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Abstract

Few studies have looked at the potential of using diffusion tensor imaging (DTI) in conjunction with machine learning
algorithms in order to automate the classification of healthy older subjects and subjects with mild cognitive impairment (MCI).
Here we apply DTI to 40 healthy older subjects and 33 MCI subjects in order to derive values for multiple indices of diffusion
within the white matter voxels of each subject. DTI measures were then used together with support vector machines (SVMs) to
classify control and MCI subjects. Greater than 90% sensitivity and specificity was achieved using this method, demonstrating
the potential of a joint DTI and SVM pipeline for fast, objective classification of healthy older and MCI subjects. Such tools may
be useful for large scale drug trials in Alzheimer’s disease where the early identification of subjects with MCI is critical.
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Introduction

Mild cognitive impairment (MCI) is an intermediate state

between healthy aging and Alzheimer’s disease (AD), characterised

as a non-disabling disorder that represents an early state of

abnormal cognitive function [1]. Although not all MCI cases

represent prodromal AD, an estimated 10–15% of MCI subjects

enter the dementia spectrum every year. In contrast, 1–2% of

healthy older people convert to AD each year [1]. Therefore, MCI

is frequently considered to be a good target for the early diagnosis

of AD [1,2]. Future drugs for AD, such as amyloid-modifying

compounds, may fail to affect the clinical course of AD when

neurodegenerative processes are well established, but it has been

suggested that these drugs may have greater success in the very

earliest stages of AD before the onset of symptoms [3]. Therefore,

fast and objective tools for the diagnosis of MCI will be of great

interest for future research into the understanding of MCI and AD,

as well as for drug development in AD. Existing cognitive batteries

which are used for the diagnosis of MCI and AD such as the

CERAD [4] are both subjective and extremely time consuming.

Here we wish to develop a method of combining diffusion

tensor imaging (DTI) together with support vector machines

(SVMs) [5] which may be used to supplement existing cognitive

batteries during the diagnosis procedure. DTI probes white matter

(WM) structure by exploiting the fact that water diffuses faster

along the main axis (l1) of fibers compared with diffusion

perpendicular to fibers (l2, l3) [6]. Four primary indices of

diffusion can be assessed – fractional anisotropy (FA), mean

diffusion (MD), axial diffusion (DA) and radial diffusion (DR) [7].

Although WM damage has been found in AD both in post-

mortem studies [8] and in vivo studies [9] little attention has been

focused on the potential of using DTI tools to classify MCI and

AD subjects. However, this is likely to prove a fruitful area of

research as WM damage may be a key indicator of early AD

pathology [10].

To date, machine learning techniques have been applied to a

range of MRI modalities in an effort to automate the diagnosis of

MCI and AD. This includes, the use of volumetric analysis of the

hippocampus combined with logistic regression [11] as well as the

combination of support vector machines (SVMs) with grey matter

(GM) data from voxel based morphometry (VBM) [12,13]. A

combination of structural MRI with PET data has been found to

increase accuracy when using SVMs [14]. Risk scores for MCI

conversion to AD have been created with VBM data using
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principal component analysis (PCA), structural equation modelling

(SEM) and SVM approaches [5,12,13,15,16]. Cortical thickness

studies have been used to classify AD and control scans [17] while

cross-sectional pattern analysis studies have been used to classify

control and MCI subjects [18]. Machine learning techniques have

also proved to be effective for the classification of MCIs which

convert to AD at follow-up and those that remain stable [19,20].

The aim of the current study was to investigate how multiple

indices of diffusion can be used in conjunction with SVMs for the

classification of control and MCI subjects. We wanted to assess the

efficacy of each index of diffusion for classification. We also

wanted to assess the locations of the voxels that were most useful

for discriminating between groups. We hypothesized that the most

useful voxels for classification would be located in areas that are

known to be compromised in the early stages of AD. Previous

studies have indicated that atrophy in the early stages of MCI and

AD are subtle and distributed in a number of regions including the

hippocampus, the lateral and inferior temporal structures, the

anterior and posterior cingulate, the uncinate fasciculus and the

superior longitudinal fasciculus [21–23].

Methods

Ethics Statement
The study was approved by the St. James’ Hospital and

Adelaide & Meath Hospital incorporating the National Children’s

Hospital Research Ethics Committee and was in accordance with

the Declaration of Helsinki. All participants provided informed

written consent.

Participants
Scans were obtained from three groups of participants: 40 healthy

older people, 19 MCIna, 14 MCIa. The total number of

participants was 73. MCI patients were diagnosed using criteria

for both amnestic and non-amnestics sub-groups [24]. Neuropsy-

chological assessment consisted of the Mini Mental State Exami-

nation (MMSE) [25] and the Consortium to Establish a Registry for

Alzheimer’s Disease (CERAD) neuropsychological battery [4]. For

the diagnosis of MCI, the following must be present:

1. objective impairment on any neuropsychological test from the

CERAD battery based on a cut-off of 21.5 SD below

published normative data corrected for age and education of

the subject;

2. cognitive impairment corroborated by a close family member;

3. essentially normal activities of daily living;

4. must not meet criteria for dementia as defined below.

MCI individuals with objective memory impairment were

diagnosed as having MCIa and those with non-memory

impairment were diagnosed as having MCIna.

Diagnostic criteria of AD were that of the National Institute of

Neurological Disorders and Stroke–Alzheimer Disease and

Related Disorders (NINCDS–ADRDA) working group [26].

MCIna and MCIa participants were recruited at the Adelaide

and Meath Hospital incorporating the National Children’s

Hospital (AMNCH), Dublin, Ireland. Healthy control participants

were recruited among relatives of MCI subjects and also through

advertisements in the local community.

Participants were excluded if they had cortical infarction,

excessive subcortical vascular disease, space-occupying lesions,

depression, and any other psychiatric or neurological disease.

Participants were also excluded on magnetic resonance imaging

criteria such as pacemaker implant, recent metallic implants, and

claustrophobia. The DTI and structural scans of the cohort used

in the current study were previously used in a study of mixed-

effects models [27] and in a study of the role of multiple indices of

diffusion in MCI and AD [21].

Imaging Methods
Magnetic resonance imaging (MRI) was conducted with a Philips

Achieva 3.0 Tesla MR system (Best, The Netherlands). A parallel

SENSitivity Encoding (SENSE) approach was used. The high

resolution 3D T1-weighted structural images were achieved with the

following pulse sequence: TR = 8.4 ms; TE = 3.9 ms; flip angle = 8u;
number of axial slices = 180; slice thickness = 0.9 mm; acquisition

voxel size = 0.960.961.8 mm3; rec voxel size = 0.960.960.9 mm3;

field of view (FOV) = 230 mm6230 mm6230 mm; acquisition

matrix = 2566256; SENSE reduction factor = 2.3; total acquisition

time = 5 min 44 sec.

DTI was acquired using an echo planar imaging (EPI) sequence

with the following pulse sequence: TR = 12396 ms; TE = 52 ms;

acquisition voxel size = 26262 mm3; rec voxel size = 1.7561.756
2 mm isotropic, 60 axial adjacent slices; slice thickness = 2 mm (no

gap); FOV = 224 mm6224 mm6120 mm; acquisition matrix =

1126112; SENSE reduction factor = 2, combined with a half-scan

acquisition; 1 image without diffusion weighting and 15 diffusion-

encoding gradients applied in 15 noncollinear directions; b-value =

800 s/mm2; both the b0 and the 15 diffusion weighted images were

averaged twice, bandwidth = 2971 Hz/pixel; total acquisition

time = 7 min 34 sec.

A T2-weighted fluid attenuation inversion recovery (FLAIR)

sequence was also acquired to ensure that vascular pathology was

not significant. All images were rated using the Fazeka scale [28].

The mean and SD for all participants was 1.33, SD: 0.71; while

specific subgroups were as follows; Controls: 1.18, SD 0.51; MCIa:

1.08, SD 0.28; MCIna: 1.37, SD 0.83.

DTI Processing
DTI analysis was performed using TBSS [29]. Images were

skull stripped with the Brain Extraction Tool (BET) from the FSL

library [30]. Raw DTI images were first corrected for motion and

eddy current effects. The diffusion tensor was then calculated with

the DTIFIT program for whole brain volumes and the resulting

FA maps, together with the DA (l1) and DR ((l2+l3)/2) and MD

((l1+l2+l3)/3) maps, were used in subsequent TBSS analysis.

TBSS performs a non-linear registration that aligns each FA

image to every other one and calculates the amount of warping

needed for the images to be aligned. The most representative

image is determined as the one needing the least warping for all

other images to align to it. The FSL library also provides a 1 mm

isotropic FA target image (FMRIB58_FA) in standard space,

which is sometimes used instead of the most representative image

from the study cohort. This can be problematic as the target image

is based on a young healthy brain. Using the method of ‘‘all

subject to all subject’’ registration is more computationally

intensively, but highly desirable when dealing with populations

other than young healthy controls.

After this registration step, warped versions of each subject’s FA

image were generated which were then averaged and a white

matter ‘‘skeleton’’ was then created suppressing all non-maximum

FA values in each voxel’s local-perpendicular direction and

subsequently comparing all remaining non-zero voxels with their

nearest neighbours, thus searching for the centre of fibre bundles.

The skeleton was then thresholded at an FA value of 0.2 which

limits the effects of poor alignment across subjects and ensures that

GM and CSF voxels are excluded from the skeleton. The resulting

skeleton contained WM tracts common to all subjects. A ‘‘distance

DTI and Machine Learning
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map’’ is then created which is used to project each FA image onto

the mean FA skeleton that is common to all subjects [29]. The

same non-linear transformations derived for the FA maps were

applied to the DA, DR and MD maps.

Following TBSS processing, a global region of interest was

created using the white matter skeleton that is common to all

subjects. Mean values of FA, DA, DR and MD were extracted

from each subject using this global ROI in order to generate

boxplots for control, MCIna and MCIa groups for each index of

diffusion.

SVM Classification Analysis
Classification of individual subjects was undertaken using the

freely available WEKA software package (http://www.cs.waikato.

ac.nz/ml/weka, Version 3.6.4) [31,32]. Following TBSS analysis,

the skeletonised FA, DA, DR and MD data was analysed in

Matlab (program written by FL and available on request), which

extracted the diffusion values from the WM skeleton and

transformed them into a WEKA compatible format. There were

130,394 voxels in the WM skeleton and diffusion values for all

indices of diffusion were extracted from each voxel in the WM

skeleton. Classification between groups was undertaken using each

index of diffusion separately in order to determine the most

efficient index for classification.

Analysis was carried out for two types of classifications:

1. Control and MCI classification

2. Control, MCIa and MCIna classification

The first step of the WEKA analysis was to reduce the number

of voxels to those that are most relevant for classification. This step

eliminates non-discriminative voxels which would reduce classifi-

cation accuracy. The feature selection algorithm ‘‘ReliefF’’ [33]

was used to extract the most important voxels from the full FA,

DA, DR and MD datasets that contain diffusion values from every

voxel in the entire white matter skeleton of each subject. For each

classification group and also for each index of diffusion, seven

reduced datasets were created as follows:

1. 100 voxel dataset

2. 250 voxel dataset

3. 500 voxel dataset

4. 750 voxel dataset

5. 1000 voxel dataset

6. 2000 voxel dataset

7. 3000 voxel dataset.

Therefore in total, 14 reduced datasets were created; i.e. 7

reduced datasets for Control and MCI classification, and 7

reduced datasets for Control, MCIa, and, MCIna classification.

The choice of the size of these reduced datasets is based on

previous work using a similar approach to the one outlined in the

current study [20,34]. To date, ,500–1000 voxels have been

found to give optimal classification results.

The aim of the ReliefF algorithm is to estimate the quality of

voxels according to how well the value of a voxel distinguishes

between instances that are near to each other. The algorithm

works on the assumption that the voxels of nearby individuals with

different diagnoses are the most useful for assessing the predictive

ability of the voxel. The current method employs feature selection

on the entire dataset which has been used in previous studies

[20,34] while other studies have employed nested cross validation

[35,36]. See the discussion for a note on this point.

After reducing the data into datasets of differing sizes,

classification was then performed using the SVM algorithm

‘‘sequential minimal optimization’’ (SMO) [37] with a radial basis

function (RBF) kernel [38]. SVMs are algorithms that learn how to

assign labels to objects [5]. They use linear models to implement

nonlinear class boundaries by transforming the input into a new

higher dimensional space (Fig. 1a). In this way, a straight line in

the new space can be curved or non-linear when transformed back

to the original lower-dimensional space (Fig. 1a). Following

transformation, a linear model called the maximum margin

hyperplane is created. To visualise this, imagine a dataset with

two-classes that are linearly separable. The maximum margin

hyperplane is the one that gives the greatest separation between

the classes. The hyperplane describes a straight line in a high-

dimensional space, and therefore a separating hyperplane is a line

that separates the classes (see Fig. 1b). The instances that are

closest to the maximum margin hyperplane are called support

vectors. A unique set of support vectors defines the maximum

margin hyperplane for the learning problem. Once the support

Figure 1. Principle of support vector machines. (a) The algorithm
tries to find a boundary that maximises the distance between groups.
When the input data is viewed in two-dimensions it cannot be
separated by a straight line. However, if the two-dimensional space is
transformed into a three dimensional space, then it is possible to
separate the data using a hyperplane. (b) The SVM tries to find a
boundary that maximizes the distance between groups. The data that
are closest to the maximum margin hyperplane are called support
vectors. A unique set of support vectors defines the maximum margin
hyperplane for the learning problem.
doi:10.1371/journal.pone.0032441.g001
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vectors are established, a maximum margin hyperplane can be

constructed. The maximum margin hyperplane is relatively stable

as it only moves if the training instances that are added or deleted

are support vectors. This holds true in high-dimensional space

spanned by the nonlinear transformation. Support vectors are

usually few in number which gives little flexibility and thus guards

against overfitting which can arise when there is too much

flexibility in a decision boundary.

Table 1. Demographic and Cognitive Characteristics of the Sample Groups.

Variable Control SD MCIna SD MCIa SD F-value P-value CON.MCIa CON.MCIna MCIna.MCIa

n = 40 n = 19 n = 14

Age (years) 66 8 68 6 68 8.00 0.89 .0.05

Gender (m/f) 16/24 (0.2) 5/14 (0.039) 7/7 (1)

Education 13 5 12 2 13 4 0.19 .0.05

MMSE 29.27 1.11 28.26 2.86 27.93 3.69 2.46 .0.05

Verbal Fluency 17.60 4.02 14.26 4.75 14.36 4.61 5.24 0.01 ! !

Boston 14.68 0.57 12.63 1.54 12.71 2.02 23.64 ,0.0001 ! !

Word List Average 7.43 1.06 6.81 1.40 5.21 2.04 13.39 ,0.0001 ! !

Word Recall 8.38 1.25 6.95 1.68 4.79 2.64 23.67 ,0.0001 ! ! !

Praxis 10.63 0.70 9.89 1.33 9.36 1.91 6.74 ,0.0001 ! !

Praxis Recall 10.55 1.93 8.84 2.99 9.57 4.16 2.61 .0.05

Values are mean 6 standard deviation. Abbreviations: MCIna, non-amnestic Mild Cognitive Impairment; MCIa, amnestic Mild Cognitive Impairment; MMSE, Mini-Mental
State Examination. For gender the number in brackets is the chi-square p-value. An F-value and a P-value are calculated following an anova. Post-hoc Tukey tests were
performed when group differences were found with anova. Significant differences between specific groups are indicated in the far right columns (Con.MCIa,
Con.MCIna, MCIna.MCIa). ! indicates the presence of significant difference.
doi:10.1371/journal.pone.0032441.t001

Figure 2. Boxplots showing the distribution of diffusion tensor MRI indices for the global WM ROI in control (CON), non-amnestic MCI
(MCIna) and amnestic MCI (MCIa). The boxplots represent the interquartile ranges, which contain 50% of individual subjects’ values. The whiskers
are lines that extend from the box to the highest and lowest values. A line across the box indicates the median values. * p,0.05 on post-hoc Tukey test.
doi:10.1371/journal.pone.0032441.g002
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The projection of the data from low dimensional space to higher

dimensional space is achieved with a kernel function. The optimal

kernel function is usually found by trial and error. In the current

study a radial basis function (RBF) kernel was used to nonlinearly

map samples into a higher dimensional space. RBF kernels use two

parameters: C and GAMMA. GAMMA represents the width of

the radial basis function, and C represents the error/trade-off

parameter that adjusts the importance of the separation error in

the creation of the separation surface. C was fixed to 1 and

GAMMA was fixed to 0.01.

Once the SVM has been trained, a new test subject can be

labelled, based on the distance between the subject and the

separating hyperplane. The distance is used by the classifier to

determine, via Platt’s method [39], the probabilistic score for the

subject and the subject is labelled based on the sign of the score.

Platt’s method uses a sigmoid function to enable receiver operating

characteristic (ROC) curves to be generated. The approach

applied here is to train an SVM first, and then to train the

parameters of an additional sigmoid function to map the SVM

outputs into probabilities. The mathematical framework for this

model is described in detail by Platt [39]. The SMO handles multi-

class (i.e. .2 groups) problems using pairwise classification. In the

multi-class case the predicted probabilities are coupled using

Hastie and Tibshirani’s pairwise coupling method [39].

Classification accuracy was evaluated via 10 times 10-fold cross

validation to ensure performance generalization. For each run of

10-fold cross validation, the data is randomly divided into 10 parts

in which each class is represented in approximately the same

proportions as in the full dataset. Each fold is held out in turn and

the learning scheme trained on the remaining nine-tenths and the

error rate is then calculated on the tenth fold. Thus the learning

procedure is executed a total of 10 times on different training sets.

The 10 error estimates are averaged to yield an overall error

estimate. This procedure was repeated 10 times, resulting in the

learning algorithm being implemented 100 times on datasets that

are all nine-tenths the size of the original [31,32]. This is a

standard procedure in machine learning which reduces the

variation related to data selection and allows results to be averaged

to yield robust calculations of the performance of the SVM.

For the analysis of results, measures of sensitivity, specificity,

accuracy and the area under the curve for the receiver operated

characteristic curve (AUC ROC) are shown. Accuracy is defined

Figure 3. Paradigmatical reduced datasets. Following reduction of the full dataset containing diffusion values from the 130,394 voxels in the
white matter skeleton, to the top 500 voxels that distinguishes between control, MCIna and MCIa subjects, this figure shows representative scatter
plots from one control subject (green), one MCIna subject (orange) and one MCIa subject (red). The diffusion values for the top 500 voxels from each
diffusion index are plotted. Loess regression lines (span = 2/3, polynomial degree = 1) have been fitted through each subject’s dataset. For FA, the
loess regression line through the data points of the control subject are seen as higher than the loess lines through the data points from MCIa or
MCIna subjects. The reverse is the case for DA, DR and MD, with the loess lines through MCIa subjects indicating higher values than the lines through
MCIna or control loess lines. Outliers are excluded from these graphs. For the loess line, the span which determines smoothness was set to 0.66.
doi:10.1371/journal.pone.0032441.g003
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as (TP+TN)/(TP+TN+FN+FP) where TP = True Positive, TN =

True Negative, FP = False Positive and FN = False Negative.

Sensitivity is defined as TP/(TP+FN) and Specificity is defined as

TN/(FP+TN). For further details regarding SVMs and machine

learning the reader is referred to the following textbook [32].

Results

Demographic and Cognitive Characteristics
There were no significant differences between control, MCIna

and MCIa subjects in terms of age, education or MMSE (Table 1).

Both MCIa and MCIna subjects performed significantly worse

than controls in Verbal Fluency, Boston Naming test, Word List

Average, Word Recall and Praxis. MCIa subjects performed

significantly worse than MCIna subjects for Word Recall (Table 1).

Differences in Multiple Indices of Diffusion between
Control, MCIna and MCIa

There were significant differences between control and MCIa

groups in terms of global diffusion for MD and DA indices (Fig. 2).

For FA and DR indices there were no significant differences

between the groups in terms for global diffusion (Fig. 2). However,

there was a trend towards higher FA values in controls relative to

MCIa and MCIna in the FA index (Fig. 2). There was also trend

towards lower DR values for controls relative to MCIa and

MCIna subjects (Fig. 2).

Representative Example of Data Reduction
A paradigmatical image of data that has been reduced using the

ReliefF feature selection algorithm is shown in Figure 3. This is an

example of applying ReliefF to produce the top 500 voxels for

three group classification. One control, one MCIna and one MCIa

subject, is chosen at random, and the FA, DA, DR and MD values

within the top 500 voxels selected by ReliefF are plotted. A general

profile of diffusion is seen with control subjects having the highest

FA values on average, as expected. For DA, DR and MD, it can

be seen that the loess line (span = 2/3, polynomial degree = 1)

running through the MCIa subject shows the highest values, the

MCIna subject shows intermediate values and the control subject

shows the lowest values.

SVM Classification of Control and MCI
For the classification of control and MCI individuals, the highest

sensitivity (93.0%) and specificity (92.8%) were achieved using the

FA index with 500 voxel dataset (Fig. 4).

For the DA, DR and MD indices of diffusion, classification

performance had a sensitivity and specificity in the range of ,74–

86% (Fig. 4). As peak performance of the SVM classifier occurs with

Figure 4. Sensitivity, specificity, accuracy and the area under the curve for a receiver operating characteristic curve (ROC AUC) for
control and MCI classification. The values indicated are weighted averages for the two classes under consideration; i.e. control and MCI. Results
are shown for 7 datasets – 100 voxels, 250 voxels, 500 voxels, 750 voxels, 1000 voxels, 2000 voxels and 3000 voxels. The voxels comprising these
reduced datasets were selected by the ReliefF algorithm.
doi:10.1371/journal.pone.0032441.g004

DTI and Machine Learning
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Figure 5. ROC curve for control and MCI classification. True positives refer to MCI volumes that are correctly classified as MCI, and false
positives refer to volumes that are incorrectly labelled as MCI.
doi:10.1371/journal.pone.0032441.g005

Figure 6. Sensitivity, specificity, accuracy and the area under the curve for a receiver operating characteristic curve (ROC AUC) for
Control, MCIna and MCIa classification. The values indicated are weighted averages for the three classes under consideration; control, MCIna
and MCIa. Results are shown for the 7 datasets – 100 voxels, 250 voxels, 500 voxels, 750 voxels, 1000 voxels, 2000 voxels and 3000 voxels. The voxels
comprising these reduced datasets were selected by the ReliefF algorithm.
doi:10.1371/journal.pone.0032441.g006

DTI and Machine Learning
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the 500 voxel dataset, the receiver operating characteristic (ROC)

curve is shown for this dataset for all 4 indices of diffusion (Fig. 5).

SVM Classification of Control and MCIna, and MCIa
For the control, MCIna and MCIa group classification, the best

results were again obtained using the FA dataset reduced to 500

voxels. This analysis achieved maximum sensitivity of 92.2% and

maximum specificity of 93.37% (Fig. 6). The ROC curve derived

from the 500 voxel datasets are also shown for all four indices of

diffusion. Fig. 7 depicts the ROC curve where true positive refers to a

correctly identified MCIna subject and Fig. 8 depicts the ROC curve

where true positive refers to a correctly identified MCIa subject.

Regions Most influential for Classification
Following classification, we subsequently created images depict-

ing the location of some of clusters of voxels selected the ReliefF

algorithm. For the control versus MCI classification, a significant

cluster of voxels contained within the FA dataset that produced

sensitivity and specificity of 93.25 and 92.8% respectively using the

top 500 voxels was visualised (Fig. 9a). In this instance, we present

Figure 7. ROC curve for control, MCIna and MCIa classification. True positives refer to MCIna volumes that are correctly classified as MCIna,
and false positives refer to volumes that are incorrectly labelled as MCIna.
doi:10.1371/journal.pone.0032441.g007

Figure 8. ROC curve for control, MCIna and MCIa classification. True positives refer to MCIa volumes that are correctly classified as MCIa, and
false positives refer to volumes that are incorrectly labelled as MCIa.
doi:10.1371/journal.pone.0032441.g008

DTI and Machine Learning
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the largest cluster of voxels selected by ReliefF which was located in

the forceps major in the right hemisphere (Fig. 9a).

For the classification of control, MCIna and MCIa subjects, the

best classification performance was obtained with the FA dataset

reduced to 500 voxels. Thus, two significant clusters in this dataset

were visualized and shown in red (Fig. 9b). Similar to the two

group classification results, a cluster was again located in the

forceps major. A significant cluster was also noted in the fronto-

occipital fasciculus (Fig. 9b).

Discussion

The current results show that it is possible to classify control and

MCI subjects with a high degree of accuracy using an automated

procedure that combines DTI with SVMs. Our results from

control versus MCI classification which achieved a sensitivity of

93.0% and specificity of 92.8% compare favourably with previous

work using DTI or structural VBM data for MCI classification.

The findings are extended to three group classification (control,

MCIna, MCIa), with the FA index again returning the best

performance with a sensitivity of 92.2% and a specificity of 93.4%.

To put these results in perspective, one of the most frequently used

criteria for AD classification are the NINCDS-ARDA guidelines

[26] which have a sensitivity of 81% and specificity of 70% [40].

Therefore, the current automated approach adds to a growing

body of evidence that MRI can be combined with machine

learning algorithms to detect subtle structural damage in the early

stages of Alzheimer’s disease [20,12,13,15,18]. The current results

are also in broad agreement with a recent SVM study which used

DTI measures for the automated diagnosis of MCI subjects [36].

Wee and colleagues adopted a two stage feature selection pipeline

that incorporated Pearson correlations and an SVM-RFE

algorithm [41,42]. This two stage sieving process is in contrast

to the use of a single algorithm (ReliefF) for feature selection in the

current study. The combined use of multiple indices of diffusion

together with fiber count measures provided Wee and colleagues

with an ‘‘enriched’’ classifier which produced an accuracy of 88%

for control and MCI classification which is comparable to the

accuracy achieved in the current study. Interestingly, a number of

recent machine learning papers, agree with the current findings

that the FA index is the optimal diffusion index for MCI and AD

classification [20,34,36].

The current work also identifies the regions selected by the

ReliefF program that are most useful for successful classification.

For the classification of control and MCI groups, areas of the

forceps major and the splenium were found to be particularly

useful for this two group classification. Both of these regions have

been shown to be compromised in MCI in previous studies [43].

This is of interest as the forceps major connects the temporal and

parietal cortices and passes through the splenium [44]. This result

is consistent with findings that the tempo-parietal connections may

be affected in MCI via damage to the splenium. Previous studies

have also found the splenium to be damaged in AD [45,46], while

in MCI, GM volume loss has consistently been localised to the

medial temporal lobes and posterior cingulate [47,48].

For the classification of three groups (control, MCIna and

MCIa) ReliefF selected a significant cluster in the forceps major

overlapping closely with the cluster selected for two group

classification. A significant cluster in the fronto-occipital fasciculus

(FOF) [49] was also identified. This also agrees with previous work

that has found the FOF to be compromised in MCI and AD

[50,51]. We should stress that the ReliefF algorithm is attempting

to find the most useful voxels that will aid the classification task

that is defined for each particular experiment. Thus the 500 voxels

that ReliefF selects for Control versus MCI classification will not

be exactly the same as the 500 voxels selected for three group

classification.

Joint TBSS/SVM analysis allows information to be harnessed

from the entire brain, which is a significant advantage over the

ROI approach that is frequently focused on the temporal lobe

[52]. The current methodology obviates the need for the labour

intensive selection and creation of ROIs and consequently, the

approach outlined here may be suitable for use in a clinical setting.

The clinical methods used by the NINCDS-ADRDA guidelines

are very time consuming, while an automated approach would

potentially facilitate a more efficient and objective way to

streamline classification. The need for accuracy in the classifica-

tion of MCI subjects is underlined by the fact that the MCIa group

is at greatest risk from developing AD, while those with MCIna

may progress to other forms of dementia [26]. A method which

can stratify these two MCI subgroups will be of use both in the

clinic and in large scale drug trials.

Also comparable to our results, a recent study has achieved

accuracy rates of 90% when distinguishing control versus MCI

Figure 9. Top 500 voxels selected for classification by the
Relieff algorithm. (a) Classification of control and MCI groups. The
highest accuracy for this classification was achieved by the FA index.
Here we show a cluster of voxels selected by the algorithm which is
located in the forceps major. (b) Classification of control, MCIna and
MCIa groups. For this classification of three groups, the highest
accuracy was again achieved with the FA index. Here we show two
significant clusters of voxels selected by Relieff. Similar to the two group
classification, the forceps major was also implicated in three group
classification. An additional significant cluster is located in the fronto-
occipital fasciculus. Both (a) and (b) show the same sagittal slice in the
right hemisphere (x = 29).
doi:10.1371/journal.pone.0032441.g009

DTI and Machine Learning

PLoS ONE | www.plosone.org 9 February 2012 | Volume 7 | Issue 2 | e32441



using GM, WM and CSF volumes in conjunction with SVMs [18].

Previous PET studies have achieved 84% sensitivity at 93%

specificity for the classification of control versus very mild probable

AD cases [53]. PET has also been used to distinguish between AD

and vascular disease with an accuracy of 80–86% accuracy [54].

Overall, our results compare favourably with accuracy rates to

date, while the robustness and generality of the current method is

ensured by the use of 10 times 10-fold cross-validation [32]. This

method of cross validation reduces the effect of random variation

when different folds are selected [31].

Some limitations of the study should be noted. In order to further

validate the current findings, training and classification on multi

centre data is now warranted. This is currently being pursued as

part of the European DTI Study in Dementia (EDSD) initiative. For

this future study the feature selection method using ReliefF will be

incorporated into a nested cross-validation. While the current

approach uses a feature selection framework similar to previous

studies [20], this approach may be overly optimistic due to selection

of features from the full dataset. The future validation of the current

framework will also incorporate an assessment of a single

‘‘enriched’’ parameter based on a combination of all diffusion

indices. The cross-sectional nature of the current data should also be

noted. We do not have follow-up data and thus do not know which

participants subsequently developed AD or alternatively remained

stable without deteriorating further. A key aspect of machine

learning in Alzheimer’s disease is the distinction between progres-

sive and stable forms of MCI. However, while such an analysis is not

possible in the current cohort, a longitudinal study using the

machine learning methodology outlined here is planned.

Overall, the current study demonstrates the use of DTI in

conjunction with SVMs as a powerful tool for MCI classification

that may be of potential use in the clinic. A fully automated

procedure of this kind is an appealing alternative to cognitive

batteries which are both subjective and time consuming. The

pipeline outlined in the current study aims to create an SVM

classifier that successfully learns the structural differences between

MCI and normal healthy older people. The results are

encouraging and suggest that this framework may provide a novel

and efficient approach to the clinical diagnosis of mild cognitive

impairment in the future.
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