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Abstract

We present a computational method for the reaction-based de novo design of drug-like molecules. The software DOGS
(Design of Genuine Structures) features a ligand-based strategy for automated ‘in silico’ assembly of potentially novel
bioactive compounds. The quality of the designed compounds is assessed by a graph kernel method measuring their
similarity to known bioactive reference ligands in terms of structural and pharmacophoric features. We implemented a
deterministic compound construction procedure that explicitly considers compound synthesizability, based on a
compilation of 25’144 readily available synthetic building blocks and 58 established reaction principles. This enables the
software to suggest a synthesis route for each designed compound. Two prospective case studies are presented together
with details on the algorithm and its implementation. De novo designed ligand candidates for the human histamine H4

receptor and c-secretase were synthesized as suggested by the software. The computational approach proved to be
suitable for scaffold-hopping from known ligands to novel chemotypes, and for generating bioactive molecules with drug-
like properties.
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Introduction

De novo design aims at generating new chemical entities with

drug-like properties and desired biological activities in a directed

fashion [1,2]. This goal corresponds to the major task of the early

drug discovery process and comprises a considerable fraction of

the effort spent by pharmaceutical companies and academic

groups in order to develop new treatments for diseases. De novo

design is complementary to high-throughput screening in its

approach to find innovative entry points for drug development [3].

Instead of searching for bioactive molecules in large collections

of physically available screening compounds, de novo design

‘invents’ chemical structures from scratch by assembling mole-

cular fragments. Computer-assisted approaches to de novo design

automate this process by generating hypothetical candidate

structures in silico. Although related areas of computer-aided drug

development (e.g. virtual screening, quantitative structure-activity

relationship modeling) have gained substantial attention in terms

of publication numbers, de novo design has witnessed a constant

evolution ever since the first computational methods have emerged

in the late 1980s [2]. A number of reviews on this topic have been

published recently, providing a comprehensive overview of the

field [1–4].

Most of the approaches to de novo design attempt to mimic the

work of a medicinal chemist: molecules are synthesized (virtually

assembled from fragments), tested for their biological activity

(computationally evaluated by a scoring function), and the insight

gained serves as the basis for the next round of compound

generation (optimization). De novo design methods differ in the way

they search for, assemble, and score the generated molecules. For

example, scoring can either be performed by computing some

similarity index of candidate compounds and known reference

ligands (ligand-based approach) or based on the three-dimensional

(3D) structure of a ligand-binding cavity (receptor-based approach).

Irrespective of the particular technique used, automated de novo

design has always been confronted with the issue of synthetic

accessibility [1,5]. It may be argued that this is one of the main

reasons why de novo design software has only rarely been subjected

to practical evaluation [3]. An overview of successful de novo design

studies is provided in a recent review article by Kutchukian and

Shakhnovich [4].

Only a small fraction of all molecules amenable to virtual

construction can in fact be synthesized in a reasonable time frame

and with acceptable effort. De novo design programs tackle this

issue by employing rules to guide the assembly process. Such rules

attempt to reflect chemical knowledge and thereby avoid the

formation of implausible or unstable structures. For example, some

assembly approaches prevent connections between certain atom

types, and finally the formation of unwanted substructures [6,7].

Other strategies employ chemistry-driven retrosynthetic rules
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capturing general principles of reaction classes [2]. A prominent

example of this kind of rule set is the RECAP [8] (retrosynthetic

combinatorial analysis procedure), which is also used by some de

novo design tools [9–12]. The software SYNOPSIS [13] follows a

conceptually even more elaborate approach by connecting

available molecular building blocks using a set of known chemical

reactions. This enables the software to suggest reasonable synthesis

pathways along with each final compound.

Here, we present a new approach to computer-assisted de novo

design of ligand candidate structures, and describe its implemen-

tation in the software tool DOGS (Design Of Genuine Structures).

DOGS represents a medicinal chemistry-inspired method for the

de novo design of drug-like compounds, placing special emphasis on

the synthesizability of the designed molecules. The software not

only suggests new compounds, but also provides at least one

motivated, hypothetical synthesis pathway per ligand candidate

structure. The assembly process is based on available molecular

building blocks and a set of established reaction principles. This

strategy forces the program to follow construction pathways that

represent direct blueprints of possible synthesis routes. The

synthesis pathways generated and output by the software include

vendor catalog identifiers of the building blocks and references to

the underlying synthesis protocols.

DOGS grows new molecules in a deterministic and stepwise

process: in each step, complete enumeration of a subspace of all

possible solutions is performed. Following a greedy strategy, top-

scoring intermediate products are submitted to subsequent

growing steps. The quality of designed (intermediate) products is

assessed by a ligand-based scoring scheme. Similarity to a

reference ligand is computed by a graph kernel method. Two

different graph representations of molecules (molecular graph and

reduced graph) have been implemented to allow for different levels of

abstraction from the two-dimensional molecular structure.

In a recently published work, we have successfully applied

DOGS in a first prospective study to designing a selective inhibitor

of human Polo-like kinase 1 (Plk1) in its inactive (DFG-out

activation-loop) conformation [14]. One of the compounds

suggested by DOGS was selected for synthesis based on a series

of post-design analyses and human inspection. Following the

proposed synthesis route, the compound was accessible and found

to have the desired biological effect and selectivity profile in vitro.

The Plk1 study focused on the practical use case and only pro-

vides a brief description of the method. Here, we disclose the

algorithmic details and give a full description of the implemen-

tation. We present a theoretical evaluation of the software with

respect to general properties of designed compounds, and show its

ability to suggest well-motivated bioisosteric replacements. We also

present two new prospective case studies: Three compounds

designed by DOGS (two suggested as modulators of c-secretase

and one as an antagonist of human histamine H4 receptor) were

selected for chemical synthesis and subsequently tested for in vitro

bioactivity. In all cases, the proposed synthesis plan was readily

pursuable as suggested by the software.

Methods

Library of Chemical Reactions
The DOGS algorithm builds up new candidate structures

by mimicking a multi-step synthesis pathway. This strategy is

supposed to deliver a direct blueprint for the actual synthesis of

proposed candidate structures. For this approach, established

reaction protocols need to be formalized in order to make them

processable by a computer. Reactions were encoded using the

formal language Reaction-MQL [15]. The specification of a

reaction as a Reaction-MQL expression consists of a reactant side

on the left and a product side on the right. A reactant is specified

only by the substructure that is directly involved or essential for the

reaction (reaction center) in order to make the description applicable

to a broad spectrum of reactants with variable substituent groups

(R-groups). The product is described by bond rearrangements

caused by the reaction (Figure 1). All Reaction-MQL represen-

tations used in this work feature reactants with variable R-groups

to keep them as generic as possible. Catalysts and invariant

reactants are not denominated in the reaction expressions.

DOGS implements 83 reactions (termed coupling reactions in the

following), 58 of which are unique and 25 represent either charge

variations (reactants) or regioisomer variations (products) of one of

the unique reactions. The complete list of reactions is provided in

Table S1 in Text S1, supplementary material. Out of the 58

unique reactions, 34 describe ring formations. All reactions require

one or two reactants (referred to as one- or two-component reactions,

respectively) and result in a single product (ARB; A+BRC). In

case a reaction generates regioisomers, it is split into two separate

Reaction-MQL expressions, each describing one of the regioi-

somer products.

Building Block Library for Virtual Synthesis
A subset of the Sigma-Aldrich (Sigma-Aldrich Co., 3050 Spruce

St, St. Louis, MO 63103, USA) catalog containing 56,878

chemical building blocks was downloaded from the ZINC

database [16,17]. These compounds served as a basis for the

Figure 1. Encoding of reactions. Example of a Paal-Knorr pyrrole
reaction encoded as Reaction-MQL expression (top). Reactant substruc-
ture descriptions (left part) are separated by ‘++’. The product (right
part) is separated from the reactants by ‘.. ID ..’ where ID is an
arbitrary identifier of the reaction. A direct structural representation of
the line notation description including atom identifiers is shown in the
center. The conventional structural representation of the reaction
(bottom) denotes variable parts of molecules by R-groups (Rx).
doi:10.1371/journal.pcbi.1002380.g001

Author Summary

The computer program DOGS aims at the automated
generation of new bioactive compounds. Only a single
known reference compound is required to have the
computer come up with suggestions for potentially
isofunctional molecules. A specific feature of the algorithm
is its capability to propose a synthesis plan for each
designed compound, based on a large set of readily
available molecular building blocks and established
reaction protocols. The de novo design software provides
rapid access to tool compounds and starting points for the
development of a lead candidate structure. The manu-
script gives a detailed description of the algorithm.
Theoretical analysis and prospective case studies demon-
strate its ability to propose bioactive, plausible and
chemically accessible compounds.

De novo Design
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extraction of the final set of building blocks by a three-step

preparation protocol.

In the first step, building blocks were standardized, and

unsuitable entries were eliminated. For this purpose, a prepro-

cessing routine was developed and implemented using the software

MOE (version 2009.10; Chemical Computing Group, Suite 910,

1010 Sherbrooke Street West, Montreal, Quebec, Canada):

N Compounds with a molecular mass of less than 30 Da or more

than 300 Da were removed.

N Compounds containing more than four rings were removed.

N Compounds with any element type other than C, N, O, S, P,

F, Cl, Br, I, B, Si, Se were removed.

N Compounds containing more than three fluoride atoms were

removed.

N Compounds featuring atoms with incorrect valences were

removed.

N Compounds containing unwanted substructures were removed

according to the recommendations by Hann et al. [18] (cf.

Figure S1 in Text S1, supplementary material).

N Protonation states and formal charges were set according to

MOE’s washing routine (carboxylic acids were deprotonated;

most of the primary, secondary and tertiary amines were

protonated).

N Duplicate entries were removed.

In the second step, the filtered compound set was subjected to a

collection of preprocessing reactions. A set of 15 functional group

addition (FGA) and functional group interconversion (FGI)

reactions was compiled from the literature and encoded as

Reaction-MQL expressions (for a complete list of preprocessing

reactions see Table S2 in Text S1, supplementary material). FGA

and FGI reactions are supposed to introduce reactive functional

groups to building blocks to make them applicable to coupling

reactions during the virtual compound construction process. Each

time a building block was converted by any of the 15 reactions its

original version was kept, and the converted building block was

added to the library.

The third and final step of the preparation process comprises

the annotation of reactive substructures (i.e. which building block

can act as a reactant for which reaction). In order to be annotated

as a reactant for a reaction, a building block has to match one of

the reactant’s substructure definitions exactly once. Forbidding

the same functional group to be present multiple times is

supposed to avoid unwanted side products or the need for

excessive use of protecting groups in the actual chemical

synthesis. (Please note that in the current version of the software

no additional effort is made to estimate the reactivity of

competing functional groups.) After annotation, building blocks

are stored in a MySQL (Oracle Corporation, 500 Oracle

Parkway, Redwood Shores, CA 94065, USA) database. The

resulting building block library accessible to DOGS contains

25’144 entries.

Construction Algorithm
DOGS generates new molecules by iterative fragment assem-

bly. The design cycle comprises the modification of a current

intermediate product by applying one of the chemical reactions

from the library, i.e. the extension of the intermediate product

(growing step). The product of a design cycle is an intermediate

compound, which is modified in the subsequent iteration. A design

cycle features two steps:

Step 1: Selection of the applied reaction. An

intermediate product Z will typically exhibit more than

one functional group that can be addressed by reactions

from the reaction library. Each of these groups can

potentially serve as an attachment point (AP) to connect

another building block. In order to identify the most

promising AP of Z and the reaction to apply, we used

minimal dummy fragments. A minimal dummy fragment is a

virtual molecule that exclusively features the minimal

structural demands that have to be fulfilled in order to

participate in a certain reaction. This concept is

supposed to estimate the smallest structural changes a

reaction will introduce (Figure 2). A one-component

reaction does not define any minimal dummy fragment.

It can directly be applied to a molecule without the

involvement of a second variable reactant contributing

any atom to the formed product. Thus, structural

changes to Z do not need to be estimated but are

determined by simply applying the reaction. In contrast,

a two-component reaction defines two minimal dummy

fragments.

For extending an intermediate compound Z, the

algorithm first detects which of the implemented

reactions can be applied to the attachment points

offered by Z. Each of these reactions is applied to Z

with a complementary minimal dummy fragment,

resulting in a list of dummy products. Here, one dummy

product corresponds to exactly one reaction. By

subsequently scoring the dummy products, DOGS

implicitly scores the corresponding reactions. The

reaction yielding the top-scoring dummy product is

pursued in Step 2. In case more than one top-scoring

reaction is identified all of them are considered in Step 2.

Step 2: Selection of a new building block. In case

Step 1 selected a one-component reaction, Z is directly

modified. Otherwise (two-component reaction), the

reaction is performed using all building blocks from

the library holding the respective reactive substructure

(Figure 2). Each generated product is evaluated

according to the scoring function. The top-scoring

compound is selected and represents the extended

intermediate product for the next design cycle. If more

than one intermediate product is scored favorable, all of

them will be considered for the next round. In order to

restrict the number of molecules generated during each

step and to prevent combinatorial explosion, the

maximal number of intermediate products proceeding

to the next extension round was limited to 10.

The algorithm evaluates every building block processed by the

dummy reaction steps according to the scoring function. Each of

the n top-scoring building blocks is considered as a potential

starting point for a distinct synthesis pathway. Parameter n is

defined by the user and controls the number of compounds

resulting from a design run.

Once the design of a new compound based on a selected

starting building block is initiated it will be continued until one of

two stop criteria is fulfilled.

The first stop criterion controls the molecular mass of the

designed compounds. The reference compound’s mass (100%)

defines a relative lower (70%) and upper (130%) bound. A

constructed molecule has to exhibit a molecular mass lying within

these boundaries to be accepted as a valid final product. During

the design of a new molecule the algorithm continuously adds

De novo Design
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building blocks until the constructed intermediate product exceeds

the lower mass boundary. Up to this step the extension of the

intermediate product is accepted even if its score value decreases.

Once the molecular mass of the intermediate product exceeds the

lower mass boundary, the algorithm will only accept a subsequent

extension step if it leads to an improved score. In case the addition

of a building block leads to a lower score or causes the molecular

mass to exceed the upper mass limit, the last reaction step is

neglected and the previous intermediate product is added to the

list of final products.

The second stop criterion is supposed to truncate the number

of synthesis steps to keep proposed synthesis pathways short. A

pathway is interrupted regardless of any other condition when it

exceeds a user-defined maximal number of synthesis steps (set to a

value of four steps in all runs presented in this study). In this case,

the intermediate product formed by the last valid reaction step is

added to the list of final products, and a new synthesis pathway is

initiated based on another starting building block. Figure 3

presents the core of the DOGS compound design algorithm.

DOGS tries to construct at least one compound starting from

each of the n building blocks considered to be the most promising

starting points. It is possible that an initiated synthesis path does

not produce a final product. This happens when the growing

intermediate product does not offer an attachment point to add

another building block before it exceeds the minimal mass limit. In

such a case, DOGS automatically skips this particular synthesis

and increments n by 1 to guarantee that at least n final products

are generated. Typically, a run will result in more than n final

products because synthesis pathways can split if more than one

top-scoring intermediate product is generated. In this case,

multiple final products will be designed on the basis of a starting

building block. All steps of the design algorithm are deterministic,

i.e. two runs of DOGS with identical parameters will deliver

identical results.

Scoring Function
The scoring function assesses the quality of a molecule with

respect to the design objective. Products of each stage of a virtual

synthesis pathway (dummy products, intermediate products, final

products) are evaluated by the same scoring function. DOGS

employs a two-dimensional (2D) graph kernel method (ISOAK

[19]) for scoring the designed molecules. The graph kernel was

originally developed for similarity searching in virtual screening of

compound databases, where it has been applied successfully [20].

ISOAK can be readily employed as a scoring function for ligand-

based de novo design, where, like in virtual screening, similarity to a

given reference ligand (a known bioactive compound) forms the

key objective.

Briefly, ISOAK computes similarity values for two molecules

based on their 2D topological structures. Molecules are interpreted

as graphs, where atoms are represented as vertices and covalent

bonds as edges between vertices (molecular graph). Hydrogen atoms

are removed from the graph. Vertices are ‘colored’ by one of eight

pharmacophoric feature types assigned to the corresponding

atom (A: hydrogen-bond acceptor, D: hydrogen-bond donor, E:

hydrogen-bond donor & acceptor, P: positive charge, N: negative

charge, R: aromatic, L: lipophilic, 0: no type; the list of atom type

definitions can be found in Table S3 in Text S1, supplementary

material). A recursive definition of similarity between compared

atoms (‘‘two atoms are similar if their neighbors are similar’’) is

iteratively employed until the process converges. Parameter a
controls the influence of the graph neighborhood, where higher

values increase the impact of the neighborhood. Based on

calculated atom-pair similarities, an optimal assignment of each

atom of the smaller graph to one atom of the larger graph is

computed. The assignment maximizes the sum of atom-pair

similarities, which gives the overall similarity of the compared

molecules. Similarity values are adjusted for compound size by

scaling by the number of non-hydrogen atoms.

Reduced Graph Representation
In addition to the molecular graph described in the previous

section, a reduced graph representation of molecules was implement-

ed as an alternative description of molecules. Reduced graphs only

represent the overall topological arrangement of structural

features. The motivation to use them for de novo design was to

encode molecules in a representation featuring a higher level of

abstraction from the molecular composition and constitution.

Similar to the FeatureTrees [21] approach, the reduced graph

representation employed by DOGS reduces cyclic substructures as

well as clusters of ‘lipophilic’ and ‘no type’ atoms to single vertices

(Figure 4A). In general, each ring that is part of the smallest set of

Figure 2. Two-step procedure of an extension cycle. Step 1 (left) selects the reaction by scoring generated dummy products. In the example,
only two reactions can be applied (Suzuki coupling and amide coupling), and the amide dummy product scores favorable. In Step 2 (right), all
reactants from the building block library exhibiting a suitable amine are added to the growing molecule via amide bond formation. The top-scoring
product represents the extended intermediate product and is selected for the next design cycle.
doi:10.1371/journal.pcbi.1002380.g002
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smallest rings (SSSR [22]) is converted to one vertex. Exceptions of

this rule are fused ring systems with atoms belonging to more than

two rings of the SSSR. In this case, it is not possible to represent

each ring as a single vertex and still obtain a simplified acyclic

graph representation of the molecule. Such ‘amalgamated’ ring

systems are reduced to a single vertex as a whole (Figure 4B). In

order to distinguish the reduced graph representation of two

adjacent rings that are connected by a bond and two fused rings

(rings sharing atoms), the corresponding vertices of reduced graphs

representing the rings are connected by an edge of order one

(‘single bond’) in the former case and two (‘double bond’) in the

latter (Figure 4C).

Vertices of reduced graphs are labeled with bit vectors that store

information about the atoms they represent. These bit vectors

consist of ten bits (one for each of the eight atom types, and two

additional bits standing for ‘ring’ and ‘amalgamated ring system’,

respectively). A vertex bit is set if the corresponding feature is

present in the set of atoms the vertex encodes. Vertices not only

store the bit vector but also the number of atoms they represent.

Accordingly, a benzene substructure would be converted to a

single vertex which is labeled by a bit vector with bits for ‘ring’ and

‘aromatic’ set to 1, and stores an atom count of six. Pyridine would

be encoded in the same way, except for the bit ‘hydrogen-bond

acceptor’ being also set to 1.

Bit vectors (bv) and atom counts (ac) are used to compute the

similarity of two vertices A and B of reduced molecular graphs.

The similarity is computed by multiplying two terms (Eq. 1).

f (acA,acB,bvA,bvB)~sdFactor(acA,acB):Ti(bvA,bvB): ð1Þ

Term 1 (sdFactor) returns a value between 0 and 1 depending on

the difference between the atom count values of compared vertices

(Eq. 2), defined as

sdFactor(acA,acB)~

1 if jacA{acBj~0

0:98 if jacA{acBj~1

0:9 if jacA{acBj~2

0:8 if jacA{acBj~3

0:5 if jacA{acBj~4

0:3 if jacA{acBj~5

0 if jacA{acBjw5

8>>>>>>>>>>><
>>>>>>>>>>>:

ð2Þ

Figure 3. Flowchart of the molecule design algorithm. (A) The stop criterion controlling the maximum number of reaction steps is excluded
from the flowchart for simplification. (B) Detailed description of flowchart element B (grey circle). It comprises the key steps taken to extend
intermediate product Z and yield the top-scored intermediate product Ž ( = Z grown by an additional fragment) by applying in silico reactions.
doi:10.1371/journal.pcbi.1002380.g003
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Term 2 (Ti) is the Tanimoto index for bit vector comparison (Eq.

3).

Ti(bvA,bvB)~
c

azb{c
, ð3Þ

where c is the number of bits set to 1 in both vectors, a is the

number of bits set to 1 in bvA and b is the number of bits set to 1 in

bvB. Component sdFactor can be seen as a penalty function for atom

count differences modulating the Tanimoto index. In case the

atom count of compared vertices is equal (e.g. two six-membered

rings are compared), fvc reduces to the Tanimoto index. If the

difference between the atom counts exceeds five, fvc will return 0

regardless of the calculated Ti for the bit vectors.

All other components of ISOAK including the edge comparison

are identical to the molecular graph comparison. ISOAK can only

processes graphs with a maximum vertex connectivity of six, i.e. a

vertex of a graph processed by ISOAK must not have more than

six directly connected neighbors. While this will not happen in

molecular graphs (typically, no element that is present in drug-like

molecules will form more than six covalent bonds), such cases can

occur in reduced graphs. For example, 1H-phenalene (Figure 4B)

is represented as a single vertex and offers up to nine positions for

substitution. Molecules containing vertices with more than six

neighbors in their reduced graph representation are excluded from

subsequent steps and discarded.

The molecular representation used in a design run is selected by

the user, i.e. a DOGS run is either based on the molecular graph

or reduced graph scoring scheme.

Implementation
The DOGS software was implemented in the programming

language Java (Oracle Corporation, 500 Oracle Parkway,

Redwood Shores, CA 94065, USA) version 1.6 and uses the

Chemistry Development Kit (CDK, version 1.0.2) [23,24].

Results/Discussion

Theoretical Analysis: Design of Potential Trypsin
Inhibitors

Our initial theoretical analyses of the algorithm were based on

de novo designed compounds originating from ten distinct DOGS

runs. Five trypsin inhibitors served as reference ligands for these

runs (Figure 5). For each reference, a design run based on the

molecular graph representation (a= 0.875, default of ISOAK) and

a second run applying the reduced graph representation (a= 0.4,

selected based on preliminary empiricism) was performed. The

number of start fragments was set to 200. The ten runs resulted in

a total of 1’767 unique compounds.

Molecular properties. Although successful de novo design

will likely be followed-up by structural optimization of selected

compounds in order to improve their potency and pharmacokinetic

properties, the computer-designed compounds are supposed to

already have drug-like properties in the first place. In order to

assess the drug-likeness of molecules generated by DOGS, violations

of Lipinski’s ‘rule of 5’ [25] were recorded for the 1’767 molecules

using a descriptor implemented in the software MOE. An analysis of

the Lipinski ‘rule’ violations revealed that most of the compounds

(79%) constructed by DOGS violate less than two rules (Figure 6A).

Only 52 proposed molecules (3%) cause three violations. The

distribution of designed compounds mirrors the one of the reference

ligands. A second analysis of the drug-likeness of DOGS designs was

carried out for the same set of designed compounds using an artificial

neural network [26]. This classifier was trained on a set of drugs and

presumed non-drugs to score molecules between 0 (low drug-likeness)

Figure 4. Reduced graph representation. (A) An example of a reduced graph representation. Dashed lines connect atoms or rings of the
molecule (left) with their corresponding vertex of the reduced graph (right). For clarity only some lines are shown. (B) Examples of polycyclic
(‘amalgamated’) substructures translated to a single vertex in the reduced graph. (C) Edges of order two are used to connect fused rings (bottom) in
order to distinguish the shown cases of neighbored rings in reduced graph representation.
doi:10.1371/journal.pcbi.1002380.g004

Figure 5. Known trypsin inhibitors. Five trypsin inhibitors served as
reference compounds for DOGS design runs (Camostat [45], NAPAMP
[46], Efegatran [47], Patamostat [48,49], UK-156406 [50]).
doi:10.1371/journal.pcbi.1002380.g005

De novo Design
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and 1 (high drug-likeness). Out of the 1’767 molecules designed by

DOGS 904 (51%) receive a score of 0.8 or higher (Figure 6B). A

considerable number (436) of the DOGS molecules receive a poor

drug-likeness score below 0.1. This can probably be explained by the

fact that one of the reference compounds receives a low drug-likeness

score (Patamostat, score = 0.11). Compounds designed to maximize

similarity to this reference can be expected to receive poor drug-

likeness scores as well.

Lipophilicity is considered a relevant physicochemical property

for drug candidate molecules [27]. A common parameter closely

related to lipophilicity is the octanol-water partition coefficient

(logP(o/w)) [28]. One of the Lipinski guidelines states that a

logP(o/w) value greater than five decreases the potential of a

molecule to be absorbed [27]. LogP(o/w) values were calculated

for the five trypsin reference ligands and the molecules designed by

DOGS using the logP(o/w) descriptor implemented in MOE

(Figure 6C). The distribution of calculated logP(o/w) values of

DOGS designs approximates a unimodal distribution centered at

2,logP,3. This is in agreement with the distribution of values

calculated for the reference ligands. Apparently, DOGS is able to

mimic this property of the references in the generated compounds,

although it is not explicitly considered during the design.

It is of critical importance that molecules designed in silico not

only exhibit some desired properties but also are amenable to

chemical synthesis in order to be of any practical value for drug

discovery projects. A molecular descriptor (rsynth) implemented in

the software package MOE estimates the ‘synthesizability’ of

molecules as the fraction of heavy atoms that can be traced back to

starting material fragments resulting from retrosynthetic rules. A

score value of 1 means full coverage of atoms and expected high

synthesizability. The rsynth descriptor was calculated for both

the reference set and the set of de novo designed molecules.

Accordingly, most of the DOGS designs are deemed synthesizable,

as 77% of compounds receive a score greater than 0.9. Most of the

remaining designs receive scores between 0.4 and 0.8. Reference

compound UK-156406 was scored low (rsynth = 0.37). A total of

36% (141 of 397) of all DOGS designs scoring below 0.8 originate

from this reference ligand, which exceeds an expected fraction of

Figure 6. Property distributions. Comparison of property distributions between compounds designed by DOGS (left) and the reference
compounds (right). ‘Rule of 5’ violations (A) and logP(o/w) values (C) were calculated using MOE. Dug-likeness scores (B) were computed by a trained
neural network classifier (1 = high drug-likeness).
doi:10.1371/journal.pcbi.1002380.g006
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20% assuming that low-scoring designs are derived from all five

references to equal parts. This means that low synthesizability scores

are enriched for molecules originating from a reference compound

that is scored unfavorably. This finding points to a positive

correlation between the rsynth score of a reference compound and

rsynth scores of derived DOGS compounds, probably due to the

principle of structural similarity underlying the scoring scheme.

However, a larger number of examples will be needed to support

this hypothesis on a solid statistical basis. For each of the five trypsin

reference ligands, we found a consistent trend that design runs based

on the molecular graph representation yield slightly higher averaged

rsynth scores than the corresponding runs using the reduced graph

representation (cf. Table S4 and Figure S2 in Text S1, supplemen-

tary material). Overall, this preliminary result may be considered a

success of the DOGS approach to generate molecules that are

deemed highly synthesizable.

In summary, the majority of the DOGS designs possesses drug-

like properties and is chemically plausible. Most compounds are

deemed being amenable to chemical synthesis. The proposed

molecules resemble the reference compounds in properties that are

not explicitly considered by the scoring function.

Bioisosteric replacement. Bioisosteric replacement [29] of

functional groups is key to successful de novo design. In order to test

DOGS for its ability to perform bioisosteric replacement, the list of

1’767 potential trypsin ligands designed by the software (resulting

from ten runs based on five trypsin inhibitor references) was

ranked according to the scores assigned by DOGS. The top 200

molecules were analyzed for functional groups that replace side-

chains of the reference compounds addressing the S1 pocket of the

enzyme (guanidinium and benzamidine, Figure 7).

Starting at rank position 78 (compounds on higher ranks exhibit

one of the fragments present in the references), DOGS suggested

eleven different side-chains replacing the reference fragments.

Most of them offer the possibility to interact with the negatively

charged aspartate side-chain of the S1 binding pocket of trypsin by

a positively ionizable nitrogen atom. The terminal urea group and

the two aromatic fragments (pyrimidin-2-amine and pyridin-2-

amine) are exceptions, where the nitrogen will likely not carry a

positive charge. The formation of this salt bridge is a known key

interaction inside the S1 pocket [30]. Although salt bridge

formation is unlikely for these three fragments, they might still

be able to form a hydrogen-bond to the aspartate side-chain. In

fact, both pyrimidin-2-amine and pyridin-2-amine act as S1-

addressing moieties in known trypsin inhibitors (Figure 8). In

addition, the list of proposed side-chains contains an alkyl chain

carrying a terminal nitrogen atom. This fragment resembles the

side-chain of lysine, which is part of the substrates occupying the

S1 pocket during peptide bond cleavage [30].

In summary, DOGS was able to suggest reasonable bioisosters

for parts of the reference ligands addressing the S1 pocket of

trypsin, including experimentally validated examples.

Examples of designed compounds. Two examples selected

from the list of structures proposed by DOGS as potential trypsin

inhibitors are presented in Figure 9. Compounds 1 and 2 were

obtained from design runs based on Efegatran and Camostat.

Compound 1 (originating from the reference ligand Efegatran)

features a central sulfonamide moiety that is not present in

the reference molecule. In this example, DOGS replaced a

substructure of the reference by a structurally different but

presumably isofunctional fragment that is found in other trypsin

inhibitors (for example in NAPAMP and UK-156406, Figure 5).

The guanidinium side-chain of Efegatran was exchanged by the

structural analog 3-methylguanidinium. The overall composition

of functional groups in compound 1 resembles the topological

arrangement in the reference. The synthesis route proposed by

DOGS will probably have to be augmented by the use of

protection groups. For example, the formation of the ester bond in

the last synthesis step can be disturbed by the competing formation

of an amide bond with the primary amine of reactant 2-

aminocyclopentanol. Protection of the amine group could solve

this problem. Note that DOGS currently does not consider

protection groups. Competing side reactions are only addressed by

avoiding multiple occurrences of the same functional group in a

reactant.

Compound 2 was derived using Camostat as reference ligand.

Compared with the former example of molecule 1, computer-

generated molecule 2 is structurally more distinct from its

reference. While the guanidinium group of the reference is

preserved, it is connected to an alkyl chain instead of a phenyl

ring. Alkyl linkers connecting the guanidinium group can also be

found in Efegatran and in the side-chain of arginine, a natural

substrate of the trypsin S1 pocket [30]. An aromatic substructure

distant from the part addressing the S1 pocket is another feature of

compound 2 that can be found in known trypsin ligands as well (cf.

NAPAMP, Figure 5). As the main goal of de novo design is the

generation of isofunctional but structurally novel molecules,

compound 2 might be considered a potential candidate for

further investigations.

Figure 7. Bioisosteric replacement. Side-chains addressing the S1 pocket present in the reference compounds (left) and surrogates suggested by
DOGS found in top-scored 200 designs (right).
doi:10.1371/journal.pcbi.1002380.g007

De novo Design

PLoS Computational Biology | www.ploscompbiol.org 8 February 2012 | Volume 8 | Issue 2 | e1002380



Prospective Study 1: c-Secretase
DOGS was employed to propose candidate structures as new

modulators of c-secretase, an aspartic protease that cleaves the

amyloid precursor protein (APP) and generates potentially toxic

amyloid-b (Ab) peptides [31]. Formation and accumulation of

soluble Ab oligomers in the brain is thought to be a primary

pathological event in Alzheimer’s disease [32]. c-Secretase

modulators shift the product ratio of APP processing from the

highly amyloidogenic Ab42 peptides towards shorter Ab frag-

ments with a lower propensity to aggregate like Ab38 [31,33].

Four different reference ligands known to modulate c-secretase

were selected. For each reference compound, two DOGS runs

(molecular graph representation, a= 0.875; reduced graph

representation, a= 0.4) were performed. The resulting eight

compound lists were visually inspected, and two appealing ligand

candidates 3 and 4 were selected for synthesis (Figure 10).

Synthesis plans were readily traceable as suggested by the

software. One-step reactions yielded the desired products in both

cases. Hence, DOGS demonstrated its ability to come up with

compounds considered as promising candidates by medicinal

chemists and proved to be chemically accessible as suggested (cf.

Figure S3, Figure S4, Protocol S1 and Protocol S2 in Text S1,

supplementary material). Synthesized compounds were tested for

their ability to modulate the c-secretase product spectrum as

previously described [34]. CHO cells with stable overexpression

of human APP and presenilin-1 were treated with increasing

concentrations of 3 and 4. Subsequently, concentrations of secreted

Ab peptides were detected in cell supernatants by sandwich ELISA

using C-terminus specific antibodies that distinguish between Ab38,

Ab40, and Ab42 peptide species [34]. ELISA results indicate

inverse modulation of c-secretase activity (cf. Figure S5 in Text S1,

supplementary material). Compound 3 induced a dose-dependent

increase in Ab42 levels with a concomitant decrease in Ab38 levels.

Similar results were obtained for compound 4. This pattern of

inverse c-secretase modulation has previously been observed, e.g.

with derivatives of the non-steroidal anti-inflammatory drug

indomethacin [35]. Although inverse c-secretase modulation is

not the effect intended for potential treatment of Alzheimer’s

disease, these results clearly show that DOGS is able to design

compounds with pharmacological activity on the macromolecular

target. Compounds 3 and 4 can serve as tool compounds and –

more importantly – as starting points for an optimization of the

pharmacological profile by structural modification.

Prospective Study 2: Human Histamine H4 Receptor
Histamine is a biogenic amine involved in a plethora of

signaling pathways as a messenger. Four subtypes of histamine

receptors (hH1R – hH4R) are known in human. All subtypes

belong to class A (rhodopsin-like) of the G-protein coupled

receptor (GPCR) superfamily [35,36]. Some antagonists of hH1R

and hH2R are approved drugs for the treatment of allergic

reactions and ulcer. Clinical trials of hH3R antagonists for the

Figure 9. Suggested trypsin inhibitors. Compounds 1 and 2 were proposed by the software as potential trypsin inhibitors. Reference ligands
(Efegatran [47], Camostat [45]) and suggested synthesis pathways are presented for both candidate structures.
doi:10.1371/journal.pcbi.1002380.g009

Figure 8. Side-chains addressing the S1 pocket of trypsin.
Known inhibitors of trypsin exhibiting pyrimidin-2-amine [51] (left) and
the pyridin-2-amine [52] (right) side-chains (grey circles). These moieties
were also suggested by DOGS as bioisosters for side-chains of the
reference ligands addressing the S1 pocket of trypsin.
doi:10.1371/journal.pcbi.1002380.g008

De novo Design

PLoS Computational Biology | www.ploscompbiol.org 9 February 2012 | Volume 8 | Issue 2 | e1002380



therapy of diseases of the central nervous system, such as epilepsy,

schizophrenia and sleep/wake disorders are currently in progress

[37].

We applied DOGS to provide ideas for new selective

antagonists or inverse agonists of hH4R. For this purpose, two

reference ligands (an inverse agonist and an antagonist) were

employed (Figure 11). For each reference, the molecular graph

representation (a= 0.875) as well as the reduced graph represen-

tation (a= 0.4) was applied, resulting in a total of four DOGS runs.

Three prioritized designs 5–7 are presented in Figure 11.

N-methylpiperazine is present in both reference compounds.

This moiety is often used as a basic head group in H4 receptor

ligands [38]. The positive charge of basic amines is believed to

form a key interaction to a negatively charged amino acid

side-chain of the protein [39]. While in compound 5 the N-

methylpiperazine moiety is preserved, it is replaced in 6 and 7 by

isofunctional groups. Both represent aliphatic rings with basic

nitrogen atoms, which provide a chance to undergo the charge-

mediated interaction with the receptor. Localization of aromatic

ring systems of the reference compounds is also approximately

kept within the proposed structures.

The attempt to follow the synthesis scheme proposed for

compound 5 was not continued after facing solubility problems of

the aminothiazole building block, which led to extremely poor

yields of the intermediate product. Awkward behavior of reactant

building blocks represents one potential problem of the transition

from in silico to bench synthesis, illustrating the demand of this

endeavor.

Compound 7 was deemed to be of special interest, as it

combines two structural elements that can be found in reported

H4R ligands: an alkylic linker chain with an ether bridge and a

central triazole ring (Figure 12). Notably, both structural elements

are absent from the reference compound. The moderate affinity of

the triazole-carrying ligand 8 (Ki = 35 mM) [40] may be caused

by a missing hydrogen-bond acceptor in the central part, an

interaction site that is believed to play a role in ligand binding to

H4R [39]. The oxygen atom of the ether bridge present in

designed compound 7 and H4R ligand 9 [41] is able to act as a

Figure 10. Automated design of c-secretase modulators. Compounds 3 and 4 were proposed by DOGS as potential modulators of c-
secretase. Synthesis plans were suggested by the software and successfully pursued. Molecules 3 and 4 originate from distinct runs based on
different reference ligands [53].
doi:10.1371/journal.pcbi.1002380.g010

Figure 11. Automated design of H4 ligands. Compounds 5 and 6 were proposed by DOGS based on an inverse agonist of hH4R [40] (A).
Compound 7 is a design originating from the hH4R antagonist JNJ7777120 [54] (B).
doi:10.1371/journal.pcbi.1002380.g011
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hydrogen-bond acceptor. The ISOAK scoring function of DOGS

assigns this oxygen to the carbonyl oxygen of the reference, which

also represents a hydrogen-bond acceptor.

In order to test for the hypothesis that a combination of the

features – as found in compound 7 – might lead to hH4R affinity,

compound 7 was selected for synthesis and testing. The synthetic

procedure was realized exactly as suggested by the software

(cf. Figure S6, Protocol S3 in Text S1, supplementary material).

Binding affinity of compound 7 was determined in a competitive

binding assay by measuring displacement of radioactively labeled

[3H]histamine bound to hH4R [42]. Membrane preparations of

insect Sf9 cells expressing hH4R together with G-protein subunits

Gai2 and Gb1c2 were performed to yield the protein. A similar

assay was used to measure the activity on hH3R (reference ligand:

[3H]Na-methylhistamine) [43]. Compound 7 exhibits only very

weak affinity to hH4R. From three measurements, a mean Ki of

4366137 mM was determined. Comparable results were found

for the activity of 7 on the hH3R receptor (Ki = 4666209 mM,

averaged over four distinct tests).

A reason for the weak affinity of 7 might be a missing hydrogen-

bond donor in the central part, which has been suggested to play a

role in the interaction of some known H4 ligands with the receptor

[39,44]. In fact, the nitrogen atom of the indole moiety of

reference compound JNJ7777120 can act as a hydrogen-bond

donor. Introduction of a hydrogen-bond donor to the central part

and the exchange of the piperazine head group against N-

methylpiperazine represent comparably small structural changes

to compound 7 and might be considered as first steps to improve

binding affinity.

Additionally, compound 7 was tested against a panel of 30 other

human GPCRs (assays were performed by Cerep, Le bois

l’Evêque, 86600 Celle l’Evescault, France; human GPCRs tested:

A2A, A2B, A3, a1A, a1B, a2C, b1, b2, CCK1 (CCKA), D1, D3, D4.4,

H1, H2, M1, M2, M3, M4, M5, NK1, d2 (DOP), k (KOP), m (MOP),

5-HT1D, 5-HT2A, 5-HT2B, 5-HT2C, 5-HT4e, 5-HT6, 5-HT7).

Notably, an agonistic effect on the k opioid receptor (21% of the

effect of the reference agonist U50488, EC50 = 1.2 nM, n = 2), and

antagonistic effects on the d2 opioid receptor (76% residual activity

of the receptor in the presence of the reference agonist naltrindole

(IC50 = 0.37 nM, n = 2) and the 5-HT1D receptor (62% residual

activity of the receptor in the presence of the reference agonist

methiothepin, IC50 = 1.1 mM, n = 2) were observed. For other

GPCRs in the panel only weak responses in the single digit or low

double-digit percent range were found. These findings suggest

that, while lacking high affinity and selectivity to the primary

target hH4R, compound apparently 7 features a general

pharmacophore motif of aminergic GPCRs ligands.

Although the DOGS design approach is capable of suggesting

compounds of practical relevance, a potential improvement to

scoring would be to directly incorporate knowledge of a particular

pharmacophore, i.e. the requirement for a particular spatial

arrangement of potential interaction sites. This is only implicitly

considered by the current scoring scheme, which can lead to high

scores for designs exhibiting a spatial rearrangement of interaction

sites. We therefore consider combining the design algorithm with

scoring functions capable of taking 3D pharmacophore models

into account in future versions of the software.

In conclusion, we present a detailed description of a new

method for automated de novo design. The software had already

shown its potential to suggest selective and potent new compounds

together with a pursuable route to synthesize them in a previous

study [14]. Here, we provide in-depth insight into the algorithm

and analyze it theoretically. In addition, two prospective case

studies on automated design of bioactive compounds are

presented. An important feature of the algorithm is its minimal

demand for prior knowledge about the biological target. A single

reference compound is sufficient to have the algorithm come up

with suggestions for active compounds. This feature might be of

special merit for drug discovery addressing structurally unexplored

targets. However, despite these advances generating innovative

and patentable molecules with biological activity from scratch

remains a demanding goal. Current software solutions to this

problem are far away from being ‘click-and-harvest’ applications

guaranteed to produce readily exploitable results. De novo design

relies on the thoughtful intervention and support of a human

expert. Nevertheless, it can be a valuable source of inspiration and

new ideas for medicinal chemistry.

Supporting Information

Text S1 Supplementary material comprises coupling reactions,

preprocessing reactions, unwanted substructures, description of

pharmacophore substructures, synthesis protocols and analytical

data.
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