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Non–technical Summary

In this paper, we propose a multivariate generalization of the normal mixture GARCH

model originally proposed in Haas, Mittnik, and Paolella (2004a, an earlier version has also

been published as CFS Working Paper 2002/10). One of the most characteristic properties

of this model is that it explicitly allows the evolution of risk inherent in a given financial

position to depend on—unobservable—states of the market, such as, for example, bull and

bear markets. This meets frequently expressed concerns about standard GARCH models,

which are not able to capture state–dependent volatility dynamics.

As shown in Alexander and Lazar (2004, 2005), and Haas, Mittnik, and Paolella (2004a,b)

for a considerable number of financial return series, the normal mixture GARCH model is

well suited for modeling and forecasting the volatility of financial assets such as stocks and

currencies, and consistently outperforms many competing approaches both in– and out–of–

sample. However, while the existing literature on normal mixture GARCH models is confined

to univariate processes, many applications in finance are inherently multivariate and require

us to understand the dependence structure between assets. For example, in portfolio man-

agement, correlations between assets are often of predominant interest, because the size of

the correlations determines the degree of risk reduction which can be achieved by efficient

portfolio diversification. However, there is evidence that stock returns exhibit stronger de-

pendence in bear markets, when volatility is high and market returns are decreasing. This

issue is of considerable importance for portfolio selection and risk management, because it is

in times of adverse market conditions that the benefits from diversification are most urgently

needed. Models not taking into account the state–dependent correlation structure will thus

tend to overstate the benefits of diversification in bear markets, and, consequently, they will

underestimate the risk during such periods.

We discuss this and further implications of the mixture approach to multivariate GARCH

models in the paper, and demonstrate their empirical relevance in an application to stock mar-

ket returns. Moreover, we address issues of parametrization, estimation, and model selection,

and we derive various relevant dynamic properties of the multivariate normal mixture GARCH

process.



Nichttechnische Zusammenfassung

Die vorliegende Arbeit ist einer multivariaten Verallgemeinerung des sog. Normal Mixture

GARCH Modells gewidmet, dessen univariate Variante von Haas, Mittnik und Paolella (2004a,

siehe auch CFS Working Paper 2002/10) vorgeschlagen wurde. Dieses Modell unterscheidet

sich von traditionellen GARCH–Ansätzen insbesondere dadurch, dass es eine Abhängigkeit der

Risikoentwicklung von – typischerweise unbeobachtbaren – Marktzuständen explizit in Rech-

nung stellt. Dies wird durch die Beobachtung motiviert, dass das weit verbreitete GARCH

Modell in seiner Standardvariante auch dann keine adäquate Beschreibung der Risikodynamik

leistet, wenn die Normalverteilung durch flexiblere bedingte Verteilungen ersetzt wird. Zus-

tandsabhängige Volatilitätsprozesse können etwa durch die variierende Dominanz heterogener

Marktteilnehmer oder durch wechselnde Marktstimmungen ökonomisch zu erklären sein.

Anwendungen des Normal Mixture GARCH Modells auf zahlreiche Aktien– und Wech-

selkurszeitreihen (siehe z.B. Alexander und Lazar, 2004, 2005; und Haas, Mittnik und Paolella,

2004a,b) haben gezeigt, dass es sich zur Modellierung und Prognose des Volatilitätsprozesses

der Renditen solcher Aktiva hervorragend eignet. Indes beschränken sich diese Analysen bisher

auf die Untersuchung univariater Zeitreihen. Zahlreiche Probleme der Finanzwirtschaft er-

fordern jedoch zwingend eine multivariate Modellierung, mithin also eine Beschreibung der

Abhängigkeitsstruktur zwischen den Renditen verschiedener Wertpapiere. Insbesondere für

solche Analysen erweist sich der Mischungsansatz aber als besonders vielversprechend. So

spielen etwa im Portfoliomanagement die Korrelationen zwischen einzelnen Wertpapierren-

diten eine herausragende Rolle. Die Stärke der Korrelationen ist von entscheidender Bedeu-

tung dafür, in welchem Ausmaß das Risiko eines effizienten Portfolios durch Diversifikation

reduziert werden kann. Nun gibt es empirische Hinweise darauf, dass die Korrelationen etwa

zwischen Aktien in Perioden, die durch starke Marktschwankungen und tendenziell fallende

Kurse charakterisiert sind, stärker sind als in ruhigeren Perioden. Das bedeutet, dass die

Vorteile der Diversifikation in genau jenen Perioden geringer sind, in denen ihr Nutzen am

größten wäre. Modelle, die die Existenz unterschiedlicher Marktregime nicht berücksichtigen,

werden daher dazu tendieren, die Korrelationen in den adversen Marktzuständen zu unter-

schätzen. Dies kann zu erheblichen Fehleinschätzungen des tatsächlichen Risikos während

solcher Perioden führen.

Diese und weitere Implikationen des Mischungsansatzes im Kontext multivariater GARCH

Modelle werden in der vorliegenden Arbeit diskutiert, und ihre Relevanz wird anhand einer

empirischen Anwendung dokumentiert. Erörtert werden ferner Fragen der Parametrisierung

und Schätzung des Modells, und einige relevante theoretische Eigenschaften werden hergeleitet.



1 Introduction

Since the publication of Engle’s (1982) ARCH model and its generalization to GARCH by

Bollerslev (1986), a considerable amount of research has been undertaken to develop models

that adequately capture the volatility dynamics observed in financial return data at weekly,

daily or higher frequencies. Within the GARCH class of models, the recently proposed family

of normal mixture GARCH processes (Alexander and Lazar, 2004; Haas, Mittnik, and Paolella,

2004a,b) has been shown to be particularly well suited for analyzing and forecasting short–

term financial volatility.1 A finite mixture of a few normal distributions, say two or three, is

capable of capturing the skewness and kurtosis detected in both conditional and unconditional

return distributions, and can, when coupled with GARCH–type equations for the component

variances, exhibit quite complex dynamics, as often observed in financial markets. For example,

there may be components driven by nonstationary dynamics, while the overall process is still

stationary. This corresponds to the observation that markets are stable most of the time, but,

occasionally, subject to severe, short–lived fluctuations. Empirical results for several stock

and exchange rate return series, as reported in Alexander and Lazar (2004, 2005), and Haas,

Mittnik, and Paolella (2004a,b) show that the normal mixture GARCH process provides a

plausible disaggregation of the conditional variance process, and that it performs well in out–

of–sample density forecasting, which can be viewed as a rigorous check of model adequacy.

While the existing literature on normal mixture GARCH models is confined to univariate

processes, many applications in finance are inherently multivariate and require us to under-

stand the dependence structure between assets. For example, in applications to portfolio

selection, correlations between assets are often of predominant interest. However, there is

evidence that asset correlations are regime–dependent, in the sense that stock returns appear

to exhibit stronger dependence during periods of high volatility, which are often associated

with market downturns (see, for example, Patton, 2004). As stressed by Campbell, Koedijk,

and Kofman (2002), the issue of regime–dependent correlations is of considerable interest for

portfolio analysis, because it is in times of adverse market conditions that the benefits from

diversification are most urgently needed.

In this paper, we generalize the normal mixture GARCH model proposed by Haas, Mittnik,

and Paolella (2004a) to the multivariate setting. We will define the model in terms of the

1 These models are generalizations of earlier proposed applications of normal mixture distributions in the
GARCH context (see Vlaar and Palm, 1993; Palm and Vlaar, 1997; and Bauwens, Bos, and van Dijk, 1999).
There is also some relationship with the models of Wong and Li (2001), and Cheung and Xu (2003), as
well as with the Markov–switching (G)ARCH models of Cai (1994), Hamilton and Susmel (1994), Gray
(1996), Dueker (1997), and Klaassen (2002). A detailed discussion of these models and their relationships
is provided in Haas, Mittnik, and Paolella (2004a,b).
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arguably most general multivariate GARCH specification, i.e., the vech model as defined by

Bollerslev, Engle, and Wooldridge (1988). This model, without further restrictions, is not

amendable for direct estimation, but it nests several more practicable specifications, such as

the diagonal vech model, also proposed by Bollerslev, Engle, and Wooldridge (1988), and the

BEKK model of Engle and Kroner (1995).2

For the multivariate normal mixture GARCH(p, q) model, we present conditions for covari-

ance stationarity and the existence of the fourth unconditional moment, along with expres-

sions for the autocorrelation matrices of the squared process. As the mixture model nests the

single–component specification, these results are also applicable to the standard multivariate

GARCH(p, q) model in vech form. For this model, our results improve upon the existing lit-

erature on this issue, both in terms of simplicity and interpretability, as will be discussed in

Appendix D. Moreover, no results for asymmetric multivariate GARCH models, i.e., specifi-

cations with a leverage effect, exist in the literature so far.

In the most general specification of our model, we allow for leverage effects, i.e., an asym-

metric reaction of variances and covariances to positive and negative shocks, as well as for

asymmetry of the conditional mixture density. The second– and fourth–order moment struc-

ture for this general specification is detailed for the empirically most relevant GARCH(1,1)

model.

The paper is organized as follows. In Section 2, we define the model and present results

on its unconditional moments and its dynamic correlation structure. In Section 3, we provide

an application to a bivariate stock return series. Section 4 concludes and identifies issues for

further research. Technical details are gathered in a set of appendices.

2 The Model and its Properties

In this section, we define the multivariate normal mixture GARCH process, discuss estimation

issues and present some theoretical properties.

2.1 Finite Mixtures of Multivariate Normal Distributions

An M–dimensional random vector X is said to have a k–component multivariate finite normal

mixture distribution, or, in short, MNM(k), if its density is given by

f(x) =
k
∑

j=1

λjφ(x;µj , Hj), (1)

2 See Bauwens, Laurent, and Rombouts (2006) for an overview over multivariate GARCH models.
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where λj > 0, j = 1, . . . , k,
∑

j λj = 1, are the mixing weights, and

φ(x;µj , Hj) =
1

(2π)M/2
√

|Hj |
exp

{

−
1

2
(x− µj)

′H−1
j (x− µj)

}

, j = 1, . . . , k, (2)

are the component densities. The normal mixture random vector has finite moments of all

orders, with expected value and covariance matrix given by (see, e.g., McLachlan and Peel,

2000)

E(X) =
k
∑

j=1

λjµj , (3)

and

Cov(X) =
k
∑

j=1

λj(Hj + µjµ
′
j)−





k
∑

j=1

λjµj









k
∑

j=1

λjµj





′

(4)

=
k
∑

j=1

λjHj +
k
∑

j=1

λj(µj − E(X))(µj − E(X))′,

respectively. We will also make use the third and fourth moments of a multivariate normal

mixture distribution, which are given in Appendix B.

A question that naturally arises in the estimation of mixture distributions is identifiability.

Obviously, a lack of identification always arises as a consequence of label switching, but this

can be ruled out by restricting the parameter space such that no duplication appears, e.g.,

by imposing λ1 > λ2 > · · · > λk. However, there is a more fundamental problem when the

class of density functions to be mixed is linearly dependent (Yakowitz and Spragins, 1968).

Fortunately, the class of multivariate finite normal mixtures is identifiable, as has been shown

by Yakowitz and Spragins (1968), who generalized Teicher’s (1963) results for univariate finite

normal mixtures.

An issue which has not been satisfactorily resolved so far is the empirical determination of

the number of mixture components, i.e., the choice of k in (1). It is well–known that standard

test theory breaks down in this context (McLachlan and Peel, 2000). However, there is some

evidence, that, at least for unconditional mixture models, the Bayesian information criterion

of Schwarz (1978) provides a reasonably good indication for the number of components (see

McLachlan and Peel, 2000, Ch. 6, for a survey and further references). According to Kass and

Raftery (1995), a BIC difference of less than two corresponds to “not worth more than a bare

mention”, while differences between two and six imply positive evidence, differences between

six and ten give rise to strong evidence, and differences greater than ten invoke very strong

evidence.
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2.2 Multivariate Normal Mixture GARCH Processes

The M–dimensional time series {εt} is said to be generated by a k–component multivariate

normal mixture GARCH(p, q) process, or, in short, MNM(k)–GARCH(p, q), if its conditional

distribution is a k–component multivariate normal mixture, denoted as

εt|Ψt−1 ∼ MNM(λ1, . . . , λk, µ1, . . . , µk, H1t, . . . , Hkt), (5)

where Ψt is the information set at time t. By imposing µk = −
∑k−1

j=1(λj/λk)µj on the mean

of the kth component it is guaranteed that εt in (5) has zero mean. Furthermore, stack the

N := M(M +1)/2 independent elements of the covariance matrices and the “squared” εt (i.e.,

εtε
′
t) in hjt := vech(Hjt), j = 1, . . . , k, and ηt := vech(εtε

′
t), respectively. Then, the component

covariance matrices evolve according to

hjt = A0j +

q
∑

i=1

Aij η̃ij,t−i +

p
∑

i=1

Bijhj,t−i, j = 1, . . . , k, (6)

where η̃ij,t = vech[(εt − θij)(εt − θij)
′]; θij , i = 1, . . . , q, and A0j are columns of length M

and N , respectively; and Aij , i = 1, . . . , q, and Bij , i = 1, . . . , p, are N × N matrices, j =

1, . . . , k. The θij ’s are introduced in order to allow for the leverage effect in applications to

stock market returns, i.e., the strong negative correlation between equity returns and future

volatility. In the univariate GARCH literature, various specifications of the leverage effect

exist. Our choice, i.e., incorporating the θij ’s in (6), can be viewed as a generalization of one

of the earliest versions, namely Engle’s (1990) asymmetric GARCH (AGARCH) model.3 In the

univariate framework, this model has been coupled with the normal mixture GARCH structure

by Alexander and Lazar (2005). We will denote the asymmetric MNM(k)–GARCH(p, q) as

MNM(k)–AGARCH(p, q). Moreover, in some applications, a symmetric conditional density

will be appropriate, so that, in (5), µ1 = · · · = µk = 0. We will denote this restricted version as

MNMS(k)–(A)GARCH(p, q). An overview over the different model specifications is provided

in Table 1.

To compactify the notation and facilitate the theoretical analysis of the model, note that,

by (A.3) in Appendix A, vech(εt−iθ
′
ij +θijε

′
t−i) = 2D+

Mvec(θijε
′
t−i) = 2D+

M (IM ⊗θij)εt−i. Then

we rewrite (6) as

hjt = Ã0j +

q
∑

i=1

Aijηt−i −

q
∑

i=1

Θijεt−i +

p
∑

i=1

Bijhj,t−i, j = 1, . . . , k, (7)

where Ã0j := A0j +
∑q

i=1Aijvech(θijθ
′
ij), and Θij := 2AijD

+
M (IM ⊗ θij), j = 1, . . . , k,

i = 1, . . . , q. Let ht := (h′1t, . . . , h
′
kt)

′; Ã0 = (Ã′01, . . . , Ã
′
0k)

′; Θi = (Θ′
i1, . . . ,Θ

′
ik)

′, Ai =

3 The acronym AGARCH is due to Engle and Ng (1993).
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Table 1: Variants of MNM–GARCH models.
Model Conditional Density Leverage Effect

MNMS(k)–GARCH(p, q) symmetric no

MNMS(k)–AGARCH(p, q) symmetric yes

MNM(k)–GARCH(p, q) possibly asymmetric no

MNM(k)–AGARCH(p, q) possibly asymmetric yes
A symmetric conditional density is enforced by restricting the component means in

(5) to zero, i.e., µ1 = · · · = µk = 0; while the absence of a leverage effect is imposed

by restricting the θij ’s in (6) to zero, i.e., θij = 0, j = 1, . . . , k, i = 1, . . . , q.

(A′i1, . . . , A
′
ik)

′, i = 0, . . . , q; and Bi =
⊕k

j=1Bij , i = 1, . . . , p, where
⊕

denotes the matrix

direct sum. Using these definitions, we have

ht = Ã0 +

q
∑

i=1

Aiηt−i −

q
∑

i=1

Θiεt−i +

p
∑

i=1

Biht−i. (8)

For estimation purposes, the general formulation as given in (6) is not directly applica-

ble, and parameter constraints are required in order to guarantee positive definiteness of all

conditional covariances matrices. A particular restriction of the vech form of the multivariate

GARCH process, which guarantees positive definiteness, is implied by the BEKK model of

Engle and Kroner (1995) which specifies the covariance matrices as

Hjt = A?
0jA

?′

0j +
L
∑

`=1

q
∑

i=1

A?
ij,`(εt−i−θij)(εt−i−θij)

′A?′

ij,` +
L
∑

`=1

p
∑

i=1

B?
ij,`Hj,t−iB

?′

ij,`, j = 1, . . . , k,

(9)

where A?
0j , j = 1, . . . , k, are triangular matrices. As shown by Engle and Kroner (1995), each

BEKK model implies a unique vech representation (the converse is not true), and, once a

BEKK representation (9) is estimated, the matrices Aij and Bij of the vech model (6) can be

recovered via

Aij =

L
∑

`=1

D+
M (A?

ij,` ⊗A?
ij,`)DM , i = 1, . . . , q, j = 1, . . . , k, (10)

Bij =
L
∑

`=1

D+
M (B?

ij,` ⊗B?
ij,`)DM , i = 1, . . . , p, j = 1, . . . , k,

where DM and D+
M denote the duplication matrix and its Moore–Penrose inverse, respectively,

both of which we briefly review in Appendix A. Thus, all results derived for the vech model

are also applicable to the BEKK model. In practical applications, L = 1 is the standard

choice, as well as p = q = 1. For this specification, it follows from Proposition 2.1 of Engle

and Kroner (1995) that the model is identified if the diagonal elements of A?
0j , as well as the

top left elements of matrices A?
1j and B?

1j , j = 1, . . . , k, are restricted to be positive. We

9



will thus impose these restrictions in the applications below. In addition, while, for L = 1,

the BEKK model already involves fewer parameters than the unrestricted vech form, further

simplifications can be obtained by assuming that A?
1j and B?

1j , j = 1, . . . , k, are diagonal

matrices.

In the following discussion of the vech specification we will always assume that positive def-

inite covariances matrices are guaranteed, without further specifying the constraints employed

for achieving this.

2.3 Existence of Moments and Autocorrelation Structure

It is clear that, for practical purposes, the most important MNM(k)–AGARCH(p, q) process

is the specification where p = q = 1, which is defined by (5) and

ht = Ã0 +A1ηt−1 −Θ1εt−1 +B1ht−1. (11)

For later reference, we summarize the dynamic properties of the process given by (5) and (11)

in Proposition 1, while the corresponding results for the GARCH(p, q) specification, which

require a considerable amount of additional notation, are developed in Appendix D.

We denote as ρ(A) the largest eigenvalue in modulus of a square matrix A, i.e.,

ρ(A) := max{|z| : z is an eigenvalue of A}, (12)

and define the vector of mixing weights λ = (λ1, . . . , λk)
′. Following the classic papers of Engle

(1982) and Bollerslev (1986), we assume for simplicity that the process starts indefinitely far

in the past with finite fourth moments.

Proposition 1 The MNM(k)–AGARCH(1,1) process given by (5) and (11) is covariance

stationary if and only if ρ(C11) < 1, where the kN × kN matrix C11 is defined by

C11 = λ′ ⊗A1 +B1. (13)

In this case, the unconditional expectation of vector ht is E(ht) = (IkN −λ
′⊗A1−B1)

−1[Ã0 +

A1(λ
′ ⊗ IN )µ̃], where µ̃ is defined in Lemma 4 in Appendix B.1; and the unconditional expec-

tation of ηt is (λ′⊗ IN )(E(ht)+ µ̃). Moreover, the unconditional fourth moment E(ηtη
′
t) exists

if and only if ρ(C22) < 1, where C22 is the (kN)2 × (kN)2 matrix given by

C22 = (A1 ⊗A1)GM (IN ⊗ vec(Λ)′ ⊗ IN )(KNk ⊗ IkN ) + 2NkN (B1 ⊗ λ
′ ⊗A1) +B1 ⊗B1. (14)

In (14), GM is the N2 ×N2 matrix defined in (B.13) in Appendix B.2, Λ = diag(λ1 . . . , λk),

Kmn is the commutation matrix defined in Appendix A, and Nn = (In2 +Knn)/2. An expres-

sion for the fourth–moment matrix is given in Appendix C.1. If ρ(C22) < 1 holds, the multi-

dimensional autocovariance function of the squared process, Γτ := E(ηtη
′
t−τ )− E(ηt)E(ηt)

′, is

10



given by

Γτ = (λ′ ⊗ IN )Cτ−1
11 Q, (15)

where Q is a constant matrix given in (C.21) in Appendix C.2.

The results of Proposition 1 are derived in Appendices B and C. From (15), the autocor-

relation matrices, Rτ , can be calculated in the usual way. I.e., if D is a diagonal matrix with

the square roots of diag(Γ0) on its diagonal, where Γ0 := E(ηtη
′
t)− E(ηt)E(ηt)

′, then

Rτ = D−1ΓτD
−1. (16)

Note that the term determining the rate of decay of Γτ is Cτ
11. Thus, under covariance

stationarity, the largest eigenvalue in magnitude of the matrix C11 defined in (13) can be used

as a measure for the persistence of shocks to volatility.

It may be worth pointing out that conditions (13) and (14), as well as the speed of decline

of the autocorrelation function, do not depend on the “leverage terms” θ1j in (6). Moreover,

the stationarity condition ρ(C11) < 1, where C11 is defined in (13), allows some components to

be nonstationary, in the sense that the covariance stationarity condition for single–component

multivariate GARCH(1,1) processes, i.e.,4

ρ(A1j +B1j) < 1, (17)

is not satisfied for these components. Nevertheless, the overall process can still be stationary, as

long as the corresponding mixture weights are sufficiently small. This parallels the situation in

the univariate case (see Alexander and Lazar, 2004; and Haas, Mittnik, and Paolella, 2004a,b),

and will be empirically illustrated in Section 3.

3 Application to Stock Market Returns

We investigate the bivariate time series of daily returns of the NASDAQ and the Dow Jones

Industrial Average (DJIA) indices from January 1990 to December 1999, a sample of T =

2516 observations.5 Continuously compounded percentage returns are considered, i.e., rit =

100 × log(Pit/Pi,t−1), i = 1, 2, where Pit denotes the level of index i at time t. We let r1t

and r2t denote the time–t return of the NASDAQ and the DJIA, respectively. As we want

to concentrate our analysis on the volatility dynamics, a univariate linear AR(1) filter was

applied to the series in order to remove (weak) low–order autocorrelation. Subsequently, all

4 For this condition, see Bollerslev and Engle (1993), and Engle and Kroner (1995).

5 The data were obtained from Datastream.
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Table 2: Descriptive statistics of the filtered NASDAQ/DJIA returns.

Covariance matrix Correlation matrix Skewness Kurtosis

NASDAQ DJIA NASDAQ DJIA

NASDAQ 1.229 0.721 1 0.728 –0.431 7.620

DJIA 0.721 0.798 0.728 1 –0.379 8.132
“Skewness” and “Kurtosis” refer to the standardized third and fourth moments, respectively.

That is, Skewness = m3/m
3/2

2 , and Kurtosis = m4/m2
2, where mi is the ith central moment

(about the mean).

results are for the filtered version of the data. A few descriptive statistics of the filtered series

are summarized in Table 2.

To make sure that all conditional covariance matrices are positive definite, we use the

BEKK parametrization (9). Several versions of the general mixture GARCH model (5)–(6)

with p = q = 1 have been estimated. Namely, the single–component model, which corresponds

to k = 1 in (1), and which is just the standard Normal–GARCH process, has been estimated

with and without imposing a symmetric reaction to negative and positive shocks. The first of

these models, where θ11 = 0 in (6), will be denoted by Normal–GARCH(1,1), and the second

by Normal–AGARCH(1,1). Also, two–component models are considered with and without

symmetric conditional mixture densities, i.e., with and without imposing µ1 = µ2 = 0 in (5),

as well as with and without leverage effects. To refer to these different models, we will use the

typology of Table 1.

Table (3) reports likelihood–based goodness–of–fit measures for the models and their rank-

ings with respect to each of these criteria, i.e., the value of the maximized log–likelihood

function, and the AIC and BIC criteria of Akaike (1973) and Schwarz (1978), respectively.

While it is not surprising that the Normal–GARCH model is the worst performer with re-

spect to each of these criteria, several additional observations are worth mentioning. First, the

normal mixture specifications allowing for asymmetric conditional densities, i.e., admitting

nonzero component means in (5), are always favored against their symmetric counterparts.

This is not the case when we consider the dynamic asymmetry, i.e., the asymmetric reac-

tion of future variances to negative and positive shocks. The improvement in log–likelihood

is much larger when passing from the symmetric MNMS(2)–GARCH(1,1) to the MNMS(2)–

AGARCH(1,1) model (difference in log–likelihood: 25.3), than when passing from the asym-

metric MNM(2)–GARCH(1,1) process to its AGARCH(1,1) counterpart (difference in log–

likelihood: 14.5). As a consequence, the MNM(2)–GARCH(1,1) specification performs best

overall according to the BIC. We note, however, that the difference in BIC for the latter

two models is close to being insignificant according to the Kass and Raftery–recommendation
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Table 3: Likelihood–based goodness of fit.

Distributional L AIC BIC

Model K Value Rank Value Rank Value Rank

Normal–GARCH(1,1) 11 −5598.6 6 11219.3 6 11283.4 6

MNMS(2)–GARCH(1,1) 23 −5502.4 4 11050.8 4 11184.9 4

MNM(2)–GARCH(1,1) 25 −5478.8 3 11007.6 2 11153.4 1

Normal–AGARCH(1,1) 13 −5584.1 5 11194.1 5 11269.9 5

MNMS(2)–AGARCH(1,1) 27 −5477.1 2 11008.1 3 11165.6 3

MNM(2)–AGARCH(1,1) 29 −5464.3 1 10986.5 1 11155.6 2
The leftmost column states the type of volatility model fitted to the bivariate NASDAQ/DJIA returns. The

column labeled K reports the number of parameters of a model; L is the log likelihood; AIC = −2L + 2K;

and BIC = −2L+K log T , where T is the number of observations. For each of the three criteria the criterion

value and the ranking of the models are shown. Boldface entries indicate the best model for the particular

criterion.

mentioned at the end of Section 2.1. Also, a closer inspection of the parameter estimates will

reveal that the leverage effect may be an exclusive feature of the high–volatility component,

so that the difference in the number of parameters between these models shrinks from four to

two, which would reverse these conclusions.6

The maximum likelihood estimates are reported in Tables 4 and 5 for the models without

and with leverage effect, i.e., dynamic asymmetry, respectively. Reported are the parameter

matricesA?
0j , A

?
1j , andB?

1j , j = 1, 2, of the BEKK representation (9), from which the parameter

matrices of the vech representation, A1j and B1j , j = 1, 2, can be recovered via (10). In

addition, we report the regime–specific persistence measures, i.e., the largest eigenvalues of

the matrices A1j + B1j , j = 1, 2, where these matrices have been computed from the BEKK

representation using (10), as well as the largest eigenvalues of the matrices C11 and C22 defined

in Proposition 1, which provide information about the existence of the unconditional second

and fourth moments, respectively. The two–component models have been ordered such that

λ1 > λ2.

In discussing the parameter estimates, we first draw attention to a common characteristic of

all mixture models fitted, whether they allow for asymmetry and/or leverage or not: All these

models identify two components with distinctly different volatility dynamics. More precisely,

the first component, i.e., the component with the larger mixing weight, is stationary in the

sense that ρ(A11 + B11) < 1, and it has less weight on the reaction parameters in A11 and

6 Alternatively, a likelihood ratio test for θ1 = θ2 = 0 could be conducted. The associated test statistic,
LRT = 2× (5478.8− 5464.3) = 29, exceeds conventional critical values given by the asymptotically valid χ2

distribution with four degrees of freedom, thus favoring the model with the leverage terms.
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Table 4: MNM–GARCH(1,1) parameter estimates for NASDAQ/DJIA returns

Normal–GARCH(1,1) MNMS(2)–GARCH(1,1) MNM(2)–GARCH(1,1)

A?
01







0.128
(0.019)

0

0.045
(0.019)

0.030
(0.014)















0.024
(0.028)

0

−0.007
(0.016)

0.000
(0.023)

















0.025
(0.025)

0

−0.006
(0.019)

0.000
(0.043)









A?
11









0.373
(0.034)

−0.139
(0.035)

0.088
(0.018)

0.099
(0.022)

















0.290
(0.027)

−0.144
(0.030)

0.063
(0.011)

0.060
(0.018)

















0.264
(0.027)

−0.110
(0.030)

0.055
(0.015)

0.075
(0.020)









B?
11









0.922
(0.014)

0.042
(0.011)

−0.029
(0.006)

1.005
(0.006)

















0.954
(0.006)

0.027
(0.005)

−0.017
(0.001)

1.002
(0.002)

















0.958
(0.008)

0.021
(0.006)

−0.016
(0.004)

1.000
(0.003)









ρ(A11 +B11) 0.997 0.994 0.994

θ11 – – –

λ1 1 0.8270
(0.041)

0.836
(0.033)

µ1 – –

(

0.109
(0.081)

, 0.049
(0.042)

)′

A?
02 –







0.554
(0.103)

0

0.328
(0.113)

0.150
(0.059)













0.448
(0.082)

0

0.398
(0.089)

0.000
(0.187)







A?
12 –







0.731
(0.146)

0.012
(0.165)

0.220
(0.111)

0.345
(0.124)















0.753
(0.143)

−0.048
(0.144)

0.218
(0.115)

0.353
(0.122)









B?
12 –









0.736
(0.047)

0.072
(0.074)

−0.083
(0.056)

0.973
(0.053)

















0.829
(0.075)

−0.029
(0.074)

−0.038
(0.058)

0.916
(0.061)









ρ(A12 +B12) – 1.163 1.172

θ12 – – –

λ2 0 0.173
(0.041)

0.164
(0.033)

µ2 – –

(

−0.553
(0.108)

,−0.248
(0.084)

)′

ρ(C11) 0.997 0.995 0.996

ρ(C22) 0.994 0.994 0.994

Approximate standard errors are given in parentheses. Note that matrices A?
0j , A?

1j , and B?
1j , j = 1, 2,

correspond to the BEKK representation (9) of the model, while matrices A1j + B1j , j = 1, 2, the maximal

eigenvalues of which are reported, are associated with the vech representation (6). ρ(C11) and ρ(C22) denote

the largest eigenvalues of the matrices C11 and C22, defined in Proposition 1, which determine whether the

unconditional second and fourth moments, respectively, exist.
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Table 5: MNM–AGARCH(1,1) parameter estimates for NASDAQ/DJIA returns

Normal–AGARCH(1,1) MNMS(2)–AGARCH(1,1) MNM(2)–AGARCH(1,1)

A?
01







0.135
(0.024)

0

0.046
(0.023)

0.031
(0.017)













0.000
(0.041)

0

0.000
(0.019)

0.000
(0.019)













0.000
(0.044)

0

0.000
(0.033)

0.000
(0.026)







A?
11









0.389
(0.038)

−0.135
(0.037)

0.094
(0.020)

0.108
(0.023)

















0.288
(0.028)

−0.149
(0.030)

0.060
(0.015)

0.059
(0.020)

















0.258
(0.012)

−0.114
(0.017)

0.052
(0.013)

0.068
(0.018)









B?
11









0.911
(0.017)

0.042
(0.014)

−0.034
(0.008)

1.004
(0.007)

















0.958
(0.007)

0.024
(0.006)

−0.015
(0.004)

1.001
(0.003)

















0.963
(0.002)

0.017
(0.002)

−0.013
(0.002)

0.999
(0.002)









ρ(A11 +B11) 0.996 0.998 0.996

θ11

(

0.305
(0.062)

, 0.243
(0.079)

)′ (

−0.113
(0.083)

,−0.164
(0.097)

)′ (

−0.116
(0.076)

,−0.153
(0.100)

)′

λ1 1 0.755
(0.036)

0.759
(0.033)

µ1 – –

(

0.099
(0.032)

, 0.044
(0.019)

)′

A?
02 –









0.132
(0.128)

0

−0.066
(0.080)

0.000
(0.170)

















0.081
(0.117)

0

−0.088
(0.080)

0.000
(0.210)









A?
12 –







0.635
(0.094)

0.027
(0.097)

0.193
(0.078)

0.312
(0.074)















0.603
(0.059)

−0.046
(0.071)

0.143
(0.106)

0.310
(0.039)









B?
12 –









0.678
(0.075)

0.094
(0.071)

−0.121
(0.049)

0.989
(0.039)

















0.727
(0.048)

0.085
(0.046)

−0.091
(0.030)

0.981
(0.027)









ρ(A12 +B12) – 1.019 1.017

θ12 –

(

0.814
(0.127)

, 0.619
(0.161)

)′ (

0.878
(0.114)

, 0.636
(0.138)

)′

λ2 0 0.245
(0.036)

0.241
(0.033)

µ2 – –

(

−0.310
(0.068)

,−0.140
(0.055)

)′

ρ(C11) 0.996 0.994 0.996

ρ(C22) 0.993 0.991 0.992

See the legend of Table 4 for explanations.
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more weight on the persistence parameters in B11, relative to the second component. The

latter is nonstationary in the sense that ρ(A12 +B12) > 1, and it has considerably more weight

on the reaction and less on the persistence parameters. This implies that the high–volatility

component reacts more strongly to shocks, but has a shorter memory. However, all estimated

mixture models are stationary in the aggregate, because, for all models, the largest eigenvalue

of the matrix C11, defined in (13), is less than unity.

Also, if nonzero component means are allowed for, we observe that, both for the MNM(2)–

GARCH(1,1) model in Table 4 and the MNM(2)–AGARCH(1,1) model in Table 5, the low–

volatility component is associated with positive means, and the high–volatility component is

associated with statistically significant negative means for both variables.

A similar finding holds for the leverage effects, i.e., the dynamic asymmetries in the GARCH

structure, as reported in Table 5. For both mixture AGARCH models, a leverage effect seems

to be present mainly in the high–volatility, bear market component. The leverage parameters

in the first component, θ11, are negative, and thus seem to indicate a “reverse” leverage effect,

but they are also insignificant statistically. On the other hand, the leverage parameters of

the nonstationary component, θ12, are rather large, compared to those of the fitted Normal–

AGARCH model, indicating a very strong negative relation between current returns and future

volatility. Interestingly, this is in accordance with Figlewski and Wang (2000), who argue that

the leverage effect is really a “down market effect” in the sense that, while there is a strong

leverage effect associated with falling stock prices, there is a much weaker or nonexistent

relation between positive stock returns and future volatility.

It is also interesting to note that the introduction of the leverage effects reduces the per-

sistence measure of the high–volatility component somewhat, i.e., ρ(A12 + B12) decreases.7

However, at the same time, its mixing weight, λ2, increases, so that the overall persistence of

the model, as measured by ρ(C11), remains approximately unchanged.

Another potentially relevant issue for financial applications is whether there are strik-

ing differences between the regime–specific correlation coefficients. Figure 1 displays the

component–specific conditional correlations implied by the MNM(2)–GARCH(1,1) model.8

The upper panel plots the conditional correlations in the positive–mean/low–volatility compo-

nent, and the lower panel those in the negative–mean/high–volatility component. Most of the

time, the correlation coefficient in the low–volatility regime is considerably smaller than that

in the high–volatility regime, with the regimes’ averages being 0.643 and 0.813, respectively.

7 Admittedly, the interpretation of ρ(A12 + B12) as a persistence measure is a little awkward when ρ(A12 +
B12) > 1.

8 The results for the other mixture models are similar, and are available upon request.
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It is clear that such a pattern can have significant implications for portfolio diversification,

which will be a topic of future investigation. To tackle this task systematically, however, it

may be more convenient to specify the dynamics in the correlation matrix directly, by using,

for example, structures as proposed in Engle (2002), Tse and Tsui (2002), and, more recently,

Pelletier (2006).

As the largest eigenvalue of the matrix C22, reported in the bottom row of Tables 4 and

5, is below unity for all models, we can compute the theoretical auto– and cross–correlations

implied by the fitted processes. As noted, for example, by He and Teräsvirta (2004), such

calculations can help to assess whether a fitted model is capable of reproducing some of the

dynamic properties of the data being investigated.

The auto– and cross–correlations are shown in Figures 2–9, along with their empirical

counterparts. As expected, the mixture models mimic the empirical shapes much better

than the single–component models, although the fit is not “optimal”. A somewhat more

surprising observation is the fact that the AGARCH specifications capture the observed auto-

and cross-correlation structure less well than their GARCH counterparts. In particular, the

AGARCH–implied auto– and cross–correlations tend to be somewhat smaller than the corre-

sponding GARCH quantities. At first sight, and in view of Example 2 in Appendix C.2, this

is somewhat surprising, as it is shown there, that, at least for the special case of the univariate

QGARCH(1,1), the autocorrelations are increasing in θ2. However, this result is true only if

all other parameters of the model are held constant, and this is obviously not the case for the

estimates reported in Tables 4 and 5. Nevertheless, these findings may indicate that, within

the asymmetric GARCH structure adopted in (6), there is a trade–off between reproducing

the correlation structure of the squares and capturing the asymmetric response of volatility to

good and bad news. A possible consequence of this is to investigate other parameterizations

of the leverage effect, such as that of Glosten, Jagannathan, and Runkle (1993) which has

been used for multivariate GARCH models by Hansson and Hördahl (1998) and Kroner and

Ng (1998).

4 Conclusions

In this paper, we have generalized the normal mixture GARCH model introduced in Haas,

Mittnik, and Paolella (2004a) to the multivariate framework. For the vech representation of

the multivariate GARCH process, conditions for covariance stationarity and the existence of

the fourth moment were presented, along with expressions for the autocorrelation function of

the squares.
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Figure 1: Shown are the implied component–specific correlations of the MNM(2)–GARCH(1,1)

model, fitted to the NASDAQ/DJIA returns. The upper panel shows the conditional correla-

tions in the low–volatility component, those in the high–volatility component are depicted in

the lower panel.
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Figure 2: Shown are the empirical autocorrelations (vertical bars) of the squared (filtered)

NASDAQ returns, as well as their theoretical counterparts (solid lines), as implied by the fitted

Normal–GARCH(1,1) (top panel), MNMS(2)–GARCH(1,1) (middle panel), and MNM(2)–

GARCH(1,1) (bottom panel) models. The usual 95% asymptotic confidence intervals (dashed

lines) associated with a white noise process with finite second moment are also included.
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Figure 3: Shown are the empirical autocorrelations (vertical bars) of the squared (filtered)

NASDAQ returns, as well as their theoretical counterparts (solid lines), as implied by the fitted

Normal–AGARCH(1,1) (top panel), MNMS(2)–AGARCH(1,1) (middle panel), and MNM(2)–

AGARCH(1,1) (bottom panel) models. The usual 95% asymptotic confidence intervals (dashed

lines) associated with a white noise process with finite second moment are also included.
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Figure 4: Shown are the empirical autocorrelations (vertical bars) of the squared (filtered)

DJIA returns, as well as their theoretical counterparts (solid lines), as implied by the fitted

Normal–GARCH(1,1) (top panel), MNMS(2)–GARCH(1,1) (middle panel), and MNM(2)–

GARCH(1,1) (bottom panel) models. The usual 95% asymptotic confidence intervals (dashed

lines) associated with a white noise process with finite second moment are also included.
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Figure 5: Shown are the empirical autocorrelations (vertical bars) of the squared (filtered)

DJIA returns, as well as their theoretical counterparts (solid lines), as implied by the fitted

Normal–AGARCH(1,1) (top panel), MNMS(2)–AGARCH(1,1) (middle panel), and MNM(2)–

AGARCH(1,1) (bottom panel) models. The usual 95% asymptotic confidence intervals (dashed

lines) associated with a white noise process with finite second moment are also included.
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Figure 6: Shown are the empirical cross–correlations (vertical bars) of the (filtered) NASDAQ

and DJIA returns, i.e., Corr(r2
1t, r

2
2,t−τ ), τ = 1, . . . , 150, where r1t and r2t are the time–t returns

of the NASDAQ and the DJIA, respectively. The solid lines represent the corresponding

theoretical quantities, as implied by the fitted Normal–GARCH(1,1) (top panel), MNMS(2)–

GARCH(1,1) (middle panel), and MNM(2)–GARCH(1,1) (bottom panel) models. The usual

95% asymptotic confidence intervals (dashed lines) associated with a white noise process with

finite second moment are also included.
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Figure 7: Shown are the empirical cross–correlations (vertical bars) of the (filtered) NASDAQ

and DJIA returns, i.e., Corr(r2
1t, r

2
2,t−τ ), τ = 1, . . . , 150, where r1t and r2t are the time–t returns

of the NASDAQ and the DJIA, respectively. The solid lines represent the corresponding

theoretical quantities, as implied by the fitted Normal–AGARCH(1,1) (top panel), MNMS(2)–

AGARCH(1,1) (middle panel), and MNM(2)–AGARCH(1,1) (bottom panel) models. The

usual 95% asymptotic confidence intervals (dashed lines) associated with a white noise process

with finite second moment are also included.
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Figure 8: Shown are the empirical cross–correlations (vertical bars) of the (filtered) NASDAQ

and DJIA returns, i.e., Corr(r2
1,t−τ , r

2
2t), τ = 1, . . . , 150, where r1t and r2t are the time–t returns

of the NASDAQ and the DJIA, respectively. The solid lines represent the corresponding

theoretical quantities, as implied by the fitted Normal–GARCH(1,1) (top panel), MNMS(2)–

GARCH(1,1) (middle panel), and MNM(2)–GARCH(1,1) (bottom panel) models. The usual

95% asymptotic confidence intervals (dashed lines) associated with a white noise process with

finite second moment are also included.
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Figure 9: Shown are the empirical cross–correlations (vertical bars) of the (filtered) NASDAQ

and DJIA returns, i.e., Corr(r2
1,t−τ , r

2
2t), τ = 1, . . . , 150, where r1t and r2t are the time–t returns

of the NASDAQ and the DJIA, respectively. The solid lines represent the corresponding

theoretical quantities, as implied by the fitted Normal–AGARCH(1,1) (top panel), MNMS(2)–

AGARCH(1,1) (middle panel), and MNM(2)–AGARCH(1,1) (bottom panel) models. The

usual 95% asymptotic confidence intervals (dashed lines) associated with a white noise process

with finite second moment are also included.
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An application to daily returns of the NASDAQ and Dow Jones indices shows that the

model captures interesting and relevant properties of the bivariate volatility process, such as

regime–dependent leverage effects and conditional correlations. In view of these findings, it

would be desirable to consider extensions of the model which allow for conditional forecasts of

the next period’s regime, which is not possible within the iid multinomial mixture approach

adopted here.

A well–known disadvantage of the BEKK representation of the multivariate GARCH model

is its large number of parameters, which renders estimation quite difficult when the dimension

of the return series is larger than three or four. While this is true for standard GARCH models,

this curse of dimensionality is even more burdensome in the mixture framework, as we have

as many covariance matrices as mixture components. Thus, future research will concentrate

on developing more parsimonious parameterizations for the component–specific covariance

matrices. Factor structures as proposed in Alexander and Chibumba (1997), and Alexander

(2001, 2002), as well as the dynamic conditional correlation models of Engle (2002), and Tse

and Tsui (2002), are natural starting points to deal with this issue.

Another important topic of further research is the empirical comparison of the mixture

GARCH process with other flexible multivariate GARCH models, such as those of Bauwens

and Laurent (2005), and Aas, Haff, and Dimakos (2006), who employ a multivariate skewed t

and the multivariate normal inverse Gaussian distribution, respectively.

Appendix

In the Appendix, we derive the conditions for the moments of the MNM–GARCH model. We

also provide expressions for these moments and the autocorrelation structure of the process.

A Notation

To conveniently write down the unconditional moments of the multivariate normal mixture

GARCH model, use of several patterned matrices is rather advantageous, and we define them

here. A detailed discussion of (as well as explicit expressions for) these matrices can be found

in Magnus (1988).9 The first of these matrices is the commutation matrix, Kmn, which is the

mn×mn matrix with the property that Kmnvec(A) = vec(A′) for every m× n matrix A. We

will use the fact that the commutation matrix allows us to transform the vec of a Kronecker

9 Chapter 1 of Magnus and Neudecker (1999) also provides useful information, as do the appendices in Hafner
(2003) and Lütkepohl (2005).
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product into the kronecker product of the vecs (Magnus, 1988, Theorem 3.6). More precisely,

for an m× n matrix A and an p× q matrix B, it is true that

vec(A⊗B) = (In ⊗Kqm ⊗ Ip)(vecA⊗ vecB). (A.1)

The elimination matrix, Ln, is the n(n + 1)/2 × n2 matrix that takes away the redundant

elements of a symmetric n × n matrix, i.e., for every n × n matrix A, we have Lnvec(A) =

vech(A). In contrast, the duplication matrix, Dn, is the n2 × n(n + 1)/2 matrix with the

property that Dnvech(A) = vec(A) for every symmetric n × n matrix A. Its Moore–Penrose

inverse, D+
n , is given by D+

n = (D′
nDn)−1D′

n (Magnus, 1988, Theorem 4.1).

To compactify the expressions for the moments of our model, we will also made extensive

use of the matrix Nn = (In2 +Knn)/2, which is discussed in Section 3.10 of Magnus (1988),

and which has the property that, for every n× n matrix A,

2Nnvec(A) = vec(A+A′). (A.2)

Note that the matrix D+
n has a similar property. Namely, because of D+

n = LnNn (Magnus,

1988, p. 80), we have

2D+
n vec(A) = vech(A+A′). (A.3)

B The Third and Fourth Moments of an Asymmetric Multi-

variate Normal Mixture Distribution

In this Appendix, we provide convenient expressions for the expectations of vec[vech(xx′)x′]

and vec[vech(xx′)vech(xx′)′], when x has a multivariate normal mixture distribution with

(possibly) nonzero means, as defined in (1) and (2). These expressions will be useful for

computing the unconditional moments of the multivariate mixed normal GARCH process in

Appendices C and D.

To derive the expressions given in this Appendix, we draw on results of Magnus and

Neudecker (1979), Balestra and Holly (1990), and Hafner (2003). We state the central results

as Lemmas 2–4 for the third, and Lemmas 5–8 for the fourth moment. Details of the derivations

are presented only for the third moment, because those for the fourth moment are similar.10

B.1 The Third Moment

To find an expression for vec[vech(xx′)x′], which is needed due to the inclusion of the leverage

terms, we make use of a formula of Balestra and Holly (1990) which we state as Lemma 2.

10 Detailed derivations are available on request from the authors.
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Lemma 2 (Balestra and Holly, 1990) For an M–dimensional random vector x, which is nor-

mally distributed with mean µ and covariance matrix H, we have

E[(x⊗ x)x′] = vec(H)µ′ + 2NM (µ⊗H) + (µ⊗ µ)µ′. (B.4)

We are interested in E{vec[vech(xx′)x′]} as a linear function in h, where h = vech(H).

Such an expression is provided next.

Lemma 3 For an M–dimensional random vector x, which is normally distributed with mean

µ and covariance matrix H, we have

E{vec[vech(xx′)x′]} = (IM ⊗ LM )[G̃M (µ⊗DM )h+ µ⊗ µ⊗ µ], (B.5)

where h = vech(H), and

G̃M = IM3 + 2(IM ⊗NM )(KMM ⊗ IM ). (B.6)

Proof. By Lemma 2, and using vec(ABC) = (C ′ ⊗A)vec(B), we have

E{vec[vech(xx′)x′]} = E{vec[LMvec(xx′)x′]} = (IM ⊗ LM )E{vec[(x⊗ x)x′]}

= (IM ⊗ LM )vec[vec(H)µ′ + 2NM (µ⊗H) + (µ⊗ µ)µ′].

Furthermore, vec[2NM (µ ⊗ H)] = 2(IM ⊗ NM )vec(µ ⊗ H), and (A.1) implies that vec(µ ⊗

H) = (KMM ⊗ IM )(µ ⊗ vec(H)). Finally, as y ⊗ x = vec(xy′) for vectors x and y, we have

µ⊗ vec(H) = vec[vec(H)µ′] = vec(DMhµ
′) = (µ⊗DM )h, and thus (B.5).

Next, we consider the case of a normal mixture distribution.

Lemma 4 Assume that x ∼ MNM(λ1, . . . , λk, µ1, . . . , µk, H1, . . . , Hk). Let λ = (λ1, . . . , λk)
′,

Λ = diag(λ); hj = vech(Hj), j = 1, . . . , k; h = (h′1, . . . , h
′
k)
′; Υ = (µ1, . . . , µk); µ = vec(Υ) =

(µ′1, . . . , µ
′
k)
′; µ̃j = vech(µjµ

′
j), j = 1, . . . , k; Υ̃ = (µ̃1, . . . , µ̃k); and µ̃ = vec(Υ̃) = (µ̃′1, . . . , µ̃

′
k)
′.

Then,

E{vec[vech(xx′)x′]} (B.7)

= (IM ⊗ LM )G̃M (ΥΛ⊗DM )h+ (IM ⊗ vec(Λ)′ ⊗ IN )(KMk ⊗ IkN )vec(µ̃µ′),

where N = M(M + 1)/2, and G̃M is defined in (B.6).

Proof. Lemma 4 follows from the fact that the third moment of the mixture is just the

weighted average of the component–specific moments as given in (B.5), i.e., for x mixed normal

as defined in Lemma 4, we have

E{vec[vech(xx′)x′]} = (IM ⊗ LM )







G̃M

k
∑

j=1

λj(µj ⊗DM )hj +
k
∑

j=1

λj(µj ⊗ µj ⊗ µj)







. (B.8)
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Let ej be the jth unit vector in R
k. Then, for the first sum on the right–hand side of (B.8),

we have that

k
∑

j=1

λj(µj ⊗DM )hj =







k
∑

j=1

λj(e
′
j ⊗ µj ⊗DM )







h =











k
∑

j=1

λjµje
′
j



⊗DM







h

= (ΥΛ⊗DM )h, (B.9)

where, in the last equation of the first line in (B.9), we have used that y′ ⊗ x = xy′. For the

second sum on the right–hand side of (B.8), we find

∑

j

λj(µj ⊗ µj ⊗ µj) =
∑

j

λjvec[(µj ⊗ µj)µ
′
j ] = (IM ⊗DM )

∑

j

λjvec(µ̃jµ
′
j) (B.10)

= (IM ⊗DM )
∑

j

λjvec[(e′j ⊗ IN )(µ̃µ′)(ej ⊗ IM )]

= (IM ⊗DM )
∑

j

λj(e
′
j ⊗ IM ⊗ e′j ⊗ IN )vec(µ̃µ′)

= (IM ⊗DM )
∑

j

λj(IM ⊗ e′j ⊗ e′j ⊗ IN )(KMk ⊗ IkN )vec(µ̃µ′)

= (IM ⊗DM )
∑

j

λj(IM ⊗ vec(eje
′
j)
′ ⊗ IN )(KMk ⊗ IkN )vec(µ̃µ′)

= (IM ⊗DM )(IM ⊗ vec(Λ)′ ⊗ IN )(KMk ⊗ IkN )vec(µ̃µ′),

where we have used the identity (A⊗ b′)Knp = b′ ⊗A for m× n matrix A and p× 1 vector b

(Magnus, 1988, p. 36). Finally, because (A⊗B)(C⊗D) = (AC)⊗ (BD) if AC and BD exist,

we have (IM ⊗ LM )(IM ⊗ DM ) = (IM ⊗ LMDM ), and, by Theorem 5.5 of Magnus (1988),

LMDM = IN , N = M(M + 1)/2, so we get (B.7).

B.2 The Fourth Moment

For the fourth moment, we build on results of Magnus and Neudecker (1979) and Hafner (2003)

which we state as Lemmas 5 and 6, respectively.

Lemma 5 (Magnus and Neudecker, 1979, Theorem 4.3) For an M–dimensional random vec-

tor x, which is normally distributed with mean µ and covariance matrix H, we have11

E[(x⊗ x)(x⊗ x)′] = 2DMD
+
M (H ⊗H) + vec(H)vec(H)′ (B.11)

+2DMD
+
M (H ⊗ µµ′ + µµ′ ⊗H)

+vec(H)vec(µµ′)′ + vec(µµ′)vec(H)′ + vec(µµ′)vec(µµ′)′.

11 Magnus and Neudecker (1979) state the result in terms of the matrix Nn defined in Appendix A. In fact,
by Theorem 4.2 of Magnus (1988), we have Nn = DnD+

n . Here, the representation in terms of DnD+
n is

preferable because this simplifies some of the expressions to be presented below.
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For the result in Lemma 5 and generalizations, see also Magnus (1988, Ch. 10) and Ghazal

and Neudecker (2000).

We are interested in E[vech(xx′)vech(xx′)′]. Using the identity vec(xx′) = x ⊗ x and the

definition of the elimination matrix LM , this can be written as LME[(x⊗x)(x⊗x)′]L′M , which

is a simple transformation of (B.11). The case of a normal distribution with zero mean was

considered by Hafner (2003).12

Lemma 6 (Hafner, 2003, Theorem 1) For an M–dimensional normally distributed random

vector x with zero mean and covariance matrix H, we have

vec{E[vech(xx′)vech(xx′)′]} = GMvec(hh′), (B.12)

where h = vech(H), and

GM = 2(LM ⊗D+
M )(IM ⊗KMM ⊗ IM )(DM ⊗DM ) + IN2 , (B.13)

and N := M(M + 1)/2 is the number of independent elements in H.

Our first step is to generalize (B.12) to the case of nonzero means, i.e., to consider the

terms in the second and third line of (B.11).

Lemma 7 For an M–dimensional normally distributed random vector x with mean µ and

covariance matrix H, we have

vec{E[vech(xx′)vech(xx′)′]} = GMvec(hh′) + 2GMNN (µ̃⊗ IN )h+ vec(µ̃µ̃′), (B.14)

where GM is defined in (B.13), h = vech(H), µ̃ = vech(µµ′), and N = M(M + 1)/2.

The proof of Lemma 7 can be carried out along similar lines as the proof of Theorem 1 in

Hafner (2003). The case of a multivariate normal mixture distribution is considered next. We

make use of the notation introduced in Lemma 4.

Lemma 8 Assume that x ∼ MNM(λ1, . . . , λk, µ1, . . . , µk, H1, . . . , Hk). Then,

vec{E[vech(xx′)vech(xx′)′]} (B.15)

= GM (IN ⊗ vec(Λ)′ ⊗ IN )(KNk ⊗ IkN )vec(hh′) + 2GMNN (Υ̃Λ⊗ IN )h

+(IN ⊗ vec(Λ)′ ⊗ IN )(KNk ⊗ IkN )vec(µ̃µ̃′).

12 Actually, Hafner (2003) considered the more general class of spherical distributions which includes the
normal as a special case.
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Lemma 8 is obtained by combining the results of Lemma 7 with the fact that the fourth

moment of the mixture is just the weighted average of the component–specific moments as

given in (B.14), quite similar to equation (B.8) for the third moment, and by using arguments

similar to those in the derivation of Lemma 4. For example, to show that

k
∑

j=1

λjvec(hjh
′
j) = (IN ⊗ vec(Λ)′ ⊗ IN )(KNk ⊗ INk)vec(hh′), (B.16)

we essentially repeat the argument in (B.10).

C The Moments of the MNM(k)–AGARCH(1,1) Model

In this Appendix, we use the results of Appendix B to derive the unconditional second and

fourth moments of the asymmetric multivariate mixed normal GARCH(1,1) model as given

in equation (11), as well as the conditions for their existence. Using the results of Balestra

and Holly (1990), higher–order moments could in principle also be derived, but the resulting

expressions become unmanageable even for the central normal distribution, as the number of

terms to be evaluated is explosive as the order increases. Thus, in view of the fact that such

higher moments are of minor interest in applications, we concentrate on the second and the

fourth moment.13

C.1 Moment Conditions

We will use the notation introduced in Section 2 and Lemmas 4 and 8. Also, as defined in

(12), ρ(A) denotes the largest eigenvalue in modulus of a square matrix A.

Define Wt = (h′t, vec(hth
′
t)
′)′, and consider the expectation of Wt at time t − 2, i.e.,

E(Wt|Ψt−2). Clearly E(ηt−1|Ψt−2) = (λ′ ⊗ IN )(ht−1 + µ̃), so that14

E(ht|Ψt−2) = Ã0 +A1(λ
′ ⊗ IN )µ̃+ (λ⊗A1 +B1)ht−1.

The conditional expectation of vec(hth
′
t) can be greatly simplified by extensively using the

matrix Nn, and in particular its basic property (A.2). In addition, we will frequently use the

identities vec(xy′) = y ⊗ x and vec(ABC) = (C ′ ⊗A)vec(B). Thus,

vec(hth
′
t) = Ã0 ⊗ Ã0 + 2NkNvec[Ã0(η

′
t−1A

′
1 + h′t−1B

′
1)] + 2NkNvec(A1ηt−1h

′
t−1B

′
1)

+(A1 ⊗A1)vec(ηt−1η
′
t−1) + (B1 ⊗B1)vec(ht−1h

′
t−1)

+vec(Θ1εt−1ε
′
t−1Θ

′
1)− 2NkNvec[(Ã0 +A1ηt−1 +B1ht−1)ε

′
t−1Θ

′
1]. (C.17)

13 For the univariate case, a condition for the existence of arbitrary integer even moments in given in Haas,
Mittnik and Paolella (2004a).

14 Note that A1(λ
′
⊗ IN ) = (1⊗A1)(λ

′
⊗ IN ) = λ′

⊗A1.
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Let us evaluate the conditional expectations of the components of (C.17). Observe that

E{vec(Ã0η
′
t−1A

′
1)|Ψt−2} = vec{Ã0(h

′
t−1 + µ̃′)(λ⊗ IN )A′1}

= [A1(λ
′ ⊗ IN )⊗ Ã0](ht−1 + µ̃)

= (λ′ ⊗A1 ⊗ Ã0)(ht−1 + µ̃),

and

E[vec(A1ηt−1h
′
t−1B

′
1)|Ψt−2] = vec[A1(λ

′ ⊗ IN )(ht−1 + µ̃)h′t−1B
′
1]

= (B1 ⊗ λ′ ⊗A1)vec(ht−1h
′
t−1) + (B1 ⊗ λ′ ⊗A1)vec(µ̃h′t−1)

= (B1 ⊗ λ′ ⊗A1)vec(ht−1h
′
t−1) + (B1 ⊗ λ′ ⊗A1)(IkN ⊗ µ̃)ht−1

= (B1 ⊗ λ′ ⊗A1)vec(ht−1h
′
t−1) + [B1 ⊗ (λ′ ⊗A1)µ̃]ht−1.

The expectation of (A1 ⊗ A1)vec(ηt−1η
′
t−1), given Ψt−2, follows from Lemma 8. It remains

to consider those terms of (C.17) which involve εt−1. First, note that E(ht−1ε
′
t−1|Ψt−2) =

ht−1E(ε′t−1|Ψt−2) = 0. Thus, we have two nonzero terms. The first is

E[vec(Θ1εt−1ε
′
t−1Θ

′
1)|Ψt−2] = (Θ1 ⊗Θ1)DM (λ′ ⊗ IN )(ht−1 + µ̃),

and the second, using Lemma 4,

E[vec(A1ηt−1ε
′
t−1Θ

′
1)|Ψt−2] = (Θ1 ⊗A1)

[

(IM ⊗ LM )G̃M (ΥΛ⊗DM )ht−1

+(IM ⊗ vec(Λ)′ ⊗ IN )(KMk ⊗ IkN )vec(µ̃µ′)
]

.

Next, define

d =





d1

d2



 , C =





C11 0kN×kN

C21 C22



 ,

where

d1 = Ã0 +A1(λ
′ ⊗ IN )µ̃

d2 = Ã0 ⊗ Ã0 + 2NkN (λ′ ⊗A1 ⊗ Ã0)µ̃+ (A1 ⊗A1)(IN ⊗ vec(Λ)′ ⊗ IN )(KNk ⊗ IkN )vec(µ̃µ̃′)

+(Θ1 ⊗Θ1)DM (λ′ ⊗ IN )µ̃− 2NkN (Θ1 ⊗A1)(IM ⊗ vec(Λ)′ ⊗ IN )(KMk ⊗ IkN )vec(µ̃µ′),

C11 = λ′ ⊗A1 +B1,

C21 = 2NkN (λ′ ⊗A1 +B1)⊗ Ã0 + 2NkN [B1 ⊗ (λ′ ⊗A1)µ̃] + 2(A1 ⊗A1)GMNN (Υ̃Λ⊗ IN )

+(Θ1 ⊗Θ1)DM (λ′ ⊗ IN )− 2NkN (Θ1 ⊗A1)(IM ⊗ LM )G̃M (ΥΛ⊗DM ),

C22 = (A1 ⊗A1)GM (IN ⊗ vec(Λ)′ ⊗ IN )(KNk ⊗ IkN ) + 2NkN (B1 ⊗ λ′ ⊗A1) +B1 ⊗B1.
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From the preceding analysis it is clear that

E(Wt|Ψt−2) = d+ CWt−1,

and, by iteration,

E(Wt|Ψt−τ−1) =
τ−1
∑

i=0

Cid+ CτWt−τ . (C.18)

From the block–triangular structure of C, we have, from (C.18), that

E(ht|Ψt−τ−1) =
τ−1
∑

i=0

Ci
11d1 + Cτ

11ht−τ . (C.19)

Thus, as we have assumed that the process starts indefinitely far in the past with finite fourth

moments, the unconditional expectation E(ht) exists and is given by the limit as τ →∞, i.e.,

E(ht) = lim
τ→∞

E(ht|Ψt−τ−1) =
∞
∑

i=0

Ci
11d1 = (IkN − C11)

−1d1

if and only if ρ(C11) < 1, as stated in (13). By the same line of reasoning, E(Wt) exists and is

given by (I − C)−1d if and only if E(ht) exists and ρ(C22) < 1, as claimed in (14).

Example 1 Note that the expressions for the elements of d and C defined above simplify

considerably if all mixture components have zero means, which may be appropriate when the

(conditional) distribution of the returns under study exhibits leptokurtosis but no asymmetries.

In particular, in this case the only extra term due to the leverage effects is (Θ1⊗Θ1)DM (λ′⊗IN )

in the lower left block of C, i.e., C21. Moreover, in the univariate, single–component case we

get the QGARCH(1,1) model of Sentana (1995); and the unconditional fourth moment, in

obvious notation, is

E(η2
t ) = E(ε4t ) =

3α0[α0(1 + α1 + β1) + θ2
1]

(1− α1 − β1)(1− 3α2
1 − 2α1β1 − β2

1)
, (C.20)

which was given by Sentana (1995). This differs from the fourth moment of the standard

GARCH(1,1) model of Bollerslev (1986) only by the extra θ2
1 in the numerator of (C.20),

which shows that the QGARCH(1,1) model has a greater fourth moment than its standard

GARCH(1,1) counterpart. The variance, however, is E(ε2t ) = α0/(1 − α1 − β1), as in the

standard GARCH(1,1), and the kurtosis is given by

κ =
E(ε4t )

E2(ε2t )
= 3

1− (α1 + β1)
2 + (1− α1 − β1)θ

2/α0

1− 3α2
1 − 2α1β1 − β2

1

= 3
1− (α1 + β1)

2 + θ2/E(ε2t )

1− 3α2
1 − 2α1β1 − β2

1

,

which depends on the scale parameter α0. Due to the factor θ2/E(ε2t ), the unconditional kurtosis

of the QGARCH(1,1) model exceeds that of the standard GARCH(1,1) process. However, as

stressed by Carnero, Peña, and Ruiz (2004), in applications, θ2 is usually small relative to

E(ε2t ), so that the difference is rather small.
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C.2 Autocovariance Function of the Squares

To find the autocovariance matrices, i.e., Γτ = E(ηtη
′
t−τ ) − E(ηt)E(ηt)

′, we first note that

(C.19) in Appendix C.1 implies

E(ht|Ψt−τ ) =
τ−2
∑

i=0

Ci
11di + Cτ−1

11 ht−τ+1 = E(ht) + Cτ−1
11 [ht−τ+1 − E(ht)].

Hence,

E(ηtη
′
t−τ ) = E[E(ηt|Ψt−τ )η

′
t−τ ]

= E{(λ′ ⊗ IN )[E(ht|Ψt−τ ) + µ̃]η′t−τ}

= (λ′ ⊗ IN )E{[E(ht) + µ̃+ Cτ−1
11 (ht−τ+1 − E(ht))]η

′
t−τ}

= E(ηt)E(ηt)
′ + (λ′ ⊗ IN )Cτ−1

11 E
{

[Ã0 +A1ηt−τ −Θ1εt−τ +B1ht−τ − E(ht)]η
′
t−τ

}

.

Thus we have (15) with

Q = E
{

[Ã0 +A1ηt −Θ1εt +B1ht − E(ht)]η
′
t

}

. (C.21)

Example 2 For Sentana’s (1995) univariate QGARCH(1,1) process considered in Example

1, tedious calculations show that the autocorrelation function of the squares is given by

rτ =











2α0α1(1−α1β1−β2
1
)+(3α1+β1)(1−α1−β1)θ2

2α0(1−2α1β1−β2
1
)+3(1−α1−β1)θ2 τ = 1

(α1 + β1)rτ−1 τ > 1.
(C.22)

Thus, the decay pattern of the ACF is equal to that of the standard GARCH(1,1) process, as

already noted by Sentana (1995). However, for given values of α0, α1, and β1, the ACF of the

QGARCH(1,1) process is always larger than that of the GARCH(1,1), and is increasing in θ2:

It is straightforward to see that ∂rτ/∂θ
2 > 0 is equivalent to α1(1−α1β1−β

2
1)(3α1+β1)

−1 < (1−

2α1β1−β
2
1)/3, and simple manipulations reveal that this is equivalent to 3α2

1 +2α1β1 +β2
1 < 1,

which is just the condition for the existence of the fourth moment, and, thus, the ACF of ε2t .

D Moments of the MNM(k)–GARCH(p, q) process

In this Appendix, we indicate how the moments of the MNM(k)–GARCH(p, q) model may

be computed for higher–order GARCH models, i.e., with p and/or q larger than 1. We keep

the discussion short, because in most applications GARCH(1,1) rather than GARCH(p, q)

will suffice, and the properties of the GARCH(1,1) case have been developed in detail in

the preceding appendix. Moreover, in order to avoid clutter, we shall assume that all the
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components have zero means, i.e., in (5), µj = 0, j = 1, . . . , k, and that there are no leverage

effects, i.e., in (6), θij = 0, i = 1, . . . , q, j = 1, . . . , k.

Recently, using the ARMA representation of a GARCH model, Zadrozny (2005) employed

a state–space representation of the univariate GARCH(p, q) process to derive a condition for

the existence of its fourth moment.15 We use a similar approach to find a condition for

the existence of the unconditional fourth–moment matrix of the multivariate mixed normal

GARCH model. However, we use a different representation than Zadrozny (2005). Although

the representation we use is less parsimonious, it is preferred in present context because, in

addition to providing a condition and an expression for the fourth moment, it allows for the

computation of the autocorrelation matrices of the process. Clearly, the results presented

here also apply to the single–component case, i.e., the standard GARCH(p, q) model in vech

form, the fourth–moment structure of which has been investigated by Hafner (2003). However,

Hafner’s (2003) analysis is based on the MA(∞) representation of the process, which makes

the application of the results less convenient. A brief comparison of Hafner’s (2003) analysis

with our approach is provided at the end of this Appendix. A condition for the existence of the

fourth moment in single–component multivariate GARCH(p, q) models has also been derived

by Comte and Liebermann (2000).16 Their condition involves a matrix which is composed of

2q terms, where q is the ARCH order. For q = 1, this matrix coincides with the matrix Z in

Theorem 3 of Hafner (2003). However, Comte and Liebermann (2000) do not consider how to

compute the autocovariances from their approach.

To write the model in VARMA form, define h̄ = E(ηt|ψt−1) = (λ′⊗IN )ht, and ut = ηt− h̄t,

so that {ut} is a white noise process (uncorrelated but not independent).17 Then we can write

the MNM–GARCH(p, q) process as a VARMA(r, v) model for ht, i.e.,

ht = A0 +
r
∑

i=1

Ciht−i +
v
∑

i=1

Aiut−i, (D.23)

where r = max{p, q}, v = max{q, 2}, Ci = λ′ ⊗ Ai + Bi, Ai = 0, for i > q, and Bi = 0, for

i > p. To put the MNM–GARCH(p, q) model in VAR(1) form, we adopt a slightly modified

form of the VAR(1) representation of a VARMA model discussed in Lütkepohl (2005, p. 426).

15 Papers dealing with the fourth–moment structure of the univariate GARCH(p, q) model include Chen and
An (1998), He and Teräsvirta (1999), Karanasos (1999), Ling (1999), Davidson (2002, Section 2.3), and Ling
and McAleer (2002). There also exist results for other multivariate GARCH models than the vech model. For
example, moment conditions for Jeantheau’s (1998) generalization of Bollerslev’s (1990) constant conditional
correlation model are derived in Ling and McAleer (2003) and He and Teräsvirta (2004).

16 Computation of the fourth moment in the bivariate case was also considered by Nijman and Sentana (1996).

17 Recall that, in the present section, we assume zero component means and absence of leverage effects.
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That is, we define

Xt =





























ht

...

ht−r+1

ut−1

...

ut−v+1





























, Ã0 =





A0

0N{k(r−1)+(v−1)}×1



 , Z =















A1

0Nk(r−1)×N

IN

0N(v−2)×N















,

H =





H11 H12

H21 H22



 , where H11 =





C1 · · · Cr−1 Cr

IkN(r−1) 0kN(r−1)×kN



 ,

H12 =





A2 · · · Av

0kN(r−1)×N(v−1)



 , H22 =





0N×N(v−2) 0N×N

IN(v−2) 0N(v−2)×N



 , (D.24)

and H21 is a N(v − 1)× kNr matrix of zeros. Thus, Xt is of dimension N(kr+ v − 1). Given

the definitions in (D.24), we can write

Xt = Ã0 +HXt−1 + Zut−1. (D.25)

From (D.25), we can infer that the MNG–GARCH(p, q) process is stationary if ρ(H11) < 1,

or, equivalently, the roots of

det(IkN −
r
∑

i=1

Ciz
i) = 0 (D.26)

are outside the unit circle.

To find a condition for the existence of the fourth moment, i.e., of E(XtX
′
t), define the

matrices

I := (IkN , 0kN×N{k(r−1)+v−1}), (D.27)

so that hth
′
t = IXtX

′
tI
′, and

FM := GM (IN ⊗ vec(Λ)′ ⊗ IN )(KNk ⊗ IkN )− (λ′ ⊗ IN ⊗ λ′ ⊗ IN ). (D.28)

Definition (D.28) is useful for calculating E(utu
′
t). In fact, as E(utu

′
t) = E(ηtη

′
t)−E(h̄th̄

′
t), and

E(h̄th̄
′
t) = (λ′ ⊗ IN )E(hth

′
t)(λ⊗ IN ), we have

E[vec(utu
′
t)] = LME[vec(hth

′
t)].

Also note that E(htu
′
t) = E[htE(u′t|Ψt−1)] = 0. Thus,

E[vec(XtX
′
t)|Ψt−2] (D.29)

= Ã0 ⊗ Ã0 + (Ã0 ⊗H +H ⊗ Ã0)Xt−1 + [H ⊗H + (Z ⊗ Z)FM (I⊗ I)]vec(Xt−1X
′
t−1);
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and an argument quite similar to that of Appendix C shows that E(XtXt) exists if and only

if ρ(P ) < 1, where

P := H ⊗H + (Z ⊗ Z)FM (I⊗ I). (D.30)

In case of existence, the unconditional moments E(Xt) and E(XtX
′
t) can be computed by

taking unconditional expectations and solving (D.25) and (D.29), respectively.

As mentioned above, representation (D.25) of the process—although less parsimonious

than that used by Zadrozny (2005) in his analysis of the univariate GARCH(p, q) process—is

useful for calculating the sequence of autocovariances of ηt, which is not dealt with in Zadrozny

(2005). The reason is that, in present context, it is much more convenient to work with the

VARMA representation of ht rather than that of ηt, which involves determinantal terms and

is quite difficult to handle. On the other hand,

E(ηtη
′
t−τ ) = E[(h̄t + ut)(h̄t−τ + ut−τ )

′] = E(h̄th̄
′
t−τ ) + E(h̄tu

′
t−τ ), (D.31)

as E(utu
′
t−τ ) = E(uth̄

′
t−τ ) = 0. Thus, it is advantageous to explicitly model both ht and ut.

The terms on the right–hand side of (D.31) can be extracted from

E(XtX
′
t−τ ) = E{E(Xt|Ψt−τ−1)X

′
t−τ} (D.32)

= E

{(

τ−1
∑

i=0

H iÃ0 +HτXt−τ

)

X ′
t−τ

}

= E{[(I −Hτ )(I −H)−1Ã0 +HτXt−τ ]X
′
t−τ}

= E(Xt)E(Xt)
′ +Hτ [E(XtX

′
t)− E(Xt)E(Xt)

′].

For the first term on the right–hand side of (D.31), we have

E(h̄th̄
′
t−τ ) = (λ′ ⊗ IN )E(hth

′
t−τ )(λ⊗ IN ) = (λ′ ⊗ IN )IE(XtX

′
t−τ )I

′(λ⊗ IN ), (D.33)

and the second term is

E(h̄tu
′
t−τ ) = (λ′ ⊗ IN )IE(XtX

′
t−τ+1)Ĩ

′, (D.34)

where

Ĩ = (0N×kNr, IN , 0N×N(v−2)). (D.35)

This completes the characterization of the fourth–moment structure of the multivariate mixed

normal GARCH(p, q) process.

To compare with Hafner’s (2003) method for the single–component multivariate GARCH(p, q),

let us briefly sketch his argument when applied to the MNM(k)–GARCH(p, q) process. By

inverting (D.23), we obtain the MA(∞) representation of ht,

ht = [IkN − C(1)]−1A0 + [IkN − C(L)]−1A(L)ut = E(ht) +
∞
∑

i=1

Φiut−i, (D.36)
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where C(z) =
∑r

i=1Ciz
i, L is the lag operator, Liyt = yt−i, and the MA(∞) coefficient

matrices, Φi, i = 1, 2, . . ., can be calculated recursively in the usual way (see, e.g., Lütkepohl,

2005). Then, in case of existence of E(hth
′
t), or, equivalently, of E(utu

′
t),

vec[E(hth
′
t)] = vec[E(ht)E(ht)

′] +

∞
∑

i=1

(Φi ⊗ Φi)vec[E(utu
′
t] (D.37)

= vec[E(ht)E(ht)
′] +

∞
∑

i=1

(Φi ⊗ Φi)FMvec[E(hth
′
t)]. (D.38)

Thus,

vec[E(hth
′
t)] =

(

IN2k2 −
∞
∑

i=1

(Φi ⊗ Φi)FM

)−1

vec[E(ht)E(ht)
′]. (D.39)

From Theorem 2 in Hafner (2003) we have that, under covariance stationarity, a condition for

existence of E(hth
′
t) is ρ(Ω) < 1, where Ω =

∑∞
i=1(Φi ⊗ Φi)FM .

Note that Ω and P (as defined in (D.30)) are, in general, different matrices and do not have

the same maximal eigenvalue. However, as expected, the conditions ρ(P ) < 1 and ρ(Ω) < 1

turn out to be equivalent, i.e., ρ(Ω) Q 1 ⇔ ρ(P ) Q 1. For example, in the GARCH(1,1) case,

we can compute Ω explicitly as

Ω =
∞
∑

i=1

(Φi ⊗ Φi)FM =
∞
∑

i=1

[(Ci−1
1 A1)⊗ (Ci−1

1 A1)]FM = (Ik2N2 − C1 ⊗ C1)
−1(A1 ⊗A1)FM .

(D.40)

Thus, in the single–component, univariate case, where FM = 2, ρ(Ω) = 2α2
1/(1−(α1+β1)

2) < 1

is equivalent to 3α2
1 + 2α1β1 + β2

1 < 1 under stationarity, i.e., α1 + β1 < 1. For k > 1 and/or

M > 1, the equivalence is not obvious but can still be checked numerically, and an example

is provided in Figure 10, where we consider the case p = q = 1, k = 2, and M = 2 (hence

N = 3), with λ = (0.75, 0.25)′,

A11 =









A11,11 0.05 0.20

0.12 0.13 0.05

0.24 0.13 0.10









, A12 =









0.20 0.12 0.01

0.10 0.09 0.08

0.24 0.13 0.20









, (D.41)

B11 =









0.23 0.16 0.30

0.29 0.14 0.05

0.03 0.12 0.13









, B12 =









0.32 0.04 0.03

0.02 0.04 0.18

0.11 0.05 0.25









,

and parameter A11,11 varies from 0 to 0.25. Clearly, both ρ(Ω) and ρ(P ) are monotonically

increasing in A11,11, and they intersect exactly at ρ(Ω) = ρ(P ) = 1. We observe the same

pattern if we let any other parameter vary or use different parameter matrices in (D.41).

However, while the conditions give rise to the same conclusions with respect to existence

of E(ηtη
′
t), they have, relative to each other, several benefits and drawbacks. Clearly, an
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Figure 10: This figure illustrates the equivalence of the fourth–moment eigenvalue conditions

based on matrices Ω =
∑∞

i=1(Φi⊗Φi)FM , defined in (D.40), and P , defined in (D.30). Shown

are, for the example in (D.41), the maximal eigenvalues, ρ(P ), solid, and ρ(Ω), dash–dotted,

for values of the parameter A11,11 increasing from 0 to 0.25.

advantage of Ω is that, in particular for high ARCH/GARCH orders, it is of a considerably

lower dimension than P . On the other hand, computation of Ω requires the evaluation of the

(infinite) sequence of MA coefficients Φi, i = 1, 2, . . ., while the expression for P in (D.30) is

more compact. Also, Hafner (2003: 35) argues that, if the fourth moment exists, the closeness

of the maximum eigenvalue of Ω to unity may be considered as a measure for the degree

of “persistence in kurtosis”. However, this is questionable as, from (D.29), the appropriate

measure of persistence in the fourth moment is ρ(P ). Thus, using Ω, the persistence in fourth

moments is underestimated, as it is generally found that, for ρ(Ω) < 1, we have ρ(Ω) < ρ(P ) <

1, as illustrated in Figure 10.
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