, X) + ∆fX

(δn) for δn > 0.

Proof.∣∣fn(x)− fX(x)
∣∣ ≤ ∣∣∣∣Fn(x+ δn)− Fn(x− δn)

2δn
− F (x+ δn)− F (x− δn)

2δn

∣∣∣∣+
+

∣∣∣∣F (x+ δn)− F (x− δn)

2δn
− fX(x)

∣∣∣∣
≤ 1

δn
%(Xn, X) +

1

2δn

∫ δn

−δn

∣∣fX(x+ y)− fX(x)
∣∣ dy

≤ 1

δn
%(Xn, X) +

1

δn

∫ δn

0

∆fX
(y) dy

11



2 Approximation

Corollary 2.11. Let X have a bounded density fX , which is Hölder continuous

with exponent α, i.e. ∆fX
(ε) ≤ c · εα for some c > 0, α ∈ (0, 1]. Let (Xn) be an

approximation of X as in Corollary 2.5 and fn be defined by (24) with

δn := L · n−r/(α+1)·p/(p+1)

with an L > 0. Then, we obtain

‖fn − fX‖∞ ≤
((

Cr (p+ 1)1/p ‖fX‖∞
)p/(p+1)

/L+ c Lα

)
· n−α/(α+1)·r·p/(p+1)

with Cr as defined in (18).

Proof. Combine Lemma 2.8 and Lemma 2.10.

Remark 2.12. Similarly, we get for exponential discretisation as in Corollary 2.7

with

δn := L · γ−1/(α+1)·n·p/(p+1),

with an L > 0, the bound

‖fn − fX‖∞ ≤
((

Cγ (p+ 1)1/p ‖fX‖∞
)p/(p+1)

/L+ c Lα

)
· γn·α/(α+1)·p/(p+1),

with Cγ as defined in (22).

Remark 2.13. If X is bounded and bounds for the density fX and its modulus of

continuity are known explicitly, the last result is strong enough to allow, in principle,

perfect simulation using von Neumann’s rejection method as carried out in Devroye

and Neininger (2002). However, we will see in the examples in Section 3 and 4, that

the resulting running time is too slow for practical purposes.

Remark 2.14. Lemma 2.10 can be improved for cases, whenX ≥ c almost surely for

some c ∈ R. If fX(c) can be approximated at least to an accuracy of %(Xn, X)/(2δn),

we approximate the density by

fn(x) :=


0 for x < 0,

fX(0) for 0 ≤ x ≤ δn,

Fn(x+ δn)− Fn(x− δn)

2δn
otherwise.

and can use for the bound the (possibly smaller) modulus of continuity ∆
(c)
fX

of fX

on [c,∞), defined by

∆
(c)
fX

(δ) := sup
u,v≥c
|u−v|≤δ

∣∣fX(u)− fX(v)
∣∣ . (25)

12



2.3 A class of perpetuities

To make the bounds of this section explicit, we need a bound for the absolute value

and modulus of continuity of the density of the fixed-point. For a simple class of

fixed-point equations, we will give universal bounds in the next section. For more

complicated cases, those properties have to be derived individually, which we will

do for one example in Section 3.

2.3 A class of perpetuities

For fixed-point equations of the form

X
d
= AX + 1 with A ≥ 0, (26)

whereA andX are independent, we can bound the density and modulus of continuity

of X using the corresponding values of A.

2.3.1 A bound for the density

Lemma 2.15. Let X satisfy fixed-point equation (26) and A have a density fA.

Then X has a density fX satisfying

fX(u) =

∫ ∞

1

1

x
fA

(
u− 1

x

)
fX(x)dx, for u ≥ 1, (27)

and fX(u) = 0 otherwise.

Proof. From the fixed-point equation we can see that X ≥ 1 almost surely. Now let

PX be the distribution of X; by conditioning on X, we get for any borel set B:

P[X ∈ B] =

∫ ∞

1

P[Ax+ 1 ∈ B] dPX(x)

=

∫ ∞

1

∫
B

fxA+1(u)du dPX(x)

=

∫ ∞

1

∫
B

1

x
fA

(
u− 1

x

)
du dPX(x)

=

∫
B

∫ ∞

1

1

x
fA

(
u− 1

x

)
dPX(x) du,

where we have used Fubini in the last step, because the integrand is product mea-

surable. The claim follows, as this is just the definition of Lebesgue density.

13



2 Approximation

Corollary 2.16. Let A have a bounded density fA. Then X has a density fX

satisfying

‖fX‖∞ ≤ ‖fA‖∞ .

Proof. Using Lemma 2.15 we get

‖fX‖∞ ≤ ‖fA‖∞ · E
[

1

X

]
,

but X ≥ 1 implies E[1/X] ≤ 1, so the claim follows.

2.3.2 The modulus of continuity

Corollary 2.17. Let A have a density fA, and ∆fA
be its modulus of continuity.

Then X has a density fX , and its modulus of continuity satisfies

∆fX
(δ) ≤ ∆fA

(δ) for all δ > 0.

Proof. Using (27), we obtain for any u, v ∈ R

∣∣fX(u)− fX(v)
∣∣ ≤ ∫ ∞

1

1

x
fX(x)

∣∣∣∣fA

(
u− 1

x

)
− fA

(
v − 1

x

)∣∣∣∣ dx.
But x ≥ 1 and the modulus of continuity ∆fA

is monotonically increasing by defini-

tion, so we can bound∣∣∣∣fA

(
u− 1

x

)
− fA

(
v − 1

x

)∣∣∣∣ ≤ ∆fA

(
|u− v|
x

)
≤ ∆fA

(|u− v|),

and putting this into the last inequality, we get

∣∣fX(u)− fX(v)
∣∣ ≤ E

[
1

X

]
·∆fA

(|u− v|).

To finish the proof, we notice that E[1/X] ≤ 1, because X ≥ 1 almost surely and

take the supremum over all suitable u, v.

We can extend this result to many practical examples, where A has jumps at points

in a set IA. We use the modulus of continuity ∆
(0)
fA

of A and ∆
(1)
fX

of X on [0,∞)

and [1,∞), respectively, as in Remark 2.14 and denote by JfA
the jump function of

fA, defined by

JfA
(t) = fA(t)− lim

s↑t
fA(s).

14



2.3 A class of perpetuities

Lemma 2.18. Let A have a bounded density fA, which is a càdlàg function and let

IA be its (countable) set of points of discontinuity. Furthermore let JfA
be the jump

function of fA and ∆̃
(0)
fA

the modulus of continuity of fA after removing all jumps.

Then,

∆
(1)
fX

(δ) ≤ ∆̃
(0)
fA

(δ) + ‖fX‖∞
∑
s∈IA

|JfA
(s)|
s

· δ for δ > 0.

Proof. We first assume that fA has just one jump in s0 > 0, the general case then

follows by induction. So for 1 ≤ u < v, we have

∣∣fX(u)− fX(v)
∣∣ ≤ ∫ ∞

1

1

x
fX(x)

∣∣∣∣fA

(
u− 1

x

)
− fA

(
v − 1

x

)∣∣∣∣ dx.
We denote by f̃A := fA − 1[s0,∞)JfA

(s0) the function remaining after removing the

jump in s0 and define

α :=
u− 1

s0

∨ 1, β :=
v − 1

s0

∨ 1

and divide the range of integration into three parts (1, α], [α, β], [β,∞). Now, in the

first and last part, fA equals f̃A and for x ∈ [α, β] we have∣∣∣∣fA

(
u− 1

x

)
− fA

(
v − 1

x

)∣∣∣∣ ≤ ∣∣∣∣f̃A

(
u− 1

x

)
− f̃A

(
v − 1

x

)∣∣∣∣+ ∣∣JfA
(s0)

∣∣ .
Putting everything together we get∣∣fX(v)− fX(u)

∣∣ ≤
≤
∫ ∞

1

1

x
fX(x)

∣∣∣∣f̃A

(
u− 1

x

)
− f̃A

(
v − 1

x

)∣∣∣∣ dx+

∫ β

α

1

x
fX(x)

∣∣JfA
(s0)

∣∣ dx
≤
∫ ∞

1

1

x
fX(x)

∣∣∣∣f̃A

(
u− 1

x

)
− f̃A

(
v − 1

x

)∣∣∣∣ dx+ ‖fX‖∞
v − u
s0

∣∣JfA
(s0)

∣∣ ,
now if f̃A has no more jumps, we can follow the argumentation in Corollary 2.17

to bound the integral by ∆̃
(0)
fA

(v − u), otherwise we first repeat this strategy, each

time removing one jump and adding one summand on the right. Finally the claim

follows by taking the supremum over all v − u ≤ δ.
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2 Approximation

2.4 Implementation

In this section, we will give an algorithm for an approximation satisfying the assump-

tions in the last section for many important cases. We assume that the distribu-

tions of A and b are given by Skorohod representations, i.e. by measurable functions

ϕ, ψ : [0, 1]→R, such that A
d
=ϕ(U) and b

d
=ψ(U) for U ∼unif[0, 1]. Furthermore,

we assume that ‖ϕ‖∞ ≤ 1 and ‖ψ‖∞ < ∞ and that both functions are Lipschitz

continuous and can be evaluated in constant time. Now we define the discretisation

〈·〉n by

〈Y 〉n := bs(n) · Y c/s(n), (28)

where s(n) can be either polynomial, i.e. s(n) = nr or exponential, s(n) = γn.

Defining

A(n) := ϕ(〈U〉n) and

b(n) := ψ(〈U〉n) ,

the conditions on ϕ and ψ ensure that Corollary 2.5 and 2.7 can be applied.

2.4.1 Algorithm

We keep the distribution of Xn in an array An, where An[k] := P[Xn = k/s(n)]

for k ∈ Z. Note however, that as A and b are bounded, An[k] = 0 at least for

|k| > Qn, where Qn is given by the recursive definition Qn = ‖A‖∞Qn−1 + ‖b‖∞
and Q0 = ‖X0‖∞ = E[X]. The core of the implementation is the following update

procedure:

procedure update(An−1,An)

for i ← 0 to s(n)− 1 do

for j ← − s(n− 1) ·Qn−1 to s(n− 1) ·Qn−1 − 1 do

u ← i

s(n)

k ←
⌊
s(n) ·

(
ϕ(u) · j

s(n− 1)
+ ψ(u)

)⌋
An[k]← An[k] +

1

s(n)
· An−1[j]

end for

end for

end procedure

16



2.4 Implementation

The complete code for polynomial discretisation for the example in Section 3, im-

plemented in C++ , can be found in Appendix A.

To approximate the density as in (24) with δn = d/s(n) for some d ∈ N, we compute

a new array Dn by setting

Dn[k] =
s(n)

2d

k+d∑
j=k−d+1

An[j].

2.4.2 Complexity

To measure the complexity of our algorithm, we estimate the number of steps

needed to approximate the distribution function and the density up to an accu-

racy of O(1/n). For the case that X has a bounded density fX which is Hölder

continuous, we will give asymptotic bounds for polynomial as well as exponential

discretisation.

Lemma 2.19. Let X be the solution of the fixed-point equation X
d
= AX + b, where

X and (A, b) are independent and A and b satisfy the assumptions made at the

beginning of this section. Furthermore assume that X has a bounded density fX ,

which is Hölder continuous with exponent α ∈ (0, 1], i.e. ∆fX
(δ) ≤ c · δα for some

c > 0. Using the algorithm described above with polynomial discretisation s(n) = nr,

we can then approximate the distribution function of X to an accuracy of O(1/n)

in time O
(
n(2+2/r)·(p+1)/p

)
and the density fX to the same accuracy in time

O
(
n2 (1+1/α)·(r+1)/r·(p+1)/p

)
.

Using exponential discretisation s(n) = γn, approximation to the same accuracy

takes time O
(
n(p+1)/p log n

)
for the distribution function and

O
(
n(1+1/α)(p+1)/p · log n

)
for the density.

Proof. In an execution of update(Ak−1,Ak), we have s(k) runs of the outer loop.

The assumptions on A and b ensure that Qk = O(k), so we have O(k · s(k)) runs

of the inner loop and get for the whole procedure time O(k · s(k)2). Hence, finding

AN costs time

O

(
N∑

k=1

k s(k)2

)
= O

(
N2 · s(N)2) . (29)

For discretisations with s(n) = nr we get a running time of O(N2r+2) and Corol-

lary 2.5 ensures that the error of this approximation of the distribution function is

17



3 Example: key exchanges in Quickselect

of order O(N−rp/(p+1)). Setting n = N rp/(p+1), we can see that an approximation of

the distribution function to an accuracy of O(1/n) is possible in the time stated in

the lemma.

The conditions on the density of X ensure that we can apply Corollary 2.11, and

by setting n = Nα/(α+1)·r·p/(p+1) this implies the stated bound on the time needed

for an approximation of the density to an accuracy of O(1/n).

For s(n) = γn, equation (29) together with Corollary 2.7 implies that we can get

an approximation with an error of O(γ−Np/(p+1)) in time O(N2 · γN). This together

with Remark 2.12 again ensures the stated running time for an approximation to

an accuracy of O(1/n).

However, in the next section we will see that for the given example and feasible

running times, we can get better bounds by using polynomial discretisation than by

using exponential discretisation and that the optimal values for p and r are rather

small, see Table 1.

3 Example: key exchanges in Quickselect

In this section, we will apply our algorithm to the fixed-point equation

X
d
= UX + U(1− U), (30)

where U and X are independent, U ∼ unif[0, 1]. This equation appears in the

analysis of the selection algorithm Quickselect, which is an algorithm to select the

element of rank k in a list of n distinct entries and works similar to the sorting

algorithm Quicksort. The asymptotic distribution of the number of key exchanges

executed by Quickselect, when acting on a random equiprobable permutation of

length n and selecting an element of rank k = o(n) can be characterized by the

above fixed-point equation, see Hwang and Tsai (2002).

We can use the algorithm of Section 2.4 to get a discrete approximation of the

fixed-point. The plot of a histogram, generated using the code in Appendix A with

N = 80, r = 3, can be found in Figure 1.

In the following, we will work out in detail how the bounds in Section 2 can be made

explicit for this example. Therefore, we will first derive the needed properties of the

solution of the fixed-point equation and after this sketch the implementation and

give explicit error bounds for the approximation of the distribution function and

density.
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3.1 Basic properties
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Figure 1: Histogram of approximation for X = UX + U(1− U)

3.1 Basic properties

Here, we will derive some basic properties of the limiting distribution, the most

important being that X is concentrated on [0, 1].

Lemma 3.1. Let X be a solution of (30). Then, we have 0 ≤ X ≤ 1 almost surely,

and the moments are recursively given by E[X0] = 1 and

E
[
Xk
]

= (k + 1)! (k − 1)!
k−1∑
j=0

E[Xj]

j!(2k − j + 1)!
, k ≥ 1, (31)

in particular, E[X] = 1/3.

Proof. The conditions in Remark 2.3 are apparently satisfied, so the sequence given

in (4) converges in distribution to the unique fixed-point. But in this sequence, if

0 ≤ X0 ≤ 1, we get 0 ≤ Xn(X0) ≤ 1 for all n, hence the same must hold for the

limit and therefore the fixed-point almost surely.

To find the moments, we use Remark 2.3 and notice that E
[
Uk(1− U)k−j

]
is just

19



3 Example: key exchanges in Quickselect

the Beta-function B(k + 1, k − j + 1), so we get

E
[
Xk
]

=
1

1− E[Uk]
·

k−1∑
j=0

(
k

j

)
E
[
Xj
]
B(k + 1, k − j + 1)

=
k + 1

k
·

k−1∑
j=0

k!

j!(k − j!)
k!(k − j)!

(2k − j + 1)!
E
[
Xj
]
.

Lemma 3.2. Let X be a solution of (30). Then, for all κ ∈ N and ε > 0,

P[X ≥ 1− ε] ≤ 2(κ2−κ)/4 · εκ/2.

Proof. Using that X is concentrated on [0, 1], it is easy to show that for all ε > 0,

P[X ≥ 1− ε] = P[UX + U(1− U) ≥ 1− ε]
≤ P[X ≥ 1− 2ε] · P

[
U ≥ 1−

√
ε
]
,

and this inequality can be translated into

P[X ≥ 1− 2ε] ≥ P[X ≥ 1− ε]√
ε

. (32)

Applying (32) κ times, we get

1 ≥ P[X ≥ 1− 2κε] ≥ P[X ≥ 1− ε]
2κ(κ−1)/4 · εκ/2

.

3.2 An integral equation for the density

Lemma 3.3. Let X be a solution of (30). Then X has a Lebesgue density f

satisfying f(t) = 0 for t < 0 or t > 1 and

f(t) = 2

∫ t

pt

g(x, t)f(x)dx+

∫ 1

t

g(x, t)f(x)dx for t ∈ [0, 1], (33)

where

pt := 2
√
t− 1, g(x, t) :=

1√
(1 + x)2 − 4t

. (34)
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3.2 An integral equation for the density

Proof. Let PX be the distribution of X. Then we get for any Borel set B by condi-

tioning on X

P[X ∈ B] = P
[
UX + U(1− U) ∈ B

]
=

∫ 1

0

P
[
Ux+ U(1− U) ∈ B

]
dPX(x)

=

∫ 1

0

∫
B

ϕx(t)dt dPX(x)

=

∫
B

∫ 1

0

ϕx(t)dPX(x) dt

where ϕx is a Lebesgue density of (1 + x)U − U2. The last step is valid by Fubini’s

theorem as (x, t) 7→ ϕx(t) is product measurable, cf. (36).

Hence, the function f satisfying

f(t) =

∫ 1

0

ϕx(t)f(x)dx (35)

is a Lebesgue-density of X.

To find ϕx, we observe that (1 + x)U − U2 ≤ (1 + x)2/4 and get

P
[
(1 + x)U − U2 ≤ t

]
=

= P

[
U ≤

1 + x−
√

(1 + x)2 − 4t

2
∨ U ≥

1 + x+
√

(1 + x)2 − 4t

2

]

=



0 for t < 0,

1 + x−
√

(1 + x)2 − 4t

2
for 0 ≤ t < x,

1−
√

(1 + x)2 − 4t for x ≤ t ≤ (1 + x)2/4,

1 otherwise.

To get a density, we differentiate with respect to t and rewrite as a function of x

yielding

ϕx(t) =



2√
(1 + x)2 − 4t

for 2
√
t− 1 < x ≤ t,

1√
(1 + x)2 − 4t

for t < x ≤ 1,

0 otherwise.

(36)

Putting this into (35) we get the stated integral equation.
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3 Example: key exchanges in Quickselect

Remark 3.4. The integral of g(x, t) with respect to x can explicitly be evaluated:∫
g(x, t) dx = log

(
1 + x+

√
(1 + x)2 − 4t

)
(37)

Remark 3.5. For t = 0 we get

f(0) = E
[

1

1 +X

]
= 0.759947956 . . .

Proof. From the integral equation (33) we get for t = 0,

f(0) =

∫ 1

0

1

1 + x
f(x)dx,

and by expanding the geometric series we get

E
[

1

1 +X

]
=

∞∑
k=0

(−1)k E
[
Xk
]
,

which we can calculate to any accuracy using for the k-th moments the formula

given in Lemma 3.1.

3.3 A bound for the density

In order to use Lemma 2.8 to bound the deviation of our approximation, we need an

explicit bound for the density of the distribution of the fixed point. We will derive

a rather rough bound here and will see later, that we can use the resulting bound

for our approximation to improve it.

Lemma 3.6. Let f be the density of X as in Lemma 3.3. Then

‖f‖∞ ≤ 18.

Proof. To get an explicit bound for t ∈ [0, 1] we simplify the integral equation and

get

f(t) ≤ 2

∫ 1

pt

g(x, t)f(x)dx (38)

We already know f(t) for t < 0, and we can easily bound g(x, t), if x clearly stays

away from pt. Hence we split the integral into a left part for which we already have
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3.3 A bound for the density

a bound for f and a right part, in which we can bound g. For any γ ∈ (pt, 1], we

have

f(t) ≤ 2

∫ γ

pt

g(x, t)dx+ 2

∫ 1

γ

g(x, t)f(x)dx, (39)

where in the second integral, we can use that g is decreasing in x for any fixed t and

bound g(x, t) ≤ g(γ, t).

For t < 1/4, we can use that pt is negative, and set γ = 0. So the first integral

vanishes and only the second remains and we get

f(t) ≤ 2

∫ 1

0

g(x, t)f(x)dx

≤ 2 g(0, t)

∫ 1

0

f(x)dx

=
1√
1
4
− t

. (40)

To go on, we set γ = γt := (pt + t)/2 and get with (39)

f(t) ≤ 2 µt

∫ γt

pt

g(x, t)dx+ 2 g(γt, t)

∫ 1

γt

f(x)dx,

where µt := sup{f(τ) : τ ∈ (pt, γt)}.

We can calculate the first integral using the integral of g given in (37),∫ γt

pt

g(x, t)dx = log

(
1 +

(1−
√
t)2 + (1−

√
t)
√

1 + 6
√
t+ t

4
√
t

)
=:h(t), (41)

and for the second, we obtain∫ 1

γt

f(x)dx ≤
∫ 1

pt

f(x)dx = P
[
X ≥ 1− 2

(
1−
√
t
)]
.

Putting everything together we get

f(t) ≤ 2µt h(t) + 4
P
[
X ≥ 1− 2(1−

√
t)
]

(1−
√
t)
√

1 + 6
√
t+ t

. (42)

For t = 1/4 we get γ1/4 = 1/8, and µ1/4 ≤ 2
√

2 by (40), so

f(t) ≤ 4
√

2 log

(
1 +

1 +
√

17

8

)
+

16√
17
≤ 7. (43)
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3 Example: key exchanges in Quickselect

From the integral equation we get for 0 ≤ s < t ≤ 1/4

f(t)− f(s) =

∫ 1

0

(
g(x, t)− g(x, s)

)
f(x)dx+

+

∫ s

0

(
g(x, t)− g(x, s)

)
f(x)dx+

∫ t

s

g(x, t)f(x)dx

> 0,

so f is strictly increasing on [0, 1/4]. Therefore, the bound for t = 1/4 extends to

all t ∈ [0, 1/4] =: I0. To go on, we recursively define

bi :=

(
1 + bi−1

2

)2

, b0 = 0,

and

I2k−1 :=

(
bk,

bk + bk+1

2

]
,

I2k :=

(
bk + bk+1

2
, bk+1

]
.

For each interval In we find a corresponding bound Mn for f , using that pbi
= bi−1

and therefore (pt, γt) ⊂ In−1 ∪ In−2 for t ∈ In.

Furthermore we get for 1/4 ≤ t ≤ 1 by differentiating the function h defined in (41)

h′(t) = ct ·

(
d

dt

(1−
√
t)2

4
√
t

+
d

dt

(1−
√
t)
√

1 + 6
√
t+ t

4
√
t

)
,

where ct ≥ 1. But the first term is negative and for the second observe that

d

dt
(1−

√
t)

√
1 + 6

√
t+ t =

(
1−
√
t
) (

3 +
√
t
)
−
(
1 + 6

√
t+ t

)
2
√
t
√

1 + 6
√
t+ t

=
1− 4

√
t− t

√
t
√

1 + 6
√
t+ t

< 0,

hence h(t) is decreasing.
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3.4 The modulus of continuity

The second term in (42) can be bounded using Lemma 3.2 with κ = 2 to get

4
P
[
X ≥ 1− 2(1−

√
t)
]

(1−
√
t)
√

1 + 6
√
t+ t

≤ 4
P
[
X ≥ 1− 2 (1−

√
t)
]

2 (1−
√
t)

≤ 4
√

2. (44)

So for t ∈ In = (αn, βn] we have

f(t) ≤Mn :=
⌈
2h(αn) max{Mn−1,Mn−2}+ 4

√
2
⌉
. (45)

Evaluating this we get

M0 = 7,

M1 = 13,

M2 = 17,

M3 = 18,

M4 = 17.

But for t > b3 we have h(t) < 2/7 so (Mn) is decreasing for n ≥ 4.

3.4 The modulus of continuity

In order to use Lemma 2.10 to bound the deviation of our approximation of the

density of the fixed-point, we will now derive a bound for the modulus of continuity

of the density.

Lemma 3.7. Let f be the density of X as in Lemma 3.3. Then f is Hölder contin-

uous on [0, 1] with Hölder exponent 1
2
:∣∣f(t)− f(s)

∣∣ ≤ 9 ‖f‖∞
√
t− s, for 0 ≤ s < t ≤ 1. (46)

Proof. Using the integral equation given in Lemma 3.3, we have∣∣f(t)− f(s)
∣∣ ≤ 2

∣∣∣∣∫ t

pt

g(x, t)f(x)dx−
∫ s

ps

g(x, s)f(x)dx

∣∣∣∣+
+

∣∣∣∣∫ 1

t

g(x, t)f(x)−
∫ 1

s

g(x, s)f(x)dx

∣∣∣∣ . (47)

For 0 ≤ s < t ≤ 1 we use the integral of g given in (37) to obtain∫ t

s

g(x, s)dx = log(1 + t+
√

(1 + t)2 − 4s)− log(2)

≤ log(1 +
√
t− s)

≤
√
t− s.
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3 Example: key exchanges in Quickselect

Hence,

0 ≤
∫ t

s

g(x, s)f(x)dx ≤ ‖f‖∞
√
t− s,

and

0 ≤
∫ 1

t

(
g(x, t)− g(x, s)

)
f(x)dx ≤ ‖f‖∞

(∫ 1

t

g(x, t)dx−
∫ 1

t

g(x, s)dx

)
≤ ‖f‖∞

(∫ 1

t

g(x, t)dx−
∫ 1

s

g(x, s)dx+

∫ t

s

g(x, s)dx

)
≤ ‖f‖∞

(
log(1 +

√
1−t)− log(1 +

√
1−s) +

√
t−s

)
≤ ‖f‖∞

√
t− s.

Combining this, we get for the second term in (47)∣∣∣∣∫ 1

t

g(x, t)f(x)dx−
∫ 1

s

g(x, s)f(x)dx

∣∣∣∣ =

=

∣∣∣∣∫ 1

t

(
g(x, t)− g(x, s)

)
f(x)dx−

∫ t

s

g(x, s)f(x)dx

∣∣∣∣
≤ ‖f‖∞

√
t− s.

To bound the first term in (47), we split the interval at 1/4. For s < t ≤ 1/4 we use

that ps and pt are negative and f(x) is increasing, and get∣∣∣∣∫ t

pt

g(x, t)f(x)dx−
∫ s

ps

g(x, s)f(x)dx

∣∣∣∣ =

∫ t

0

g(x, t)f(x)dx−
∫ s

0

g(x, s)f(x)dx

≤ f(t)

(∫ t

0

g(x, t)dx−
∫ s

0

g(x, s)dx

)
= f(t)

(
log
(
1 +
√

1− 4s
)
− log

(
1 +
√

1− 4t
))

≤ 2 f(t)
√
t− s

≤ 2 f(1/4)
√
t− s.

For 1/4 ≤ s < t ≤ 1 we get

0 ≤
∫ t

pt

g(x, t)f(x)dx−
∫ s

pt

g(x, s)f(x)dx ≤ ‖f‖∞
(∫ t

pt

g(x, t)dx−
∫ s

pt

g(x, s)dx

)
= ‖f‖∞ log

(
1 +

√
t− s√
t

)
≤ ‖f‖∞√

t

√
t− s

≤ 2 ‖f‖∞
√
t− s
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3.4 The modulus of continuity

and

0 ≤
∫ pt

ps

g(x, s)f(x)dx ≤ ‖f‖∞
∫ pt

ps

g(x, s)dx

= ‖f‖∞ log

(
1 +

√
t−
√
s+
√
t− s√

s

)
≤ 2 ‖f‖∞√

s

√
t− s

≤ 4 ‖f‖∞
√
t− s,

hence ∣∣∣∣∫ t

pt

g(x, t)f(x)dx−
∫ s

ps

g(x, s)f(x)dx

∣∣∣∣ =

=

∣∣∣∣∣
∫ t

pt

g(x, t)f(x)dx−
∫ s

pt

g(x, s)f(x)dx−
∫ pt

ps

g(x, s)f(x)dx

∣∣∣∣∣
≤ 4 ‖f‖∞

√
t− s.

Remark 3.8. The last lemma cannot be substantially improved, as in t = 1/4,

the density f(t) cannot be Hölder continuous with Hölder exponent 1/2 + ε for any

ε > 0.

Proof. Using the integral of g given in Remark 3.4, we find that∫ t

0

g(x, t)dx = log(2)− log
(
1 + 2

√
1/4− t

)
,

and together with the fact that f is increasing on [0, 1/4], we get

f(1/4)− f(1/4−h)
h1/2+ε

=
1

h1/2−ε

(∫ 1/4

0

g(x, 1/4) f(x)dx−
∫ 1/4−h

0

g(x, 1/4−h) f(x)dx

)

+
1

h1/2+ε

(∫ 1

0

(
g(x, 1/4)− g(x, 1/4−h)

)
f(x)dx

)
≥ 1

h1/2+ε

(∫ 1/4

0

(
g(x, 1/4)− 1[0,1/4−h](x) g(x, 1/4−h)

)
f(x)dx

)

≥ f(0)

h1/2+ε

(∫ 1/4

0

g(x, 1/4) dx−
∫ 1/4−h

0

g(x, 1/4− h) dx

)

=
f(0) log(1 + 2

√
h)

h1/2+ε

−→ ∞ as h ↓ 0
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3 Example: key exchanges in Quickselect

3.5 Implementation and explicit error bounds

We can now combine the bounds for the density and its modulus of continuity with

Lemma 2.8 and Lemma 2.10 to bound the deviation of an approximation using the

algorithm of Section 2.4 from the solution of the fixed-point equation.

We use the algorithm of Section 2.4 with N = 80 and discretisation to s(n) = n3

steps. The implementation in C++ can be found in Appendix A and some remarks

on why we chose these values will be made at the end of this section.

To approximate the density f we follow the approach of Remark 2.14 and set

fn(x) :=


f(0) for 0 ≤ x ≤ δn,

Fn(x+ δn)− Fn(x− δn)

2δn
for δn < x ≤ 1,

0 otherwise,

where f(0) is given in Remark 3.5.

Corollary 3.9. We have %(X80, X) ≤ 1.162 · 10−4, and ‖f80 − f‖∞≤ 0.931. Fur-

thermore, we can improve the bound of Lemma 3.6 and get ‖f‖∞≤ 3.561.

Proof. We have CA = Cb = CX = 1, hence combining Lemma 3.6 and Lemma 2.8,

we obtain

%(Xn, X) ≤

((
ξ̄

n
p ‖X‖p +

(
2 + ‖X‖p

) n−1∑
i=0

ξ̄
i
p

(n− i)r

)
· (p+ 1)1/p · ‖f‖∞

)p/(p+1)

.

The moments of X can be computed using Lemma 3.1 and we set [U ]n := bn3Uc /n3,

hence

ξ̄p = ‖U‖p =

(
1

p+ 1

)1/p

.

Optimizing over p for n = 80, r = 3, and ‖f‖∞ ≤ 18 yields

%(X80, X) ≤ 5.1842 · 10−4 (48)

for p = 12.

For the density we use Remark 2.14 and as we can give f(0) with the needed accuracy

using Remark 3.5, we obtain

‖fn − f‖∞ ≤
1

δn
%(Xn, X) + 9 ‖f‖∞

√
δn,

and optimizing over δn, using for the Kolmogorov metric the bound in (48), yields

‖f80 − f‖∞ ≤ 4.512

for δ80 = 3.44 · 10−4 (averaging 352 values).
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3.5 Implementation and explicit error bounds

We can now use this to improve our bound for ‖f‖∞: Reading off the maximal value

of our approximation (‖f80‖∞≤ 2.630), we can now bound

‖f‖∞ ≤ ‖f80‖∞ + ‖f80 − f‖∞ ≤ 7.142,

and this in turn enables us to improve our bounds for the approximation, leading to

%(X80, X) ≤ 2.2085 · 10−4 and ‖f80 − f‖∞ ≤ 1.8331 for δ80 = 3.6 · 10−4. Repeating

this strategy a few times, we get the stated values for p = 13 and δ80 = 3.7 · 10−4

(averaging 378 values).

In Table 1, the resulting error bounds for several possible discretisations with sim-

ilar running time can be found. Of the given possibilities, the one chosen for the

evaluation above seems to be optimal with respect to the theoretical bounds. Note

however, that “comparable running time” is no precise notion and depends on many

parameters not listed here, including for example the implementation, programming

language and hardware architecture used, hence the explicit values chosen for N for

the different discretisations can certainly be discussed. On the other hand, espe-

cially in the lower half of the table, changing N by ±1 does change the running time

a lot more than the bounds.

Discret. N %(XN , X) opt. p s(N)

n 22000 0.00178 14 22000

n2 430 0.00025 16 184900

n3 80 0.00012 13 512000

n4 30 0.00050 3 810000

1.5n 35 0.00070 3 1456110

1.7n 27 0.00187 2 1667712

Table 1: table of bounds for %(Xn, X) for comparable total running time

(Using a realistic bound of ‖f‖∞ ≤ 2.7 would give %(X80, X) ≤ 8.9809·10−5 (p = 13)

and ‖f80 − f‖∞ ≤ 0.7101 (δ80 = 3.8 · 10−4, 390 values))
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4 Further examples

4 Further examples

In this chapter we apply our algorithm for approximating distribution function and

density of fixed points from Section 2.4 to various other fixed-point equations. For

some of these equations, solutions are more or less explicitly known by expressions

for their densities or relations satisfied by their densities. Thus, for these equations

we can compare the approximations of our algorithms with the true densities and

distribution functions and evaluate the error being made. This enables us to get

an idea of the quality of the general error bounds proved in Section 2. It appears

that in these examples the error bounds from Section 2 are rather loose and that

the approximation is much better than indicated by our bounds.

4.1 Interval Splitting

Fixed-point equations of the form studied here arise in the analysis of nested random

intervals. These are sequences
(
[Ln, Rn]

)
of random intervals defined by [L0, R0] :=

[0, 1] and some randomized recursive procedure. One is interested in the limit X

to which the intervals shrink almost surely. For example, Chen, Goodman, and

Zame (1984) and Chen, Lin, and Zame (1981) considered the following recursive

interval splitting procedure: Fix q ∈ [0, 1] and set [L0, R0] := [0, 1]. If [Ln, Rn] is

already defined, then split [Ln, Rn] by an independent and uniformly on [Ln, Rn]

distributed random variable Y and choose independently the larger of the two

subintervals [Ln, Y ], [Y,Rn] with probability q to be [Ln+1, Rn+1], otherwise the

smaller one. In the papers mentioned, the authors prove that ([Ln, Rn]) shrinks

to a limit X almost surely, where X has the beta(2, 2) distribution if q = 1 and

the arcsin(= beta(1/2, 1/2)) distribution if q = 1/2 (see also Devroye, Letac, and

Seshadri (1986)).

In the analysis of this interval splitting procedure it is convenient to represent a

unif[0, 1] distributed random variable in the form

G
1 + U

2
+ (1−G)

1− U
2

with independent G,U with U ∼ unif[0, 1] and G ∼ Be(1/2), the Bernoulli distribu-

tion with probability 1/2 on the point 1. It was shown in Neininger (2001), where

mainly rates of convergence of such interval splitting schemes are estimated, that the

point X to which the intervals shrink has a distribution that can be characterized

as the fixed-point of (1), where
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4.1 Interval Splitting

A = G′1 + U

2
+ (1−G′)

1− U
2

,

b = G′(1−G)
1− U

2
+ (1−G′)G

1 + U

2
,

with G,G′ and U independent and G′ ∼ Be(q), G ∼ Be(1/2), U ∼ unif[0, 1].

Subsequently, we will apply our method to approximate these fixed-points for the

cases q = 1, q = 1/2, and q = 0. Since we know the fixed-points in the cases q = 1

and q = 1/2 to be the beta(2, 2) distribution and the arc sine distribution respec-

tively, we can explicitly quantify the distance of our approximations to the true

density and distributions and also compare these errors with the error bounds im-

plied by our general estimates of Section 2, see Sections 4.1.1 and 4.1.2. Section 4.1.3

has plots for the case q = 0. Here the limit X has no well-known distribution and

it seems to be difficult to derive explicit expressions for characteristics. Properties

of this distribution and generalizations were derived in Herz (1988).

4.1.1 q = 1

We first look at the case q = 1, where we can simplify the fixed-point equation to

get

X
d
=

1 + U

2
X +G

1− U
2

,

where G, U , and X are independent, G ∼ Be(1/2) and U ∼ unif[0, 1]. To approxi-

mate the fixed-point, we modify the algorithm of Section 2.4 by evaluating the two

cases G = 0 and G = 1 in the inner loop. And as the approximated function is

symmetric, we use a symmetric discretisation for (A, b) instead of (28), setting

〈U〉n := (2 bs(n)Uc+ 1)/2s(n). (49)

Doing so, we get for n = 50 and s(n) = n3 the distribution function shown in

Figure 2.

To compute the bounds as given in Section 2, we can set CA = Cb = 1/4, ξ̄p = ‖A‖p,
and A is uniform distributed on [1/2, 1], so

‖A‖pp =
2p+1 − 1

2p (p+ 1)
for p ∈ N,

and we know that X is beta(2, 2) distributed, so we can give the moments directly,

‖X‖pp =

p−1∏
s=0

2 + s

4 + s
, for p ∈ N.

Furthermore, we know the density f(x) = 6x(1 − x), so ‖f‖∞≤ 1.5. We can now

use Lemma 2.8 and Corollary 2.5 to obtain
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Distribution Function for r=1,
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Figure 2: Distribution function of approximation for q = 1

%(Xn, X) ≤

(
(p+ 1)1/p · 1.5 ·

(
‖A‖np ‖X‖p +

5 + ‖X‖p
4

n−1∑
i=0

‖A‖ip
(n− i)3

)) p
p+1

,

which we can evaluate for n = 50 and minimize over p to get pmin = 5 and

%(X50, X) ≤ 0.001043. (50)

As we know the limit distribution, we can now compare this bound to the actual

error. We are approximating a continuous, monotone function by a step function

with step size 1/n, so the maximal deviation will occur at the borders of the steps.

A plot of the maximal distance between the discrete distribution function and the

theoretical distribution function on each step can be found in Figure 3.
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Figure 3: Error of distribution function of approximation for q = 1
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4.1 Interval Splitting

It is in fact quite exactly what we would expect for a discretisation of step size 1/n3,

applying our discretisation 〈·〉n to the fixed-point X, where the error is maximal at

the left border of a step, and there about equal to the value of the derivative on

this step divided by n3. In Figure 4, the deviation of our approximation from such

-1.5e-08

-1e-08

-5e-09

 0

 5e-09

 1e-08

 1.5e-08

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

adapted Error of Distribution Function for r=1,
 n=50, r=3

Figure 4: Deviation of discrete distribution function from discretisation of beta(2, 2)-
distribution function

a discretisation can be found. Putting this together, the error of our approximation

is at most 1.2015 · 10−5, which is significantly less than the stated bound.

Now we look at the density. The histogram of the discrete approximation is shown

in Figure 5. The modulus of continuity of the density of the beta(2, 2) distribution
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Figure 5: Histogram of approximation for q = 1

can be bounded by ∆f (ε) ≤ 6 ε for all positive ε. So for the function fn, which we
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4 Further examples

get by averaging over 2δn as in (24), we get with Lemma 2.10∥∥fn − f
∥∥
∞ ≤

1

δn
%(Xn, X) + 6 δn.

We evaluate for n = 50, use the bound in (50), and minimizing over δn we obtain∥∥fn − f
∥∥
∞ ≤ 0.1583

for δ50 = 0.01318, so we take the average over 3 296 values. The deviation of this

approximation from the density is shown in Figure 6.
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Figure 6: deviation of approximation from density for q = 1

We seem to take the average over way to many values, so the smoothing enlarges

the error, especially at the borders of the domain, instead of reducing it.

4.1.2 q = 1/2

For the case q = 1/2, the algorithm is similar to the previous case, we only have

to take into account two Bernoulli distributed variables, so we now evaluate four

cases in the inner loop. Again, we use the symmetric discretisation 〈U〉n given in

(49). With this, we get for n = 50 and s(n) = n3 the distribution function shown

in Figure 7.

For the error bounds, we again get CA = Cb = 1/4. This time, A is uniform

distributed on [0, 1], hence ξ̄
p
p = ‖A‖pp = 1/(p+1). Furthermore, we know that X is

beta(1/2, 1/2) distributed, hence ‖X‖pp =
∏p−1

q=0(1/2+r)/(1+r). In this example, X

has no bounded density, but the modulus of continuity of the distribution function
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Figure 7: Distribution function of approximation for q = 1/2

of X can be bounded by ∆X(δ) ≤
√

8/π ·
√
δ (see Neininger (2001, page 805)). Using

Remark 2.9, we get

%(Xn, X) ≤

(
(2p+ 1)1/p · 8/π2 ·

(
‖X‖p ‖A‖

n
p +

5 + ‖X‖p
4

n−1∑
i=0

‖A‖ip
(n− i)3

)) p
2p+1

,

and minimizing over p for n = 50 yields pmin = 7 and %(X50, X) ≤ 0.01142.

The distribution function of X is FX(x) = 2/π arcsin(
√
x) for x ∈ [0, 1], and com-

paring this to the discrete distribution function, we get a maximal deviation of

1.8 · 10−3 at 0, whereas it is of significantly lower order in the main part. A plot of

this deviation can be found in Figure 8.
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Figure 8: Error of distribution function for q = 1/2
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We get an approximation of the density using the histogram shown in Figure 9, but
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Figure 9: Histogram of approximation for q = 1/2

we cannot give a global bound for the error, as the density grows to infinity at 0

and 1. Hence, our theoretical bound is not applicable here, but in Figure 10 we can

see, that the deviation of the histogram from a corresponding discretisation of the

density of X on the interval [0.005, 0.995] is quite small, so the algorithm still works

well in this case.
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Figure 10: Deviation of histogram from discretisation of density for q = 1/2, on
[0.005, 0.995]
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4.1 Interval Splitting

4.1.3 q = 0

For q = 0 we can simplify the fixed-point equation to get

X
d
=

1− U
2

X +G
1 + U

2
,

where G, U, and X are independent, G ∼ Be(1/2), U ∼ unif[0, 1].
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Figure 11: Distribution function of approximation for q = 0

We can apply our algorithm as in the previous examples and get the discrete distri-

bution function and the histogram shown in Figure 11 and Figure 12 respectively.

However, we cannot give error bounds for this case, because the density is unbounded

and we do not know the modulus of continuity of the distribution function of X.
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Figure 12: Histogram of approximation for q = 0
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4 Further examples

4.2 Dickman distribution

The Dickman distribution L(X) is given as the unique solution of the stochastic

fixed-point equation

X
d
= UX + U,

with X and U independent and U being unif[0, 1] distributed. The shifted random

variable Y = X + 1 satisfies the equation

Y
d
= UY + 1,

hence for the (shifted) Dickman distribution, the bounds of Section 2.3 can be

applied.

The density fX of X can be described by a delayed differential equation. We have

fX(x) = e−γϕ(x) with Euler’s constant γ, where ϕ is given by ϕ(x) = 0 for x < 0,

ϕ(x) = 1 for 0 ≤ x ≤ 1 and

ϕ′(x) = −ϕ(x− 1)

x
, x > 1. (51)

For properties of ϕ see Tenenbaum (1995, § III.5.4). The Dickman distribution

originated in the analysis of largest prime factors of random integers in Dickman

(1930), but later on appeared in various areas of mathematics, for example in the

analysis of the selection algorithm Quickselect, which we already encountered in

Section 3. It is the limit distribution of the number of key comparisons when acting

on a random equiprobable permutation of length n and selecting a rank k of order

k = o(n), see Hwang and Tsai (2002), where also references to various further

occurrences of the Dickman distribution can be found.

To approximate Y , we use the algorithm of Section 2.4, again using s(n) = n3,

n = 50, and 〈U〉n as in (49), but as Y is not bounded, our running time is now of

order O(n8), because Qn = O(n).

To compute the error bounds, we use CA = 1/2, Cb = 0, and ξ̄
p
p = ‖U‖pp = 1/(p+1)

and obtain with (19)

`p(Yn, Y ) ≤ ‖Y ‖p
1

(p+ 1)n/p
+

(
2 + ‖Y ‖p

2

) n−1∑
i=1

1

(p+ 1)i/p (n− i)3
.

We use Remark 2.3 to compute the moments of Y

E[Y p] =
(p+ 1)!

p

p−1∑
k=0

E
[
Y k
]

(k + 1)!(p− k)!
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4.2 Dickman distribution
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Figure 13: Approximation of distribution function for Y
d= UY +1

and using ‖fY ‖∞ ≤ e−γ we get pmin = 7 and

%(Y50, Y ) ≤ 2.677 · 10−4.

To compute the actual error, we have to evaluate the distribution function of the

dickman distibution. But this time, the density is only given implicitly by the

delayed differential equation (51). The solution of this equation can be found it-

eratively, but the result gets complicated rather soon. So we evaluated here only

the interval [1, 3] and the deviation of our approximation on this interval can be

found in Figure 14. The error is again clearly smaller than the bound, but this time,
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Distribution function for Dickman distribution - exp(-gamma)*(x-1), n=50, r=3

error of approximation
error of discretisation

Figure 14: Deviation of approximation of distribution function

we do have some “systematic” error, so the approximation differs from a direct

discretisation of the limiting function, as indicated in Figure 14.
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4 Further examples

The histogram of the discrete approximation can be found in Figure 15.
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Figure 15: Histogram of approximation for Y
d= UY +1

To approximate the density, we use Remark 2.14 with c = 1. We have fX(1) = e−γ

and the modulus of continuity of the density is bounded by ∆
(1)
fX

(ε) ≤ e−γε, and

minimizing over δn we get

‖fn − fX‖∞ ≤ 0.02452

for δn = 0.021835, taking the average over 5458 values. In Figure 16, we can see

that again the main error of this approximation is induced by the smoothing and

that the actual deviations are significantly smaller than the error bound.
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Figure 16: approximation of density with error bounds for Y
d= UY +1
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Appendix A C++ Code

#include <iostream>

#include <vector>

#include <math . h>

typedef std : : vector<double> Vector ;

stat ic unsigned int r ; // Parameter f o r d i s c r e t i s a t i o n

in l ine unsigned int numSteps (unsigned int n) {
// r e tu rn s the number o f s t ep s per un i t .

return static cast<unsigned int>(pow(n , r ) ) ;

}

Vector update ( const Vector &v , unsigned int n) {
// This i s equ iva l en t to the pseudocode in s e c t i o n 2 . 4 . 1 .

// To reduce running time , ope ra t i on s were drawn out o f

// the loops where p o s s i b l e and t r a i l i n g z e ro s removed .

Vector r e s ;

const unsigned int stepCount = numSteps (n ) ;

const double newStepSize = 1.0/ stepCount ;

const double o ldStepS i z e = 1.0/ numSteps (n − 1 ) ;

while ( r e s . s i z e ( ) < stepCount ) { r e s . push back ( 0 . 0 ) ; }
for (unsigned int i = 0 ; i < stepCount ; ++i ) {

const double phu = i ∗ o ldStepS i z e ;

const double psu = i ∗ ( 1 . 0 − i ∗ newStepSize ) ;

for (unsigned int j =0; j < v . s i z e ( ) ; ++j ){
unsigned int k ;

k = static cast<unsigned int>(phu ∗ j + psu ) ;

r e s [ k ] += v [ j ] ;

}
}
Vector : : i t e r a t o r l a s t = r e s . begin ( ) ;

Vector : : i t e r a t o r i t ;

for ( i t = r e s . begin ( ) ; i t != r e s . end ( ) ; ++i t ) {
i f ( (∗ i t ∗= newStepSize ) != 0) { l a s t = i t ;}

}
r e s . e r a s e(++la s t , r e s . end ( ) ) ;

return r e s ;

}
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A C++ Code

Vector distrFun ( const Vector &v) {
// c a l c u l a t e d i s t r i b u t i o n func t i on f o r p r o b a b i l i t i e s in v

Vector F ;

Vector : : c o n s t i t e r a t o r i t = v . begin ( ) ;

F . push back (∗ i t ++);

for ( ; i t != v . end ( ) ; ++i t ) {
F. push back (F . back ( ) + ∗ i t ) ;

}
return F;

}

in l ine void pr in t ( const Vector &v) {
Vector : : c o n s t i t e r a t o r i t = v . begin ( ) ;

for ( ; i t != v . end ( ) ; ++i t ) {
std : : cout << ∗ i t << std : : endl ;

}
}

int main ( int , char ∗∗) {
unsigned int N;

std : : c in >> N >> r ; // parameters are read from StdIn

Vector cur ;

cur . push back ( 1 . 0 ) ; // i n i t i a l i z e with [ 1 ] f o r n=1

unsigned int n ;

for (n = 1 ; n < N; ) {
cur = update ( cur , ++n ) ;

}
std : : cout . p r e c i s i o n ( 1 0 ) ;

p r i n t ( cur ) ;

s td : : cout << std : : endl << std : : endl ;

p r i n t ( d istrFun ( cur ) ) ;

s td : : cout << std : : endl << std : : endl ;

return 0 ;

}
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Appendix B Table for distribution function of

key exchanges in Quickselect

Table 2 was generated using the code given in Appendix A with N = 80 and r = 3.

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.00 0.000 0.008 0.016 0.024 0.032 0.040 0.049 0.058 0.067 0.076

0.10 0.086 0.096 0.106 0.117 0.127 0.139 0.150 0.162 0.175 0.188

0.20 0.202 0.216 0.231 0.247 0.265 0.284 0.305 0.326 0.348 0.370

0.30 0.392 0.415 0.438 0.461 0.485 0.509 0.534 0.558 0.584 0.610

0.40 0.636 0.661 0.687 0.711 0.735 0.759 0.782 0.804 0.825 0.846

0.50 0.865 0.883 0.899 0.914 0.928 0.940 0.951 0.961 0.969 0.976

0.60 0.982 0.986 0.990 0.993 0.995 0.997 0.998 0.999 0.999 1.000

0.70 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.80 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0.90 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table 2: distribution function of X
d= UX + U(1− U)
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