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Abstra
tWe present a simple approximation method for turn-ing a Head-Driven Phrase Stru
ture Grammar into a
ontext-free grammar. The approximation method
an be seen as the 
onstru
tion of the least �xpointof a 
ertain monotoni
 fun
tion. We dis
uss an ex-periment with a large HPSG for Japanese.1 Introdu
tionThis paper presents a simple approximationmethod for turning an HPSG (Pollard and Sag,1994) into a 
ontext-free grammar. The the-oreti
al underpinning is established through aleast �xpoint 
onstru
tion over a 
ertain mono-toni
 fun
tion, similar to the instantiation ofa rule in a bottom-up passive 
hart parser orto partial evaluation in logi
 programming; see(Kiefer and Krieger, 2000a).1.1 Basi
 IdeaThe intuitive idea underlying our approa
h isto generalize in a �rst step the set of all lexi
onentries. The resulting stru
tures form equiv-alen
e 
lasses, sin
e they abstra
t from word-spe
i�
 information, su
h as FORM or STEM. Theabstra
tion is spe
i�ed by means of a restri
tor(Shieber, 1985), the so-
alled lexi
on restri
tor.The grammar rules/s
hemata are then instan-tiated via uni�
ation, using the abstra
ted lexi-
on entries, yielding derivation trees of depth 1.We apply the rule restri
tor to ea
h resultingfeature stru
ture, whi
h removes all information
ontained only in the daughters of the rule. Dueto the Lo
ality Prin
iple of HPSG, this deletiondoes not alter the set of derivable feature stru
-tures. Sin
e we are interested in a �nite �xpointfrom a pra
ti
al point of view, the restri
tionalso gets rid of information that will lead to in-�nite growth of feature stru
tures during deriva-tion. Additionally, we throw away information

that will not restri
t the sear
h spa
e (typi
ally,parts of the semanti
s). The restri
ted fea-ture stru
tures (together with older ones) thenserve as the basis for the next instantiation step.Again, this gives us feature stru
tures en
odinga derivation, and again we are applying the rulerestri
tor. We pro
eed with the iteration, untilwe rea
h a �xpoint, meaning that further itera-tion steps will not add (or remove) new (or old)feature stru
tures.Our goal, however, is to obtain a 
ontext-freegrammar, but sin
e we have rea
hed a �xpoint,we 
an use the entire feature stru
tures as (
om-plex) 
ontext-free symbols (e.g., by mappingthem to integers). By instantiating the HPSGrules a �nal time with feature stru
tures fromthe �xpoint, applying the rule restri
tor and�nally 
lassifying the resulting stru
ture (i.e.,�nd the right stru
ture from the �xpoint), one
an easily obtain the desired 
ontext-free gram-mar (CFG).1.2 Why is it Worth?Approximating an HPSG through a CFG G isinteresting for the following pra
ti
al reason:assuming that we have a CFG that 
omes 
loseto an HPSG, we 
an use the CFG as a 
heap �l-ter (running time 
omplexity is O(jGj2�n3) foran arbitrary senten
e of length n). The mainidea is to use the CFG �rst and then let theHPSG deterministi
ally replay the derivationsli
ensed by the CFG. The important point hereis that one 
an �nd for every CF produ
tionexa
tly one and only one HPSG rule. (Kasperet al., 1996) des
ribe su
h an approa
h for wordgraph parsing whi
h employs only the relativelyunspe
i�
 CF ba
kbone of an HPSG-like gram-mar. (Diagne et al., 1995) repla
es the CF ba
k-bone through a restri
tion of the original HPSG.This grammar, however, is still an uni�
ation-



based grammar, sin
e it employs 
oreferen
e
onstraints.1.3 Content of PaperIn the next se
tion, we des
ribe the JapaneseHPSG that is used in Verbmobil, a proje
t thatdeals with the translation of spontaneously spo-ken dialogues between English, German, andJapanese speakers. After that, se
tion 3 ex-plains a simpli�ed, albeit 
orre
t version of theimplemented algorithm. Se
tion 4 then dis-
usses the out
ome of the approximation pro-
ess.2 Japanese GrammarThe grammar was developed for ma
hine trans-lation of spoken dialogues. It is 
apable of deal-ing with spoken language phenomena and un-grammati
al or 
orrupted input. This leads onthe one hand to the ne
essity of robustness andon the other hand to ambiguities that must bedealt with. Being used in an MT system for spo-ken language, the grammar must �rstly a

eptfragmentary input and be able to deliver partialanalyses, where no spanning analysis is avail-able. A 
omplete fragmentary utteran
e 
ould,e.g., be:daijoubuokayThis is an adje
tive without any noun or (
op-ula) verb. There is still an analysis available.If an utteran
e is 
orrupted by not being fullyre
ognized, the grammar delivers analyses forthose parts that 
ould be understood. An ex-ample would be the following transliteration ofinput to the MT system:souso desuCOP neTAG watakushiInoGEN houside waTOP daijoubuokaydesuCOP da gabut konothis hidaywaTOP kayoubiTuesday desuCOP neTAG(lit.: Well, it is okay for my side, butthis day is Tuesday, isn't it?)Here, analyses for the following fragments aredelivered (where the parser found opera wa inthe word latti
e of the spee
h re
ognizer):

souso desuCOP neTAG watakushiInoGEN houside waTOP daijoubuokaydesuCOP(Well, it is okay for my side.)operaopera waTOP(The opera)konothis hiday waTOP kayoubiTuesdaydesuCOP neTAG(This day is Tuesday, isn't it?)Another ne
essity for partial analysis 
omesfrom real-time restri
tions imposed by the MTsystem. If the parser is not allowed to produ
ea spanning analysis, it delivers best partial frag-ments.The grammar must also be appli
able to phe-nomena of spoken language. A typi
al problemis the extensive use of topi
alization and evenomission of parti
les. Also serialization of parti-
les o

ur more often than in written language,as des
ribed in (Siegel, 1999). A well-de�nedtype hierar
hy of Japanese parti
les is ne
essaryhere to des
ribe their fun
tions in the dialogues.Extensive use of honori�
ation is another sig-ni�
an
e of spoken Japanese. A detailed de-s
ription is ne
essary for di�erent purposes inan MT system: honori�
ation is a synta
ti
restri
tor in subje
t-verb agreement and 
om-plement senten
es. Furthermore, it is a veryuseful sour
e of information for the solutionof zero pronominalization (Metzing and Siegel,1994). It is �nally ne
essary for Japanese gener-ation in order to �nd the appropriate honori�
forms. The sign-based information stru
ture ofHPSG (Pollard and Sag, 1994) is predestinedto des
ribe honori�
ation on the di�erent levelsof linguisti
s: on the synta
ti
 level for agree-ment phenomena, on the 
ontextual level foranaphora resolution and 
onne
tion to speakerand addressee referen
e, and via 
o-indexing onthe semanti
 level. Conne
ted to honori�
ationis the extensive use of auxiliary and light verb
onstru
tions that require solutions in the areasof morphosyntax, semanti
s, and 
ontext (see(Siegel, 2000) for a more detailled des
ription).Finally, a severe problem of the Japanesegrammar in the MT system is the high po-



tential of ambiguity arising from the syntax ofJapanese itself, and espe
ially from the syntaxof Japanese spoken language. For example, theJapanese parti
le ga marks verbal arguments inmost 
ases. There are, however, o

urren
es ofga that are assigned to verbal adjun
ts. Allow-ing ga in any 
ase to mark arguments or ad-jun
ts would lead to a high potential of (spuri-ous) ambiguity. Thus, a restri
tion was set onthe adjun
tive ga, requiring the modi�ed verbnot to have any unsaturated ga arguments.The Japanese language allows many verbalarguments to be optional. For example, pro-nouns are very often not uttered. This phe-nomenon is basi
 for spoken Japanese, su
h thata syntax urgently needs a 
lear distin
tion be-tween optional and obligatory (and adja
ent)arguments. We therefore used a des
riptionof sub
ategorization that di�ers from standardHPSG des
ription in that it expli
itly states theoptionality of arguments.3 Basi
 AlgorithmWe start with the des
ription of the top-levelfun
tion HPSG2CFG whi
h initiates the ap-proximation pro
ess (
f. se
tion 1.1 for themain idea). Let R be the set of all rules/rules
hemata, L the set of all lexi
on entries, Rthe rule restri
tor, and L the lexi
on restri
tor.We begin the approximation by �rst abstra
t-ing from the lexi
on entries L with the help ofthe lexi
on restri
tor L (line 5 of the algorithm).This 
onstitutes our initial set T0 (line 6). Fi-nally, we start the �xpoint iteration 
alling It-erate with the ne
essary parameters.1 HPSG2CFG(R;L; R; L) :()2 lo
al T0;3 T0 := ;;4 for ea
h l 2 L5 l := L(l);6 T0 := T0 [ flg;7 Iterate(R; R; T0).After that, the instantiation of the rules
hemata with rule/lexi
on-restri
ted elementsfrom the previous iteration Ti begins (line 11{14). Instantiation via uni�
ation is performedby Fill-Daughters whi
h takes into a

ount asingle rule r and Ti, returning su

essful instan-tiations (line 12) to whi
h we apply the rule

restri
tor (line 13). The out
ome of this restri
-tion is added to the a
tual set of rule-restri
tedfeature stru
tures Ti+1 i� it is new (rememberhow set union works; line 14). In 
ase that re-ally new feature stru
tures have not been addedduring the 
urrent iteration (line 15), meaningthat we have rea
hed a �xpoint, we immediatelyexit with Ti (line 16) from whi
h we generatethe 
ontext-free rules as indi
ated in se
tion 1.1.Otherwise, we pro
eed with the iteration (line17).8 Iterate(R; R; Ti) :()9 lo
al Ti+1;10 Ti+1 := Ti;11 for ea
h r 2 R12 for ea
h t 2 Fill-Daughters(r; Ti) do13 t := R(t);14 Ti+1 := Ti+1 [ ftg;15 if Ti = Ti+116 then return Compute-CF-Rules(R; Ti)17 else Iterate(R; R; Ti+1).We note here that the pseudo 
ode above isonly a na��ve version of the implemented algo-rithm. It is still 
orre
t, but not 
omputation-ally tra
table when dealing with large HPSGgrammars. Te
hni
al details and optimizationsof the a
tual algorithm, together with a des
rip-tion of the theoreti
al foundations are des
ribedin (Kiefer and Krieger, 2000a). Due to spa
elimitations, we 
an only give a glimpse of thea
tual implementation.Firstly, the most obvious optimization appliesto the fun
tion Fill-Daughters (line 12), wherethe number of uni�
ations is redu
ed by avoid-ing re
omputation of 
ombinations of daugh-ters and rules that already have been 
he
ked.To do this in a simple way, we split the set Tiinto Ti n Ti�1 and Ti�1 and �ll a rule with onlythose permutations of daughters whi
h 
ontainat least one element from TinTi�1. This guaran-tees 
he
king of only those 
on�gurations whi
hwere enabled by the last iteration.Se
ondly, we use te
hniques developed in(Kiefer et al., 1999), namely the so-
alled rule�lter and the qui
k-
he
k method. The rule �l-ter pre
omputes the appli
ability of rules intoea
h other and thus is able to predi
t a fail-ing uni�
ation using a simple and fast tablelookup. The qui
k-
he
k method exploits the



fa
t that uni�
ation fails more often at 
er-tain points in feature stru
tures than at oth-ers. In an o�-line stage, we parse a test 
or-pus, using a spe
ial uni�er that re
ords all fail-ures instead of bailing out after the �rst onein order to determine the most prominent fail-ure points/paths. These points 
onstitute theso-
alled qui
k-
he
k ve
tor. When exe
uting auni�
ation during approximation, those pointsare eÆ
iently a

essed and 
he
ked using typeuni�
ation prior to the rest of the stru
ture. Ex-a
tly these qui
k-
he
k points are used to buildthe lexi
on and the rule restri
tor as des
ribedearlier (see �g. 1). During our experiments,nearly 100% of all failing uni�
ations in Fill-Daughters 
ould be qui
kly dete
ted using theabove two te
hniques.Thirdly, instead of using set union we usethe more elaborate operation during the addi-tion of new feature stru
tures to Ti+1. In fa
t,we add a new stru
ture only if it is not sub-sumed by some stru
ture already in the set. Todo this eÆ
iently, the qui
k-
he
k ve
tors de-s
ribed above are employed here: before per-forming full feature stru
ture subsumption, wepairwise 
he
k the elements of the ve
tors us-ing type subsumption and only if this su

eedsdo a full subsumption test. If we add a newstru
ture, we also remove all those stru
tures inTi+1 that are subsumed by the new stru
turein order to keep the set small. This does not
hange the language of the resulting CF gram-mar be
ause a more general stru
ture 
an beput into at least those daughter positions whi
h
an be �lled by the more spe
i�
 one. Conse-quently, for ea
h produ
tion that employs themore spe
i�
 stru
ture, there will be a (pos-sibly) more general produ
tion employing themore general stru
ture in the same daughter po-sitions. Extending feature stru
ture subsump-tion by qui
k-
he
k subsumption de�nitely payso�: more than 98% of all failing subsumptions
ould be dete
ted early.Further optimizations to make the algorithmworks in pra
ti
e are des
ribed in (Kiefer andKrieger, 2000b).4 EvaluationThe Japanese HPSG grammar used in our ex-periment 
onsists of 43 rule s
hemata (28 unary,15 binary), 1,208 types and a test lexi
on of

2,781 highly diverse entries. The lexi
on restri
-tor, as introdu
ed in se
tion 1.1 and depi
ted in�gure 1, maps these entries onto 849 lexi
al ab-stra
tions. This restri
tor tells us whi
h parts ofa feature stru
ture have to be deleted|it is thekind of restri
tor whi
h we are usually going touse. We 
all this a negative restri
tor, 
ontraryto the positive restri
tors used in the PATR-II system that spe
ify those parts of a featurestru
ture whi
h will survive after restri
ting it.Sin
e a restri
tor 
ould have reentran
e points,one 
an even de�ne a re
ursive (or 
y
li
) re-stri
tor to foresee re
ursive embeddings as is the
ase in HPSG.The rule restri
tor looks quite similar, 
ut-ting o� additionally information 
ontained onlyin the daughters. Sin
e both restri
tors removethe CONTENT feature (and hen
e the semanti
swhi
h is a sour
e of in�nite growth), it hap-pened that two very produ
tive head-adjun
ts
hemata 
ould be 
ollapsed into a single rule.This has helped to keep the number of featurestru
tures in the �xpoint relatively small.We rea
hed the �xpoint after 5 iterationsteps, obtaining 10,058 feature stru
tures. The
omputation of the �xpoint took about 27.3CPU hours on a 400MHz SUN Ultraspar
 2 withFranz Allegro Common Lisp under Solaris 2.5.Given the feature stru
tures from the �xpoint,the 43 rules might lead to 28 � 10; 058 + 15 �10; 058 � 10; 058 = 1; 517; 732; 084 CF produ
-tions in the worst 
ase. Our method produ
es19,198,592 produ
tions, i.e., 1.26% of all pos-sible ones. We guess that the enormous set ofprodu
tions is due the fa
t that the grammarwas developed for spoken Japanese (re
all se
-tion 2 on the ambiguity of Japanese). Likewise,the 
hoi
e of a `wrong' restri
tor often leads to adramati
 in
rease of stru
tures in the �xpoint,and hen
e of CF rules|we are not sure at thispoint whether our restri
tor is a good 
ompro-mise between the spe
i�
ity of the 
ontext-freelanguage and the number of 
ontext-free rules.We are 
urrently implementing a CF parser that
an handle su
h an enormous set of CF rules.In (Kiefer and Krieger, 2000b), we report ona similar experiment that we 
arried out usingthe English Verbmobil grammar, developed atCSLI, Stanford. In this paper, we showed thatthe workload on the HPSG side 
an be drasti-
ally redu
ed by using a CFG �lter, obtained
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Figure 1: The lexi
on restri
tor used during the approximation of the Japanese grammar. Inaddition, the rule restri
tor 
uts o� the DAUGHTERS feature.from the HPSG. Our hope is that these results
an be 
arried over to the Japanese grammar.A
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