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ZUSAMMENFASSUNG 
 

 Fettleibigkeit (Adipositas), deren Verbreitung sowohl in den Industrie- als auch in den 

Entwicklungsländern auf dramatische Weise zunimmt, stellt ein bedeutendes gesundheitliches 

Problem dar. Adipositas per se wird von gesundheitlichen Störungen begleitet, die von der 

übermäßigen Fettmasse herrühren. Diese erhöht den gewichtsabhängigen Druck auf die 

Lunge, die Knochen und die Gelenke. Viel wichtiger: Adipositas stellt ein Risikofaktor für 

Typ-2-Diabetes und Herz-Kreislauf-Krankheiten dar. 

Die Ursache von Adipositas liegt im übermäßigen Wachstum von Fettgewebe, welches 

hauptsächlich aus Fettzellen, den Adipozyten, besteht. Die Adipozyten sind Sitz des 

Fettgewebe-Metabolismus, d.h. Sitz der Lipogenese (Speicherung von freien Fettsäuren in 

Form von Triglyzeriden), und Sitz der Lipolyse (Freisetzung von freien Fettsäuren aus 

Triglyzeriden). Außerdem sezernieren Adipozyten ein breites Spektrum unterschiedlicher 

aktiver Moleküle mit lokalen und systemischen Effekten. Diese Moleküle werden unter der 

Bezeichnung Adipokine zusammengefasst. Leptin zum Beispiel, Produkt des Ob-Gens, übt 

eine Kontrollfunktion im Hypothalamus auf Appetit und Energieverbrauch aus und hat 

außerdem sekundäre Effekte auf den Lipid-Metabolismus in der Leber, den Muskeln und dem 

Fettgewebe ebenso wie auf die Angiogenese und die Immunantwort. Ein anderes Adipokin, 

Adiponectin, reguliert den Glukose- und Lipid-Metabolismus hauptsächlich in der Leber und 

in den Muskeln durch eine Erhöhung der Insulinsensitivität und hat einen anti-

atherosklerotischen Einfluss auf Blutgefäßwände. Im Laufe der Ausbildung der Adipositas 

kommt es zu einer Verschiebung in der Produktion bestimmter Adipokine (erhöhte 

Leptinproduktion in Verbindung mit einer Abnahme von Adiponectin im Plasma). Es wird 

vermutet, dass diese Verschiebung an der Entstehung Adipositas-assoziierter Pathologien 

beteiligt ist.  

Aufgrund ihrer bedeutenden Rolle im Fettgewebe-Metabolismus wurde bislang Adipozyten 

größte Aufmerksamkeit geschenkt, um die Mechanismen der Entwicklung des Fettgewebes zu 

erforschen. Dennoch weist das Fettgewebe eine fettzellfreie Fraktion auf, die sogenannte 

stroma-vaskuläre Fraktion, welche Vorläuferzellen, Makrophagen und Zellen des lokalen 

Gefäßnetzwerks enthält. Die Zellen der stroma-vaskulären Fraktion sind außerdem an der 

Homöostase des Fettgewebes beteiligt. Insbesondere liegen neue Erkenntnisse darüber vor, 

dass das Gefäßsystem des Fettgewebes in Nagetieren eine wichtige Rolle im 

Fettgewebewachstum spielt, da die Hemmung der Angiogenese in genetisch- und diät-

induzierten fettleibigen Mäusen die Entstehung von Adipositas verhindert. Zudem wurde 
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dieser Effekt von einer Verbesserung der metabolischen Parameter begleitet. Demnach stellt 

das Gefäßsystem des Fettgewebes ein attraktives therapeutisches Ziel dar, um das übermäßige 

Wachstum des Fettgewebes zu kontrollieren und die Adipositas assoziierten Pathologien zu 

reduzieren. Dennoch wurde das Gefäßsystem des menschlichen Fettgewebes bis heute nicht 

erforscht. 

Das Ziel der vorliegenden Arbeit ist, dass im menschlichen Fettgewebe vorhandene 

Gefäßsystem zu charakterisieren und die Veränderungen, die es während des Wachstums des 

Fettgewebes erfährt, zu erforschen. 

Durch immuno-histochemische Analysen am subkutanen menschlichen Fettgewebe konnten 

zwei verschiedene Gefäßsysteme identifiziert werden: das vaskuläre Netzwerk des Bluts und 

das lymphatische vaskuläre Netzwerk. Während die Endothelzellen von beiden 

Gefäßsystemen die gemeinsamen Endothelzellmarker von Willebrand factor (vWf) und CD31 

(PECAM, Platelet Endothelial Cell Adhesion Molecule) exprimierten, konnten die 

Endothelzellen der Blutgefäße an der Expression des Markers CD34 (Stamm/Blutgefäß-

Endothel-Zell-Marker) und die Endothelzellen der Lymphgefäße an der Expression der 

beiden lymphatischen Marker Podoplanin und VEGFR3 (Vascular Endothelial Growth Factor 

Receptor 3) spezifisch erkannt werden. Zellen, die in der Stroma- und nicht in der vaskulären 

Fraktion vorhanden waren, wurden ebenfalls charakterisiert: Es handelte sich um 

ausschließlich für den Marker CD34-positive Zellen und in Rosetten angeordnete CD31-

positive Zellen, welche als residente Makrophagen charakterisiert wurden. 

Um die beiden Gefäßsystemen des menschlichen Fettgewebes weiterhin zu erforschen, wurde 

ein auf Immunoselektion basiertes Protokoll entwickelt. Es ermöglicht, Blutgefäß- und 

Lymphgefäß-Endothelzellen spezifisch zu isolieren, indem Antikörper verwendet werden, die 

an magnetische Microbeads gekoppelt sind. Die Antikörper sind dabei gerichtet gegen CD34, 

CD31 und den Makrophagenmarker CD14. Aufgrund der gemeinsamen Expression von 

CD31 durch beide Endothelzelltypen und der spezifischen Expression von CD34 durch 

Blutgefäß- jedoch nicht durch Lymphgefäßendothelzellen, konnten wir CD34+/CD31+ 

Blutgefäßendothelzellen (BEC) isolieren. Nach Depletion der Makrophagen (CD34-/CD14+ 

Zellen) aus der CD34-negativen Zellfraktion konnten CD34-/CD14-/CD31+ 

Lymphgefäßendothelzellen (LEC) isoliert werden. Die CD34+/CD31- Zellen stellten die 

Progenitor-Zellen dar. Real time PCR ebenso wie immuno-histochemische Analysen wurden 

mit frisch isolierten Zellen durchgeführt. Die Expression von gemeinsamen 

Endothelzellmarkern wie den Vascular Endothelial Growth Factor Receptors 1 und 2 

(VEGFR1 und VEGFR2), vWf und dem Transmembran-Rezeptor Notch4 wurde untersucht. 
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Sowohl BEC als auch LEC exprimierten VEGFR1, VEGFR2, vWf und Notch4 in ähnlichen 

Mengen wie humane Endothelzellen der Nabelschnurvene (HUVEC). Hingegen konnten die 

Transkripte der getesteten Gene in mononuklearen Zellen, welche aus menschlichem Blut 

isoliert worden waren, nicht entdeckt werden. Außerdem nehmen beide Zelltypen acetyliertes 

LDL auf, was sich in der Expression vom Scavenger Rezeptor für acetyliertes LDL 

wiederspiegelt, welche auf Endothelzellen und Makrophagen beschränkt ist. Diese Befunde 

zeigen, dass BEC und LEC dieselben Endothelzell-Charakteristika aufweisen. Darüber hinaus 

konnte in LEC die Expression von Genen, welche spezifisch für das Lymphgefäßsystem sind, 

wie Podoplanin, Reelin, VEGFR3, Desmoplakin, LYVE-1 nachgewiesen werden. 

Zusammengefasst belegen die Ergebnisse, dass die aus dem menschlichen Fettgewebe 

isolierten BEC und LEC unterschiedliche Genexpressionsmuster bezüglich der Marker von 

Blut- bzw. -Lymphgefäßen aufweisen. 

Wie beeinflusst das Wachstum des Fettgewebes die Anzahl von BEC und LEC in diesem 

Gewebe? Dieser Frage wurde mit Hilfe von flusscytometrischen Analysen im Fettgewebe von 

Patienten mit unterschiedlichen Body Mass Indices (BMI) nachgegangen. Während die 

Anzahl von BEC pro Gramm unabhängig vom BMI der Patienten konstant blieb, war die 

Anzahl von LEC in übergewichtigen/fettleibigen Personen (BMI>25) signifikant geringer als 

in normalgewichtigen Personen (BMI<25).  

Diese Ergebnisse deuten darauf hin, dass das Blutgefäßsystem, nicht aber das 

Lymphgefäßsystem sich zusammen mit der Fettmasse entwickelt, und, dass die Ausbildung 

der Adipositas mit einer Erweiterung des Blutgefäßsystems, nicht jedoch des 

Lymphgefäßsystems, innerhalb des Fettgewebes einhergeht. 

Zwei Mechanismen könnten an der Neovaskularisation im adulten Gewebe beteiligt sein: die 

Vaskulogenese, welche die Differenzierung von Progenitor-Zellen zu Endothelzellen 

beinhaltet, und die Angiogenese, welche mit der Migration, der Proliferation und der 

Organisation von ruhenden Endothelzellen aus einem bereits vorhandenem Gefäß einhergeht. 

Flusscytometrische Analysen belegen, dass es in der CD34+/CD31- Stroma-Zellpopulation 

Zellen gibt, die den endothelialen Progenitor-Zellmarker CD133 und den primitiven 

Stammzellmarker ABCG2 exprimieren. Durch eine hohe Serumkonzentration im 

Kulturmedium der CD34+/CD31- Zellen, die aus menschlichem Fettgewebe mit Hilfe des 

Immunoselektionsprotokolls isoliert worden waren, konnte die Bildung einer „cobblestone 

area“, charakteristisches Kennzeichen adulter Stammzellen, beobachtet werden. Außerdem 

zeigten die aus dem Fettgewebe stammenden CD34+/CD31- Zellen eine signifikant stärkere 

Proliferation und Expression von Endothelzellmarkern wie CD31 und vWf, wenn dem 
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Kulturmedium zuvor die Faktoren Vascular Endothelial Growth Factor A (VEGF A) und 

Insulin-Like Growth Factor-1 (IGF-1) zugefügt worden waren. VEGF A ebenso wie IGF-1 

werden in der Literatur beschrieben als Faktoren, die die Proliferation und Differenzierung 

von endothelialen Progenitorzellen zu Endothelzellen induzieren. Die Ergebnisse weisen 

darauf hin, dass es unter den CD34+/CD31-Zellen eine Population von endothelialen 

Progenitorzellen gibt, die -bei geeigneter Stimulation- zu Endothelzellen differenzieren. 

Anhand des Modells der Hinterbeinischämie der Maus konnte zudem gezeigt werden, dass 

diese Zellpopulation auch in vivo die Charakteristika endothelialer Progenitorzellen aufweist. 

Innerhalb dieser Versuche wurden Mäusen mit Hinterbeinischämie frische, aus menschlichem 

Fettgewebe isolierte, CD34+/CD31-Zellen in vivo injiziert. Mittels verschiedener Techniken 

konnte gezeigt werden, dass sich die CD34+/CD31- Zellen an der Neovaskularisation des 

ischämischen Hinterbeins beteiligen: Eine signifikante Zunahme des Blutflusses im 

ischämischen Bein war in der Laserdoppler-Analyse erkennbar, gekoppelt an einer erhöhten 

Kapillardichte im ischämischen Muskel und einer Integration der menschlichen Zellen in die 

Blutgefäße der Maus, wie immuno-histochemische Analysen zeigen konnten. Diese 

Ergebnisse belegen, dass die aus menschlichem Fettgewebe isolierten CD34+/CD31-Zellen 

die Neovaskularisation des ischämischen Gewebe verstärkten. Somit zeigen CD34+/CD31-

Zellen sowohl in vivo als auch in vitro Eigenschaften endothelialer Progenitor-Zellen. 

Demnach kann die Beteiligung dieser Zellpopulation am Wachstum des Blutgefäßsystems 

innerhalb des Fettgewebes - im Sinne der Vaskulogenese - angenommen werden. 

Parallel dazu wurden die lokalen Faktoren untersucht, die potentiell an der 

Wachstumskontrolle, der Migration und der Organisation der ruhenden, aus dem Fettgewebe 

stammenden, BEC und LEC beteiligt waren. Insbesondere wurde die Proliferation der BEC 

und LEC in Medien getestet, die mit ausdifferenzierten Adipozyten oder Progenitor-Zellen 

aus menschlichem Fettgewebe konditioniert wurden. Sekrete der Adipozyten, jedoch nicht der 

CD34+/CD31-Zellen, induzierten eine signifikante BEC- und LEC-Proliferation. Weiterhin 

wurde untersucht, wie BEC und LEC auf den angiogenetischen Faktor VEGF A, auf die 

lymphangiogenetischen Faktoren VEGF C und VEGF D sowie auf die Adipokine Leptin und 

Adiponectin antworten. Dazu wurde einerseits die Expression der Rezeptoren dieser Faktoren 

(z.B. VEGFR1, VEGFR2, VEGFR3, Leptinrezeptor und Adiponectinrezeptoren 1 und 2) 

mittels Real Time PCR bestimmt. Die Transkripte aller untersuchten Gene wurden in beiden 

Zelltypen gefunden. Verglichen mit den anderen Rezeptoren wurde VEGFR2 in BEC am 

stärksten exprimiert, während in LEC der Adiponectinrezeptor am stärksten exprimiert wurde. 

Weiterhin exprimierten LEC eine geringere Anzahl von Transkripten des Leptinrezeptors im 
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Vergleich zu BEC. Andererseits wurde die Proliferationsantwort der BEC und LEC auf 

zunehmende Konzentrationen der pro-angiogenetischen sowie pro–lymphangiogenetischen 

Faktoren (VEGF-A, -C and –D), Leptin und Adiponectin mittels Bromodeoxyuridin (BrdU)-

Inkorporation gemessen. Keiner der Faktoren alleine konnte die Proliferation der BEC 

beeinflussen. Allerdings führte die Kombination von Leptin und VEGF A oder des basic 

Fibroblast Growth Factor zu einer signifikanten Zunahme der BrdU-Inkorporation in BEC. 

LEC zeigten eine unterschiedliche Proliferationsantwort: Adiponectin, VEGF C und VEGF D 

induzierten bereits alleine konzentrationsabhängig die Proliferation von LEC, während die 

Inkubation mit Leptin ohne Effekt blieb. Diese spezifische Reaktion von BEC auf Leptin bzw. 

von LEC auf Adiponectin konnte am Studium der Effekte beider Adipokine auf die 

Endothelzell-Migration und -Organisation im Matrigel Assay bestätigt werden: Leptin, und 

nicht Adiponectin, führte zu signifikant höherer BEC-Migration und Röhrenformung, 

während Adiponectin, und nicht Leptin, die LEC-Migration und -Organisation förderte.  

Nicht zuletzt wurden die durch beide Adipokine (Leptin und Adiponectin) induzierten 

Transduktionswege mittels Western Blot-Analysen untersucht. Dabei führte Leptin in BEC 

und Adiponectin in LEC zeitabhängig zu einer signifikanten Zunahme der Phophorylierung 

der Kinase Akt. Diese Ergebnisse belegen, dass die beiden aus Adipozyten stammenden 

Adipokine Leptin und Adiponectin eine tragende Rolle in der Umverteilung von BEC bzw. 

LEC spielen. 

Im Rahmen der Adipositas kommt es zu einer Modulation in der Synthese von Leptin und 

Adiponectin: Während die Plasmakonzentration von Leptin ansteigt, sinkt die 

Plasmakonzentration von Adiponectin. Demnach könnten Veränderungen, in der Adipositas, 

der Adipokinfreisetzung durch Adipozyten am Umbau des vaskulären Netzwerks des Bluts 

und am ausbleibenden Wachstum des lymphatischen vaskulären Systems innerhalb des 

Fettgewebes beteiligt sein. 

Die in der vorliegenden Arbeit beschriebenen Ergebnisse liefern grundlegende Erkenntnisse 

über die Phänotypen der Endothelzellen des Blut- sowie Lymphgefäßsystems des 

menschlichen subkutanen Fettgewebes. Außerdem deuten die Ergebnisse daraufhin, dass 

Adipokine an der Steuerung des Gefäßumbaus innerhalb des menschlichen Fettgewebes im 

Rahmen der Adipositas beteiligt sein könnten. Dabei konnte Leptin als lokaler pro-

angiogenetischer Faktor identifizieren und Adiponectin als neuer lymphangiogenetischer 

Faktor im menschlichen Fettgewebe beschreiben. Auch wenn weitere Untersuchungen 

notwendig sind, um die Faktoren und Mechanismen des Blut- und Lymphgefäßumbaus im 

Fettgewebe noch präziser aufzuklären, eröffnet die vorliegende Studie ein neues 
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Forschungsfeld, nämlich die Rolle des Lymphgefäßsystems innerhalb des 

Fettgewebewachstums. Kürzlich konnte gezeigt werden, dass ein Defekt in der 

Lymphoangiogenese assoziiert ist mit am späten Ausbruch von Adipositas gekoppelt ist. Das 

Lymphgefäßsystem könnte demzufolge einem übermäßigen Wachstum der Fettmasse 

entgegenwirken. 

Schließlich belegen die vorliegenden Ergebnisse das Vorhandensein einer Progenitor-Zell-

Population in der Stroma-Fraktion des menschlichen Fettgewebes. Diese Progenitor-Zellen 

sind in der Lage sich an der Neovaskularisation ischämischen Gewebes zu beteiligen. Diese 

Population könnte im Hinblick auf zelltherapeutische Strategien eine interessante Alternative 

zu Stammzellen aus dem Knochenmark darstellen. 
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I- INTRODUCTION 
 

 Obesity, which is characterized by an excessive accumulation of adipose tissue in the 

body, represents one of the greatest public health challenges for the 21st century and has now 

reached epidemic proportions. Indeed, according to the World Health Organization, the 

prevalence of obesity ranges from 5% to 20% in men and reaches up to 30% in women in 

Europe. In the United States, one third of the population is considered obese. Even children 

are affected since 10% to 30% of 7-11-year-old children and 8% to 25% of 14-17-year-old 

children are overweight or obese in Europe. 

Obesity per se is associated with health problems linked to increased weight-dependent 

pressure overload on lung, joints and bones. More importantly, obesity represents a risk factor 

for life-threatening diseases such as cardiovascular diseases (CVD), type 2 diabetes and 

certain forms of cancer (TABLE 1) (101). When one takes into account that CVD are the 

leading cause of death in the adult population of all ages in the United States and Europe and 

that obese people have 2- to 3-fold increased risk to develop CVD, it appears urgent to 

understand the mechanisms responsible for the hyperplasia/hypertrophy of the adipose tissue, 

as well as those involved in the development of metabolic and cardiovascular complications 

on the basis of an excess body fat mass. 

Obesity and overweight are usually assessed using the body mass index (BMI) which is the 

ratio of the body weight and the square of the height (kg/m2). The World Health Organization 

defines overweight by a BMI over 25 kg/m2 and obesity by a BMI over 30 kg/m2. The body 

fat mass and its repartition are determined by a complex combination of environmental, 

genetic and psychosocial parameters that influence energy expenditure, such as physical 

activity, basal metabolism and adaptative thermogenesis, and energy intake (101). The 

imbalance between energy intake and expenditure is associated with enhanced storage of 

triglycerides within the adipocytes which are the main cell type present in the adipose tissue, 

leading to adipocyte hypertrophy. The further imbalance between energy input and output 

leads to an increased adipocyte cell number within the fat mass. Both adipocytes hypertrophy 

and hyperplasia participate to the enlargement of the fat mass and thus to the development of 

obesity. Since the last 10 years, the discovery of a wide range of metabolic active proteins 

produced by the adipocytes, grouped under the term adipokines, has highlighted the secretory 

activity of adipose tissue. Moreover, several studies have suggested that adipokines might be 

directly involved in the growth of the adipose tissue itself but also in the genesis of the 

obesity-associated pathologies (36,61,94,151). However, the adipose tissue is also composed 
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of non-adipose cells, contained in the so-called stroma-vascular fraction (SVF), which 

includes the endothelial cells composing the local microcirculation. Recently, several studies 

have pointed out the role of the endothelial cells in the development of the fat mass (8,58,83), 

suggesting that such a population might represent a new original therapeutic target to control 

the growth of the adipose tissue.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TABLE 1: Main health problems associated with obesity in developed countries  
The excessive accumulation of adipose tissue which leads to the development of obesity is 
associated with a risk to develop pathologies, as indicated in the table according to the 
relative risk. 

Diabetes 
Gall bladder disease
Hypertension
Dyslipidaemia
Insulin resistance
Breathlessness
Sleep apnoea

Greatly increased
(relative risk >>3)

Coronary heart disease
Osteoarthritis (knees)
Hyperuricaemia and 
gout

Moderately increased
(relative risk

ca 2-3)
Cancer (breast cancer in 
postmenopausal women, 
endometrial cancer, colon 
cancer)
Reproductive hormone 
abnormalities
Polycystic ovary 
syndrome
Impaired fertility
Low back pain
Increased anaesthetic risk
Foetal defects arising 
from maternal obesity 

Slightly increased
(relative risk

 ca 1-2)

Relative risk of health problems associated with
obesity in developed countries.
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I.1. Physiology of the adipocyte  

 

Adipocytes are the major cell type present in adipose tissue. Adipocytes consist of 

more than 95% of triglycerides stored in a unique lipid droplet. As terminally differentiated 

cells, mature lipid-filled adipocytes are not able of cell division (68). 

 

I.1.1. Metabolic activity of adipocytes 

 

Adipocytes are the site of the metabolic activities of human adipose tissue, i.e. 

lipogenesis or the storage of free fatty acids in the form of TG and lipolysis or the release of 

TG in the form of free fatty acids and glycerol (148).  

The main source of fatty acids incorporated into the triglycerides during lipogenesis is 

provided by the chylomicrons and the very low density lipoproteins (VLDL). VLDL and 

chylomicrons are hydrolysed by the lipoprotein lipase, localized at the apical surface of the 

endothelial cells (122). The hydrolysis of VLDL and chylomicrons by lipoprotein lipase 

releases fatty acids that are taken up by the adipocytes where they are coupled to glycerol-3-

phosphate, mainly originated from the glycolysis (149) (FIGURE 1). The synthesis of fatty 

acids from carbohydrates, i.e. “de novo” lipogenesis, is considered to be a minor contributor 

of triglyceride formation in human (47,48,72).  
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FIGURE 1: Schematic illustration of fatty acids release after a meal (adapted from (113)) 
Free fatty acids (FFA) present in the intestine after a meal are incorporated into 
chylomicrons that are released into the blood circulation. Chylomicrons reach the liver via 
the portal vein where endogenous triglycerides (TG), partly coming from lipogenesis, are 
incorporated into very low density lipoprotein (VLDL). Both chylomicrons and VLDL are 
transported to the tissues via the blood circulation, where they are hydrolysed by the 
lipoprotein lipase (LPL) expressed at the apical surface of endothelial cells. The hydrolysis of 
chylomicrons and VLDL releases FFA that are taken up by muscle for oxidation and by 
adipocytes for storage. The association of FFA to glycerol-3-phosphate that originates from 
the glycolysis (uptake of glucose under the control of the glucose transporter GLUT-4) forms 
TG. 

 

Adipocytes hydrolyse triglycerides into glycerol and fatty acid by a process called 

lipolysis (10). Lipolysis depends on the activity of three lipases: the adipose triglyceride 

lipase (ATGL) that is responsible for the first step of triglyceride catabolism (201) leading to 

the formation of diglycerides, the hormone-sensitive lipase (75) that hydrolyses diglycerides 

into monoglycerides (111) and the monoglyceride lipase that catalyses the breakdown of 

monoglycerides to glycerol and fatty acids (89,182).  

Both lipogenesis and lipolysis are under the tight control of hormonal and nervous 

signals. In humans, the main regulators are insulin (42), catecholamines (106,112) and 

natriuretic peptides (107,108,163,165).  
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Catecholamines (norepinephrine and adrenaline), natriuretic peptides and insulin control the 

phosphorylation state of the hormone-sensitive lipase through the modulation of the protein 

kinases PKA and PKG activities that depend on the intracellular concentrations of cAMP 

(increase by the catecholamines and decrease by insulin) and cGMP (increase by ANP), 

respectively (FIGURE 2). Insulin induces lipogenesis in short-term via the recruitment of 

glucose transporters at the plasma membrane in adipocytes (95) and in long-term via the 

induction of lipogenic enzymes such as fatty acids synthase (FAS) and acetyl-coenzymeA 

carboxylase (ACC) and the lipoprotein lipase (12). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 2: Regulation of lipolysis in the adipocyte  
Catecholamines (adrenaline and norepinephrine) bind to their receptor and induce the 
formation of cAMP by the adenylate cyclase. cAMP activates the protein kinase A (PKA) that 
phosphorylates and activates the hormone-sensitive lipase (HSL). HSL is the key enzyme of 
triglycerides (TG) hydrolysis, i.e. lipolysis, leading to the release of fatty acids (FA) and 
glycerol. Insulin activates the phosphodiesterase 3 (PDE3) that degrades cAMP leading to a 
decrease of cAMP concentration. The subsequent reduction in PKA activity leads to a 
decreased HSL phosphorylation and thus activation, which in turn leads to the inhibition of 
lipolysis. Natriuretic peptides activate the formation of cGMP by guanylyl cyclase. cGMP 
activates PKG that phosphorylates HSL, thus leading to an enhanced lipolysis. 
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Increased lipogenesis and/or decreased lipolysis are responsible for the adipocyte 

hypertrophy. The accumulation of triglycerides can lead to a 10-fold increase of the cell 

diameter, reaching more than 100µm, which means a 1000-fold increase in the cell volume 

(19). Pharmacological modulations of the metabolic pathways in adipocytes, and more 

specifically directed toward increased lipolysis have been attempted to reduce adipocyte 

hypertrophy and thus adipose tissue growth development. However no positive results have 

been obtained in humans and such approaches have been given up. Indeed, it is now well 

recognized that the storage of the excess lipid within the fat mass is necessary to protect liver, 

muscle and pancreas against the adverse effects of free fatty acids (lipotoxicity) 

(49,116,121,159). This is well illustrated in the syndrome of lipodystrophy where the lack of 

adipose tissue is associated with insulin resistance and liver steatosis mainly due to the 

lipotoxic effects of the free fatty acids (59).  

 

I.1.2. Secretory activity of adipocytes 

 

During the last years, the adipose tissue has acquired the status of an endocrine organ. 

It produces a wide range of hormones, factors and cytokines (TABLE 2), that are grouped 

under the term adipokines (36,61,94,151). Adipokines have been shown to influence various 

metabolic processes. This has revealed the existence of new peripheral and central metabolic 

axes, via effects of adipose tissue-derived secretions on glucose and lipid metabolism in the 

liver, the skeletal muscle as well as on the hypothalamic centers which are involved in the 

control of energy homeostasis. Moreover, some adipokines have been involved directly in the 

genesis of insulin resistance and endothelial dysfunction (36).  
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TABLE 2: Adipokines and their main effects (adapted from (151)) 
Adipokines are secreted by adipose tissue. Short list of the best studied adipokines (IL-6: 
interleukin 6, PAI-1: plasminogen activator inhibitor 1, TNFα: tumor necrosis factor α, IGF-
1: insulin-like growth factor-1, TGF-β: transforming growth factor β) 
 

Adipokines Effect on 

Leptin Food intake, reproduction, angiogenesis, immunity 

Adiponectin Inflammation, atherosclerosis, insulin resistance 

IL-6 Inflammation, atherosclerosis, insulin resistance 

PAI-1 Vascular homeostasis 

Apelin Insulin resistance 

Visfatin Insulin resistance 

Resistin Inflammation, insulin resistance 

C-reactive protein Inflammation, atherosclerosis, insulin resistance 

TNF-α Inflammation, atherosclerosis, insulin resistance 

Angiotensinogen Vascular homeostasis 

Adipsin Immune stress response 

IGF-1 Lipid metabolism, insulin resistance 

Monobutyrin Vasodilation of the microvessel 

TGF-β Cell adhesion and migration, growth and 

differentiation 
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I.1.2.1 Adipokines and energy homeostasis 

 

a) Leptin 

Leptin was one of the first adipokines identified in 1994 in mice as the product of Ob 

gene (199), the deficiency of which led to obesity in ob/ob mice due to an enhanced 

hyperphagia combined with a reduced energy expenditure. Leptin acts directly in the 

hypothalamus as a satiety signal to regulate food intake (51,52). Besides its central effect, 

peripheral effects of leptin have been described on the liver, pancreas, muscle and adipose 

tissue itself (FIGURE 3)(79). Leptin also plays an important role in reproduction and fertility 

and might thus explain the well-known link between the amount of adipose tissue and the 

reproductive capacity. Indeed, leptin accelerates puberty in wild-type mice (3) and facilitates 

reproductive behavior in rodents (188). Moreover, in genetically obese ob/ob female mice that 

exhibit low fertility, leptin treatment corrects the sterility, thus resulting in ovulation, 

pregnancy and parturition (38,126). Taken together, these observations has led to the concept 

that leptin represents the link between adipose tissue and the hypothalamus that regulate 

reproduction and metabolism according to the amount of energy stored in the fat mass.  
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FIGURE 3: Main central and peripheral effects of leptin  
Leptin, produced by the adipocytes exert central and peripheral effects involved in the 
regulation of glucose and lipid metabolism. Leptin acts in the hypothalamus as a satiety 
signal. Moreover, leptin induces the production of hormones that support the functional 
activity of the reproductive organs. Leptin also regulates lipid and glucose metabolism via 
peripheral effects on muscle, pancreas, liver and adipose tissue. Indeed, the insulin secretion 
by the pancreas is inhibited by leptin while lipolysis and fatty acid oxidation are increased in 
adipose tissue and muscle and lipogenesis is decreased in the liver. 
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The further identification of leptin receptor as the product of the db gene in mice, the 

mutation of which led to obesity in the db/db mice (39), allowed to better characterize the 

leptin-activated cell signaling pathways (FIGURE 4). Leptin receptor belongs to the class I 

cytokine receptor family. The product of db gene is spliced in six isoforms: Ob-Ra, Ob-Rb, 

Ob-Rc, Ob-Rd, Ob-Re and Ob-Rf. All of these isoforms have transmembrane domains except 

Ob-Re, which is a soluble receptor. ObRe circulates in the blood and binds leptin with high 

affinity (110,115). Among the transmembrane receptors, Ob-Rb, the long-form receptor, is 

considered as the active form linked to the activation of intracellular signaling pathways. 

Indeed, the cytoplasmic region of Ob-Rb contains several proline-rich domains that are 

essential for the recruitment and activation of cytoplasmic kinases, such as the Janus tyrosine 

Kinase 2 (JAK2) (18,190). The activation of JAK2 leads to the activation of the Signal 

Transducer and Activator of Transcription (STAT3) which then translocates into the nucleus 

and acts as a transcription factor. JAK2 also activates the mitogen-activated protein kinases 

(MAPK)-dependent signaling pathway (18). The short-form transmembrane receptors are 

thought to be mainly involved in leptin internalization and degradation (177).  

Due to the central role of leptin, attempts have been made to administrate leptin to obese 

patients in order to restore an appropriate energy balance. However, no convincing results 

have been obtained except in the rare obesity-associated genetic defect in leptin gene (114). 

The lack of effect of leptin on energy intake and expenditure in obese humans has been 

explained by the development of a leptin-resistant state associated with hyperleptinemia 

(50,181). One of the potential pathways responsible for the inhibition of leptin signaling in 

obesity involves the Suppressor-of-Cytokine-Signaling (SOCS3). SOCS3 decreases the 

activation of the leptin receptor both in vitro and in vivo and is considered as an inhibitory 

feedback signal that terminates leptin signaling. Indeed its expression is dependent on STAT3 

activation (29). Expression levels of SOCS3 have been shown to be increased in several 

rodent models of obesity associated with a leptin-resistant state (17,128), suggesting that 

SOCS3 might be involved in the insulin resistance state observed in obesity. The tyrosine 

phosphatase PTP1B might also be involved in leptin resistance. On one hand overexpression 

of PTP1B in cultured cells has been shown to attenuate leptin signaling (195) and on the other 

hand, high fat diet-induced leptin resistance was associated with increased levels of PTP1B in 

liver (109).  
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FIGURE 4: Leptin receptors and leptin signaling pathways 
(a: from (70); b: adapted from (65)) 
(a) The 6 isoforms of the leptin receptor: Ob-Ra, Ob-Rb, Ob-Rc, Ob-Rd and Ob-Rf are the 
five transmembrane receptors for leptin. Ob-Rb, the long form receptor is the only one able to 
induce signal transduction. Ob-Re is a soluble receptor 
(b) Signaling pathways activated by leptin: The binding of leptin (L) to its receptor leads to 
the activation of Janus Kinase 2 (JAK2). JAK2 phosphorylates the Signal Transducer and 
Activator of Transcription 3 (STAT3) that translocates to the nucleus and regulates gene 
expression. JAK2 can also activate the mitogen-activated protein kinases (MAPK)-dependent 
signaling pathway. The Suppressor-of-Cytokine-Signaling (SOCS3) can exert a negative 
feedback by inhibiting JAK2. 
 

b) Adiponectin 

Adiponectin (also called adipocyte complement-related protein ACRP, adipose most 

abundant gene transcript 1 apM1, gelatine-binding protein 28 GBP28 or AdipoQ) has been 

discovered in 1995 (160). Adiponectin is secreted into the bloodstream where it accounts for 

approximately 0.01% of all plasma protein (around 5-10 µg/mL in human blood). 

Adiponectin is a complex protein that oligomerizes via the interaction of disulfide bonds 

leading to the formation of trimers, hexamers and high molecular weight (HMW) forms 

circulating in the plasma (37,136,176,189). Each form has a distinct ability to activate 

intracellular signaling pathways (176), leading to the induction of different physiological 

responses (134,189). Adiponectin is considered as an insulin-sensitizing agent (24). Indeed, 

adiponectin increases fatty acids oxidation in muscle and liver through the activation of 

peroxisome proliferator activated receptor (PPARα) (71). Moreover, adiponectin-induced 

activation of AMP-activated protein kinase (AMPK) leads to glucose uptake via the activation 

JAK2 JAK2
P
P

P
P

P P

SOCS3

Sos
Grb2

Shc
Ras

Raf

MEK

MAPK

Stat3

Stat3 Stat3
P

P

Gene transcription

Ob-RbL

Box1

Box2

Box3

ObRb ObRa ObRc ObRd ObRe ObRf

JAK2 JAK2
P
P

P
P

P P

SOCS3

Sos
Grb2

Shc
Ras

Raf

MEK

MAPK

Stat3

Stat3 Stat3
P

P

Gene transcription

Ob-RbL

JAK2 JAK2
P
P

P
P

P P

SOCS3

Sos
Grb2

Shc
Ras

Raf

MEK

MAPK

Stat3

Stat3 Stat3
P

P
Stat3 Stat3

P

P

Gene transcription

Ob-RbL

Box1

Box2

Box3

ObRb ObRa ObRc ObRd ObRe ObRf

Box1

Box2

Box3

ObRb ObRa ObRc ObRd ObRe ObRf



 23

of the translocation of the glucose transporter GLUT4 to the cell membrane (34) in the 

skeletal muscle and to the inhibition of gluconeogenesis in the liver. Taken together, these 

effects induce activation of the insulin receptor substrates, IRS1 in muscle and IRS2 in liver, 

improving insulin sensitivity. The major role of adiponectin as an insulin-sensitizing 

adipokine is further stressed by the observation that PPARγ agonists, such as the 

thiazolidinediones, well known insulin-sensitizing drugs used in the treatment of type 2 

diabetes, up-regulate the expression of adiponectin (15,20). In addition, adiponectin exhibits 

anti-atherosclerotic effects. Indeed, adiponectin decreases adhesion molecule expression by 

endothelial cells and inhibits foam cell formation as well as smooth muscle cell migration in 

the vascular wall, thus inhibiting the development of atherosclerotic plaques (64,80)(FIGURE 

5). Two receptors of adiponectin have been described, adipoR1 and adipoR2 (192). In 

addition, a third receptor, T-cadherin, has recently been described although its tissue 

distribution and functional significance need further investigations (81). In mice, AdipoR1 

was predominantly found to be expressed on muscle cells whereas AdipoR2 was mainly 

expressed by liver cells (192). In humans, both adiponectin receptors are ubiquitously 

expressed (99). Both receptors are able to induce signal transduction after binding with 

adiponectin. In particular, adiponectin is able to activate AMPK as well as the MAPK 

signaling pathway (192). In addition, a new molecule, APPL1, has recently been described to 

play the role of an adaptator protein that mediates adiponectin signal transduction (120). 
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FIGURE 5: Biological actions of adiponectin  
Adiponectin, produced by the adipocytes exerts its effects on the liver where it increases fatty 
acids oxidation and glucose uptake as well as on the liver where fatty acids oxidation is also 
enhanced while the production of glucose (gluconeogenesis) is inhibited. These effects lead to 
the activation of the insulin receptor substrate (IRS 1 in the muscle and IRS 2 in the liver) 
what results in insulin sensitizing. In addition, adiponectin acts on the various cells present in 
the vascular wall. Indeed, adiponectin decreases the expression of adhesion molecules by 
endothelial cells, inhibits the activation and production of inflammatory cytokines in immune 
cells as well as foam cell formation and prevents smooth muscle cell migration. These effects 
result in the inhibition of atherosclerotic plaque formation. 
 

c) Resistin 

Resistin, also called FIZZ3 (found in inflammatory zone) or ADSF (adipocyte secreted 

factor) was discovered in 2000 and was identified as a target of the PPARγ agonists, the 

thiazolidinediones (74,96,173). Indeed, in murine adipocytes, thiazolidinedione treatment led 

to a marked decrease in the expression of resistin together with an improvement of the insulin 

sensitivity (173). Those observations have led to the hypothesis that resistin is involved in the 

insulin-resistance associated with obesity in rodents. In agreement with such an hypothesis, 

resistin levels were shown to be increased with obesity in several rodent models (173). 

However, in humans, the relevance of resistin in the insulin resistance associated with obesity 

is questionable. Indeed the human protein exhibits only 59% homology with the murine 

resistin (99). Moreover, the production of resistin by human adipocytes is very low as 

compared with murine adipocytes. Finally, only weak relationship between resistin and 
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insulin sensitivity have been observed in human obese individuals (146). Recent observations 

suggest that the role of resistin in humans is more likely related to the inflammatory 

processes. In humans, resistin has been described to be predominantly expressed by the 

macrophages accumulated in the adipose tissue (45) and to induce the expression of pro-

inflammatory cytokines such as tumor necrosis factor TNFα, interleukin IL-12 in monocytes 

(170) as well as IL-6 (21). Moreover, resistin has been shown to induce the expression of 

adhesion molecules by endothelial cells, supporting the hypothesis of a role of resistin in the 

inflammatory reaction (30). To note, the receptor for resistin is still not identified. 

 

I.1.2.2 Adipokines and inflammation 

 

Besides the adipokines involved in the regulation of the metabolic fluxes, adipocytes 

produce a wide range of factors involved in inflammatory reactions. Various pro-

inflammatory markers are increased in the plasma of obese individuals and obesity is now 

considered as a chronic low-grade inflammatory state (138). This enhanced pro-inflammatory 

marker expression might originate from the adipose tissue itself. Indeed, adipocytes have been 

shown to express a wide range of chemokines, such as monocyte chemoattractant protein-1 

(MCP-1), macrophage inflammatory protein-1α (MIP-1α) and IL-8, as well as the major pro-

inflammatory cytokines TNFα and IL-6 that are both produced in higher amounts in obese 

individuals (61,138,175). The production of pro-inflammatory cytokines by adipose tissue is 

thought to be involved in the genesis of the insulin resistance associated with obesity (138). 

Indeed, TNFα interferes with the insulin signaling pathway via the activation of 

serine/threonine kinases such as PKC isoforms that phosphorylate the insulin receptor 

substrate (IRS) on serine residues (77,91,92). This phosphorylation reduces the association 

between IRS and the insulin receptor as well as the consecutive tyrosine phosphorylation of 

IRS, what leads to an inhibition of the insulin signaling. The production of TNFα by 

adipocytes appears to be a local production since no arterio-venous differences of TNFα 

plasma concentration through the adipose tissue have been shown (67,123). However a local 

inhibition of insulin signaling in the adipocyte by TNFα may participate to the systemic 

insulin resistance through the consecutive increased lipolysis leading to enhanced release of 

the free fatty acids in the circulation and then to lipotoxicity (55,154). IL-6, in contrast to 

TNFα, is released in the circulation by the adipose tissue. It has been reported that the plasma 

concentration of IL-6 found in veins originating from adipose tissue are higher than arterial 

plasma concentration and the adipose tissue is thought to be responsible for 1/3 of the plasma 
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IL-6 (194). IL-6 has been described to inhibit insulin signal transduction via the induction of 

SOCS3. In addition, IL-6 might inhibit insulin signaling directly in the liver and the muscle 

(166). 

Recent approaches that target inflammatory cytokines production have been postulated to 

improve insulin-sensitivity in obese individuals. It has been demonstrated that in rodent 

models of obesity, TNFα gene knock-out led to the improvement of insulin sensitivity 

(179,180). However, in obese human subjects with type 2 diabetes, a 4-week systemic 

administration of TNFα neutralizing antibody failed to improve insulin sensitivity (130). To 

note, although anti-IL6 neutralizing antibodies have been developed, their effect on obesity-

associated disorders has not yet been evaluated (61).  

 

To summarize this first part, adipocytes are metabolically active cells that store and 

release free fatty acids as well as adipokines. Obesity is characterized by a modulation of both 

metabolic and secretory activities and those alterations are likely involved in the genesis of 

the systemic insulin-resistance and endothelial dysfunction leading to diabetes and CVD. 

Beside the adipocytes, the adipose tissue is composed of the so-called stroma-vascular 

fraction. Only few studies have addressed this cell fraction and its potential role in the growth 

and maintenance of adipose tissue. However, since adipocytes are metabolically active cells, 

it is evident that the local circulation in the tissue plays a major role in providing the 

metabolic substrates and clearing the adipose-derived products. 

 

I.2. The vasculature of adipose tissue 

 

Older histological studies performed in rodents have demonstrated that a dense 

network of capillaries is responsible for the adipose tissue supply and it has been postulated 

that each adipocyte is in close proximity to a blood capillary (152). The relative richness of 

blood supply in adipose tissue seems to be related to the size of the fat depot and increasing 

amount of data strongly suggest that the growth and maintenance of the fat store are 

dependent on a functional blood capillary network within the fat mass (43). Another vascular 

system is present in the adipose tissue: the lymphatic vascular system. It has been described 

for a long time that the rate of the lymphatic drainage in the adipose tissue is inversely related 

to its growth and that lymphatic vessels tend to be absent where fat deposition is more 

abundant (157). These observations suggest that in contrast to what is observed in the blood 
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capillary network, a reduced lymphatic microcirculation supports adipose tissue development. 

However, no studies have addressed this circulatory system in the adipose tissue. (68,157).  

 

I.2.1. The blood vasculature of adipose tissue 

 

Increasing amount of data shows that the blood vasculature plays an important role in 

the growth of the adipose tissue and more particularly in the process of adipogenesis as well 

as in the maintenance of the fat store.  

 

I.2.1.1 Blood vasculature and adipogenesis 

 

Mature adipocytes are differentiated cells that can not proliferate. New adipocytes, that 

are observed during the development of obesity, originate from the precursor cells, i.e. the 

preadipocytes that are present in the stroma of the adipose tissue. Preadipocytes differentiate 

into adipocytes through a process called adipogenesis. This process requires the growth arrest 

of proliferating preadipocytes and is initiated by activation of several transcription factors, 

such as the PPARγ and the CCAAT-enhancer binding proteins C/EBP α, β and δ and the 

sterol responsive element binding protein SREBP1c family that induce the expression of 

adipose specific genes (56). Adipogenesis in vitro is induced by insulin in combination with 

IGF-1 as well as by glucocorticoids and PPARγ ligands (153) whereas it is inhibited by 

cytokines such as TNFα, IL-1 and other pro-inflammatory molecules (131,140). 

Several studies have suggested that endothelial cells play an important role in the control of 

the adipogenesis process. For example, it has been showed that endothelial cells promote the 

development of preadipocytes in a three-dimensional collagen gel co-culture system of mature 

adipocytes and endothelial cells (8). Furthermore, an “in vivo” study has demonstrated that 

the inhibition of blood vessel formation by an anti-angiogenic compound, e.g. an anti-

VEGFR2 antibody, led to the strong reduction of the adipogenesis of preadipocytes injected 

subcutaneously in mice (58). This link between adipogenesis and endothelial cells is further 

stressed by the observation that secretion derived from adipose tissue-derived endothelial cells 

induced the differentiation of preadipocytes into mature adipocytes (83). Taken together, 

these data underline that endothelial cells modulate adipogenesis, i.e. the differentiation of 

preadipocytes into adipocytes.  
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I.2.1.2 Blood vasculature and adipose tissue growth in vivo 

 

Recent studies have demonstrated that the vascular network plays an important role in 

the maintenance and growth of adipose tissue in rodents. Indeed, it has been shown that in 

ob/ob mice that normally become obese, treatment with angiogenesis inhibitors such as TNP-

470 prevented the development of obesity (156). Similar results were obtained with other 

mice model of obesity (high-fat diet induced obesity in C57BL6 mice (25). The link between 

the development of the fat mass and the formation of blood vessels has further been 

demonstrated in nude mice. In these animals, the injection of preadipocytes in dorsal skin-fold 

chamber resulted in the formation of vascularized fat pads. Moreover, the injection of 

preadipocytes, transfected with an adenovirus encoding for PPARγ-dominant negative mutant 

receptor that blocks preadipocyte differentiation, led to the inhibition of the development of 

blood vessels at the site of injection, demonstrating that adipocytes directly regulate the 

development of their own vasculature (58). Finally, a recent study demonstrated that the use 

of an apoptosis-inducing agent specifically targeted to the adipose tissue vasculature, led to 

the reversion of obesity in mice (100). Interestingly, the regression of obesity was 

accompanied with an amelioration of the metabolic situation and an improvement of insulin 

sensitivity. Taken together, these studies show the key role of vasculature in the development 

of adipose tissue and make it an attractive target to control the fat mass growth. However, the 

responsiveness of the adipose tissue vasculature to anti-angiogenic compounds is quite 

surprising. Indeed, only immature vessels such as those in tumors seem to be reactive to such 

treatment and do regress in response to anti-angiogenic drugs. It is thus suggested that the 

blood vessels in the adipose tissue might be particular and more sensitive to remodeling than 

other adult vessels.(156).  

 

To conclude, it appears that a functional blood capillary network is necessary for the 

differentiation of preadipocytes into adipocytes but also the maintenance of the fat store. 

Furthermore, the extension of the blood capillary network within the adipose tissue is 

indispensable for the growth of the tissue itself and appears to be regulated by the adipose 

tissue itself.  
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I.2.2. Mechanisms of neovascularization in the adipose tissue 

 

The ability of the adipose tissue to promote neovascularisation is for a long time 

recognized. In particular, the omentum has been used clinically to promote revascularization 

and healing of ischemic organs and tissues, including the myocardium (171) (186). However, 

the processes involved in the formation of new blood vessels promoted by the adipose tissue 

are still to be defined. Classically, neovascularization in adult tissues can be achieved by two 

distinct processes: vasculogenesis and angiogenesis. 

 

I.2.2.1. Vasculogenesis 

Vasculogenesis was first defined as the process responsible for the formation of the 

primitive vascular network in the embryo from blood islands due to the aggregation of 

mesodermal cells in the yolk sac. These cells, called hemangioblasts, might be common 

precursor cells for the hematopoietic and endothelial cells (150). An important number of 

studies have demonstrated that vasculogenesis can participate to post-natal neovascularization 

since cells that exhibit properties of endothelial precursor cells (EPC) have been identified in 

adults (11). Those cells were characterized by their expression of various cell surface markers, 

such as the hematopoietic cell surface marker CD34, the vascular endothelial growth factor 

receptor VEGFR2 (or Flk-1) and the hematopoietic stem cell marker CD133 (or AC133). 

Such EPC have been first identified in the circulation although at very low amounts. The main 

source of EPC is considered to be localized in the bone marrow. The bone marrow in adults is 

constituted by various populations of cells that retain plasticity and the capacity to 

differentiate into distinct lineages. Those populations are characterized by different cell 

surface markers (TABLE 3). Hematopoietic stem cells, that express CD34 and CD45, give 

rise to blood and immune cells. Mesenchymal stem cells (MSC) express Stro-1 but not the 

stem cell marker CD34 and are characterized by their ability to give rise to bone, cartilage and 

adipose cells (93). Finally, bone marrow contains endothelial progenitor cells (EPC) that can 

be mobilized to the peripheral circulation, thus representing about 0,002% of total 

mononuclear cells (137), in response to factors including vascular endothelial growth factor A 

(VEGF A), granulocyte-colony stimulating factor (G-CSF) and granulocyte/macrophage-

colony stimulating factor (GM-CSF) as well as in response to ischemia and tissue damage. 

Their homing to damaged or ischemic tissues is not well understood yet but seems to involve 

the chemokine stroma-derived factor-1 (SDF-1) and its receptor CXCR4. The role of EPC in 

neovascularization is mainly mediated by two mechanisms. On one side EPC can promote 
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angiogenesis via the secretion of angiogenic factors such as VEGF A, IGF-1 and hepatocyte 

growth factor (HGF) (69,82,178) that induce proliferation and migration of the quiescent 

mature endothelial cells constituting the vascular network. EPC also produce several 

chemoattractants of monocytes and macrophages to increase neovascularization (174,178). 

On the other side, EPC can directly incorporate into the newly formed vessels and 

differentiate into endothelial cells (11). In vitro, under appropriate culture conditions, EPC are 

able to differentiate into mature endothelial cells. Indeed, in the presence of VEGF, basic 

fibroblast growth factor (bFGF) and IGF-1, EPC express markers for mature endothelial cells 

(145). The migration of EPC from the bone marrow to the peripheral circulation might be the 

starting point of EPC differentiation. Their homing and adhesion into the monolayer of 

surrounding endothelial cells might achieve the differentiation process of EPC into mature 

endothelial cells (78). Recent studies have demonstrated that EPC can be found in particular 

zones of the human vascular wall called vasculogenic zones (197), suggesting the presence of 

an inherent source of EPC in the blood vessels to support vasculogenesis in post-natal 

neovascularization. 
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TABLE 3: Main cell surface markers expressed on bone-marrow progenitor cells 
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I.2.2.2. Angiogenesis 

Angiogenesis is involved in the adult physiological (wound healing, female 

reproductive cycle) and pathophysiological (inflammatory- and hypoxia-driven angiogenesis) 

neovascularization. It is a process regulated by a fine balance between pro- and anti- 

angiogenic factors which involves the interaction between endothelial cells, basement 

membrane and periendothelial cells, i.e. smooth muscle cells or pericytes (41). The activation 

of endothelial cells by pro-angiogenic factors, in particular VEGF A, stimulates their 

proliferation and migration. Endothelial cells migration requires the secretion of matrix 

metalloproteinases (MMP) that degrade the basement membrane thus facilitating the 

migration of endothelial cells on this support (155). Degradation of the basement membrane 

also allows the release of growth factors such as VEGF A, bFGF and angiopoietin-1 (Ang-1) 

that are sequestered in the matrix network. This mechanism further supports the proliferation 

and migration of endothelial cells and maintains the angiogenic process. The stabilization of 

the newly formed vessels is achieved by the recruitment and proliferation of periendothelial 

cells, a process that requires the secretion of late angiogenic factors such as platelet-derived 

growth factor (PDGF) and transforming growth factor (TGF-β) by the endothelial cells (9). 

Indeed, periendothelial cells inhibit endothelial cell proliferation and stimulate their 

differentiation and survival. Moreover, the inhibition of MMP by tissue inhibitor of 

metalloproteinases (TIMP) supports the formation of the basement membrane (FIGURE 6).  
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FIGURE 6: Mechanisms of angiogenesis 
Angiogenesis is initiated by the activation of endothelial cells that secrete key factors such as 
matrix metalloproteinases (MMP) and angiopoietin 2 (Ang2) that degrade the basement 
membrane (BM), allowing the loosening of the vessel and the migration of endothelial cells. 
The BM degradation releases angiogenic factors that are sequestered in the matrix network 
(VEGF A, bFGF, Ang-1), thus enhancing endothelial cells proliferation and migration. Once 
a tube-like structure is formed, endothelial cells produce late angiogenic factors such as 
platelet-derived growth factor (PDGF), transforming growth factor (TGFβ) and 
angiopoietin-1 (Ang1) that induce the recruitment and proliferation of pericytes, thus 
stabilizing the newly formed vessel. Finally, the inhibition of MMP by the tissue inhibitor of 
metalloproteinases (TIMP) completes the process. 
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I.2.2.3. Lymphangiogenesis 

During embryogenesis, the lymphatic system appears after the development of blood 

vascular system when a subset of venous endothelial cells becomes committed to the 

lymphatic lineage. The homeodomain transcription factor Prox-1 appears to be essential in 

this commitment. Indeed, even in mature blood vascular endothelial cells, ectopic expression 

of Prox-1 leads to a down-regulation of blood vascular endothelial cell genes and induces the 

expression of lymphatic specific genes (90). The blood and lymphatic specific genes are 

indicated in the TABLE 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TABLE 4: Main specific blood and lymphatic endothelial cell markers 
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The development of lymphatic vessels is essentially under the control of the lymphangiogenic 

factors VEGF C and VEGF D that are ligands for the receptor VEGFR3, principally 

expressed on lymphatic endothelial cells (LEC) (FIGURE 7) (84,184). VEGF C and VEGF D 

induce the proliferation, migration and survival of LEC in vitro. VEGF C and VEGF D do not 

have the same function during embryogenic lymphangiogenesis. Indeed, VEGF C is essential 

for proper lymphatic development since genetic ablation of this factor leads to failure in the 

migration and proliferation of LEC in mice (88). On the contrary, VEGF D seems to be 

dispensable for lymphangiogenesis in vivo (13). VEGFR3 is also required for the 

maintenance of newly formed lymphatic vessels during embryogenesis and first post-natal 

weeks since the inhibition of VEGFR3 signaling leads to the regression of lymphatic vessels 

due to LEC apoptosis (118). However, in adulthood, VEGFR3 signaling is not involved 

anymore in LEC survival but restricted to the development of new lymphatic vessels since the 

inhibition of VEGFR3 signaling does not affect established lymphatic vessels. In addition to 

VEGFR3, VEGF C and VEGF D can bind to neuropilin 2, a semaphorin receptor in the 

nervous system also expressed in LEC. 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 7: VEGF family, ligands and receptors (from (196)) 
Three receptors for the VEGF ligands family have been described: VEGFR1, VEGFR2 and 
VEGFR3 that have specific binding ability with the different ligands VEGF A, VEGF C, 
VEGF D, VEGF E and placental growth factor (PlGF). In addition, neuropilin (NP-1), a 
semaphorin receptor, is also able to bind ligands from the VEGF family. 
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Other factors have recently been described as lymphangiogenic molecules. Indeed, IL-7 

specifically increases the expression of lymphatic markers in endothelial cells and induces the 

formation of lymphatic vessels in vivo (6). In addition, HGF has been identified as a 

lymphangiogenic factor in vitro and in vivo (86). Finally, angiopoietin-1 (Ang1) has also been 

recently described to promote lymphatic vessel formation since it induces LEC colony 

formation in vitro and lymphangiogenesis in the model of mouse cornea in vivo (125). 

 

I.2.2.4. Adipose tissue and neovascularization 

The vasculogenic and lymphangiogenic processes have not yet been studied in the 

adipose tissue. However, several studies have reported that adipocytes produce several pro-

angiogenic factors such as VEGF A, MMP-2 and -9, bFGF, angiopoietin-like 4 and 

monobutyrin (23,117,198). Moreover, the classical metabolic adipokines, leptin and 

adiponectin, have been described to modulate angiogenesis. Indeed, leptin induces the 

proliferation and migration of human umbilical vein endothelial cells (HUVEC) in vitro. In 

addition, using in vivo models of chick chorioallantoic membrane (22) and rat cornea (168), it 

has been demonstrated that leptin induces the formation of new blood vessels. More recent 

studies have shown that leptin enhances vascular permeability (31) as well as nitric oxide 

(NO) production in endothelial cells (183). Moreover, the production of MMP as well as 

TGFβ and collagen type IV by endothelial cells is induced by leptin, what might participate to 

the stabilization of the newly formed vessels. Finally, it has been demonstrated that leptin 

stimulates the expression of angiogenic factors such as VEGF and bFGF, suggesting that it 

could indirectly participate to angiogenesis (31).  

Adiponectin has been described to stimulate the organization of endothelial cells into 

capillary-like structures as well as the activation of nitric oxide synthase (eNOS) in HUVEC. 

Moreover, adiponectin stimulates blood vessel growth in vivo in mouse matrigel plug 

implantation and rabbit corneal models of angiogenesis (133). However, the role of 

adiponectin in angiogenesis is controversial. Indeed, other studies have demonstrated that 

adiponectin inhibits endothelial cell migration and proliferation and prevents in vivo the 

growth of new blood vessels in the chick chorioallantoic membrane and mouse corneal 

assays. The anti-angiogenic effect of adiponectin has been associated with a pro-apoptotic 

effect of adiponectin on the endothelial cells due to the activation of caspases (26).  

The link between adipose tissue and the production of pro-angiogenic factors is further 

stressed by the observation that the plasma concentrations of various pro-angiogenic factors 

such as VEGF A, VEGFR2, angiopoietin-2, angiogenin and angiostatin are increased in obese 
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people (169). This increased pro-angiogenic capacities associated with obesity has been 

suggested to play a potential role in the association between obesity and risk to develop 

tumors and metastasis.  

 

The first aim of the present work was to characterize the blood capillary network 

present in the human adipose tissue and to study the potential mechanisms involved in its 

remodeling with obesity, i.e. vasculogenesis and angiogenesis.  

The second aim was to characterize the lymphatic endothelial cells from human adipose tissue 

and to study its trophic responsiveness to adipokines and lymphangiogenic factors. 
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II. MATERIALS AND METHODS 
 

II.1 MATERIALS 

 

Collagenase was purchased from Biochrom AG (Berlin, Germany). 

Magnetic microbeads for positive selection of CD34+ cells and CD14+ cells were 

from CellSystems (Cellsystems, easysep, St Katharinen, Germany) and magnetic microbeads 

for positive selection of CD31+ cells were obtained from Dynal Biotech (Hamburg, 

Germany). 

Endothelial cell culture media (basal medium (EBM), growth medium (ECGM) and 

growth medium for microvascular cells (ECGM MV)) were purchased from Promocell 

(Heidelberg, Germany). 

FACS antibodies: the mouse IgG antibodies (FITC, perCP and PE) and the anti-human 

CD14 (PE), CD34 (perCP) and CD45 (PerCP) antibodies were from BD Bioscience 

(Heidelberg, Germany). The anti-CD31 antibody (FITC) was purchased from Cymbius 

Biotechnology (Hofheim, Germany), the anti-CD133 antibody (PE) from Miltenyi Biotech 

(Germany) and the anti-ABCG2 antibody (FITC) from Chemicon (Hofheim, Germany). 

Immunohistochemistry antibodies: 

First antibodies: rabbit anti-human von Willebrand factor (vWf) and mouse anti-human CD31 

antibodies were from Dako (Glostrup, Denmark), rabbit anti-human VEGFR3 antibody from 

Chemicon (Temecula, USA), mouse monoclonal anti-human podoplanin and rabbit anti-

human Prox1 antibody from Acris (Hiddenhausen, Germany), rabbit anti-human LYVE1 

antibody from Upstate biotechnologies (Germany), mouse anti-human desmoplakin from 

Cymbius biotechnology (Hofheim, Germany), VEGFR2, VEGFR1, mouse anti-human CD34 

from Chemicon (Hofheim, Germany). 

Second antibodies: anti-rabbit antibody conjugated with Alexa Fluor 568 or anti–mouse 

antibody conjugated with Alexa Fluor 488 were purchased from Molecular probes (Göttingen, 

Germany). 

Acetylated low density lipoprotein (Ac-LDL) was provided by Harbor Bioproducts 

(Norwood, MA). 

Antibodies for Western blot analysis:  

Rabbit anti-phospho serine 473 Akt and rabbit anti-phospho Erk1/2 antibodies as well as 

antibodies directed against the non phosphorylated forms of Akt and Erk1/2 (rabbit anti-Akt 
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and rabbit anti-Erk1/2 antibodies) were purchased from Cell signalling (New England Biolabs 

GmbH, Frankfurt am Main, Germany). 

Second antibody coupled with peroxidase (anti-rabbit IgG) was provided by Calbiochem 

(Darmstadt, Germany). 

RNA isolation kit (RNeasy kit) was provided by Qiagen (Hilden, Germany), ribogreen 

fluorometric assay by Molecular Probes and the thermoScript RT system by Life 

Technologies (Invitrogen, Carlsbad, CA). 

Taqman primers: 

Primers for human VEGF A (Hs 00173626_m1), VEGF C (Hs00153458_m1), VEGF D (Hs 

00189521_m1), VEGFR1 (Hs00176573_m1), VEGFR2 (Hs00176676_m1), VEGFR3 

(Hs00176607_1), leptin receptor (Hs00174497_m1), adiponectin receptor-1 

(Hs00360422_m1), adiponectin receptor-2 (Hs00226105_m1), Prox-1 (Hs00160463_m1), 

LYVE1 (Hs00272659_m1), reelin (Hs00192449_m1), desmoplakin (Hs00189422_m1) and 

podoplanin (Hs00366764_m1) as well as Taqman universal PCR master mix were provided 

by Applied Biosystems (Applied Biosystems, Darmstadt, Germany). 

Cell proliferation assay kit (Cell proliferation ELISA, BrdU colorimetric) was 

provided by Roche applied science (Mannheim, Germany). 

Human fibronectin and growth factor reduced matrigel were purchased from BD 

Biosciences (Bedford, MA). 

Human recombinant VEGF C, VEGF D, bFGF, leptin and adiponectin were provided 

by RnDsystems (Wiesbaden, Germany) and human recombinant VEGF A was from Preprotec 

(Cell concepts GmbH, Imkirch, Germany). 

8–10 week old (18–22 g) athymic NMRI nude mice were purchased from Jackson 

Laboratory (Bar Harbor, Maine). 
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II.2. METHODS 

 

II.2.1. Isolation of cells from human adipose tissue 

 

II.2.1.1. Isolation of mature adipocytes 

 

Mature adipocytes were isolated from subcutaneous adipose tissue obtained from 

individuals undergoing plastic surgery by lipoaspiration. The study was approved by the 

ethical committee of the University Hospital/Frankfurt am Main. After digestion of the 

adipose tissue in collagenase solution (300 U/mL in PBS, 2% bovine serum albumin; BSA) 

for 15 min, the resulting suspension was filtered (210-µm polyamid filter) and washed with 

phosphate buffer saline (PBS) containing 0.5%BSA. Mature adipocytes were used either for 

preparation of 24h-secretions or for gene expression experiments. 

 

II.2.1.2. Isolation of cells from the stroma-vascular fraction 

 

Cells from the stroma-vascular fraction (SVF) were isolated from adipose tissue 

obtained from individuals undergoing plastic surgery by lipoaspiration. The adipose tissue 

was digested using collagenase solution for 1h under constant shaking. Following removal of 

the floating mature adipocytes, the lower layer containing the SVF was centrifuged (200 g, 10 

min) and the pellet resuspended in erythrocyte lysis buffer (155 mmol/L NH4Cl; 5.7 mmol/L 

K2HPO4; 0.1 mmol/L EDTA, pH 7.3) for 10 min. After successive filtrations through 100, 70 

and 40 µm sieves, the cells were suspended in PBS/2% fetal calf serum (FCS). 

The SVF (maximal concentration of 20 million cells/mL) suspended in PBS/2%FCS 

was incubated (24°C, 15 min) with the positive selection cocktail to isolate CD34+ cells 

(100µL/mL). Following the additional incubation with magnetic nanoparticles (50 µL/mL) for 

10 min, cells were collected by successive magnetic sorting steps. The CD34+ cells were 

suspended in PBS/0.1% BSA and the double positive CD34+/CD31+ cells were isolated 

using CD31-coupled magnetic microbeads (100µL/mL). After incubation (4°C, 20 min), the 

cell suspension containing the beads, diluted in 10mL PBS/0.1%BSA, was exposed to the 

magnet for 1 min. The magnetic bead-free fraction, CD34+/CD31- cells, was collected and 

centrifuged (200 g, 10 min). Then, the CD34+/CD31- cells were either put in culture or used 

for in vivo experiments whereas the CD34+/CD31+ cells were suspended in endothelial cell 

growth medium for microvascular cells(ECGM MV) and put in culture. 
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The CD34 negative (CD34-) cells, collected after each sorting step, were centrifuged (200 g, 

10 min) and suspended in PBS/2%FCS. Cells were incubated (24°C, 15 min) with the positive 

selection cocktail to isolate CD14+ cells (100µL/mL). Following the incubation with 

magnetic nanoparticles (50 µL/mL) for additional 10 min, cells were collected by successive 

magnetic sorting steps. CD34-/CD14+ cells were used for other experiments performed in our 

group.  

The CD34-/CD14- cells, collected after each sorting step were centrifuged (200 g, 10 min) 

and suspended in PBS/0.1%BSA. CD34-/CD14-/CD31+ cells were isolated using CD31-

coupled magnetic microbeads (50µL/mL). After incubation (4°C, 20 min), the cell suspension 

containing the beads, suspended in 10mL PBS/0.1%BSA, was exposed to the magnet for 1 

min. The magnetic bead-free fraction, CD34-/CD14-/CD31- cells was collected, centrifuged 

(200 g, 10 min) and used for in vivo experiments. The CD34-/CD14-/CD31+ cells were 

suspended in endothelial cell growth medium (ECGM) and put in culture. 

 

II.2.2. Isolation of bone marrow mononuclear cells 

 

Bone marrow aspirate (50mL) was obtained from healthy individuals and bone 

marrow-derived mononuclear cells (BM-MNC) were isolated by density gradient 

centrifugation. After washing steps, cells were suspended in 10mL X-vivo 10 medium 

(Cambrex, East Rutherford, New Jersey). 

 

II.2.3. Flow cytometry analysis 

 

FACS analysis was performed using freshly harvested SVF or CD34+/CD31- cells 

from human adipose tissue. At least 50,000 cells (in 100µL PBS/0.5% BSA/2mmol/L 

ethylenediaminetetraacetic acid (EDTA)) were incubated with fluorescent labeled monoclonal 

antibodies or the respective isotype control (1/20 diluted, 4°C, 30 min). After washing steps in 

PBS/0.5%BSA/2mmol/L EDTA, the labeled cells were suspended in 500µL PBS and 

analyzed by flow cytometry using a FACSCalibur flow cytometer and the CellQuest Pro 

software (BD Biosciences, Heidelberg, Germany). 
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II.2.4 Gene expression analysis 

 

 II.2.4.1. RNA isolation and reverse transcriptase reaction 

 

RNA was extracted from human mature adipocytes, CD34+/CD31- cells, 

CD34+/CD31+ cells, CD34-/CD14-/CD31+ cells, human umbilical vein endothelial cells as 

well as blood monocytes isolated from buffy coats obtained from healthy donors (Transfusion 

Center of Frankfurt Hospital) using a Biocoll gradient solution (density 1.077). Total RNA 

was isolated using a RNeasy kit and its concentration determined using a Ribogreen 

fluorometric assay. RNA (1 µg) was reverse transcribed using the thermoScript RT system 

under the following conditions: 25°C for 10 min, 55°C for 50 min and 85°C for 5 min. 

Reactions were also performed without reverse transcriptase to provide a control for 

contamination of samples with genomic DNA. The products of reverse transcriptase reactions 

were stored at –80°C for later utilization. 

 

II.2.4.2. Real time PCR analysis 

 

Taqman probes (assays-on-demand) for VEGF A (Hs 00173626_m1), VEGF C (Hs 

00153458_m1), VEGF D (Hs 00189521_m1), VEGFR1 (Hs00176573_m1), VEGFR2 

(Hs00176676_m1), VEGFR3 (Hs00176607_1), leptin receptor (Hs00174497_m1), 

adiponectin receptor-1 (Hs00360422_m1), adiponectin receptor-2 (Hs00226105_m1), Prox-1 

(Hs00160463_m1), LYVE1 (Hs00272659_m1), reelin (Hs00192449_m1), desmoplakin 

(Hs00189422_m1) and podoplanin (Hs 00366764_m1) were used to perform real time PCR 

analysis on RNA derived from mature adipocytes, progenitor cells as well as blood and 

lymphatic endothelial cells (BEC and LEC, respectively) from human adipose tissue. The 

PCR mixtures were prepared in TaqMan Universal PCR Master Mix. All amplification 

reactions were performed in duplicate from 20ng cDNA using the Mx4000 Multiplex 

Quantitative PCR System (Stratagene, La Jolla, CA, USA) using the following conditions: 

50°C for 2min, 95°C for 10min, followed by 40 cycles at 95°C for 15s and 60°C for 1min. 

Results were analyzed with Stratagene Mx4000 software and all values were normalized to 

the levels of the ribosomal RNA (18S). 
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II.2.5 Protein analysis 

 

 II.2.5.1. Immunohistochemistry analysis 

 

Immunohistochemistry analyses were performed on freshly harvested human 

subcutaneous adipose tissue as well as on cultured CD34+/CD31- cells, CD34+/CD31+ cells 

and CD34-/CD14-/CD31+ cells. After 20 min fixation in PBS/4%paraformaldehyde PFA, 

tissue or cells were incubated for 1h at room temperature in the blocking solution 

(PBS/2%BSA) followed by a 1h incubation with the relevant primary antibodies diluted in 

PBS/2%BSA or PBS/2%BSA containing 0,1%Triton for membrane permeabilization 

depending on the localization of the tested marker. After washing 3 times in PBS/0.2%Tween, 

tissue or cells were incubated for 1h with the corresponding fluorescence-labeled second 

antibodies diluted in PBS/2%BSA. After washing 3 times with PBS/0.2%Tween, tissue or 

cells were incubated 10 minutes with 0.4µg/mL DAPI (4’,6-diamino-2-phenylindole, 

dihydrochloride) and washed in PBS. Cells were directly observed under fluorescence 

microscopy whereas tissue was first included between two mounting slides. 

 

II.2.5.2. Acetylated-LDL uptake assay 

 

 Acetylated-LDL uptake assay was performed on the isolated CD34+/CD31+ cells and 

CD34-/CD14-/CD31+ cells cultured on fibronectin in ECGM MV and ECGM, respectively. 

At confluence, 10µg/mL of ac-LDL (Harbor Bioproducts, Norwood, MA) was added to the 

cells and incubated 4h at 37°C. The cells were then washed 3 times in ECGM MV or ECGM 

and the fluorescence was directly visualized by microscopy using a standard rhodamine 

excitation/emission filter.  

 

 II.2.5.3. Western-blot analysis 

 

Experiments were performed on CD34+/CD31+ cells and CD34-/CD14-/CD31+ cells 

cultured on 12-well plates coated with fibronectin in ECGM MV and ECGM, respectively. At 

confluence, cells were cultured in serum-free medium (EBM/0.1%BSA) for 24h. Then, cells 

were incubated with 2 ng/mL leptin or 2 ng/mL adiponectin for 2, 5 and 15 min. Cells were 

washed in cold PBS and incubated with 50µL per well of lysis buffer for 15min. Cells were 

scraped, collected in 1.5mL tubes and centrifuged 10 min at 1000rpm at 4°C. The protein 
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concentration in the supernatant was measured using the Bradford method. 20µg of proteins 

were loaded in 8% polyacrylamide gel. After electrophoresis and transfer, the nitrocellulose 

membrane was rinsed in water and colored with Ponceau solution to verify equal loading of 

the lanes. Then, it was rinsed in washing buffer and incubated 1 hour in the blocking buffer 

containing 3%BSA at room temperature. The nitrocellulose membrane was then incubated 

overnight with the first antibody (rabbit anti-human phosphorylated Erk1/2 dilution 1/500 in 

the blocking buffer or rabbit anti-phosphorylated Akt dilution 1/1000) at 4°C. After 5 washes 

(within 50 min), the nitrocellulose was again incubated with the blocking buffer during 40 

min at room temperature followed by an incubation of 1 hour at room temperature with the 

second antibody coupled with peroxidase (anti-rabbit IgG, dilution 1/10000 in the blocking 

buffer). Then, it was rinsed 5 times (within 1h) in washing buffer. The revelation was then 

performed by ECL.  

Then, nitrocellulose membrane was washed several times in washing buffer for 1h and the 

amount of total Erk1/2 and Akt was assessed after stripping. Nitrocellulose membrane was 

incubated 30min in stripping buffer (2%SDS/62.5µL/mL Tris/Cl pH 6,8/70µL/10mLβ-

mercaptoethanol in bidest water) at 50°C and washed for 1h in washing buffer. Antibody 

reaction (Erk1/2 and Akt) was performed using the protocol described above. 

 

II.2.6. Cell culture 

 

 II.2.6.1. Proliferation assay (BrdU incorporation) 

 

 Proliferation assays were performed on CD34+/CD31+ cells and CD34-/CD14-

/CD31+ cells. Cells were plated in 96-well plates coated with fibronectin at the density of 

5000 cells/well/100µL of EBM/2%FCS for one night at 37°C. Then, cells were treated with 

recombinant VEGF A, VEGF C, VEGF D, bFGF, leptin and adiponectin at increasing 

concentrations (0.2, 2 or 20 ng/mL for VEGF A, bFGF, leptin and adiponectin and 20, 200, 

1000 ng/mL for VEGF C and VEGF D) or with 24h-conditioned medium from mature 

adipocytes and progenitor cells from human subcutaneous adipose tissue for 29h at 37°C. 

BrdU (10µM/well) was added to the culture medium for additional 3h. Cells were washed 3 

times in washing buffer (Roche applied science) and fixed with cell fix solution (Roche 

applied science). BrdU incorporation was measured following the BrdU proliferation assay kit 

protocol (Roche applied science). 
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 II.2.6.2. Tube-like formation assay (matrigel) 

 

Tube-like formation ability was assessed in CD34+/CD31+ cells and CD34-/CD14-

/CD31+ cells. 200µL/well growth factor reduced matrigel was poured in 48-well plates and 

polymerized for 30min at 37°C. 15 000 cells/well were then plated on the polymerized 

matrigel and treated with VEGF A (0,2ng/mL), VEGF C (20ng/mL), VEGF D (20ng/mL), 

leptin (2ng/mL) and adiponectin (2ng/mL) diluted in EBM/0.1%BSA for 24h at 37°C. The 

branching formation was observed by phase microscopy and the number of branching points 

as well as the length of cytoplasmic extensions was measured using LUCIA image software. 

 

II.2.6.3. Endothelial cell differentiation assay 

 

This assay was performed on the CD34+/CD31- cells from human subcutaneous 

adipose tissue. Cells were plated at high density (20 000 cells/cm2) on fibronectin-coated 48-

well plates for 1 to 10 days in different culture media (EBM/10%FCS, ECGM or ECGM 

containing VEGF (0.5ng/mL) and IGF (20ng/mL)). Cells were fixed with PBS/4%PFA, 

blocked with PBS/2%BSA (1 h, 24°C) and incubated with the primary antibody (anti-CD31, 

1/10 and anti-vWf, 1/50, 1h, 24°C). After washing steps and 1 h-incubation time with the 

corresponding secondary antibody (1/200 diluted), DAPI (4’,6-diamino-2-phenylindole, 

dihydrochloride) (Vectashield, Vector Laboratories, Burlingame, USA) staining was 

performed and the cells observed under fluorescence microscopy. 

 

II.2.6.4. Preparation of adipose tissue cells-derived conditioned medium 

 

CD34+/CD31- cells isolated from human subcutaneous adipose tissue were cultured in 

EBM/10%FCS in 10cm2 cultured dishes. At confluence, cells were rinsed with PBS and 

cultured in 2mL endothelial cell basal medium (EBM)/0.1%BSA for 24h. The 24h-

conditioned medium was collected, centrifuged and the supernatant was frozen at -80°C. 

Mature adipocytes ( 400 000) were included in fibrin gels (1.5 mg fibrinogen/mL EBM) 

supplemented with 25 units/mL -thrombin) and cultured in EBM/0.1% BSA. Control gels 

were prepared without adipocytes. After 24 h, the adipocytes-conditioned media were 

collected and frozen at -80°C. 
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II.2.7. In vivo studies 

 

 II.2.7.1. Ligature of deep and superficial femoral arteries and laser Doppler 

imaging 

 

The neovascularization capacity of human adipose tissue-derived CD34+/CD31- cells 

was investigated in a murine model of hindlimb ischemia, using 8–10 week old (18–22 g) 

athymic NMRI nude mice (The Jackson Laboratory, Bar Harbor, Maine). The proximal 

portion of the femoral artery including the superficial and the deep branch and the distal 

portion of the saphenous artery were ligated with 7.0 silk suture. All arterial branches between 

the ligation were obliterated using an electrical coagulator. The overlying skin was closed 

using three surgical staples. After 24 hours, 200 µL of PBS/2%FCS containing 500 000 

freshly isolated human adipose tissue-derived CD34+/CD31- cells were injected 

intravenously. Identical number of freshly harvested bone marrow mononuclear cells (BM-

MNC) and human adipose tissue-derived CD34-/CD14-/CD31- cells were used as positive 

and negative controls, respectively. 

After two weeks, ischemic (right)/ normal (left) limb blood flow ratio was measured using a 

laser Doppler blood flow meter (Laser Doppler Perfusion Imager System, moorLDI™-Mark 2, 

Moor Instruments, Wilmington, Delaware). Before initiating scanning, mice were placed on a 

heating plate at 37°C. After recording laser Doppler color images twice, the average perfusion 

of the ischemic and non-ischemic limbs was calculated on the basis of colored histogram 

pixels. To minimize variables including ambient light and temperature, perfusion is expressed 

as the ratio of the ischemic to the non-ischemic hindlimb. 

 

 II.2.7.2. Immunohistochemistry 

 

Tissue vascularization was determined in 5-µm frozen sections of the adductor and 

semi-membranous muscles from the ischemic and the non-ischemic limb. Endothelial cells 

were stained with FITC-labeled monoclonal antibody directed against CD146 (Chemicon, 

Temecula, California). Capillary density is expressed as the number of capillaries/myocyte 

relative to the individual non-ischemic limb. Incorporation of injected human cells was 

verified by co-staining for HLA class I-APC (BD Pharmingen, Heidelberg, Germany) and 

CD146-FITC. 
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II.2.8. Statistical analysis 

 

Values are given as mean ± sem of n independent experiments. Comparisons between 

groups were analyzed using t test, when appropriate (two-sided) or ANOVA for experiments 

with more than two subgroups followed by Kruskal analysis and the non-parametric Mann-

Whitney test. Post-hoc range tests and pair-wise multiple comparisons were performed with 

the t test (two-sided) with Bonferroni adjustment P values <0.05 were considered statistically 

significant.  
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III. RESULTS 
 

III.1. Characterization of the vascular network in the human adipose tissue  

 

III.1.1 The stroma-vascular fraction of the human adipose tissue 

 

III.1.1.1 Immunohistochemistry analyses 

 

Fluorescence immunohistochemistry was performed using human subcutaneous 

adipose tissue and antibodies directed against the endothelial cell markers, CD31 and vWf. As 

shown in figure 8A (upper panels), numerous capillaries stained with CD31 and vWF 

antibodies surrounded almost each adipocyte. Further analysis of the CD31 and vWF-positive 

structures showed the presence of blind-ended capillaries, which are a hallmark of the 

lymphatic vascular system (Figure 8A, lower panels). Thus, blood and lymphatic capillaries 

co-exist within the fat mass and both express the endothelial cell markers CD31 and vWF. 

Other cell structures, namely cells rosettes, were also found in the stroma of the tissue to be 

positive for CD31 (figure 8A, lower left panel). Since CD31 is also expressed by 

monocytes/macrophages, it is highly probable that these structures in fact represent clusters of 

monocytes/macrophages (figure 8A). 

Vascular structure in the human adipose tissue was further studied by co-staining with 

antibodies directed against endothelial cell-specific markers such as CD34, the expression of 

which is restricted to blood capillary endothelial cells (BEC), as well as LYVE-1, VEGFR3, 

desmoplakin, Prox-1 and podoplanin, that are expressed by lymphatic endothelial cells (LEC). 

The CD34 staining allowed us to identify two distinct cell structures (Figure 8B, upper 

panels). Some capillaries positive for vWF were also stained with the antibody directed 

against CD34 (Figure 8B, upper left panel). Moreover, sparse cells within the stroma distinct 

from capillary structures were identified with the anti-CD34 antibody (Figure 8B, upper right 

panel). Although associated with strong non-specific staining of the adipocytes, probably due 

to interactions with lipids (data not shown), the co-staining using VEGFR3 and podoplanin 

antibodies identified capillaries that were positive for both markers (figure 8B, lower left 

panel). The LYVE-1 antibody identified cells, localized at the periphery of larger vessels 

(Figure 8B, lower right panel). Desmoplakin as well as Prox-1 antibodies did not allow the 

identification of specific structures. 
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Thus a dense CD31- and vWF-positive capillary structure is present within the human adipose 

tissue. This structure is heterogeneous and is composed of blood capillaries positive for CD34 

and lymphatic capillaries positive for VEGFR3 and podoplanin. In addition to the vascular 

components, distinct cell types were also identified in the stroma: rosettes of cells positive for 

CD31, probably monocyte/macrophage groups as well as single CD34 positive cells which 

will be further characterized in this study.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: Characterization of the vascular network from human subcutaneous adipose 
tissue 
Freshly harvested adipose tissue was stained with antibodies directed against the common 
endothelial cell markers CD31 (green) and von Willebrand factor (vWf, red) (A) as well as 
specific blood (CD34, green) and lymphatic endothelial (podoplanin (green), VEGFR3 (red) 
and LYVE-1 (red)) cells markers (B). Representative photomicrographs obtained by 
fluorescent microscopy are shown (n=6). 
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III.1.1.2 Flow cytometry analyses 

 

The SVF of human subcutaneous adipose tissue was separated from the mature 

adipocytes after collagenase digestion. Cells were then analyzed by multiparameter flow 

cytometry and identified by their size (FSC, Forward Scatter) and granularity (SSC, side 

scatter), as well as their expression of cell surface markers assessed through the use of a 

combination of antibodies coupled to distinct fluorochromes. We used antibodies against 

CD31 coupled to FITC in combination with anti-CD34 antibodies coupled to perCP and the 

monocyte/macrophage cell marker CD14 coupled to PE. On the basis of differences in 

granularity and marker expression, distinct cellular populations that express CD31 could be 

identified. As shown in figure 9A, approximately 1/3 of the cells of the SVF of the human 

adipose tissue expressed CD31 (upper right panel of the dot blot analysis).  

When selecting the cells that expressed CD34 in the SVF (CD34+ gating), 2 distinct cellular 

populations were apparent and differing in the expression of CD31 (figure 9B): one 

population co-expressed both CD34 and CD31 (upper right panel of the dot blot analysis, 

11.1±1.4% of the total SVF, n=19), whereas the other cell type expressed only CD34 (upper 

left panel of the dot blot analysis, 16.6±2.3% of the total SVF, n=19).  

When selecting the cells expressing CD14 in the SVF (CD14+ gating), one single CD14+ cell 

population that co-expressed CD31 was identified (figure 9C, upper right panel, 10.2±1.7% 

of the total SVF, n=19).  

Finally, when selecting the cells negative for CD34 and CD14 in the SVF, distinct cell 

populations could be shown depending on their expression of CD31. Indeed, CD31 positive 

but CD34 and CD14 negative cells were present (Figure 9D, upper right panel, 3±0.3 % of 

the SVF, n=19) together with cells negative for the three markers (Figure 9D, upper left 

panel).  

 

Thus, the results obtained by flow cytometry analyses together with the immunohistochemical 

data allowed us to identify distinct cellular populations present in the SVF of human adipose 

tissue. The three distinct cellular populations identified were endothelial cells: both BEC 

(CD34+/CD14-/CD31+) and LEC (CD34-/CD14-/CD31+) as well as a monocyte/macrophage 

population (CD34-/CD14+/CD31+). In addition, a population of cells that express only the 

stem/blood capillary endothelial cell marker CD34 (CD34+/CD31-/CD14-) as well as cells 

negative for the three markers (CD34-/CD31-/CD14-) were present in the stroma of human 

adipose tissue.  
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Figure 9: Characterization of the stroma-vascular fraction (SVF) of human adipose tissue 
Freshly harvested cells from the SVF was triple-labeled with fluorescent antibodies directed 
against the endothelial cell marker CD31 (CD31-FITC), the stem/blood capillary endothelial 
cell marker CD34 (CD34-PerCP) as well as the macrophage marker CD14 (CD14-PE) and 
analyzed by flow cytometry. The dot plots represent the CD31-FITC fluorescence function of 
the side scatter (SSC) in the whole SVF (A), in the CD34-positive cell population (CD34+ 
gating) (B), in the CD14-positive cell population (CD14+ gating) (C) as well as in the CD34- 
and CD14-negative cell population (CD34- and CD14- gating) (D). Original dot plots from 
material obtained from one individual are shown. 
 

III.1.2 Characterization of the BEC and the LEC isolated from the human 

adipose tissue 

 

 To further characterize the BEC and the LEC from the human adipose tissue, we 

developed an approach based on immunoselection of the cells from the SVF of human 

adipose tissue using magnetic microbeads coupled to the antibody combination, CD34, CD31 

and CD14. As depicted in figure 10, the distinct cellular populations were isolated by the 

alternative steps of cell depletion and selection.  
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Figure 10: Protocol for the isolation of blood capillary (CD34+/CD31+ cells) and lymphatic 
capillary (CD34-/CD14-/CD31+ cells) endothelial cells from the SVF of human adipose 
tissue 
Human adipose tissue was digested with collagenase, centrifuged and filtrated in order to 
obtain the cells from the SVF, as described in the method section. The CD34+/CD31+ cells 
were isolated by positive selection of the CD34+ cells followed by a positive selection of 
CD31+ cells. The CD34-/CD14-/CD31+ cells were isolated from the CD34-negative 
population by a positive selection of CD31+ cells after a depletion of CD14+ cells. 
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III.1.2.1 Common endothelial cell features 

 

The expression of the endothelial genes VEGFR1, VEGFR2, vWf and Notch4 was 

assessed by real time-PCR in freshly isolated CD34+/CD31+ cells and CD34-/CD14-/CD31+ 

cells and compared with levels detected in human umbilical vein endothelial cells (HUVEC) 

and blood mononuclear cells (MNC). As depicted in figure 11A, VEGFR1, VEGFR2, vWf 

and Notch4 were detected in BEC and LEC at levels equivalent to those measured in 

HUVEC. The expression of VEGFR1, VEGFR2, vWf and Notch4 was not detected in MNC. 

 

 

 

 

 

 

 

 

 

 

 

Figure 11A: Phenotypic characterization of blood capillary endothelial cells (BEC) and 
lymphatic capillary endothelial cells (LEC) from the SVF of human adipose tissue 
Total RNA of freshly isolated BEC and LEC was reverse transcribed and used to perform real 

time-polymerase chain reaction using the primers for the common endothelial cell markers 

VEGFR1, VEGFR2, vWf and Notch4. The results obtained were normalized to the 18S 

expression. Results are the mean ± sem of at least 6 distinct adipose tissues. 

 

Freshly isolated BEC and LEC were plated in low-serum endothelial cell growth medium and 

immunocytochemistry analyses were performed using the using the endothelial cell markers 

CD31 and vWf. In addition, the ability of the cells to accumulate fluorescent acetylated-low 

density lipoprotein (Ac-LDL), was addressed. Punctuate cytoplasmic expression of vWf was 

detected in both cell types (figure 11B, upper panels) as was a clear staining for CD31 at the 

cell membranes. Moreover, both BEC and LEC accumulated Ac-LDL and positive staining 

was detected at the periphery of the nuclei (figure 11B, lower panels). 
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Figure 11B: Phenotypic characterization of blood capillary endothelial cells (BEC) and 
lymphatic capillary endothelial cells (LEC) from the SVF of human adipose tissue 
(B) Immunohistochemistry using an antibody directed against vWf (green for BEC and red for 
LEC) and CD31 (green) as well as acetylated-LDL (red) uptake assay were performed on 
cultured BEC and LEC and analyzed by fluorescence microscopy. Photomicrographs 
representative from 4 experiments are shown. 

 

III.1.2.2 Specific endothelial cell features 

 

The expression of the specific lymphatic endothelial cell genes LYVE1, Prox1, 

desmoplakin, podoplanin, reelin and VEGFR3 was assessed in freshly isolated BEC and LEC 

by real time RT-PCR. As depicted in figure 12A, the lymphatic markers reelin and 

podoplanin were exclusively expressed in LEC whereas desmoplakin, LYVE-1 and VEGFR-3 

transcripts were present in both cell types. Prox-1 expression could not be detected in either 

cell type. Freshly isolated BEC and LEC were plated in low-serum endothelial cell growth 

medium and immunocytochemistry analyses were performed using CD34, VEGFR3 and 

podoplanin. As expected, the expression of CD34 was detected exclusively in BEC. The 

staining obtained with the antibodies directed against VEGFR3 and podoplanin was markedly 

stronger in LEC as compared to BEC (figure 12B). 

 

vWF

BEC LEC

Acetyl-LDL
CD31

B

vWF

BEC LEC

Acetyl-LDL
CD31

B



 55

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 12: Phenotypic characterization of BEC and LEC from the SVF of human adipose 
tissue 
(A) Total RNA of freshly isolated BEC and LEC was reverse transcribed and used to perform 
real time-polymerase chain reaction using the primers for the lymphatic endothelial cell 
markers LYVE-1, desmoplakin, reelin, Prox1, podoplanin and VEGFR3. The results obtained 
were normalized to the 18S expression. Results are the mean of at least 6 distinct adipose 
tissues.  
(B) Immunohistochemistry using antibodies directed against CD34 (green), VEGFR3 (red) 
and podoplanin (green) was performed on cultured BEC and LEC and analyzed by 
fluorescence microscopy. Photomicrographs representative from 4 experiments are shown. 
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III.1.2.3 Influence of the state of adipose tissue growth on the endothelial 

cell number  

 

The percentage of human adipose tissue derived-BEC and -LEC within the SVF was 

determined by flow cytometry analysis, in patients with different body mass indices (BMI), 

used as an estimate of adiposity. According to the world health organization’s classification, 

two groups of patients were defined on the basis of the BMI, with patients with a BMI 

superior to 25 being defined as overweight/obese. The characteristics of both groups are 

indicated in the Table 5. The percentage of BEC and LEC was then normalized to the total 

number of cells in the SVF extracted after the collagenase digestion per gram of tissue. As 

depicted in figure 13, the total number of BEC remained constant between both groups, 

whereas the number of LEC was significantly lower in the SVF of patients with a higher BMI. 

Lean Overweight/Obese 

N=61 

Mean BMI: 22.15 

Minimum BMI: 19 

Maximum BMI: 24.84 

N=42 

Mean BMI: 28.68 

Minimum BMI: 25 

Maximum BMI: 43 

Table 5: Characteristics of the lean vs overweight/obese groups 

 

 

 

 

 

 

 

 

 

 

 

Figure 13: Influence of the body mass index (BMI) on the number of BEC and LEC 
present in the SVF of human adipose tissue. 
Number of BEC and LEC present in the SVF of human adipose tissue was calculated from 
results obtained by flow cytometry analysis and normalized to the total number of cells in the 
SVF extracted per gram of adipose tissue in individuals with a distinct BMI. Individuals were 
divided in 2 groups depending on their BMI (lean subjects with a BMI < 25, n=61 and 
overweight/obese subjects with a BMI ³ 25, n=42). Results are the mean ± sem, * p<0.05 
obese/overweight versus lean. 
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III-2. Evidence of the presence of endothelial cell progenitors in the human adipose 

tissue 

 

The immunohistochemical analysis of human adipose tissue showed the presence of 

sparse CD34-positive cells within the stroma-vascular fraction. Flow cytometry analyses 

performed on the SVF of human adipose tissue also identified a cell population that expressed 

CD34 but did not express CD31 (see figure 9B, upper left panel). Since this cell population 

has never been described before and since CD34 is a marker for stem cells, we decided to 

further characterize the CD34+/CD31- cell population. 

 

III.2.1. Characterization of the CD34+/CD31- cells within the stroma-vascular 

fraction of human adipose tissue 

 

 Cells expressing the primitive stem cell marker ABCG2 were detected in the SVF of 

human subcutaneous adipose tissue (9.7±3.1 % of the SVF, n=19) (figure 14A). In addition, 

the expression of the endothelial progenitor cell marker CD133 was detected (1.5±0.4 of the 

SVF, n=19) (figure 14B). Taken together with the presence of CD34 positive cells, these 

results strongly suggest that stem/progenitor cells are located within the SVF of human 

adipose tissue.  

 

 

 

 

 

 

 

 

 

 

Figure 14: Expression of stem cell markers in the SVF of human adipose tissueThe cells of 
SVF freshly isolated from human adipose tissue were labeled with fluorescent antibodies 
directed against the stem cell markers ABCG2 (FITC) (A) and CD133 (PE) (B) and analyzed 
by flow cytometry. Histograms of the FITC and PE fluorescences (empty lanes correspond to 
the fluorescence signals obtained with the control isotype antibody and plain lanes 
correspond to the fluorescence signal obtained with ABCG2 and CD133 antibodies) 
representative from 19 experiments are shown.  
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In order to further characterize the CD34+/CD31- cell population, a cell separation 

protocol was developed (figure 15). Using magnetic microbeads coupled to antibodies 

directed against CD34, we extracted the total CD34+ cells from the freshly digested SVF. 

Since the total CD34+ cell population contains the BEC that co-express CD34 and CD31, the 

total CD34+ cell population was depleted from the CD31+ cells using magnetic microbeads 

coupled to antibodies directed against CD31.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15: Protocol for the isolation of CD34+/CD31- cells from the SVF of human 
adipose tissueHuman adipose tissue was digested with collagenase, centrifuged and filtrated 
in order to obtain the cells from the SVF as described in the method section. The 
CD34+/CD31- cells were isolated by positive selection of the CD34+ cells followed by a 
negative selection of CD31+ cells. 
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To verify the efficiency of the cell separation protocol, the expression of CD34 and CD31 on 

the freshly isolated cells was addressed by flow cytometry. No CD31 was detected whereas 

all cells expressed CD34, demonstrating the efficiency of separation of the CD34+/CD31- cell 

population (figure 16A). These cells were then further analyzed by double-color flow 

cytometry using antibodies directed against the leucocyte marker CD45 and the macrophage 

marker CD14. As seen in figure 16B, the CD34+/CD31- cells expressed neither CD45 nor 

CD14. While a few expressed the endothelial cell progenitor marker CD133 (1.4±0.2%,n=7, 

Figure 16D), 18±4 % expressed the stem cell marker ABCG2 (n=7, Figure 16C). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16: Characterization of the freshly isolated CD34+/CD31- cells from human 
adipose tissue  
Double color FACS analysis was performed on the freshly isolated CD34+/CD31- subset 
from the SVF of human adipose tissue with antibodies directed against CD34 (PerCP) and 
CD31 (FITC) (A), the monocyte/macrophage marker CD14 (PE) and the hematopoietic 
marker CD45 (PerCP) (B), CD34 (PerCP) and CD133 (PE) (C) or CD34 (PerCP) and 
ABCG2 (FITC) (D). The respective dot-blot analysis from at least 7 independent experiments 
are shown.  
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III.2.2 Fate of the CD34+/CD31- cells in vitro 

 

Freshly isolated CD34+/CD31- cells were plated on fibronectin in culture media, i.e. 

endothelial cell basal medium (EBM) containing 10% of fetal calf serum (FCS), endothelial 

cell growth medium (ECGM) or endothelial cell growth medium supplemented with vascular 

endothelial growth factor (VEGFA, 0.5ng/mL) and insulin-like growth factor (IGF, 

20ng/mL). Cells were harvested and counted every 24 hours and the doubling time of the cell 

population was determined. The CD34+/CD31- cells exhibited a high proliferative capacity in 

culture (doubling time of 33 hours in BM/10%FCS), that was further enhanced in ECGM 

supplemented with VEGF and insulin-like growth factor (IGF) (doubling time of 31.5 hours 

and 30.5 hours, respectively, P<0.01, Figure 17). 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17: Phenotypic characterization of the CD34+/CD31- subset in culture  
CD34+/CD31- cells plated at low density (5000 cells/cm2) were cultured in EBM/10%FCS or 
ECGM/2%SVF supplemented or not with VEGF A (0.5ng/mL) and IGF (20ng/mL). Cells 
were counted at the indicated times. The results are the mean ± sem of the percentage of cells 
counted after 24hours, n=5, * p<0.01.  
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In order to determine their differentiation ability, CD34+/CD31- cells were plated at high 

density (20 000 cells/cm2) on fibronectin in EBM/10%FCS, in ECGM or ECGM 

supplemented with VEGFA and IGF. After 10 days of culture, cells developed a spindle-

shaped morphology, which is a feature of endothelial cells, in ECGM whereas the cells 

cultured in EBM/10%FCS formed cobblestone areas, which is characteristic of endothelial 

cells but also of adult stem cells (Figure 18A and 18B). Immunocytochemical analyses 

demonstrated the expression of vWF (Figure 18A) and CD31 (Figure 18B) in cells cultured 

in ECGM, that was increased in the presence of VEGF and IGF (26%±11 and 14%±5 of cells 

positive for CD31 and vWF, respectively). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18: Phenotypic characterization of the CD34+/CD31- subset in culture  
CD34+/CD31- cells plated at high density (20 000 cells/cm2) were cultured in EBM/10%FCS 
or ECGM/2%SVF supplemented or not with VEGF A (0.5ng/mL) and IGF (20ng/mL). Cells 
were analyzed after 10 days of culture by immunocytochemistry using antibodies directed 
against vWf (A) and CD31 (B). Representative photomicrographs are shown from n=10 
independent experiments.  
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III.2.3. “In vivo” fate of the CD34+/CD31- cells 

 

The fate of CD34+/CD31- cells was analyzed in vivo in the model of the mouse 

hindlimb ischemia. Athymic mice underwent deep and superficial femoral artery ligature of 

the right hindlimb. Twenty-four hours after surgery, CD34+/CD31- cells were freshly isolated 

from the SVF of human adipose tissue and injected into the tail vein. Saline, CD34-/CD14-

/CD31- cells from human adipose tissue and BM-MNC were injected into animals that 

underwent the same procedure. Thereafter laser Doppler imaging was performed every week 

on both hindlimbs. The quantitative analysis of the Laser Doppler imaging revealed a 

significant, time-dependent increase in blood flow after the injection of CD34+/CD31- cells 

to the ischemic hindlimb (figure 19A) that was maximal after 2 weeks (2-fold increase, 

P<0.05) and equivalent to that observed following the injection of BM-MNC. The injection of 

the CD34-/CD14-/CD31-cells did not induce any significant improvement in the blood flow 

(figure 19B).  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 19: Blood flow improvement after injection of the CD34+/CD31- cells in mouse 
ischemic hindlimb  
Freshly harvested human adipose tissue-derived cells (CD34+/CD31- or CD34-/CD31-) or 
bone marrow-mononuclear cells (BM-MNC) were injected to mice 24 hours after inducing 
hindlimb ischemia. Relative blood flow in the ischemic limb was measured by Laser Doppler 
imaging analysis every 7 days (A) or after 14 days of ischemia (B) (n=12 for human adipose 
tissue-derived cells and n=7 for BM-MNC, * p<0.05).  
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After 2 weeks, mice were sacrificed and adductor and the semi-membranous muscles were 

dissected to prepare tissue sections for immunohistochemical analysis. Antibodies directed 

against the endothelial cell marker CD146 were used to determine the capillary density of the 

muscle section that is represented by the ratio of capillaries/myocytes. Moreover, the 

incorporation of human cells into the capillary structures was analyzed by double staining 

using antibodies directed against CD146, that recognized endothelial cells, and human 

leucocyte antigen (HLA) that allows the identification of human cells. The capillary density 

significantly increased in the ischemic muscles when CD34+/CD31- cells from human 

adipose tissue or BM-MNC were injected as compared to treatment with buffer saline or 

CD34-/CD14-/CD31- cells from human adipose tissue (n>5, P<0.001 versus mice injected 

with CD34-/CD14-/CD31- cells, figure 20A). Moreover, HLA-positive cells were found in 

the CD146-positive vascular structures in muscle section of mice that had received the 

CD34+/CD31- cells (figure 20B), suggesting that the CD34+/CD31- cells from human 

adipose tissue incorporated into the murine vasculature. 

Taken together, these data demonstrate that the CD34+/CD31- cells from human adipose 

tissue have the ability to promote the neovascularization that occurs in ischemic tissues. It is 

thus suggested that CD34+/CD31- cells exhibit progenitor cell properties. 

 

 

 

 

 

 

 

 

 

 

 

Figure 20: Neovascularization after injection of the CD34+/CD31- cells in mouse ischemic 
hindlimb  
Freshly harvested human adipose tissue-derived cells (CD34+/CD31- or CD34-/CD31-) or 
BM-MNC were injected to mice 24 hours after inducing hindlimb ischemia. A) Capillary 
density in the ischemic hind limb, 14 days after ischemia. Values are the mean ± sem of the 
percentage of the control (n>5, * p<0.01). B) Incorporation of CD34+/CD31- cells in the 
mouse vasculature 14 days after ischemia. Representative photomicrographs of 
immunohistochemistry analyses using anti-HLA-APC (red) and anti-CD146-FITC (green) 
antibodies are shown (n=7).  
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III.3. Regulation of the human adipose tissue-derived BEC 

 

III.3.1. Regulation of BEC proliferation 

 

To determine whether local signals originating from adipocytes and progenitor cells 

(CD34+/CD31-) could regulate BEC proliferation, freshly harvested adipose tissue derived-

BEC or cells that were passaged once, were plated at a low density and treated with 

conditioned medium (collected over 24 hours) from progenitor cells or from mature 

adipocytes. After 24 hours, BrdU incorporation, the amount of which is correlated with DNA 

replication, was determined. As a positive control, cells were treated with endothelial cell 

growth medium that contains 5% fetal calf serum, 10ng/mL epidermal growth factor and a 

mixture of endothelial cell growth factors. As shown in figure 21, the progenitor cells-

conditioned medium did not induce BrdU incorporation in BEC while the medium 

conditioned by mature adipocytes induced a significant increase in BrdU incorporation. The 

extent of BrdU incorporation was similar in adipocyte-conditioned medium-treated cells and 

in cells cultured in the presence of low-serum endothelial cell growth medium (2-fold 

increase, n=27, p<0.01 and 3-fold increase, n=3, p<0,05, respectively). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21: Proliferation capacity of BEC from human adipose tissue 
Cultured BEC were treated with 24 h-conditioned medium from mature adipocytes or 
progenitor cells from human adipose tissue or endothelial cell growth medium for 29h and 
BrdU was added in the medium for 3 additional hours. The BrdU incorporation assay was 
thus performed as described in the method section. Results are the mean ± sem of the 
percentage of the control values,* p<0.05 and ** p<0.01, n=11) 
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The expression of the angiogenic factors VEGF A, VEGF C, VEGF D and the adipokines, 

leptin and adiponectin, was determined in freshly isolated mature adipocytes and progenitor 

cells by real time RT-PCR analysis. The angiogenic factor VEGF A was expressed at 

equivalent levels in both cell types. Significantly higher transcripts of VEGF C and VEGF D 

were detected in adipose tissue derived-progenitor cells as compared with mature adipocytes 

(0.35±0.17 vs 0.05±0.03, n=8, p<0,05 and 0.28±0.12 vs 0.007±0.007, n=8, p<0,05, 

respectively). In contrast, adiponectin and leptin were expressed exclusively in mature 

adipocytes (data not shown). The expression of the receptors for both leptin and adiponectin 

was also analyzed by real time RT-PCR experiments. The long form of the leptin receptor as 

well as both adiponectin receptors were detected in adipose tissue derived-BEC. Compared 

with the VEGF-receptor forms, VEGFR2 transcripts were expressed at the higher levels 

(figure 22).  

 

 

 

 

 

 

 

 

 

 

 

Figure 22: Expression of receptors to (lymph)angiogenic factors and adipokines in BEC 
from human adipose tissue 
The expression of the receptors of the VEGFs (VEGFR1, VEGFR2 and VEGFR3) and of the 
adipokines leptin (Leptin R) and adiponectin (ApN R1 and ApN R2) was measured by real 
time-PCR in freshly isolated BEC from human adipose tissue. Results were normalized to 18S 
expression and are the mean ± sem of at least 18 experiments. (** p<0.01) 
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Finally, the response of BEC to angiogenic factors and adipokines was studied. Freshly 

harvested cells or cells that were passaged once, were plated at low density and treated with 

VEGF A, VEGF C, VEGF D, leptin and adiponectin at increasing concentrations (0.2, 2 or 

20ng/mL for VEGF A, leptin and adiponectin and 20, 200, 1000ng/mL for VEGF C and 

VEGF D) or with a combination of leptin (2 ng/mL) and VEGF A (2 ng/mL). After 

approximately 30 hours, proliferation was assessed by BrdU incorporation. As depicted in 

figure 23, significant proliferative response was observed only in the presence of the 

combination of leptin with either VEGF A or bFGF (1,8-fold increase BrdU incorporation, 

n=6, p<0,05 and 2,4-fold increase BrdU incorporation, n=5, p<0,01, respectively), whereas 

treatment of the cells with the angiogenic factors alone did not affect the growth of the BEC 

(n=6).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 23: Proliferation capacity of BEC from human adipose tissue 
Cultured BEC were treated with recombinant VEGF A (2ng/mL), VEGF C (20ng/mL), VEGF 
D (20ng/mL), leptin and adiponectin (2ng/ml) alone or in combination (VEGF A + leptin, or 
bFGF + leptin) for 29h and BrdU was added in the medium for 3 additional hours. The BrdU 
incorporation assay was thus performed as described in the method section. Results are the 
mean ± sem of the percentage of the control values, * p<0.05 and ** p<0.01, n=4 
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III.3.2. Regulation of BEC migration and tube formation 

 

To assess the effects of angiogenic factors and adipokines on BEC migration and tube 

formation, adipose tissue derived-BEC were plated at high density on growth factor reduced 

matrigel. The cells were treated with VEGF A (2 ng/mL), VEGF C (200 ng/mL), VEGF D 

(200ng/mL), leptin and adiponectin (2 ng/mL). Cell migration and tube formation was 

followed by phase contrast microscopy after 3h, 6h and 24h. After 24 h, the number of tubes 

and branching points as well as the length of cytoplasmic extensions of the cells were 

measured. As shown in figure 24, leptin treatment led to a statistically significant increase in 

the length of tubes and number of branching points (2-fold increase, *p<0,05, n=3 and 3-fold 

increase, * p<0,05, n=3, respectively). VEGF A as well as adiponectin tended to enhance cell 

migration and tube formation but these effects did not reach statistical significance.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 24: Tube formation capacity of BEC from human adipose tissue 
BEC were plated on growth factor-reduced Matrigel and treated with recombinant VEGF A, 
VEGF C, VEGF D, leptin and adiponectin for 24h. Cells were observed under phase contrast 
microscopy. Representative photomicrographs from 4 independent experiments are shown.  
The length of cytoplasmic extensions (tubes) as well as the number of branching points 
(branches) were measured. (B) Results are the mean ± sem of the percentage of the control 
from 3 experiments are shown. (* p<0.05) 
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III.3.3. Signaling pathways stimulated by leptin in BEC 

 

To analyze the potential signaling pathway involved in the leptin-mediated stimulation 

of BEC migration and tube formation, Western blot analysis was performed on crude protein 

extracts of cells treated with leptin (2, 5 and 15 minutes). The phosphorylation of the protein 

kinase Akt, reported to be involved in endothelial cell survival and migration as well as the 

phosphorylation of the extracellular regulated kinases 1 and 2 (Erk1/2), which are involved in 

endothelial cell proliferation were determined by the use of phospho-specific antibodies and 

normalized to the levels of the respective proteins. As depicted in figure 25, leptin did not 

affect the phosphorylation of Erk 1/2 at any time point. However, leptin increased the 

phosphorylation of Akt, that in a time-dependent manner was maximal after 5 min of 

treatment (1,5-fold increase, p<0.05, n=3). Similar experiments were performed using BEC 

treated with adiponectin (2 ng/mL). No effect of adiponectin on the phosphorylation of Erk1/2 

or Akt was detected, whatever the time of treatment (n=3, data not shown)  

 

 

 

 

 

 

 

 

 

 
Figure 25: Effect of leptin on phosphorylation of Akt and Erk1/2 in BEC from human 
adipose tissue 
Confluent BEC from human adipose tissue were treated with 2ng/mL of leptin for 2min, 5min 
or 15min. Total proteins were extracted and western blot analysis performed. The 
phosphorylation of Erk1/2 as well as Akt were analyzed using antibodies directed against the 
phosphorylated forms of the kinases. The blots were then stripped and re-probed with 
antibodies directed against the total Erk1/2 and Akt proteins. The kinase phosphorylation was 
calculated by densitometry analysis. Representative blots (A) as well as the mean ± sem of 
kinase phosphorylation versus control at 5 min are shown (* p<0.05, n=3)(B). 
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III.4. Regulation of the human adipose tissue-derived LEC 

 

III.4.1. Regulation of LEC proliferation 

 

To determine whether local signals originating from adipocytes and progenitor cells 

could regulate LEC proliferation, freshly harvested human adipose tissue derived-LEC or 

cells that were passaged once, were plated at low density and treated with conditioned 

medium from progenitor cells or from mature adipocyte cultures. After approximately 30h, 

BrdU was added to the cell culture medium and cells were incubated for 3 additional hours. 

After fixation, BrdU incorporation was determined. As positive control, cells were treated 

with endothelial cell growth medium that contains 5% FCS, 10ng/mL EGF and a mix of 

endothelial cell growth factors. As shown in figure 26, progenitor cells conditioned medium 

did not induce any changes in BrdU incorporation compared to control in LEC. However, the 

medium conditioned by mature adipocytes induced a significant increase in BrdU 

incorporation as did the low-serum endothelial cell growth medium (167%±37 of BrdU 

incorporation, n=8, p<0,01).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 26: Proliferation capacity of LEC from human adipose tissue 
Cultured LEC were treated with 24h-conditioned medium from mature adipocytes or 
progenitor cells from human adipose tissue or endothelial cell growth medium for 29h and 
BrdU was added in the medium for 3 additional hours. The BrdU incorporation assay was 
thus performed as described in the method section. Results are the mean ± sem of the 
percentage of the control values (* p<0.05 and ** p<0.01, n=11) 
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The expression of the leptin receptor and the 2 adiponectin receptors were then determined in 

adipose tissue derived-LEC by real-time RT-PCR. The expression of leptin receptor was very 

low and statistically significantly different from that detected in BEC (p<0.001, n=16), 

whereas the levels of transcripts for the adiponectin receptor 1, ApNR1, were high (figure 

27). 

 

 

 

 

 

 

 

 

 

 

Figure 27: Expression of receptors to (lymph)angiogenic factors and adipokines in LEC 
from human adipose tissue 
The expression of the receptors of the VEGFs (VEGFR1, VEGFR2 and VEGFR3) and of the 
adipokines leptin (Leptin R) and adiponectin (ApN R1 and ApN R2) was measured by real 
time-PCR in freshly isolated LEC from human adipose tissue. Results were normalized to 18S 
expression and are the mean ± sem of at least 16 experiments. (*** p<0.001 ) 
 

Finally, angiogenesis was studied in adipose tissue derived-LEC. Freshly harvested cells or 

cells that were passaged once, were plated at low density and treated with VEGF A, VEGF C, 

VEGF D, leptin and adiponectin at increasing concentrations (0.2, 2 or 20ng/mL for VEGF A, 

leptin and adiponectin and 20, 200, 1000ng/mL for VEGF C and VEGF D) or with a 

combination of leptin (2 ng/mL) and VEGF A (2 ng/mL). Following incubation, proliferation 

was assessed by BrdU incorporation assay. As shown in figure 28, adiponectin, VEGF C and 

VEGF D induced a concentration-dependent increase in the BrdU incorporation that was 

maximal using 2ng/mL adiponectin (210±12%, p<0.01, n=3), 20ng/mL VEGF C (183±37%, 

p<0.01, n=4) and 20ng/mL VEGF D (152±27%, p<0.05, n=4). The other treatments did not 

exert any significant effect on the BrdU incorporation in LEC.  
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Figure 28: Proliferation capacity of LEC from human adipose tissue 
Cultured LEC were treated with recombinant VEGF A (2ng/mL), VEGF C (20ng/mL), VEGF 
D (20ng/mL), leptin and adiponectin (2ng/ml) alone or in combination (VEGF A + leptin or 
bFGF + leptin) for 29h and BrdU was added in the medium for 3 additional hours. The BrdU 
incorporation assay was thus performed as described in the method section. Results are the 
mean ± sem of the percentage of the control values, * p<0.05, ** p<0.01 and ***p<0.001,  
n=4 

 

III.4.2. Regulation of LEC migration and organization 

 

To assess the effect of angiogenic factors and adipokines on LEC migration and 

organization, human adipose tissue derived-LEC were plated at high density on growth factor 

reduced matrigel. The cells were treated with VEGF A (2 ng/mL), VEGF C (200 ng/mL), 

VEGF D (200ng/mL), leptin and adiponectin (2 ng/mL). Endothelial cell tube formation was 

monitored by phase contrast microscopy after 3h, 6h and 24h. After 24 h, the number of tubes 

and of branching points as well as the length of cytoplasmic extensions of the cells were 

measured. As shown in figure 29, adiponectin and VEGF A treatment led to a statistically 

significant increase in tube length and the number of branching points (131%, *p<0.05, n=4 

and 138%, *p<0,05, n=3, respectively). While VEGF C also tended to increase angiogenesis, 

these effects did not reach statistical significance. 
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Figure 29: Tube formation by LEC from human adipose tissue 
LEC were plated on growth factor-reduced Matrigel and treated with recombinant VEGF A, 
VEGF  C, VEGF D, leptin and adiponectin for 24h. Cells were observed under phase contrast 
microscopy. Representative photomicrographs from 4 independent experiments are shown.  
The length of cytoplasmic extensions (tubes) as well as the number of branching points 
(branches) were measured. (B) Results are the mean ± sem of the percentage of the control 
from 3 experiments are shown. (* p<0.05) 
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III.4.3. Signaling pathways stimulated by adiponectin in LEC 

 

To determine the signaling pathways that might be involved in the effect of 

adiponectin on adipose tissue derived-LEC, Western blot analyses were performed on protein 

extracted from LEC treated with 2ng/mL of adiponectin for 2, 5 or 15 minutes. The 

phosphorylation of Akt and Erk1/2 were then assessed by the use of specific antibodies and 

normalized to the total protein levels of Akt and Erk1/2. As shown in figure 23, adiponectin 

treatment induced a time-dependent phosphorylation of Akt with a maximal effect at 5 

minutes (121±6%, p<0.05, n=3) whereas no statistical significant effects of adiponectin were 

observed on Erk1/2 phosphorylation. 

 

 

 

 

 

 

 

 

 

 

Figure 30: Effect of adiponectin on phosphorylation of Akt and Erk1/2 in LEC from 
human adipose tissue 
Confluent LEC from human adipose tissue were treated with 2ng/mL of adiponectin for 2min, 
5min or 15min. Total protein were extracted and western blot analysis performed. The 
phosphorylation of Erk1/2 as well as Akt were analyzed using antibodies directed against the 
phosphorylated forms of the kinases. The blots were then stripped and re-probed with 
antibodies directed against the total Erk1/2 and Akt proteins. The kinase phosphorylation was 
calculated by densitometry analysis. Representative blots (A) as well as the mean ± sem of 
kinase phosphorylation versus control at 5 min are shown (* p<0.05, n=3)(B). 
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IV. DISCUSSION 
 

Obesity, the prevalence of which is dramatically increasing in industrialized as well as 

in developing countries, has become a very important challenge in the field of public health 

since it represents a risk factor for diseases such as type 2 diabetes, cardiovascular diseases 

and certain types of cancer. Obesity is the result of an excessive development of adipose 

tissue due to adipocyte hypertrophy and hyperplasia. Because of the central role of adipocytes 

in the development of the fat mass, most studies have focused on these cells in an effort to 

understand the mechanisms leading to increased fat mass deposition in human. However, 

several studies have highlighted the role of cells from the SVF, and in particular endothelial 

cells in the development and expansion of adipose tissue. Indeed, the development of obesity 

in ob/ob mice that normally occurs due to the absence of leptin is prevented by treatment with 

anti-angiogenic agents (156). Moreover, apoptotic agents that target the vasculature within 

adipose tissue in obese mice have been reported to reverse diet-induced as well as genetically-

induced obesity (100). In both of the latter studies, the reduction in fat mass was associated 

with an improvement in metabolic functions such as increased lipid turnover leading to a 

normalized energy expenditure. These observations clearly demonstrate that the local vascular 

network plays a crucial role in the development and maintenance of the fat mass and strongly 

suggest that blood vessels may represent an attractive therapeutic target for regulating fat 

mass development.  

In the present study, the characterization and remodeling of the endothelial cells of 

human adipose tissue was addressed. 

 

IV.1. Characterization of the vascular network and endothelial cells type within human 

adipose tissue 

 

It is well accepted that endothelial cells exhibit marked differences in their phenotype, 

surface markers and function depending on the organ, tissue and vessel type (for review see 

(4)). The examination of blood vessels by electron microscopy allowed to establish a 

classification of capillaries into three general categories. continuous, discontinuous and 

fenestrated capillaries (14). In fact, the morphology of the capillaries depends on the function 

of the organ in which they are. Indeed, endocrine and exocrine organs have fenestrated 

capillaries facilitating selective permeability required for efficient absorption, secretion and 

filtering whereas brain and retina contain continuous capillaries that represent an effective 
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barrier to fluid transfer (62). Endothelial cell heterogeneity also depends on the vessel type: 

vein, artery or capillary. Indeed, microvascular and macrovascular endothelial cells from the 

same organ differ in the expression of adhesion molecules, transporters and ability to form 

capillary-like structures (2). For example, in the lung, microvascular endothelial cells exhibit 

more calcium transporters and have better growth ability than their macrovascular 

counterparts (97) (60). Moreover, venous and arterial endothelial cells are also distinct. 

Increasing amount of data concern the lineage orientation of the venous and arterial 

endothelial cells. The separation of venous and arterial lineages appears in the early 

embryogenesis. It involves activation of two intracellular signaling pathways that are 

implicated in cell fate and developmental processes, i.e. the Notch- and the Ephrin-dependent 

pathways constituted by ligands (ephrin) and tyrosine kinase receptors (Ephrin A and B) 

(105). Endothelial cell expression of Notch 4 is restricted to arterial endothelium (185) 

whereas expression of Ephrin B is restricted to venous endothelial cells. It is also clear that 

endothelial cells from the lymphatic system exhibit also a high heterogeneity both in structure 

and protein expression pattern depending on their location and vessel type. Moreover, blood 

and lymphatic endothelial cells from a same organ show distinct expression of lineage-

specific genes. For example, in human neonatal foreskin, the cell surface glycoprotein CD34 

is exclusively expressed on vascular endothelial cells whereas lymphatic endothelial cells 

specifically express VEGFR3, podoplanin and LYVE-1 (144). Clearly, endothelial cells 

constitute an heterogeneous cell population.  

There has not been a thorough analysis of the phenotype of the endothelial cells present in 

adipose tissue on their potential heterogeneity. There is some evidence indicating the presence 

of fenestrated capillaries within murine adipose tissues (31) although this observation has not 

been later further investigated. In order to characterize the vascular network in human adipose 

tissue and in particular the phenotype of the endothelial cells, fluorescence 

immunohistochemistry analysis were performed. A dense capillary network was observed in 

human adipose tissue as evidenced by the use of antibodies directed against the common 

endothelial cell markers CD31 and vWf. Blind-ended capillaries, a hallmark of the lymphatic 

capillaries, were also observed, indicating that both vascular and lymphatic systems were 

labeled by the CD31 and vWF antibodies. The use of the marker CD34, expressed on blood 

but not on lymphatic capillary endothelial cells (144,172), together with vWf allowed us to 

identify two distinct blood (CD34- and vWF-positive) and lymphatic (CD34-negative and 

vWF-positive) capillary networks. The lymphatic vasculature was also labeled by antibodies 

directed against two lymphatic endothelial cell-specific surface proteins; VEGFR3 (85) and 
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podoplanin (27,28). Taken together, these data demonstrate the presence of CD31-, vWF-, 

VEGFR3-, podoplanin-positive but CD34-negative endothelial cells within the human 

adipose tissue, which can be defined as lymphatic endothelial cells (LEC), and CD31-, vWF-, 

CD34-positive but VEGFR3- and podoplanin-negative cells which are vascular endothelial 

cells (BEC). It should be noted that staining with the antibody directed against the lymphatic 

endothelial cell marker, lymphatic vessel hyaluronan receptor (LYVE-1), was localized 

specifically at the periphery of larger vessels, suggesting that LYVE-1 was expressed by 

perivascular cells in the human adipose tissue. Several studies support our observation of a 

non-lymphatic expression of LYVE-1 since it is reported to be expressed by macrophages 

(161) and hepatic blood sinusoidal endothelial cells (127).  

To further characterize both endothelial cell populations in human adipose tissue, we 

developed an immunoselection technique to isolate LEC and BEC from the SVF of adipose 

tissue based on immunoselection. LEC have been isolated from other tissues by positive 

selection using antibodies directed against podoplanin (103), LYVE-1 (144) or VEGFR3 

(119). However, given the fact that LYVE-1 expression was not restricted to LEC in adipose 

tissue and that podoplanin and VEGFR3 antibodies also labeled adipocytes (data not shown), 

the use of such antibodies was not appropriate for the purification of LEC from adipose tissue. 

On the other hand, CD34 appeared to be a suitable marker to allow us to distinguish between 

BEC and LEC. Hirakawa et al separated human dermal BEC and LEC based on the difference 

of CD34 expression between the two cell types, isolating BEC using microbeads coupled to 

an anti-CD34 antibody (CD34+) and LEC by selecting CD31-positive cells present in the 

CD34-negative cell population (CD34-/CD31+)(73). We developed a similar approach with 

some additional depletion steps to avoid contamination with the non-vascular cells present in 

the stroma of adipose tissue: cells positive for CD34 but negative for CD31 and cells that 

were negative for CD34 but positive for CD31 and CD14, identified as macrophages (44). 

The BEC were isolated from the SVF of human adipose tissue by magnetic microbeads 

coupled to anti-CD34 antibody followed by a positive selection of the CD31 positive cells. 

The lymphatic endothelial cells were isolated from the CD34-negative population depleted 

from the CD14-positive cells before a positive selection step using the anti-CD31 antibody.  

Both of the cell types thus isolated (BEC and LEC) expressed transcripts specific for the 

endothelial cells including the VEGF receptors, VEGFR1 and VEGFR2 as well as vWf and 

Notch-4. The specificity of these genes for endothelial cells was demonstrated by their 

absence in mononuclear cells isolated from human peripheral blood and their expression in 

the human umbilical vein endothelial cells. Moreover, both BEC and LEC were able to 
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accumulate acetylated low density lipoprotein (Ac-LDL), an ability that is restricted to 

endothelial cells (and macrophages) which express the Ac-LDL scavenger receptor (1,187). 

Altogether these results demonstrate that the BEC and LEC extracted from human adipose 

tissue exhibit some common features that are usually attributed to endothelial cells. The 

presence of podoplanin mRNA, a glomerular membrane mucoprotein described in podocytes 

as well as in LEC (27,28) and reelin, a glycoprotein that is secreted by Cajal-Retzius cells and 

also expressed in LEC (158) were detected exclusively in human adipose tissue derived-LEC. 

Desmoplakin, a protein that constitutes desmosomes present in lymphatic but not in vascular 

endothelial cells (162), was detected in both cell types, although at lower levels in BEC. 

Recent studies have described the presence of desmoplakin in BEC and more particularly in 

developing vessels and have attributed desmoplakin a role in blood vessel growth (33,200). 

Thus it appears that desmoplakin is not a marker that can be used to discriminate between 

lymphatic and vascular endothelial cells. VEGFR3 mRNA was expressed at similar levels in 

both BEC and LEC as well as in HUVEC, whereas VEGFR3 protein was detected exclusively 

in LEC. This observation is in agreement with the report by Podgrabinska et al. showing 

VEGFR3 protein expression exclusively in LEC (144). Finally, the transcripts encoding Prox-

1 were detected neither in BEC nor in LEC. The lack of Prox-1 expression in human adipose 

tissue derived-LEC is intriguing since it is reported to be a key transcription factor involved in 

the commitment of endothelial cells to the lymphatic lineage (76). However, no study has 

assessed the expression of Prox-1 in mature adult LEC. One can thus speculate that the 

expression of such a transcription factor might be down-regulated once LEC are fully 

differentiated. Taken together, these results demonstrate that LEC from the human adipose 

tissue express a distinct pattern of cell markers, as compared to those expressed by classical 

human LEC. Other studies have also reported such an heterogeneity (119,139), suggesting 

that the phenotype of the LEC is strongly influenced by factors originating from the 

immediate microenvironment of the tissue in which the cells reside. However it is currently 

unclear whether these apparently distinct LEC populations, defined by their pattern of 

expression of several markers really do represent different cell types that have distinct 

functions and properties. Moreover it is highly likely that the isolation and maintenance of 

LEC in culture, a common approach used to study LEC, leads to the modulation of gene 

expression much in the same way that vascular endothelial cell develop an altered 

morphology and gene expression profile. A comparison of the transcript pattern of cultured 

LEC with freshly isolated LEC, the approach that we have performed in the present study, 

should provide additional information about the plasticity of the LEC within human adipose 
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tissue. Finally, to better characterize both the BEC and LEC populations extracted from 

human adipose tissue, large scale gene analysis might be an interesting approach to obtain 

new data regarding the specific patterns of gene expression that distinguish between vascular 

and lymphatic endothelial cells isolated from the same tissue. 

In order to assess the impact of the stadium of adipose tissue development on vascular 

and lymphatic endothelial cells, the numbers of BEC and LEC, within the SVF of patients 

with distinct body mass index (BMI) was determined. The results showed that the number of 

BEC per gram of adipose tissue remains constant independent of the BMI whereas the 

numbers of LEC were reduced in overweight/obese subjects. These findings imply that in 

order to maintain an adequate density of vascular endothelial cells to support the expansion of 

the fat mass, endothelial cells proliferation and/or enhanced differentiation of endothelial 

progenitor cells might occur. On the other hand, the reduction in LEC number with the 

development of the adipose tissue suggests that the LEC are not submitted to remodeling with 

the development of obesity. Taken together, one can speculate that the vascular capillary 

network, but not the lymphatic system, develops in parallel with the fat mass and that obesity 

is associated with neovascularization within the adipose tissue without the concomitant 

expansion of the lymphatic capillary network. 
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IV.2. Processes involved in the remodeling of the endothelial cells in the human adipose 

tissue 

 

The mechanisms involved in the control of the vascular remodeling and in the growing 

capacities of both LEC and BEC within the human adipose tissue were studied. In particular, 

the expansion of the vascular system either by vasculogenesis, which involves the 

differentiation of endothelial precursor cells, or by angiogenesis, which implicates mature 

BEC, as well as the lymphangiogenic capacities of LEC were addressed. 

 

IV.2.1. Evidence for the presence of endothelial progenitor cells in human adipose 

tissue 

 

Flow cytometry analysis demonstrated the presence of a cell type within the SVF of 

human adipose tissue that expressed CD34 but not CD31. This is noteworth as CD34 is 

expressed on capillary endothelial cells as well as being a hallmark of adult stem cells, as it is 

expressed on hematopoietic and progenitor cells (102). Moreover, we were able to 

demonstrate the existence of a cell population expressing other stem cell markers such as 

ABCG2, marker of the side population and CD133, expressed on hematopoietic and 

endothelial progenitor cells (193). The separation of CD34-positive cells from the CD31 

positive cells allowed us to show that the leucocyte marker CD45 as well as the monocyte 

marker CD14 were absent from the CD34+/CD31- cells. Thus that these cells do not belong 

to the monocytic lineage. Some cells however co-expressed the stem cell markers ABCG2 

and CD133, an observation that strengthens the possibility of a stem cell-like phenotype of 

such a population. It should be noted that not all the CD34+/CD31- cells expressed ABCG2 

and CD133, suggesting that this cell population is probably constituted by distinct populations 

of stem/progenitor cells. The plasticity of the CD34+/CD31- cells was shown in vitro using 

distinct culture media. Indeed with high concentrations of serum, CD34+/CD31- cells 

spontaneously assumed a cobblestone morphology, a hallmark of mature endothelial cells but 

also of adult stem cells (143). Moreover, in low-serum culture medium, some CD34+/CD31- 

cells expressed the endothelial cell markers CD31 and vWf and formed tube-like structures. 

The latter effect was enhanced in presence of VEGF A and IGF, two growth factors known to 

trigger the differentiation of the progenitor cells isolated from human bone marrow into 

endothelial cells (87). In particular, VEGF A is able to associate with fibronectin which 

facilitates signal transduction of VEGF A, thus enhancing endothelial cell differentiation 
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(191). Thus, the CD34+/CD31- cells from human adipose tissue possess the capacity to 

differentiate into endothelial-like cells in vitro. The behavior of these cells in vivo was 

assessed using a model of ischemic hindlimb in nude mice. The surgical induction of ischemia 

within the hindlimb of nude mice has been shown to trigger homing signals for circulating 

endothelial progenitor cells leading to the induction of neovascularization (35,135). Our 

results showed that the injection of CD34+/CD31- cells from human adipose tissue efficiently 

elicited the recovery of the ischemic hindlimb in the same manner as bone marrow-derived 

mononuclear cells (BM-MNC). Moreover, since human leucocyte antigen (HLA)-positive 

cells were detected in the mouse vasculature, it appears that the CD34+/CD31- cells were able 

to participate in neovascularization by incorporating into the vasculature and potentially 

differentiating into endothelial cells within the newly formed vessels. Altogether, these results 

show that the CD34+/CD31- cells freshly isolated from the SVF of human adipose tissue 

exhibit progenitor cell properties and participate in the vasculogenesis of ischemic tissues. 

Other groups have made similar observations using the same model and non-separated 

cultured adipose-derived cells were also reported to rescue the ischemic hindlimb 

(32,129,142,147). The process responsible for such an effect was suggested to be mediated 

through direct incorporation of the human cells into the vessels (142), in agreement with our 

results, or in an indirect manner through the secretion of angiogenic factors such as VEGF A 

and HGF (147).  

Our results demonstrate that endothelial progenitor cells are present in the CD34+/CD31- cell 

population. The presence of cells exhibiting stem cell-like properties in the human adipose 

tissue was initially suggested by the work of Zuk et al. who described the expression of 

markers from mesenchymal stem cells, such as Stro-1 and CD105, as well as the lack of 

expression of CD34 in the SVF of human adipose tissue in culture (203). Moreover, in the 

appropriate culture conditions, these cells were shown to express distinct phenotype features 

of various lineages: adipogenic, chondrogenic, myogenic as well as osteogenic (203) leading 

to the hypothesis that the SVF of human adipose tissue contains pluripotent adult stem cells 

that exhibit some similarity with the mesenchymal stem cells in the bone marrow 

(93,141,196). One potential confounding factor in these studies was that the cells had been 

expanded in vitro in the presence of high serum concentration, conditions usually associated 

with cell dedifferentiation and alterations in the expression of cell surface markers that define 

stem and stromal cells. Long term in vitro culture of cells from the SVF has also been 

associated with spontaneous transformation and immortalization leading to tumoriginicity in 

vivo. Our study was the first to demonstrate that non-expanded and selected cells from the 
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human adipose tissue also exhibit endothelial progenitor cell properties and to indicate that 

these cells would then represent an attractive cell population for therapeutic strategies to 

increase vascularization of damaged or ischemic tissues. Indeed, adipose tissue can be easily 

harvested and the proportion of the CD34+/CD31- that can be isolated is sufficient for re-

injection to the same patient, thus avoiding inflammation reactions and additional expansion 

steps. However, additional studies performed by our group have demonstrated that the 

CD34+/CD31- cells are the only cells within the human adipose tissue SVF that are able to 

differentiate into adipocytes (164). Thus, the CD34+/CD31- cells appear to possess the ability 

to differentiate into two distinct lineages, endothelial cells and adipocytes. Such a population 

potentially also contributes to the growth of the adipose tissue by acting as a source of 

adipocytes, through adipogenesis as well as new capillaries through vasculogenesis. 

Nevertheless because of this bipotentiality, it is necessary to further characterize this cellular 

population in order to determine the factors involved in their commitment into the adipocyte 

or endothelial lineage and to better control the fate of the cells before potential therapeutic 

application to increase vascularization of damaged tissues can be considered further.  

 

IV.2.2. Paracrine interactions involved in the control of BEC trophic capacities 

 

To assess the local signals involved in the regulation of the growth of BEC within the 

adipose tissue, the effects of conditioned media originated from mature adipocytes or 

progenitor cells on BEC proliferation were analyzed. Indeed, adipocytes produce a wide range 

of pro-angiogenic factors (23) and progenitor cells present in the SVF of human adipose 

tissue can also stimulate angiogenesis through the production of angiogenic factors such as 

VEGF A and HGF (147). Our results clearly demonstrate that the proliferation of human 

adipose tissue derived-BEC increased in response to factors released from mature adipocytes 

but was not influenced by soluble factors derived from progenitor cells. Moreover, since the 

transcripts for the receptors of leptin and adiponectin, were identified in the human adipose 

tissue derived-BEC and since both adipokines have been described to exert proliferative 

effects in other models of human endothelial cells (22,133,167,168), we assessed the effects 

of leptin and adiponectin at increasing concentrations together with the different VEGF forms 

on BEC proliferation. While neither leptin, adiponectin nor VEGF forms alone affected the 

proliferation of BEC, leptin in combination with VEGFA or with bFGF led to a significant 

increase in BEC proliferation. This observation is in agreement with several studies 

performed on human capillary endothelial cells which showed that such cells do not exhibit 
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strong proliferative responsiveness to classical pro-angiogenic factors (202). Moreover, a 

synergistic effect of leptin with VEGF A and bFGF on BEC proliferation has been reported 

(31). Taken together, our results strongly suggest that leptin produced by the mature 

adipocytes is involved in the control of BEC proliferation in the presence of low 

concentration of VEGF A and/or bFGF, both of which are also produced by adipocytes. 

Growth-factor reduced Matrigel assays showed that leptin enhances BEC migration and the 

formation of tube-like structures whereas neither adiponectin nor any of the different VEGF 

forms exerted any effects. The classical intracellular signaling pathway activated by leptin 

involves the janus kinase/signal transducer and activator of transcription JAK/STAT pathway 

(for review see (57)). However, leptin has also been shown to activate other signaling 

pathways such as the mitogen-activated protein kinases (MAPK) cascade as well as the 

protein kinase B (PKB or Akt) (for review see (57)). In endothelial cells, the activation of the 

MAPK signaling pathway has been linked with survival and proliferation whereas the 

activation of Akt has been associated with cell migration (124). In BEC leptin alone failed to 

induce the phosphorylation of Erk1/2, a finding that is in agreement with our observations that 

leptin alone did not induce BEC proliferation. However, leptin induced a significant increase 

in Akt phosphorylation suggesting that the leptin-mediated increase in BEC migration and 

structural reorganization might be at least in part mediated through Akt-dependent signaling 

pathway, as in fact has already been suggested by studies on human umbilical vein endothelial 

cells (63). 

The angiogenic properties of leptin have been described in various endothelial cell models. 

Indeed, leptin was shown to induce the proliferation (22) and migration (168) of human 

endothelial cells and to trigger neovascularization in vivo in various models such as the chick 

chorioallantoic membrane (22) and rabbit cornea (168). However, it remains to be 

demonstrated whether the local production of leptin within adipose tissue has any effect on 

the resident endothelial cells. Since the expression and production of leptin by the mature 

adipocytes is increased in obesity (40,132), it is tempting to speculate that leptin might be 

involved in the neovascularization process that occurs during adipose tissue growth and that 

mature adipocytes themselves can influence the remodeling and expansion of the vascular 

network. However, further experiments need to be performed to clearly demonstrate the 

involvement of leptin in angiogenesis within the adipose tissue. One important question that 

remains to be answered is whether the endothelial cells in the adipose tissue from obese 

patients are still responsive to leptin. Indeed, obesity in humans is characterized by an hyper-

leptinemia and associated with the development of leptin resistance (50,181). Although 
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several studies suggest that the leptin resistant state might be restricted to some specific 

tissues (181), whether or not the cells within adipose tissue themselves develop resistance to 

the adipokine is not known. 

 

IV.2.3. Paracrine interactions involved in the control of LEC trophic capacities 

 

To characterize the local signals potentially involved in the control of the growth of 

LEC within the adipose tissue, the effects of conditioned media from mature adipocytes or 

progenitor cells on LEC proliferation were analyzed. As observed for BEC, adipocyte- but not 

progenitor cell-conditioned media markedly increased the proliferation of LEC. The lack of 

proliferative effect of the progenitor cell-conditioned medium was not expected since the 

transcripts for the main lymphangiogenic factors described, VEGF C and VEGF D, were 

actually expressed at higher levels in progenitor cells than in adipocytes. However, as the 

actual protein concentrations of VEGF C and VEGF D were not analyzed in our study, we can 

not exclude that growth factor production simply failed to attain the threshold required to 

initiate proliferation. Indeed, VEGF C is able to stimulate LEC proliferation but high 

concentrations are required, much higher than reported in the literature (119). 

Interestingly, among the mRNA for the various receptors detected on LEC, levels of the 

adiponectin receptor-1 were highest. Treatment of LEC with increasing concentrations of 

adiponectin enhanced LEC proliferation whereas no effect of leptin was observed. The latter 

observation is probably related to the very low levels of leptin receptors that were detected in 

LEC. Moreover, the comparison of the transcript levels for the leptin receptor in BEC and 

LEC showed a statistically significant discrepancy suggesting that the expression of leptin 

receptor might be considered as a marker of vascular endothelial cells. The lack of effect of 

leptin on the LEC further supports the hypothesis that leptin is an angiogenic but not 

lymphangiogenic factor. 

Adiponectin also significantly increased the number of tubes and branching structures in 

growth factor-reduced Matrigel assays. Until now, no studies had pointed out the potential 

role of adiponectin in the regulation of growth, migration and organization of human LEC. 

Several studies have described effects of adiponectin on vascular endothelial cells, albeit 

controversially and pro-angiogenic as well as pro-apoptotic effect of adiponectin have been 

reported (26,133). A recent study used loss- and gain-of-function genetic manipulations to 

show in an elegant manner in vivo that adiponectin is a pro-angiogenic factor (167). The 

discrepancies in the effects of adiponectin reported in vitro might arise from the different 
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origins and culture conditions of the endothelial cells used in the respective studies. Our 

results suggest that the effect of adiponectin is largely dependent on the type of endothelial 

cells studied since we did not observe any effect of adiponectin on BEC. It is tempting to 

speculate that the relative expression of the different adiponectin receptors might play a role 

as we observed a higher expression of the adiponectin receptor-1 in LEC than in BEC. 

Recently, T-cadherin has been suggested to constitute an active binding site for adiponectin 

(81). The determination of T-cadherin expression in BEC and LEC should provide 

information about the potential involvement of such a system in the lymphangiogenic effects 

of adiponectin. Another aspect that might play a role in the reported controversial effect of 

adiponectin is the nature of the recombinant protein used to treat the cells. Indeed, the first 

studies performed with adiponectin used human recombinant adiponectin produced in non-

eucaryotic cells (16) that did not exhibit the post-translational features of the human 

adiponectin. This is important as adiponectin is a complex protein that oligomerizes to give 

different forms that can exert distinct effects at the cellular level (37,136,176,189). The 

concentration of adiponectin used might also play an important role as adiponectin is present 

in the plasma at high concentrations (micromolar range) and most of the studies used high 

adiponectin concentrations to treat the cells (26,133). However the plasma concentration of 

adiponectin reflects its time-dependent accumulation and not the rate of production and 

release of the adipokine by mature adipocytes (in the nanomolar range). Furthermore, plasma 

adiponectin has a long half-life, especially the high molecular weight forms. In the present 

study, we used nanomolar concentrations as we considered this reflected more accurately the 

local adiponectin concentration in adipose tissue.  

Many of the effects of adiponectin have been shown to be mediated by the AMP-activated 

protein kinase (AMPK). Indeed, it has been shown that AMPK signaling mediates 

adiponectin-induced angiogenic and anti-apoptotic cellular responses in endothelial cells 

(98,133). There is a crosstalk between the AMPK and Akt and AMPK activation leads to the 

activation of Akt and the phosphorylation of both kinases is required for the induction of 

angiogenesis by adiponectin (133). Here we demonstrate that adiponectin induced Akt 

phosphorylation in adipose tissue derived-LEC. Although the effect of adiponectin on the 

AMPK in LEC needs to be studied, Akt activation via the AMPK signaling pathway may be 

involved in the adiponectin effect on LEC proliferation and migration  

In the present study, we identified adiponectin as a novel lymphangiogenic factor in human 

adipose tissue. Other factors have been shown to exert lymphangiogenic effects and IL-7 as 

well as HGF can induce LEC proliferation, migration and tube formation in human dermal 
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cells (6,86). In addition, angiopoietin-1, a well characterized angiogenic factor, has recently 

been described to promote lymph vessel formation in addition to angiogenesis in the model of 

mouse cornea (125). Since adiponectin, an adipokine produced by adipocyte, is a 

lymphangiogenic factor and that the growth of the fat mass is not associated with an extension 

of the lymphatic vascular network, one can speculate that obesity is associated with an 

inhibition of the adiponectin-mediated stimulation of the trophic capacities of the LEC. 

Clearly different hypothesis might be suggested and adiponectin gene expression might be 

locally decreased or adiponectin-mediated cell signaling might be impaired with obesity. 

Adiponectin expression in adipocytes has been shown to be regulated by different hormones 

and cytokines. In particular, the pro-inflammatory cytokines TNFα and IL-6, the 

concentrations of which increase during the development of adipose tissue, decrease 

adiponectin expression (53,54). Thus the development of a chronic low-grade inflammatory 

state in the obese adipose tissue (138) might contribute to the down-regulation of adiponectin 

expression and lead to inhibition of lymphangiogenesis. Further studies are also needed to 

characterize the signaling pathways activated by adiponectin in order to determine whether 

the signal transduction or the expression/function of the adiponectin receptors are altered 

during the development of obesity. Interestingly, the levels of another lymphangiogenic factor 

angiopoietin-1 are reported to be depressed in the fat mass during obesity in mice (46). Such 

an effect might also contribute to a defect in the processes controlling lymphangiogenesis. 

The lymphatic system plays an important role in tissue immune surveillance as well as in 

tissue fluid homeostasis since it absorbs the excess fluid and cells from tissues and restores 

them to the circulation (5,7). It has been demonstrated that the rate of adipose tissue lymphatic 

drainage is inversely correlated to its growth (157). In agreement with this, mice treated with 

inhibitors of VEGFR3 signaling (soluble VEGFR3 or anti-VEGFR3 antibody) which leads to 

the inhibition of lymphangiogenesis, diplayed a thicker subcutaneous adipose tissue layer 

(104,118). Moreover, a recent study has demonstrated that an insufficiency of the lymphatic 

system is associated with the development of obesity. Indeed, the Prox1 haploinsufficiency in 

mice, that led to lymphatic vascular defect, was associated with a late-onset development of 

obesity. (66). These observations have for the first time provided strong evidence that a lack 

or defect of lymphatic vascular system favors the development of the fat mass. However, the 

mechanisms underlying such an effect remain to be studied. Harvey et al. have shown that 

lymph itself stimulates adipogenesis, suggesting that delays in its removal will contribute to 

adipose tissue accumulation (66). These observations make the lymphatic vascular system of 

the adipose tissue another putative therapeutic target to modulate the accumulation of adipose 
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tissue. Indeed, one can speculate that the stimulation of lymphangiogenesis might restore a 

sufficient lymphatic drainage, thus preventing excessive accumulation of adipose tissue. A 

better understanding of the factors and mechanisms involved in the development of the 

lymphatic vasculature might then lead to the development of novel therapeutic tools to restrict 

the development of adipose tissue as well as the genesis of obesity-associated diseases. 
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Die Ursache von Adipositas liegt im übermäßigen Wachstum von Fettgewebe, welches 

hauptsächlich aus Fettzellen, den Adipozyten, besteht. Die Zellen der stroma-vaskulären 

Fraktion, welche Vorläuferzellen, Makrophagen und Zellen des lokalen Gefäßnetzwerks 

enthält, sind außerdem an der Homöostase des Fettgewebes beteiligt. Insbesondere spielt das 

Gefäßsystem des Fettgewebes in Nagetieren eine wichtige Rolle im Fettgewebewachstum, da 

die Hemmung der Angiogenese in genetisch- und diät-induzierten fettleibigen Mäusen die 

Entstehung von Adipositas verhindert. Dennoch wurde das Gefäßsystem des menschlichen 

Fettgewebes bis heute nicht erforscht. 

Durch immuno-histochemische Analysen am subkutanen menschlichen Fettgewebe konnten 

wir zwei verschiedene Gefäßsysteme identifizieren: das vaskuläre Netzwerk des Bluts und das 

lymphatische vaskuläre Netzwerk. Während die Endothelzellen von beiden Gefäßsystemen 

die gemeinsamen Endothelzellmarker von Willebrand factor (vWf) und CD31 (PECAM, 

Platelet Endothelial Cell Adhesion Molecule) exprimierten, konnten die Endothelzellen der 

Blutgefäße an der Expression des Markers CD34 (Stamm/Blutgefäß-Endothel-Zell-Marker) 

und die Endothelzellen der Lymphgefäße an der Expression der beiden lymphatischen Marker 

Podoplanin und VEGFR3 (Vascular Endothelial Growth Factor Receptor 3) spezifisch 

erkannt werden. Ausschließlich für den Marker CD34-positive Zellen und in Rosetten 

angeordnete CD31-positive Zellen, welche als residente Makrophagen wurden auch 

charakterisiert. 

Um die beiden Gefäßsystemen des menschlichen Fettgewebes weiterhin zu erforschen, haben 

wir ein auf Immunoselektion basiertes Protokoll entwickelt. Es ermöglicht, Blut- (BEC) und 

lymphatische (LEC) Endothelzellen aber auch Makrophagen und CD34-positive Zellen 

spezifisch zu isolieren. Sowohl BEC als auch LEC exprimierten VEGFR1, VEGFR2, vWf 

und Notch4 und nehmen acetyliertes LDL auf. Darüber hinaus konnte in LEC die Expression 

von Genen, welche spezifisch für das Lymphgefäßsystem sind, wie Podoplanin, Reelin, 

VEGFR3, Desmoplakin, LYVE-1 nachgewiesen werden. 

Durch fluss-cytometrischen Analysen des Anzahls von BEC und LEC im Fettgewebe von 

Patienten mit unterschiedlichen Body Mass Indices (BMI) wurde entdeckt, dass Fettleibigkeit 

von einer Erweiterung des vaskulären Netzwerks des Bluts im Fettgewebe begleitet wird, 

jedoch nicht von einer Erweiterung des lymphatischen vaskulären Systems. 

Flusscytometrische Analysen belegen, dass es in der CD34-positive Stroma-Zellpopulation 

Zellen gibt, die den endothelialen Progenitor-Zellmarker CD133 und den primitiven 

Stammzellmarker ABCG2 exprimieren. Außerdem zeigten die CD34-positive Zellen eine 

signifikant stärkere Proliferation und Expression von Endothelzellmarkern wie CD31 und 
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vWf, wenn dem Kulturmedium zuvor die Faktoren Vascular Endothelial Growth Factor A 

(VEGF A) und Insulin-Like Growth Factor-1 zugefügt worden waren. Wurden Mäusen mit 

Hinterbeinischämie CD34-positive Zellen in vivo injiziert, beteiligten sich diese Zellen an der 

Neovaskularisation des ischämischen Hinterbeins. Eine signifikante Zunahme des Blutflusses 

im ischämischen Bein, gekoppelt an einer erhöhten Kapillardichte im ischämischen Muskel 

und einer Integration der menschlichen Zellen in die Vaskulatur der Maus waren erkennbar. 

Diese Ergebnisse weisen darauf hin, dass es unter den CD34-positive Zellen eine Population 

von endothelialen Progenitorzellen gibt, die -bei geeigneter Stimulation- zu Endothelzellen 

differenzieren. 

Parallel dazu wurden die lokalen Faktoren untersucht, die potentiell an der 

Wachstumskontrolle, der Migration und der Organisation der ruhenden, aus dem Fettgewebe 

stammenden, BEC und LEC beteiligt waren. Sekrete der Adipozyten, jedoch nicht der CD34-

positive Zellen, induzierten eine signifikante BEC- und LEC-Proliferation. Außerdem 

induzierte die Kombination von Leptin und VEGF A oder des basic Fibroblast Growth Factor 

eine signifikante Zunahme der BrdU-Inkorporation in BEC während Adiponectin, VEGF C 

und VEGF D bereits alleine konzentrationsabhängig die Proliferation von LEC induzierten. 

Leptin, und nicht Adiponectin, führte zu signifikant höherer BEC-Migration und 

Röhrenformung, während Adiponectin, und nicht Leptin, die LEC-Migration und -

Organisation förderte. Dabei führte Leptin in BEC und Adiponectin in LEC zeitabhängig zu 

einer signifikanten Zunahme der Phosphorylierung der Kinase Akt. Diese Ergebnisse belegen, 

dass die beiden aus Adipozyten stammenden Adipokine Leptin und Adiponectin eine tragende 

Rolle in der Umverteilung von BEC bzw. LEC spielen. 

Im Rahmen der Adipositas steigt die Plasmakonzentration von Leptin an während die 

Plasmakonzentration von Adiponectin sinkt. Unsere Ergebnisse deuten daraufhin, dass Leptin 

als lokaler pro-angiogenetischer Faktor identifizieren und Adiponectin als neuer 

lymphangiogenetischer Faktor im menschlichen Fettgewebe beschreiben konnte. Demnach 

könnten Veränderungen, in der Adipositas, der Adipokinfreisetzung durch Adipozyten am 

Umbau des vaskulären Netzwerks des Bluts und am ausbleibenden Wachstum des 

lymphatischen vaskulären Systems innerhalb des Fettgewebes beteiligt sein. Schließlich 

belegen die vorliegenden Ergebnisse das Vorhandensein einer Progenitor-Zell-Population in 

der Stroma-Fraktion des menschlichen Fettgewebes. Diese Progenitor-Zellen sind in der Lage 

sich an der Neovaskularisation ischämischen Gewebes zu beteiligen. Diese Population könnte 

im Hinblick auf zelltherapeutische Strategien eine interessante Alternative zu Stammzellen 

aus dem Knochenmark darstellen. 
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