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1 Introduction

There is ample empirical evidence that economic contractions cluster. For instance, during

the 20th century US consumption per capita decreased in 21 out of 100 years.1 However,

the probability of seeing a subsequent decline was about 38% (8 out of 21 years). Declines

clustered around and during World War I as well as during the Great Depression: Between

1907 and 1922 there were declines in 9 out of 15 years. From 1929 to 1933 consumption de-

creased in 4 consecutive years amounting to a total decline of about 16%. It thus appears

that initial drops in aggregate consumption might increase the likelihood of subsequent

declines. There are several approaches to capture this stylized fact. Barro (2006) suggests

a so-called peak-to-trough method, which means that the consumption decrease over the

first year of the disaster is calibrated to the measured cumulative consumption decrease

from peak to trough of the disaster period. Constantinides (2008) discusses this calibra-

tion approach and indicates that it misses out on the dynamic nature of disasters which

are usually characterized by a sequence of moderate declines instead of one large decline.

To capture these dynamics of disasters, the literature essentially applies two approaches.

Wachter (2012) proposes a time-varying probability of a consumption disaster. Veronesi

(2004) assumes the drift of consumption to follow a Markov switching process, with a

small probability of falling into a low state. While these approaches allow for a tem-

porarily increased probability of consumption declines, a consumption shock itself does

not trigger an increase of this probability. On the contrary, the present paper entertains

a new economic channel allowing for consumption shocks that simultaneously trigger a

regime shift to a bad economic state in which the probability of subsequent declines in-

creases. In a general equilibrium setting with recursive preferences, we document that the

risk premium of such a shock is significantly larger than the combined risk premia of a

separate consumption shock and a pure regime shift.

Our model is silent on the economic reason of such a combined cash flow shock and

regime shift (’contagious shock’) and in this sense it is a reduced-form approach. We

interpret these events as contagion effects that might spread over the economy. Initial

moderate shocks in one sector of the economy might affect other sectors and thus cause

subsequent shocks in these sectors leading to a cascade of shocks. Consequently, aggregate

consumption might decrease over several years.

We analyze the impact of contagion risk on asset prices and asset price dynamics and con-

sider a classic Lucas tree economy in which aggregate endowment is affected by contagion

1The consumption per capita data is from Robert Barro’s website.

1



risk. More precisely, the endowment dynamics are subject to diffusion risk and to down-

ward jumps where the jump intensity follows a two-state Markov chain. It is moderate in

normal times (’calm state’), but increases significantly when the economy enters the ’con-

tagion state’. As mentioned above, a key feature of our model is that jumps from the calm

state to the contagion state go together with a negative shock to aggregate endowment

capturing the previously described effects. We document that this property is of first-order

importance for the sizes of the equilibrium risk premium and risk-free rate. To illustrate

these results, we compare our economy to a pure regime switching economy with the same

local distribution of consumption, in which consumption jumps and regime switches are

decoupled. We find that risk premia are superadditive. Contagious jumps carry a risk

premium that is 2.5% higher than the sum of the risk premia for regime switches and

for jumps in consumption in a pure regime switching framework. Besides, the equilibrium

risk-free rate is reduced by 0.5% resulting from higher precautionary savings terms. In a

pure regime switching economy, the agent can adjust his asset demand both after a pure

consumption jump and after a regime change. In an economy with contagious shocks,

this timing possibility is missing. As a result, the equilibrium rate of return on the risky

asset is larger in the presence of contagion risk, and the risk-free rate is reduced, since an

additional precautionary savings motive arises.

The interpretation of a combined cash-flow shock and regime shift as contagious shock

in one part of the economy suggests to also study a Lucas tree economy with two trees.

The trees can spread contagion across the economy or can be affected by it. This allows

us to analyze how differences in contagion risk induce differences in prices and returns.

As special cases, we analyze two types of assets: contagious assets that ’trigger’ contagion

and non-toxic, contagion-sensitive assets that are affected by, but are hardly causing

contagion.2

To summarize, our paper makes three main contributions to the literature. First, we study

quantitatively how the possibility of contagious shocks affects prices and price dynamics.

We compare our economy with a pure regime switching economy, in which adverse regime

shifts and shocks to consumption are disentangled. We find an economically significant

extra risk premium for contagious shocks that is earned in normal times. In the calm state

of our model, assets thus trade at a price discount if they are prone to contagion risk. Fur-

2Multi-tree models are analyzed in Dumas (1992) and Dumas, Harvey, and Ruiz (2003). Subsequently,

Cochrane, Longstaff, and Santa-Clara (2008) consider a two tree economy with a log investor. Martin

(2013) studies a Lucas orchard with several trees and CRRA preferences. Our equilibrium solution with

recursive utility follows Branger, Dumitrescu, Ivanova, and Schlag (2012).
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thermore, contagion gives the representative agent an additional motive for precautionary

savings that lowers the equilibrium risk-free rate. Second, we derive semiclosed-form so-

lutions for the wealth-consumption ratio and the price-dividend ratios (and thus all other

key asset pricing figures) in a model with two Lucas trees, recursive preferences and conta-

gious shocks. We document that the superadditive pricing effects of contagious shocks are

particularly pronounced for assets written on big trees. Additionally, we show that assets

written on a tree with zero consumption share also earn positive risk premia, since they

are exposed to contagious shocks. Third, we qualitatively analyze possible cross-sectional

effects of contagion. We consider two setups with heterogeneous assets: In the first setting,

there is one asset that is predominantly affected by contagion (’contagion-sensitive asset’).

In the second setting, there is one asset that mainly triggers contagion. We find that big

assets, contagion-sensitive assets, and assets with a high propensity to trigger contagion

carry the largest equilibrium risk premia. In these asymmetric cases, the superadditive

effects of contagious shocks are further amplified.

Besides the growing research on asset pricing with multiple trees, our paper is related to

several other strands of literature. There is a huge amount of research on the impact of

jumps on asset prices. Naik and Lee (1990) derive the equilibrium in a one tree economy

with utility from terminal wealth where the dividend follows a jump-diffusion process.

Rietz (1988) and Barro (2006, 2009) show that rare but severe disasters help to explain the

equity premium puzzle. Wachter (2012) analyzes the impact of a time-varying (exogenous)

jump intensity on the variance of returns in a model with Epstein-Zin preferences. Gabaix

(2012) focuses on time-varying jump intensities and time-varying recovery rates in a model

with CRRA utility in order to solve several asset pricing puzzles. Backus, Chernov, and

Martin (2011) draw a link between consumption-based asset pricing models and standard

option pricing theory. They find that option prices imply more frequent, but also more

modest jumps than the disaster literature suggests. Recently, Barro, Nakamura, Steinsson,

and Ursua (2013) focussed on temporary versus permanent impacts of disasters. They also

find that the temporal concentration of jump risk is of first-order importance for asset

pricing. However, their model does not exhibit contagion.

Another strand of related literature studies contagion from an empirical point of view. The

book of Claessens and Forbes (2001) provides a detailed synopsis of the different terms

which are used in this literature. Longin and Solnik (2001) as well as Forbes and Rigobon

(2002), among others, analyze the time-varying behavior of stock return correlations. Bae,

Karolyi, and Stulz (2003) measure contagion via the coincidence of extreme return shocks

of stock indices across several countries worldwide. They find significant evidence for
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the existence of contagion. Aı̈t-Sahalia, Cacho-Diaz, and Laeven (2013) study contagion

effects using self-exciting processes.

The remainder of this paper is structured as follows. Section 2 explains the model setup

and the equilibrium with one Lucas tree. Section 3 extends the economy to two trees.

Section 4 analyzes the cross-sectional pricing implications of contagion risk. Section 5

concludes. All proofs can be found in the Appendix.

2 One Tree Economy

2.1 Consumption Dynamics

We consider a continuous-time Lucas tree economy with an infinite horizon. There is one

tree producing a perishable consumption good which serves as numeraire. Section 3 will

consider the extension to two trees. The economy can be in either of two states which we

denote by ’calm’ and ’contagion’. These states are formally captured by a Markov chain

Z. Conditional on the state of the economy Zt ∈ {calm, cont}, the outcome of the tree

follows a jump-diffusion process. If the economy is in the calm state, then

dCt
Ct−

= µcalmdt+ σdWt + Lcalm,calmdN calm,calm
t + Lcalm,contdN calm,cont

t .

In the contagion state, the dynamics are

dCt
Ct−

= µcontdt+ σdWt + Lcont,contdN cont,cont
t , (1)

where W is a Wiener process with constant, state-independent volatility σ. The different

processes N i,j are jump processes. In particular, N calm,cont captures contagious shocks to

consumption that can occur in normal times (’calm state’) and go together with a regime

shift to the contagion state. This type of shocks is a specific feature of our model, since

it allows for a combined cash flow shock and regime shift.3 On the contrary, N calm,calm or

N cont,cont refer to jumps that occur in the calm or contagion state, but do not go together

with a regime shift. Consequently, they only have an impact on the level of consumption

and are thus similar to the shocks analyzed in Rietz (1988) and Barro (2006), among

others. There is also a fourth counting process in our model, N cont,calm, that triggers

3Note that the economy can only enter the contagion state if there is a contagious shock to consump-

tion. This facilitates the comparison with pure regime switching models. Additionally, we could also allow

for transitions without an immediate shock to consumption.
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regime switches from the contagion to the calm state, but does not directly affect the

level of consumption.

The state of the Markov chain Z determines the drift rate µ and the intensities of the

counting processes that are denoted by the constants λi,j. For instance, λcalm,cont captures

the probability of a contagious shock in normal times, whereas λcalm,calm and λcont,cont

denote the intensities for jumps that do not trigger regime switches. In line with the

interpretation of the states as ’good’ and ’bad’, we assume that consumption shocks are

more frequent in the contagion state than in the calm state, i.e. λcalm,calm + λcalm,cont <

λcont,cont. For simplicity, the respective jump sizes, Lcalm,calm, Lcalm,cont, and Lcont,cont, are

negative constants.4

We compare our model to a ’pure regime switching economy’ (see, e.g., Veronesi (2004)

or Benzoni, Collin-Dufresne, and Goldstein (2011)), where shocks to consumption and

regime switches cannot occur simultaneously. This is a special case of our setting where

Lcalm,cont = 0. The intensity for consumption drops in the calm state is then solely given

by λcalm,calm. To identify the equilibrium pricing effects of contagious shocks, we choose

the parameters such that the local distributions of consumption growth are the same

in both models. In particular, we make sure that the jump probabilities are the same

in the calm state, i.e. we set the intensity for consumption jumps λcalm,calm in the pure

regime switching model equal to the combined jump intensity λcalm,calm +λcalm,cont in our

contagion model.

Apart from the pure regime switching economy, we also study an ’economy without

regimes’. This economy can formally be obtained as a special case of the pure regime

switching economy where all consumption parameters are the same in both states. Again,

we adjust the intensity for consumption jumps in the economy without regimes such that

it is equal to the unconditional jump intensity in the other two economies. The model

without regimes is closest to the setups in Rietz (1988) or Barro (2006).

To summarize, we compare three different models that allow for different temporal con-

centrations of consumption shocks. In the economy without regimes, jumps solely have

an immediate effect on the level of consumption, but no after-effects.5 This model class

can thus only match the size of empirical disasters if they are calibrated with the peak-to-

trough method described by Barro (2006). In this sense, this model represents the highest

4Stochastic jump sizes would complicate the model and notation without adding much to our main

results.
5Formerly, this is because shocks are modeled via ordinary Poisson processes that are memoryless.
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possible degree of temporal concentration, since the total decline materializes in a single

event. In contrast, a pure regime switching model induces a very low degree of temporal

concentration. Regime switches solely change the future dynamics of consumption and

thus only have a long-term effect: In the contagion state, consumption disasters occur

with a higher probability and are thus more prone to clustering. Our contagion model lies

between these two approaches. On the one hand, the state variable ’calm/contagion’ has a

long-term effect on the distribution of consumption. On the other hand, a regime change

from calm to contagion (’contagious shock’) goes together with a drop in consumption

and thus also has an immediate effect.

2.2 Representative Investor

Our economy is populated by a representative investor with stochastic differential utility

that was introduced by Duffie and Epstein (1992b). His subjective time preference rate is

β, his relative risk aversion is γ, and his elasticity of intertemporal substitution is ψ. The

investor has an infinite planning horizon, and his indirect utility function is

Jt = Et

[∫ ∞
t

f(Cs, Js)ds

]
,

where the aggregator f is given by

f(C, J) =
βC1− 1

ψ(
1− 1

ψ

) [
(1− γ)J

] 1
θ
−1
− βθJ

and θ = 1−γ
1− 1

ψ

. For ψ = 1/γ, the investor has time-additive CRRA preferences. In the

following, we assume γ > 1 and ψ > 1. Therefore, the investor has a preference for early

resolution of uncertainty.

2.3 Parametrization

Table 1 reports the calibrations of all parameters for the different settings. All values are

annualized. We calibrate our parameters so that they are roughly in line with Bhamra,

Kuehn, and Strebulaev (2010). These authors estimate the parameters of a regime switch-

ing model with two economic regimes using US consumption data from 1947 to 2005. Their

estimate for the intensity of switches from the good to the bad state is 0.27, while the

intensity of switches back to the good state is 0.49. We thus set λcalm,cont = 0.27 and
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λcont,calm = 0.49. Given a particular state the consumption process in their model is a

geometric Brownian Motion. The volatility is almost state-independent and equal to 0.01.

The expected consumption growth rates in the good and the bad state equal 0.042 and

0.014, respectively. On the contrary, we assume a jump-diffusion process and thus aug-

ment the dynamics by jumps in the level of consumption. Consequently, there are several

parameter combinations that are in line with Bhamra, Kuehn, and Strebulaev (2010).

We use σ = 0.01 and choose a constant drift rate µcalm = µcont = 0.058. The jump size

is set equal to L = −0.03 for all types of jumps. The moderate jump size reflects the

intuition that our jumps are not ’disasters’ in the sense of Barro (2006), but constitute

more frequent and less severe consumption drops.6 The intensity λcalm,calm is set to 0.23,

so that the intensity of a consumption drop in the calm state is 0.27 + 0.23 = 0.5. The

intensity in the contagion state is three times higher, i.e. λcont,cont = 1.5. Altogether, we

closely match the expected consumption growth rates of Bhamra, Kuehn, and Strebulaev

(2010) in both states. The resulting consumption volatility reported in the first line of

Table 2 is √
σ2 + λcalm,calm(Lcalm,calm)2 + λcalm,cont(Lcalm,cont)2 = 0.0235

in the calm state and √
σ2 + λcont,cont(Lcont,cont)2 = 0.0381

in the contagion state. Given the unconditional probabilities of the two states

pcalm =
λcont,calm

λcont,calm + λcalm,cont
= 0.6447 and pcont = 0.3553,

the unconditional volatility of consumption equals√
σ2 + pcalm

∑
k=calm,cont

λcalm,k(Lcalm,k)2 + pcontλcont,cont(Lcont,cont)2 = 0.0295.

For the pure regime switching economy, we set Lcalm,cont = 0, so that jumps in consump-

tion and regime switches are no longer coupled. As argued in Section 2.1, the remaining

parameters are chosen such that the local dynamics of consumption and the local dynam-

ics of the Markov chain coincide in both models. This implies λcalm,calm = 0.5, so that

6Since consumption declines are rare events, it makes sense to look at a longer time horizon. In the

20th century there were 21 years where US aggregate consumption declined with an average value of

about 2.9%. If we only take declines of more than 1% into account and thus disregard jumps that might

be attributed to diffusion risk, the average is about 3.3%. Therefore, our choice resembles these values.
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consumption jumps in the calm state still have an intensity equal to 0.5, while all other

parameters remain unchanged.

For the economy without regimes, we also set Lcalm,cont equal to 0. Moreover, the jump

intensities λcalm,calm and λcont,cont coincide, and we set them equal to the unconditional

mean jump intensity in the economy with contagion:

λuncond = pcalm · 0.5 + pcont · 1.5 = 0.855.

Finally, the preference parameters are chosen in line with Bansal and Yaron (2004) and

other papers in the long run risk literature, i.e. γ = 10 and ψ = 1.5. Following Bhamra,

Kuehn, and Strebulaev (2010), we set β = 0.01.

2.4 Asset Pricing Results

We solve for the pricing kernel following Duffie and Epstein (1992a,b) and Benzoni, Collin-

Dufresne, and Goldstein (2011). Details of the derivation as well as the proofs of all

following asset pricing results can be found in Appendix A. A summary of the numerical

results discussed in this section is provided in Table 2.

We conjecture that the indirect utility J of the representative investor is

Jt =
C1−γ
t

1− γ
βθeθv

Zt
.

The pricing kernel ξ is then given by

ξt = βθC−γt e
−βθt+(θ−1)

(
t∫
0

e−v
Zu
du+vZt

)
. (2)

The process vt = vZt is equal to the logarithm of the wealth-consumption ratio (see,

e.g., Campbell, Chacko, Rodriguez, and Viceira (2004) and Benzoni, Collin-Dufresne, and

Goldstein (2011)).7 It depends on the state of the economy Z and can thus only take the

7Notice that vt is a process and each vj , j ∈ {calm, cont}, is a function that is constant in our one

tree setting.
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two values vcalm and vcont that solve the following system of equations:

0 = e−v
calm − β +

(
1− 1

ψ

)
µcalm − 1

2
γ

(
1− 1

ψ

)
σ2

+
1

θ
λcalm,calm

[
(1 + Lcalm,calm)1−γ − 1

]
+

1

θ
λcalm,cont

[
(1 + Lcalm,cont)1−γeθ(v

cont−vcalm) − 1
]

0 = e−v
cont − β +

(
1− 1

ψ

)
µcont − 1

2
γ

(
1− 1

ψ

)
σ2

+
1

θ
λcont,cont

[
(1 + Lcont,cont)1−γ − 1

]
+

1

θ
λcont,calm

[
eθ(v

calm−vcont) − 1
]
.

2.4.1 Market prices of risk

From the pricing kernel, we directly get the market prices of risk.

Proposition 1 The market price of diffusion risk in state j ∈ {calm, cont} is

ηdiff,j = γσ.

The market prices of jump risk are

ηcalm,calm =
(
1 + Lcalm,calm

)−γ − 1

ηcalm,cont =
(
1 + Lcalm,cont

)−γ
e(θ−1)(vcont−vcalm) − 1

ηcont,cont =
(
1 + Lcont,cont

)−γ − 1

ηcont,calm = e(θ−1)(vcalm−vcont) − 1.

The risk-neutral jump intensities follow from the physical intensities via the relation

λQ,j,k = λP,j,k(1 + ηj,k).

The market prices of risk depend on the dynamics of consumption and on the dynamics

of the wealth-consumption ratio v. The latter dependence vanishes in case of a CRRA

agent with ψ = 1/γ, for whom state variables – here the state of the Markov chain Z

– are not priced. In contrast, we assume a preference for early resolution of uncertainty

and θ < 0. Therefore, possible changes in future consumption opportunities which impact

the wealth-consumption ratio enter the pricing kernel. Both the market prices of risk for

contagious jumps and for regime switches back into the calm state involve the change

of the wealth-consumption ratio upon a regime shift. In particular, ηcont,calm is nonzero

although these regime switches do not affect consumption directly, but only through the

state variable Z.
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Our economy differs from a pure regime switching economy since we allow for contagious

shocks that combine a cash-flow shock and a regime shift. The market price of risk for

these jumps can be decomposed as follows:

1 + ηcalm,cont =
(
1 + Lcalm,cont

)−γ︸ ︷︷ ︸
1+ηjump

e(θ−1)(vcont−vcalm)︸ ︷︷ ︸
1+ηRS

. (3)

The variable ηjump denotes the (hypothetical) market price of risk for isolated consumption

jumps with size Lcalm,cont, whereas ηRS denotes the (hypothetical) market price of risk for

a pure regime switch from calm to contagion. In a pure regime switching economy, jumps

in consumption and regime switches are disentangled and thus carry different market

prices of risk, ηjump and ηRS. The decomposition (3) shows that the market price of risk

for contagious shocks is not just the sum of its parts. In fact, it is superadditive. Risk-

averse agents with a preference for early resolution of uncertainty demand an extra risk

premium if the two adverse events ’consumption shock’ and ’switch to the contagion state’

occur simultaneously.

2.4.2 Risk-free interest rate

The risk-free rate follows from the (negative) expected growth rate of the pricing kernel.

Proposition 2 The risk-free interest rate in state j ∈ {calm, cont} equals

rjf = β +
1

ψ

Et [dCt]

Ct dt
− Ξdiff − Ξj,calm − Ξj,cont,

where the precautionary savings terms are given by

Ξdiff =
1

2
γ(1 +

1

ψ
)σ2

Ξj,k = λj,k
[
ηj,k +

1

ψ
Lj,k +

1− θ
θ

(
(1 + Lj,k)1−γeθ(v

k−vj) − 1
)]

.

for (j, k) ∈ {(calm, calm), (calm, cont), (cont, cont)} and

Ξcont,calm = λcont,calm
[
ηcont,calm +

1− θ
θ

(
eθ(v

calm−vcont) − 1
)]

.

The risk-free interest rate comprises the subjective time preference rate β, the expected

growth rate of consumption scaled by the inverse of the IES, and several precautionary

savings terms for the different risk factors in our model. Table 3 reports the numerical
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values and a decomposition of the risk-free rate into its components. The first three

components (time preference rate, expected consumption growth, precautionary savings

term for diffusive risk) are standard and identical across settings.8 A higher time preference

rate or a higher expected consumption growth rate lower the incentives to save leading

to a higher equilibrium risk-free rate. The precautionary savings term for diffusive risk,

Ξdiff , has the well-known form since the only diffusive risk in our economy is consumption

risk.

Differences in the risk-free rate across settings are driven by differences in the precaution-

ary savings terms for jump risk. In the economy with contagion, these terms reduce the

risk-free rate by more than 1% in both states. This reduction is larger in the contagion

state than in the calm state, since jump intensities are larger in the contagion state. Com-

paring the economy with contagion and the pure regime switching economy, we find sig-

nificant differences for the precautionary savings terms in the calm state. In the economy

with contagion, the precautionary savings term for contagious shocks is Ξcalm,cont = 0.0089,

whereas the term for ordinary consumption jumps is Ξcalm,calm = 0.0021. Although both

types of jumps have similar intensities (0.27 and 0.23), the effect of contagious shocks is

four times bigger. In the pure regime switching economy, precautionary savings demand

arises from the risk of pure consumption shocks and from the risk of regime switches.

To match the jump probabilities in both models, we increase the intensity of ordinary

consumption jumps from 0.23 to 0.50. The corresponding precautionary savings term in-

creases proportionally from 0.0021 to 0.0045. Pure regime changes induce a precautionary

savings term of Ξcalm,cont = 0.0013. To summarize, the demand for precautionary savings

due to jump risk has a larger impact in our economy than in the pure regime-switching

economy and induces a difference of 52 basis points in the risk-free rate.9 This is because

in a pure regime switching economy the representative agent waits to adjust his precau-

tionary savings demand until the economy has entered the bad state. On the contrary,

contagious shocks make this kind of timing impossible. As a consequence, the agent’s

precautionary savings motive in the calm state increases even more, which reduces the

risk-free interest rate in equilibrium.

Finally, the risk-free interest rate in an economy without regimes equals 0.023 and is thus

45 basis points higher than the unconditional expected interest rate in the economy with

contagion (0.0185 as reported in Table 2) and 13 basis points above the unconditional

8Notice that the expected consumption growth in the economy without regimes equals the uncondi-

tional expected consumption growth in the other two cases.
9Notice that, unconditionally, we find a difference of 33 basis points.
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expected interest rate in the pure regime switching economy. This is because there is no

precautionary savings motive stemming from regime changes, which leads to an increase

of the risk-free rate by 13 basis points.

2.4.3 Price-Dividend Ratios

Following Bansal and Yaron (2004) and Wachter (2012), among others, dividends Dt are

modeled as levered consumption. We assume a leverage parameter φ = 3 for both diffusion

risk and jump risk. The dynamics of dividends are

dDt

Dt−
= µcalmdt+ φσdWt +

[
(1 + Lcalm,calm)φ − 1

]
dN calm,calm

t

+
[
(1 + Lcalm,cont)φ − 1

]
dN calm,cont

t

in the calm state and

dDt

Dt−
= µcontdt+ φσdWt +

[
(1 + Lcont,cont)φ − 1

]
dN cont,cont

t

in the contagion state. Similarly to Longstaff and Piazzesi (2004) we assume the same drift

rate, µZt , for consumption and dividends. The pricing equation for the dividend claim is

Dte
wt = Et

[∫ ∞
t

ξτ
ξt
Dτdτ

]
,

where w is the logarithm of the price-dividend ratio. Analogously to the log wealth-

consumption ratio, the log price-dividend ratio w depends on the state of the Markov

chain. Its two possible values wcalm or wcont satisfy a system of equations provided in

Appendix A. For the parameters in Table 1, the price-dividend ratio equals 11.42 in the

calm state and 10.47 in the contagion state. The sizes of the price jumps upon the different

events are thus -8.7% for pure dividend jumps, -16.37% for contagious jumps and +9.1%

for switches from the contagion to the calm state.

The valuation ratios in the pure regime switching economy are slightly larger than in the

economy with contagion. Recall that the parameters of both models are chosen such that

the local distribution of aggregate consumption is the same in both economies. In the

economy with contagion, a transition into the contagion state is always accompanied by

a simultaneous drop in consumption. In the pure regime switching economy, the prices in

the calm state can be affected either by a drop in consumption or by a transition into the

contagion state. As already pointed out in the discussion of the risk-free rate, the investor

dislikes one large jump more than two small jumps. Consequently, the price-dividend ratio
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in the regime-switching economy is larger than in the economy with contagion by around

8.7%. By a similar argument, the price-dividend ratio in the economy without regimes is

larger than in the pure regime switching economy.

2.4.4 Risk Premia

The risk premium of an asset follows from its exposure to the various risk factors and the

respective market prices of risk. The market prices of risk are given in Proposition 1. The

exposures follow from the dynamics of the asset price P in the calm and in the contagion

state, respectively:

dPt
Pt−

= µcalmdt+ ΥdiffdWt + Υcalm,calmdN calm,calm
t + Υcalm,contdN calm,cont

t

dPt
Pt−

= µcontdt+ ΥdiffdWt + Υcont,contdN cont,cont
t + Υcont,calmdN cont,calm

t .

Defining the instantaneous asset return by dR = dP/P +D/Pdt, we obtain the following

proposition.

Proposition 3 The sensitivities of the asset price P with respect to the different risk

factors are

Υdiff = φσ

Υcalm,calm = (1 + Lcalm,calm)φ − 1

Υcalm,cont = (1 + Lcalm,cont)φew
cont−wcalm − 1

Υcont,cont = (1 + Lcont,cont)φ − 1

Υcont,calm = ew
calm−wcont − 1

The expected return on the dividend claim in the calm state equals

Et[dR
calm
t ]

dt
= rcalmf + ηdiffΥdiff −

∑
k=calm,cont

λcalm,kηcalm,kΥcalm,k.

The expected return in the contagion state equals

Et[dR
cont
t ]

dt
= rcontf + ηdiffΥdiff −

∑
k=calm,cont

λcont,kηcont,kΥcont,k.

The expected excess return over the risk-free rate (equity premium) is reported in Table

2. Table 4 decomposes the equity premium into its different components. In all settings,
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the contribution stemming from diffusive risk is negligible and the premium is mainly

driven by jump exposures and the possibility of regime switches. The premium in the

(less risky) calm state is always smaller than the premium in the (riskier) contagion

state. Furthermore, the unconditional equity risk premium in the (riskiest) economy with

contagion is the largest, while the equity risk premium in the (least risky) economy without

regimes is the smallest.

In the calm state of our economy, the total equity premium becomes sizeable 5.44%.

More than 80% of the equity premium can be attributed to the risk of contagious jumps.

In the pure regime switching economy, only ordinary consumption jumps can occur. To

match the jump probabilities, they are assumed to be more than twice as likely as in the

economy with contagion where ordinary jumps contribute about 72 basis points to the

equity premium. Similarly as the precautionary savings terms in the risk-free rate, the

corresponding risk premium increases linearly. Furthermore, the risk premium for pure

regime switches is of moderate size, since a regime switch does not lead to an immediate

drop in cash flows and thus the representative agent waits to adjust his asset demands

until a regime switch has occurred. For our calibration, the total risk premium in the pure

regime switching economy is more than 2% smaller than in the economy with contagion.

To gain further intuition for these results, Table 5 decomposes the risk premium for

contagious jumps into several components. As shown in Section 2.4.1, the market price of

risk for contagious jumps is (1+ηjump)(1+ηRS)−1. Similarly, the exposure to contagious

jumps can be decomposed into an exposure Υjump to a drop in consumption and an

exposure ΥRS to a regime switch. The risk premium for contagious jumps is

−λcalm,cont
[
(1 + ηjump)(1 + ηRS)− 1

][
(1 + Υjump)(1 + ΥRS)− 1

]
= 0.0442.

In a pure regime switching model, a contagious jump is split up into two separate compo-

nents, a pure consumption jump and a pure regime switch. The total premium for both

risk factors is given by

−λcalm,cont
(
ηjumpΥjump + ηRSΥRS

)
= 0.0191,

where the premium for pure consumption jumps is 84 basis points and the premium for

pure regime switches is 107 basis points. The premium for contagious jumps exceeds the

sum of the premia for a separate jump and regime switch in a pure regime switching

model by an interaction term of around 2.5%.

The equity premium in the contagion state, on the other hand, is larger in the pure

regime switching economy. As can be seen from Table 4, this can be attributed to a
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larger premium for the regime switch back to the calm state. The reason is the larger

size Υcont,calm of the price jump upon this event, which induces a larger risk premium.

Note that the premium for regime changes from the contagion state to the calm state is

positive. This can be explained via the hedging demand of the representative agent. A

switch back to the calm state improves the economic situation of the investor which, in

general, gives rise to a negative hedging demand for assets that perform well upon this

event. Since the asset price increases upon a regime shift back to the calm state, the asset

must earn an additional positive risk premium in equilibrium.

Overall, the unconditional equity risk premium in the economy with contagious jumps

is larger than in the pure regime-switching economy. The larger premium in the calm

state resulting from the risk of contagious jumps overcompensates the smaller premium

in the contagion state. Furthermore, the unconditional equity premium in our contagion

model of 0.0578 is almost twice as high as the equity premium without regimes of 0.0296.

To get a sensible level of the equity risk premium in the frameworks of Rietz (1988) or

Barro (2006), one has to assume a much higher jump size, which Barro (2006) justifies by

using a peak-to-trough calibration method. Constantinides (2008) critically discusses this

approach. Altogether, our paper shows that the temporal concentration of (moderate)

jump risk can change the risk premia in an economy significantly.

The premium for regime switches can also be seen as a version of the premium for a

stochastic jump intensity as discussed by Wachter (2012) or Gabaix (2012). Our paper,

however, shows that a direct link between state variables (in the present paper calm vs.

contagion) and the consumption process itself has significant consequences for the risk

premia. The investor in our model has a preference for early resolution of uncertainty

and thus would like to hedge against state variable risk. If state variable risk is connected

to consumption risk, this hedging motive increases disproportionately. As a result, the

highest equilibrium equity premium is paid in a model with contagious jumps, although

the local distribution of future consumption is the same across all analyzed economies

here.
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2.4.5 Return Volatilities

From the dynamics above, we can compute different local variances of the asset’s excess

return in closed form. Conditional on being in the calm state, the local variance equals10

σ2φ2 + λcalm,calm((1 + Lcalm,calm)φ − 1)2 + λcalm,cont(ew
cont−wcalm(1 + Lcalm,cont)φ − 1)2.

Conditional on being in the contagion state, we obtain

σ2φ2 + λcont,cont((1 + Lcont,cont)φ − 1)2 + λcont,calm(ew
calm−wcont − 1)2.

Table 2 reports the numerical results. In line with intuition, the unconditional volatility

is the largest in an economy with contagious jumps and the smallest in an economy

without regimes. For the conditional volatility, we again have to distinguish between the

calm and the contagion state. In the calm state, the conditional volatility is larger in an

economy with contagious jumps due to the presence of these jumps. On the other hand,

the conditional volatility in the contagion state is larger in the pure regime-switching

economy. The reason is the larger difference between the price-dividend ratios and thus

the larger positive return when the economy switches to the calm state.

3 Two Tree Economy

The interpretation of a combined cash-flow shock and regime shift as contagious shock

in one part of the economy suggests to extend the basic model and study a Lucas tree

economy with two trees. Since the differences between an economy with contagion, a

pure regime switching economy and an economy without regimes have been analyzed in

Section 2, we solely focus on a two tree economy with contagion. As a first contribution,

the present section provides analytical results for the risk premia and the risk-free rate

in such an economy. Second, this section also discusses numerical results if the trees have

identical parameters. We refer to this situation as the case with ’identical trees’, although

the trees might have different sizes. Cases with different jump parameters for the two

trees are analyzed in Section 4 where we concentrate on the cross-sectional implications

of contagion and study how differences in cash flows are reflected in prices and price

dynamics.

10Formally, the local variance is defined by d〈P 〉t/(P 2
t dt).
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3.1 Consumption Dynamics

The basic assumptions in this section are the same as before, but now there are two Lucas

trees, A and B, producing the same perishable consumption good. Total consumption

comprises the outcome of the two trees, i.e. C = CA+CB. In the calm state, the dynamics

are

dCA,t
CA,t−

= µcalmA dt+ σAdWA,t + Lcalm,calmA dN calm,calm
A,t + Lcalm,contA dN calm,cont

A,t

dCB,t
CB,t−

= µcalmB dt+ σBdWB,t + Lcalm,calmB dN calm,calm
B,t + Lcalm,contB dN calm,cont

B,t ,

whereas, in the contagion state, they read

dCA,t
CA,t−

= µcontA dt+ σAdWA,t + Lcont,contA dN cont,cont
A,t (4)

dCB,t
CB,t−

= µcontB dt+ σBdWB,t + Lcont,contB dN cont,cont
B,t . (5)

We assume that the diffusion volatilities σi, i ∈ {A,B}, and the correlation ρ between the

Brownian motions WA and WB are constant and state-independent. In general both trees

are exposed to contagious jumps, i.e. each tree can ’spread’ contagion. Since in multiple

tree economies the equilibrium outcomes depend on the relative size of the two trees, we

follow Cochrane, Longstaff, and Santa-Clara (2008) and introduce the consumption share

sA = CA/(CA+CB) of tree A. The share of tree B is given by sB = 1−sA. Throughout the

rest of the paper, the term ’size’ refers to the consumption share of a tree. For instance,

asset A is said to be ’big’ if sA is close to 1. In the calm state, the dynamics of aggregate

consumption C are given by

dCt
Ct−

= sA,t−
dCA,t
CA,t−

+ sB,t−
dCB,t
CB,t−

=
∑
i=A,B

si,tµ
calm
i dt+

∑
i=A,B

si,tσidWi,t +
∑
i=A,B

k=calm,cont

si,t−L
calm,k
i dN calm,k

i,t , (6)

while in the contagion state we have

dCt
Ct−

=
∑
i=A,B

si,tµ
cont
i dt+

∑
i=A,B

si,tσidWi,t +
∑
i=A,B

si,t−L
cont,cont
i dN cont,cont

i,t . (7)
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Applying Ito’s lemma, we obtain the dynamics of sA in the calm state:

dsA,t
sA,t−sB,t−

=

[
µcalmA − µcalmB − sA,tσ2

A + sB,tσ
2
B + (sA,t − sB,t)ρσAσB

]
dt

+σAdWA,t − σBdWB,t (8)

+
∑

k=calm,cont

Lcalm,kA

1 + Lcalm,kA sA,t−
dN calm,k

A,t −
∑

k=calm,cont

Lcalm,kB

1 + Lcalm,kB sB,t−
dN calm,k

B,t .

In the contagion state, we have

dsA,t
sA,t−sB,t−

=

[
µcontA − µcontB − sA,tσ2

A + sB,tσ
2
B + (sA,t − sB,t)ρσAσB

]
dt+ σAdWA,t − σBdWB,t

+
Lcont,contA

1 + Lcont,contA sA,t−
dN cont,cont

A,t − Lcont,contB

1 + Lcont,contB sB,t−
dN cont,cont

B,t .

Downward jumps in tree A reduce the consumption share of tree A, whereas downward

jumps in tree B increase it. To shorten notations, we denote the consumption share of

tree A after a jump in tree A or B, respectively, by

sA+
A,t = sA,t−

1 + Lj,kA
1 + Lj,kA sA,t−

, sB+
A,t = sA,t−

1

1 + Lj,kB (1− sA,t−)

where (j, k) ∈ {(calm, calm), (calm, cont), (cont, cont)}. Moreover, we denote the drift

rates of aggregate consumption and of the consumption share sA by µZC and µZs , respec-

tively. We also abbreviate the quadratic variation terms

σCCdt =
d 〈Cc〉t
C2
t

, σCsdt =
d 〈Cc, scA〉t

Ct
, σssdt = d〈scA〉t

where the upper index c refers to the continuous part of the respective process.11 Appendix

B provides details. Conditional on the state, the local variance of consumption equals

d 〈C〉t
C2
t

= σCCdt+
∑
i=A,B

k=calm,cont

s2
i (L

calm,k
i )2λcalm,ki dt

in the calm state and

d 〈C〉t
C2
t

= σCCdt+
∑
i=A,B

s2
i (L

cont,cont
i )2λcont,conti dt

in the contagion state. It depends on the consumption share sA and on the state Z (via the

jump parameters) and is thus stochastic. In the case of identically parameterized trees, it

is the smallest if both trees have the same size.
11For some process Y , the sharp bracket 〈Y 〉 is the predictable quadratic variation of Y . 〈Y 〉 is the

compensator of the quadratic variation [Y ].
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3.2 Parametrization

To illustrate the qualitative implications of a two tree economy numerically, we first study

an economy with identical trees: We split up the calibrated tree from Section 2 as if the

economy consists of two identical, initially equally big trees. The column labeled ’Identical

Trees’ of Table 1 reports the corresponding parameters. We choose the parameters of the

two trees such that, for sA = 0.5, the dynamics of aggregate consumption coincide with

those of the single tree from Section 2. For both trees and both states, we assume drift

rates of µZi = 0.058. The diffusion volatilities σi equal
√

2 · 0.01 = 0.014 in both states,

the diffusion correlation ρ is set to 0 for simplicity. We choose jump sizes Lj,ki = −0.06

for (j, k) ∈ {(calm, calm), (calm, cont), (cont, cont)}. Upon a jump in one of the trees

and for sA = 0.5, total consumption thus drops by -0.03 as in the case with one tree.

The intensities for consumption jumps are cut in half, i.e. we assume λcalm,calmi = 0.115,

λcalm,conti = 0.135 and λcont,conti = 0.75, so that the total intensity for jumps in consumption

is again the same as before. Since regime switches from the contagion state back to the

calm state do not affect the trees directly, we keep λcont,calm = 0.49.

Additionally, Section 4 studies two situations with heterogenous trees. In the first setting

(’Robust versus Contagion-Sensitive Assets’), asset B is affected by contagion more heavily

than asset A. In the second setting (’Propensity to Trigger Contagion’), asset A is the

main source of contagion. Table 1 reports the parameters for these settings as well.

3.3 Asset Pricing Results

The pricing kernel ξ is still of the form (2). In contrast to the one tree case, the loga-

rithm v of the wealth-consumption ratio now depends on two state variables: the state

of the economy Z and the consumption share sA. In models with recursive utility and

affine dynamics for the state variables and consumption, the log wealth-consumption ra-

tio is usually approximated by an affine function of the state variables (see Eraker and

Shaliastovich (2008)). In an economy with multiple trees, this approach can be problem-

atic, since aggregate consumption is the sum of exponentially affine processes and thus no

longer affine. As our numerical results show, the log wealth-consumption ratio is indeed

by no means an affine function of the state variable sA. Therefore, we solve the differential
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equation for v numerically. In the calm state, this equation is

0 = e−v
calm − β +

(
1− 1

ψ

)
µcalmC − 1

2
γ

(
1− 1

ψ

)
σCC

+ vcalms µcalms + (1− γ)vcalms σCs +
1

2

(
vcalmss + θ(vcalms )2

)
σss

+
∑

k=calm,cont
i=A,B

1

θ
λcalm,ki

[
(1 + siL

calm,k
i )1−γeθv

k(si+A )−θvcalm(sA) − 1
]
,

where vcalms and vcalmss denote the first and second order partial derivatives of vcalm with

respect to sA. An analogous differential equation holds in the contagion state. The bound-

ary conditions follow from sending the consumption share sA to 0 or 1. Both limits can be

interpreted as one tree economies with an additional (exogenous) possibility of a regime

shift.12 Given the boundaries, we can solve the differential equations for vcalm and vcont

numerically. Appendix B provides the differential equations, the boundary conditions for

vcalm(0), vcont(0), vcalm(1) and vcont(1) and the proofs of all other results in this section.

3.3.1 Market Prices of Risk

The market prices of risk follow directly from the dynamics of the pricing kernel. We omit

the time dependence of all variables in the following for the sake of simplicity.

Proposition 4 The market prices of diffusive risk in state j ∈ {calm, cont} are

ηdiff,jA =

[
γsA + (1− θ)vjssAsB

]
σA, ηdiff,jB =

[
γsB − (1− θ)vjssAsB

]
σB.

The market prices of jump risk in the calm state are

ηcalm,ki =
(

1 + siL
calm,k
i

)−γ
e

(θ−1)

(
vk(si+A )−vcalm(sA)

)
− 1, (9)

where i ∈ {A,B} and k ∈ {calm, cont}. The market prices of risk for pure consumption

jumps in the contagion state are given by

ηcont,conti =
(
1 + siL

cont,cont
i

)−γ
e

(θ−1)

(
vcont(si+A )−vcont(sA)

)
− 1, (10)

and the market price of risk for switches from the contagion state to the calm state is

ηcont,calm = e
(θ−1)

(
vcalm(sA)−vcont(sA)

)
− 1. (11)

12Regime changes into the contagion state can be triggered by contagious jumps in the dominating

tree, but also by contagious jumps in the tree with zero consumption share.
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The jump intensities under the risk-neutral measure equal the physical intensities multi-

plied by the respective 1 + η.

Different from the one tree case, the market prices of diffusive risk now consist of two

terms. The first term depends on the contribution of the tree to aggregate consumption

risk, while the second term captures the premium for the new state variable sA. The con-

sumption share sA is most volatile for intermediate values around sA = 0.5 (see equation

(8)), and the market price of risk involves the square of sA. Quantitatively, however, the

second term is very small, which also implies that the market prices of diffusive risk are

almost identical in the calm and contagion state.

The market prices of jump risk depend on the size of consumption jumps and on the

impact of jumps on the wealth-consumption ratio. The first factors in Equations (9) and

(10) are similar to those in the one tree case. The investor demands a compensation for

the immediate impact of jumps on the consumption level. The second factors in Equations

(9) and (10) (and the only factor in Equation (11)) reflect the impact of jumps on the

wealth-consumption ratio via the consumption share sA and the state of the economy

Z. As in Section 2, the market prices of risk for contagious jumps exceed the sum of

the market prices of risk for the components pure consumption jump and regime change.

Decomposing the market price of risk for contagious jumps into its components yields

1 + ηcalm,conti =
(

1 + siL
calm,cont
i

)−γ
e

(θ−1)

(
vcalm(si+A )−vcalm(sA)

)
︸ ︷︷ ︸

1+ηjump

e
(θ−1)

(
vcont(si+A )−vcalm(si+A )

)
︸ ︷︷ ︸

1+ηRS

.(12)

Here ηjump captures the (hypothetical) market price of risk for pure consumption jumps.

ηRS gives the (hypothetical) market price of risk for a possible regime switch from calm

to contagion. In contrast to the one tree case, ηjump now contains an additional factor

reflecting the impact of pure consumption jumps in one of the trees on the state variable

sA. Jumps which move the consumption share sA away from 0.5 and thus lead to a less

balanced economy induce a larger market price of risk.13

3.3.2 Risk-free Rate

The risk-free rate follows from the (negative) expected growth rate of the pricing kernel.

13A more detailed analysis is provided by Branger, Dumitrescu, Ivanova, and Schlag (2012). In partic-

ular, note that the concavity of the wealth-consumption ratio depends on the elasticity of intertemporal

substitution being larger than one.
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Proposition 5 The risk-free interest rate in the two states equals

rcalmf = β +
1

ψ

Et [dCt]

Ct dt
− Ξdiff,calm −

∑
i=A,B

Ξcalm,calm
i −

∑
i=A,B

Ξcalm,cont
i

rcontf = β +
1

ψ

Et [dCt]

Ct dt
− Ξdiff,cont −

∑
i=A,B

Ξcont,cont
i − Ξcont,calm,

where the precautionary savings terms are given by

Ξdiff,j =
1

2
γ

(
1 +

1

ψ

)
σCC + (1− θ)vjsσCs +

1

2
(1− θ)(vjs)2σss

Ξj,k
i = λj,ki

[
ηj,ki +

1

ψ
siL

j,k
i +

1− θ
θ

(
(1 + siL

j,k
i )1−γeθ(v

k(si+A )−vj(sA)) − 1
)]

for (j, k) ∈ {(calm, calm), (calm, cont), (cont, cont)} and

Ξcont,calm = λcont,calm
[
ηcont,calm +

1− θ
θ

(
eθ(v

calm(sA)−vcont(sA)) − 1
)]

.

The precautionary savings terms do not only depend on consumption risk and the risk of

changes in the state of the economy. As in Cochrane, Longstaff, and Santa-Clara (2008),

they are also driven by the additional risk of changes in the consumption share sA. The

upper right-hand graph of Figure 1 depicts the risk-free rate in the calm and contagion

state as a function of the consumption share of tree A. With identical trees the risk-free

rate is the largest if both trees have the same size (sA = 0.5). Due to diversification,

the risk of aggregate consumption is then the smallest. This reduces the demand for

precautionary savings and thus also the precautionary savings terms. The effect is most

pronounced for the jump-related terms. For sA = 0.5 the size of all consumption jumps

is -3%, independent of which tree actually jumps. If sA approaches 0 or 1, consumption

drops by either 0% (jumps of the small tree) or 6% (jumps of the big tree). While the

average drop in consumption is still -3%, the risk is much larger, since the jump size

of consumption is effectively stochastic. Therefore, a risk-averse agent has an additional

precautionary savings motive.

Furthermore, the risk-free rate in the contagion state is 2% smaller than the risk-free

rate in the calm state. As in the one tree case, this can be attributed to higher jump

intensities, which lower the expected consumption growth and also induce an additional

precautionary savings demand. For our parametrization, the first effect is the larger one.
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3.3.3 Price-Dividend Ratios

Applying the pricing kernel (2) we can determine the values of the two equity claims with

dividend dynamics

dDi,t

Di,t−
= µcalmi dt+ φσdWi,t + ((1 + Lcalm,calmi )φ − 1)dN calm,calm

i,t

+ ((1 + Lcalm,conti )φ − 1)dN calm,cont
i,t

in the calm state and

dDi,t

Di,t−
= µconti dt+ φσdWi,t + ((1 + Lcont,conti )φ − 1)dN cont,cont

i,t

in the contagion state.14 The log price-dividend ratios of asset A in the calm and in

the contagion state, wcalmA and wcontA , depend on the consumption share sA. They solve

a system of two ordinary differential equations which is given in Appendix B. The log

price-dividend ratios of asset B, wcalmB and wcontB , satisfy similar differential equations.

The boundary conditions follow by sending sA to 0 or 1. In the limiting cases, the price-

dividend ratios have the same values as in a one tree economy with (additional) exogenous

regime shifts where aggregate consumption is either given by CB (for sA → 0) or by CA

(for sA → 1).15

The upper left-hand graph of Figure 1 depicts the price-dividend ratios in the calm state.

The wealth-consumption ratio (not shown here) is a concave function of the consumption

share. It is largest if the trees are equally big (sA = 0.5) and aggregate consumption is thus

the least risky. On the other hand, the price-dividend ratios are monotonous functions of

the consumption share. As pointed out by Cochrane, Longstaff, and Santa-Clara (2008),

an asset with a small share is more valuable from a diversification perspective. The price-

dividend ratios in the contagion state (not reported here) are similar to those in the calm

state. They are however smaller than in the calm state by 6-9%, since jump intensities

are higher.

14The equity claim with dividend Di is a levered claim on tree i. Its cash flow is exposed to the same

risk factors as the payment stream Ci. Including idiosyncratic components does not add to our main

results.
15While the price-dividend ratio of asset A remains finite if sA goes to 1, it can become infinite for the

limit sA → 0. In this case, we disregard the boundary condition at sA = 0 and solve the initial value

problem with an initial condition at sA = 1 instead.
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3.3.4 Risk Premia

The risk premium of an asset follows from its exposure to the risk factors and the respective

market prices of risk. The market prices of risk are given in Proposition 4. The exposures

follow from the dynamics of the asset prices Pi, i ∈ {A,B}. In the calm state, the dynamics

of PA are given by

dPA,t
PA,t−

=
Et[dPA,t]

PA,t−
+
(
wcalmA,s sA,tsB,tσA + φσA

)
dWA,t − wcalmA,s sA,tsB,tσBdWB,t

+
∑

k=calm,cont
n=A,B

Υn,calm,k
A

(
dN calm,k

n,t − λcalm,kn dt
)
.

An analogous equation holds for the price dynamics in the contagion state. In the follow-

ing, we set

ΥA,diff,Z
A =

(
wZA,ssAsB + φ

)
σA − wZA,ssAsBρσB

ΥB,diff,Z
A =

(
wZA,ssAsB + φ

)
ρσA − wZA,ssAsBσB,

which can be interpreted as the total sensitivities of asset A with respect to the Brownian

shocks A and B. The total sensitivities ΥA,diff,Z
B and ΥB,diff,Z

B are defined analogously.

Υn,j,k
i is the sensitivity of asset i with respect to jumps in tree n (i, n ∈ {A,B}) that lead

to a transition from state j to state k ((j, k) ∈ {(calm, calm), (calm, cont), (cont, cont)}).
Finally, Υcont,calm

i denotes the sensitivity of asset i with respect to regime switches from

the contagion state back to the calm state.

Proposition 6 The sensitivities of asset A with respect to jumps in the consumption

processes are

ΥA,j,k
A =

(
1 + Lj,kA

)φ
ew

k
A(sA+

A )−wjA(sA) − 1, ΥB,j,k
A = ew

k
A(sB+

A )−wjA(sA) − 1,

where (j, k) ∈ {(calm, calm), (calm, cont), (cont, cont)}. The sensitivity with respect to

regime switches from the contagion to the calm state is

Υcont,calm
A = ew

calm
A (sA)−wcontA (sA) − 1.

The expressions for the sensitivities of asset B follow analogously.

The exposures of the asset prices to the risk factors in the economy are similar to the

ones in the model of Cochrane, Longstaff, and Santa-Clara (2008) who provide a detailed
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discussion. The exposure of an asset to a risk factor depends on the respective exposures of

its dividend and of its price-dividend ratio. For a constant price-dividend ratio, the price

sensitivities would be identical to those of the dividend (cash flow effect). As discussed

in Section 3.3.3, the price-dividend ratios depend on the state variables Z and sA, since

the stochastic discount factor is driven by these state variables. The price-dividend ratios

are thus stochastic, which drives a wedge between price and dividend sensitivities (sdf-

effect). For our parametrization, Figure 2 depicts the exposures. The upper graphs show

the diffusion exposures. For each asset i ∈ {A,B}, the cash flow channel generates an

exposure φσi to diffusion risk in its underlying tree and no exposure to the diffusion

risk in the other tree (shown by the thin black lines in the figures). Deviations from these

exposures are due to the sdf effect. For instance, the price-dividend ratio ewA is decreasing

in the consumption share sA. A positive shock to DA increases sA and thus lowers the

price-dividend ratio ewA . Consequently, the exposure of the price PA to diffusive shocks

in tree A is smaller than φσi. The same effect leads to a positive cross exposure of PA to

innovations in tree B. The effect of pure consumption jumps is similar, which can be seen

from the graphs in the second row of Figure 2. Finally, the exposure to contagious jumps is

depicted in the lower row. The first graph in this row shows the (hypothetical) exposures

to the risk of a regime change from calm to contagion, the second graph depicts the

exposures to the opposite regime switch. The exposure to a contagious jump (depicted in

the third and fourth graph in the lower row) again follows from the multiplicative structure

of the exposure to a pure consumption jump and the exposure to a regime change. For

our parameterization, a contagious jump induces a downward price adjustment of more

than 20% in the corresponding asset.

Given the exposures and the market prices of risk, we can determine the expected returns

of the assets. They are given in the following proposition.

Proposition 7 The expected return on asset A in the calm state is

Et[dR
calm
A,t ]

dt
= rcalmf +

∑
i=A,B

ηdiff,calmi Υi,diff,calm
A −

∑
k=calm,cont

i=A,B

λcalm,ki ηi,calm,kA Υi,calm,k
A .

In the contagion state, the expected return is

Et[dR
cont
A,t ]

dt
= rcontf +

∑
i=A,B

ηdiff,conti Υi,diff,cont
A

−
∑
i=A,B

λcont,conti ηi,cont,contA Υi,cont,cont
A − λcont,calmηcont,calmΥcont,calm

A .
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The expressions for the expected return on asset B follow analogously.

The lower graphs of Figure 1 depict the expected excess returns. First, the assets earn a

premium on their exposure to aggregate consumption risk. Since these exposures increase

in the size of the underlying tree, the equity premium on an asset increases in the con-

sumption share of its underlying tree. Second, the assets earn premia on their exposures

to regime switches, i.e. on their exposure to the state variable Z. Analogously to the one

tree economy, these risk premia are positive both for switches into the contagion state and

for switches into the calm state. Therefore, assets on small trees also earn non-zero risk

premia: despite their vanishing contribution to aggregate consumption risk, they carry

risk premia of above 2% in both states. Finally, the lower graphs of Figure 1 show that

risk premia are larger in the riskier contagion state than in the safer calm state.

Figure 3 decomposes the equity risk premium of asset A in the calm state into its various

components. The left-hand graph shows that the dominant part of the equity premium is

a compensation for the risk of contagious jumps. If the consumption share sA approaches

1, the risk premium for contagious jumps in tree A exceeds 5%. The risk premium for

contagious jumps in tree B, which do not have any direct impact on dividends of asset A,

is around 1%. For most values of sA, it even exceeds the premium for pure consumption

jumps. Furthermore, the premium for diffusion risk is below 0.5%, so that the equity risk

premium is mainly driven by jumps and priced state variables.

The right-hand graph of Figure 3 further decomposes the risk premium for contagious

jumps into the premium for pure consumption jumps, the premium for regime changes,

and an additional interaction term which captures the superadditivity of the premium. As

in the one tree economy, the total premium for contagious jumps is superadditive, since

both the market prices of risk and the exposures are multiplicatively connected:

1 + ηcalm,contA =
(

1 + sAL
calm,cont
A

)−γ
e

(θ−1)

(
vcalm(sA+

A )−vcalm(sA)

)
︸ ︷︷ ︸

1+ηjump

e
(θ−1)

(
vcont(sA+

A )−vcalm(sA+
A )

)
︸ ︷︷ ︸

1+ηRS

1 + ΥA,calm,cont
A =

(
1 + Lcalm,contA

)φ
ew

calm
A (sA+

A )−wcalmA (sA)︸ ︷︷ ︸
1+Υjump

ew
cont
A (sA+

A )−wcalmA (sA+
A )︸ ︷︷ ︸

1+ΥRS

Stated differently, the premium for one large (contagious) jump is larger than the premia

for its components since the investor is more averse to the risk of one large jump than to

the risk of several small jumps, even if the overall loss were the same. The dashed black

line depicts the difference between the premium for the contagious jumps and the sum
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of the premia for pure consumption jumps and regime changes. It can reach almost 3%

and is the largest component of the premium for contagious jumps. It is monotonically

increasing in the consumption share sA since the market price of risk for jumps in tree A

is increasing in sA as well.

4 Cross-sectional Pricing Effects of Contagion

This section studies the effects of contagion on the cross-section of asset prices when

trees are heterogenous. Section 4.1 starts with the case where the two trees differ in the

contagion state in the sense that one asset is more severely affected by contagion than the

other one. In Section 4.2, we compare an asset that almost never induces contagion with

an asset that induces contagion at almost every downward jump, i.e. the assets mainly

differ in the calm state.

4.1 Robust versus Contagion-sensitive Assets

The column labeled ’Robust versus Contagion-sensitive Assets’ of Table 1 reports the

parameters for the first case. In the calm state, the jump intensity for each asset is 0.25

as in Section 3. In the contagion state, the jump intensity of asset A increases to 0.625,

whereas the jump intensity of asset B equals 0.875. The overall intensity for a downward

consumption jump in the contagion state is thus still 1.5. Intuitively, we can think of asset

A as a ’robust’ asset, while asset B is more severely affected by contagion and is called

’contagion-sensitive’ in the following.

Figures 4 and 5 depict the corresponding results which are remarkably different from the

case with identical assets. The price-dividend ratios shown in the upper left-hand graph of

Figure 4 are asymmetric. The price of a small robust asset A is much larger than the price

of an equally small contagion-sensitive asset B. As in the case of identical trees, small

assets are more attractive than big assets, since they are less exposed to consumption

risk. This drives the price-dividend ratio of small (big) assets up (down). Furthermore,

the investor now prefers the safe haven A over the contagion-sensitive asset B, which

induces larger price-dividend ratios for the robust asset than for the contagion-sensitive

asset. If both trees have the same size, the robust asset is still the more valuable one.

Price-dividend ratios are equal for sA ≈ 0.65 (instead of 0.5).

The risk-free rate depicted in the upper right-hand graph of Figure 4 is smaller in the
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contagion state than in the calm state. While it is nearly symmetric in the calm state, it is

asymmetric in the contagion state. If the contagion-sensitive asset B dominates (sA → 0),

the economy is riskier than if the robust asset A dominates (sA → 1). Consequently, the

risk-free rate is smaller for sA → 0 than for sA → 1. This also implies that the drop of the

risk-free rate upon a contagious jump is larger for sA → 0 (around 3.5%) than for sA → 1

(around 2%).

The expected excess returns of the assets also become asymmetric. In line with intuition,

the contagion-sensitive asset B earns a larger risk premium than an equally big robust

asset A. Analogously to Figure 3, the equity premium of both assets is decomposed in

Figure 5. The graphs reveal that the asymmetry is mainly driven by the risk premia for

contagious jumps, which are larger for the contagion-sensitive asset than for the robust

asset. This is because the exposures of the assets to regime switches and contagious jumps

(not reported here) are asymmetric as well. If the economy switches to the contagion state,

the price of the contagion-sensitive asset B drops by around 10% while the price of the

robust asset A drops by only 5%. As a result, the risk premia for contagious jumps become

asymmetric. For instance, the risk premium of a big robust asset A (sA ≈ 1) for contagious

jumps in tree A (black solid line in the upper left-hand graph) is around 4%, while the

risk premium of a big contagion-sensitive asset B (sA ≈ 0) for contagious jumps in tree B

is around 5%. The asymmetric pattern of the risk premia for contagious jumps is further

amplified by the extra interaction term (see Section 3.3.4). As the graphs on the right-

hand side of Figure 5 show, this term is more pronounced for the contagion-sensitive asset

B.

4.2 Propensity to Trigger Contagion

We next study the case where the trees are identical in the contagion state, but differ in

the calm state. In particular, switches into the contagion state now mainly occur together

with jumps in tree A, while tree B hardly exhibits contagious jumps. The column labeled

’Propensity to Trigger Contagion’ of Table 1 reports the corresponding parameters. In the

calm state, the total intensities for jumps in asset A or B are still 0.25, and the intensity

for a regime switch from calm to contagion is still 0.27. But whereas both assets were

equally likely to induce contagion in the previous cases, we now assume that all jumps of

asset A are contagious jumps, i.e. we set λcalm,calmA = 0 and λcalm,contA = 0.25. To keep the

total jump intensities the same as in the previous sections, we further set λcalm,calmB = 0.23

and λcalm,contB = 0.02. We refer to asset A as the ’contagion-triggering’ asset and to asset
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B as the ’non-toxic’ asset for simplicity.

Figures 6 and 7 show that the differences to the case with identical trees are even larger

than in the previous subsection. Differences between the assets with respect to their

propensity to trigger contagion are thus more significant than differences with respect to

the consequences of contagion. The price-dividend ratios in the calm state as depicted in

Figure 6 show that a small non-toxic asset (asset B for sA close to 1) is much more valuable

than a small contagion-triggering asset (asset A for sA close to 0). Its price-dividend ratio

is around 11% higher. For the non-toxic asset B, the two channels ’regime switch’ and

’jumps in consumption’ are almost decoupled as in the pure regime switching economy.

Since the representative agent tries to hedge against the risk of contagious jumps, he

would like to increase his position in the ’safe haven’, asset B. Due to the limited supply,

this hedging demand drives up the equilibrium price. On the contrary, asset A is exposed

to contagious jumps. Since these jumps are more likely than in all previous settings, the

price-dividend ratio of asset A is lower than before.

The results for the risk-free rate are in line with intuition: If the contagion-triggering asset

is big (sA close to 1), the investor has a large demand for precautionary savings in the

calm state, which drives the equilibrium risk-free rate down. In the contagion state, we

hardly observe any effect on the risk-free rate. Upon a transition to the contagion state

the risk-free rate thus decreases the most if the non-toxic asset B dominates the economy

(around 3.5% reduction for sA close to 0 as opposed to around 2.5% reduction for sA close

to 1).

The lower graphs of Figure 6 depict the risk premia of both assets. Apparently, the

propensity to induce contagion has a significant impact. For the limiting cases where the

assets become relatively big (asset A for sA close to 1 and asset B for sA close to 0), we

find a difference in the risk premia of about 3%. The decomposition of the risk premia

in Figure 7 shows that this asymmetry is again driven by the superadditivity of the risk

premium for contagious jumps. In the previous sections, we have already documented

that the premia for contagious jumps account for the largest part of the risk premia. The

contagion-triggering asset A has a large exposure to these contagious jumps and thus

carries a high risk premium. If the contagion-triggering asset is dominating the economy

(sA close to 1), the investor’s reduced taste for asset A drives its equity premium up to

9%. On the other hand, the non-toxic asset B has a small exposure to these jumps, and

thus its risk premium is smaller, too.
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5 Conclusion

In this paper, we solve for the equilibrium in a Lucas tree model where the representative

agent has recursive preferences and consumption is exposed to contagion risk. We propose

a new economic channel by allowing for endowment shocks that simultaneously trigger a

regime shift to a bad economic state. These contagious jumps do not only cause instan-

taneous, persistent losses in consumption, but also increase the probability of subsequent

losses across the whole economy. We document that this new channel has far-reaching

economic consequences. In the calm state, the risk premium for contagious shocks is su-

peradditive, i.e. it is 2.5% larger than the sum of the risk premia for pure endowment

shocks and for regime switches. Second, the possibility of contagious jumps increases the

agent’s precautionary savings demand, which reduces the equilibrium risk-free rate by

around 0.5%.

We also study an economy with two Lucas trees. We derive semiclosed-form solutions

for the equilibrium wealth-consumption ratio and the price-dividend ratios (and thus all

other key asset pricing figures) and analyze the interplay between the agent’s diversifi-

cation motive and contagion risk. We find that the possibility of contagious shocks has

superadditive pricing effects which are particularly pronounced for assets written on big

trees. Besides, assets written on a tree with zero consumption share also carry positive

risk premia, since they are exposed to contagious shocks in the other tree. Finally, we

qualitatively analyze the cross-sectional effects of contagion risk. We find that hetero-

geneity among assets with respect to contagion risk further amplifies the documented

nonlinearities. In particular, big assets with a high potential for contagious shocks earn

significantly higher risk premia.
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A Equilibrium in a One Tree Economy

A.1 Wealth-Consumption Ratio

Let Zt ∈ {calm, cont} denote the state of the economy at time t. Then the representative investor has

two value functions, one for each state:

JZtt = Et

[∫ ∞
t

f
(
Cs, J

Zs
s

)
ds

]
.

For the sake of readability, we will, however, suppress the dependence of the value function, the pricing

kernel, the aggregate consumption and other variables on the state Zt ∈ {calm, cont} in the following.

As usual, the aggregator f is defined as

f(C, J) =
βC1− 1

ψ(
1− 1

ψ

) [
(1− γ)J

] 1
θ−1
− βθJ.

β denotes the subjective time discount rate, ψ the elasticity of intertemporal substitution, and γ the

relative risk aversion. We also define θ = 1−γ
1− 1

ψ

. A Feynman-Kac-like computation then gives

0 = f (Ct, Jt) +DJt (13)

i.e. one Bellman equation for each state.

The dynamics of consumption in the calm state are

dCt
Ct−

= µcalmdt+ σdWt + Lcalm,calmdN calm,calm
t + Lcalm,contdN calm,cont

t , (14)

its dynamics in the contagion state are

dCt
Ct−

= µcontdt+ σdWt + Lcont,contdN cont,cont
t . (15)

We apply the following conjecture for the functional form of the value function J :

J =
C1−γ

1− γ
βθeθv

Z

(16)

where vZ can take two values, one in each state. Campbell, Chacko, Rodriguez, and Viceira (2004) and

Benzoni, Collin-Dufresne, and Goldstein (2011) show that, with this conjecture, vZ is the log wealth-

consumption ratio. Plugging the guess (16) for J into the aggregator function results in

f (C, J) = θJ
(
e−v

Z

− β
)
. (17)

The infinitesimal generator DJ follows via Ito’s Lemma:

DJ =

(
1− 1

ψ

)
θJcalmµcalm − 1

2
γ

(
1− 1

ψ

)
θJcalmσ2

+ λcalm,calmJcalm
[
(1 + Lcalm,calm)1−γeθv

calm−θvcalm − 1
]

+ λcalm,contJcalm
[
(1 + Lcalm,cont)1−γeθv

cont−θvcalm − 1
]
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in the calm state and

DJ =

(
1− 1

ψ

)
θJcontµcont − 1

2
γ

(
1− 1

ψ

)
θJcontσ2

+ λcont,contJcont
[
(1 + Lcont,cont)1−γeθv

cont−θvcont − 1
]

+ λcont,calmJcont
[
eθv

calm−θvcont − 1
]

in the contagion state. Plugging these expressions into (13), dividing by θJcalm and θJcont respectively,

and rearranging some terms gives the following two algebraic equations for the two unknowns vcalm and

vcont:

0 = e−v
calm

− β +

(
1− 1

ψ

)
µcalm − 1

2
γ

(
1− 1

ψ

)
σ2

+
1

θ
λcalm,calm

[
(1 + Lcalm,calm)1−γ − 1

]
+

1

θ
λcalm,cont

[
(1 + Lcalm,cont)1−γeθ(v

cont−vcalm) − 1
]

0 = e−v
cont

− β +

(
1− 1

ψ

)
µcont − 1

2
γ

(
1− 1

ψ

)
σ2

+
1

θ
λcont,cont

[
(1 + Lcont,cont)1−γ − 1

]
+

1

θ
λcont,calm

[
eθ(v

calm−vcont) − 1
]
.

A.2 Pricing Kernel

As Duffie and Epstein (1992a) and Benzoni, Collin-Dufresne, and Goldstein (2011) show, the pricing

kernel is given by

ξt = βθC−γt e
−βθt+(θ−1)

(
t∫
0

e−v
Zu
u du+v

Zt
t

)
. (18)

The dynamics of the pricing kernel can be computed via Ito’s Lemma. The partial derivatives of ξ with

respect to C and v follow from (18). The dynamics of C are given in (14) and (15). The dynamics of the

pricing kernel are

dξt
ξt−

=
[
−βθ + (θ − 1)e−v

calm
]
dt− γµcalmdt+

1

2
γ(1 + γ)σ2dt

−ηdiff,calmdWt + dN calm,calm
t ηcalm,calm + dN calm,cont

t ηcalm,cont

in the calm state and

dξt
ξt−

=
[
−βθ + (θ − 1)e−v

cont
]
dt− γµcontdt+

1

2
γ(1 + γ)σ2dt

−ηdiff,contdWt + dN cont,cont
t ηcont,cont + dN cont,calm

t ηcont,calm

in the contagion state. For later use, we abbreviate the drift of the pricing kernel by

µZξ = −βθ + (θ − 1)e−v
Z

− γµZ +
1

2
γ(1 + γ)σ2.

The market price of diffusion risk is ηdiff,Z = γσ. The market prices of jump risk are

ηcalm,calm =
(
1 + Lcalm,calm

)−γ − 1

ηcalm,cont =
(
1 + Lcalm,cont

)−γ
e(θ−1)(v

cont−vcalm) − 1

ηcont,cont =
(
1 + Lcont,cont

)−γ − 1

ηcont,calm = e(θ−1)(v
calm−vcont) − 1.
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The risk-neutral jump intensities are related to the physical intensities via the market prices of risk:

λQ,j,k = λP,j,k(1 + ηj,k). The risk-free rate is equal to the negative expected growth rate of the pricing

kernel ξt:

rcalmf = β +
1

ψ

(
µcalm + Lcalm,calmλcalm,calm + Lcalm,contλcalm,cont

)
− 1

2
γ(1 +

1

ψ
)σ2

−λcalm,calm
[
ηcalm,calm +

1

ψ
Lcalm,calm +

1− θ
θ

(
(1 + Lcalm,calm)1−γ − 1

)]
−λcalm,cont

[
ηcalm,cont +

1

ψ
Lcalm,cont +

1− θ
θ

(
(1 + Lcalm,cont)1−γeθ(v

cont−vcalm) − 1
)]

rcontf = β +
1

ψ

(
µcont + Lcont,contλcont,cont

)
− 1

2
γ(1 +

1

ψ
)σ2

−λcont,cont
[
ηcont,cont +

1

ψ
Lcont,cont +

1− θ
θ

(
(1 + Lcont,cont)1−γ − 1

)]
−λcont,calm

[
ηcont,calm +

1− θ
θ

(
eθ(v

calm−vcont) − 1
)]
.

A.3 Pricing the Dividend Claim

For the price-dividend ratio of the claim to dividends, we apply the Feynman-Kac formula. Let w denote

the log price-dividend ratio. Defining g(ξ,D,w) = ξDew results in

g(ξt, Dt, wt) = ξtDte
wt = Et

[∫ ∞
t

ξτDτdτ

]
= Et

[∫ ∞
t

g(ξτ , Dτ , wτ )

ewτ
dτ

]
.

The Feynman-Kac formula yields

Dg(ξ,D,w) +
g(ξ,D,w)

ew
= 0 ⇐⇒ Dg(ξ,D,w)

g(ξ,D,w)
+ e−w = 0. (19)

The dividend dynamics in our model are

dDt

Dt−
= µcalmdt+ φσdWt +

[
(1 + Lcalm,calm)φ − 1

]
dN calm,calm

t +
[
(1 + Lcalm,cont)φ − 1

]
dN calm,cont

t

in the calm state and

dDt

Dt−
= µcontdt+ φσdWt +

[
(1 + Lcont,cont)φ − 1

]
dN cont,cont

t

in the contagion state. Ito’s Lemma gives

Dg
g

= µξ + µD + µw +
1

2

d 〈wc〉
dt

+
d 〈ξc, Dc〉
ξDdt

+
d 〈wc, Dc〉
Ddt

+
d 〈wc, ξc〉
ξdt

+ Jump Terms.
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The log price-dividend ratio w can take the two values wcalm and wcont only, i.e. µw is 0. From (19), we

get the following two algebraic equations:

0 = e−w
calm

+ µcalmξ + µcalm − ηdiff,calmφσ

+λcalm,calm
[
(1 + ηcalm,calm)(1 + Lcalm,calm)φ − 1

]
+λcalm,cont

[
(1 + ηcalm,cont)(1 + Lcalm,cont)φew

cont−wcalm − 1
]

0 = e−w
cont

+ µcontξ + µcont − ηdiff,contφσA
+λcont,cont

[
(1 + ηcont,cont)(1 + Lcont,cont)φ − 1

]
+λcont,calm

[
(1 + ηcont,calm)ew

calm−wcont − 1
]
.

A.4 Exposures and Moments

Conditional on the state, the dynamics of the asset price P = ewD follow via Ito’s Lemma. In the calm

state, we have

dPt
Pt−

= µcalmdt+ φσdWt +
[
(1 + Lcalm,calm)φ − 1

]
dN calm,calm

t

+
[
(1 + Lcalm,cont)φew

cont−wcalm − 1
]
dN calm,cont

t .

In the contagion state, the dynamics are

dPt
Pt−

= µcontdt+ φσdWt +
[
(1 + Lcont,cont)φ − 1

]
dN cont,cont

t

+
[
ew

calm−wcont − 1
]
dN cont,calm

t .

In the following, we abbreviate the sensitivities of the asset price to the different risk factors as

Υdiff = φσ

Υcalm,calm = (1 + Lcalm,calm)φ − 1

Υcalm,cont = (1 + Lcalm,cont)φew
cont−wcalm − 1

Υcont,cont = (1 + Lcont,cont)φ − 1

Υcont,calm = ew
calm−wcont − 1

The expected excess return on the dividend claim, i.e. the equity risk premium, follows from these

exposures and the respective market prices of risk. In the calm state, it is equal to

γφσ2 + λcalm,calm
[
1 + Lcalm,calm)φ − 1

] [
1−

(
1 + Lcalm,calm

)−γ]
+ λcalm,cont

[
(1 + Lcalm,cont)φew

cont−wcalm − 1
] [

1−
(
1 + Lcalm,cont

)−γ
e(θ−1)(v

cont−vcalm)
]
.

The equity risk premium in the contagion state is

γφσ2 + λcont,cont
[
1 + Lcont,cont)φ − 1

] [
1−

(
1 + Lcont,cont

)−γ]
+ λcont,calm

[
ew

calm−wcont − 1
] [

1− e(θ−1)(v
calm−vcont)

]
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Conditional on being in the calm state, the local variance equals

σ2φ2 + λcalm,calm((1 + Lcalm,calm)φ − 1)2 + λcalm,cont(ew
cont−wcalm(1 + Lcalm,cont)φ − 1)2.

Conditional on being in the contagion state, we obtain

σ2φ2 + λcont,cont((1 + Lcont,cont)φ − 1)2 + λcont,calm(ew
calm−wcont − 1)2.

The unconditional variance is given by

σ2φ2 + pcalmλcalm,calm((1 + Lcalm,calm)φ − 1)2

+ pcalmλcalm,cont(ew
cont−wcalm(1 + Lcalm,cont)φ − 1)2

+ pcontλcont,cont((1 + Lcont,cont)φ − 1)2

+ pcontλcont,calm(ew
calm−wcont − 1)2.

B Equilibrium in a Two Tree Economy

B.1 Wealth-Consumption Ratio

In order to express the equilibrium prices in the two tree economy, we introduce the variable ’consumption

share of tree A’:

sA,t =
CA,t

CA,t + CB,t

and define sB = 1− sA. The dynamics of sA in the calm and contagion state are given by

dsA,t
sA,t−sB,t−

=

[
µcalmA − µcalmB − sA,tσ2

A + sB,tσ
2
B + (sA,t − sB,t)ρσAσB

]
dt+ σAdWA,t − σBdWB,t

+
Lcalm,calmA

1 + Lcalm,calmA sA,t−
dN calm,calm

A,t +
Lcalm,contA

1 + Lcalm,contA sA,t−
dN calm,cont

A,t

−
Lcalm,calmB

1 + Lcalm,calmB sB,t−
dN calm,calm

B,t −
Lcalm,contB

1 + Lcalm,contB sB,t−
dN calm,cont

B,t

dsA,t
sA,t−sB,t−

=

[
µcontA − µcontB − sA,tσ2

A + sB,tσ
2
B + (sA,t − sB,t)ρσAσB

]
dt+ σAdWA,t − σBdWB,t

+
Lcont,contA

1 + Lcont,contA sA,t−
dN cont,cont

A,t −
Lcont,contB

1 + Lcont,contB sB,t−
dN cont,cont

B,t .

The dynamics of consumption in the calm state are

dCt
Ct−

= sA,t−
dCA,t
CA,t−

+ sB,t−
dCB,t
CB,t−

(20)

=
[
sA,tµ

calm
A + sB,tµ

calm
B

]
dt+ sA,tσAdWA,t + sB,tσBdWB,t

+ sA,t−

[
Lcalm,calmA dN calm,calm

A,t + Lcalm,contA dN calm,cont
A,t

]
+ sB,t−

[
Lcalm,calmB dN calm,calm

B,t + Lcalm,contB dN calm,cont
B,t

]
,
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its dynamics in the contagion state are

dCt
Ct−

=
[
sA,tµ

cont
A + sB,tµ

cont
B

]
dt+ sA,tσAdWA,t + sB,tσBdWB,t (21)

+ sA,t−L
cont,cont
A dN cont,cont

A,t + sB,t−L
cont,cont
B dN cont,cont

B,t .

In order to abbreviate all following equations, we additionally define the consumption share of asset A

after a jump in tree A or B, respectively, as

sA+
A,t = sA,t−

1 + Lj,kA
1 + Lj,kA sA,t−

, sB+
A,t = sA,t−

1

1 + Lj,kB (1− sA,t−)
,

where (j, k) ∈ {(calm, calm), (calm, cont), (cont, cont)}. Moreover, we denote the drift rates of consump-

tion C and of the consumption share sA in state Z by

µZC = sAµ
Z
A + sBµ

Z
B

µZs = sAsB

(
µZA − µZB − sAσ2

A + sBσ
2
B + (sA − sB)ρσAσB

)
.

We also abbreviate the quadratic variation terms

σCCdt =
d 〈Cc〉t
C2
t

=
(
s2Aσ

2
A + s2Bσ

2
B + 2sAsBρσAσB

)
dt

σCsdt =
d 〈Cc, scA〉t

Ct
= sAsB

[
sAσ

2
A − sBσ2

B − (sA − sB)ρσAσB

]
dt

σssdt = d〈scA〉t = s2As
2
B

[
σ2
A + σ2

B − 2ρσAσB

]
dt

where the upper index c refers to the continuous part of the respective process. Similar to the one tree

case, we apply the following conjecture for J :

J =
C1−γ

1− γ
βθeθv

Z

(22)

where now vZ is a twice differentiable function of the consumption share sA.

In models with recursive utility and affine dynamics for the state variables and consumption, the log

wealth-consumption ratio is usually approximated by an affine function of the state variables (see Eraker

and Shaliastovich (2008)). In an economy with multiple trees, this approach can be problematic, since

aggregate consumption is the sum of exponentially affine processes and thus no longer affine. As our

numerical results show, the log wealth-consumption ratio v is by no means an affine function of the state

variable sA. Therefore, we solve the differential equation for v numerically.

Plugging the guess (22) for J into the aggregator function results in

f (C, J) = θJ
(
e−v

Z

− β
)
. (23)
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The infinitesimal generator DJ follows via Ito’s Lemma:

DJ =

(
1− 1

ψ

)
θJcalmµcalmC + vcalms θJcalmµcalms

− 1

2
γ

(
1− 1

ψ

)
θJcalmσCC +

1

2
θJcalm

(
vcalmss + θ(vcalms )2

)
σss + (1− γ)θJcalmvcalms σCs

+ λcalm,calmA Jcalm
[
(1 + sAL

calm,calm
A )1−γeθv

calm(sA+
A )−θvcalm(sA) − 1

]
+ λcalm,contA Jcalm

[
(1 + sAL

calm,cont
A )1−γeθv

cont(sA+
A )−θvcalm(sA) − 1

]
+ λcalm,calmB Jcalm

[
(1 + sBL

calm,calm
B )1−γeθv

calm(sB+
A )−θvcalm(sA) − 1

]
+ λcalm,contB Jcalm

[
(1 + sBL

calm,cont
B )1−γeθv

cont(sB+
A )−θvcalm(sA) − 1

]
in the calm state and

DJ =

(
1− 1

ψ

)
θJcontµcontC + vconts θJcontµconts

− 1

2
γ

(
1− 1

ψ

)
θJcontσCC +

1

2
θJcont

(
vcontss + θ(vconts )2

)
σss + (1− γ)θJcontvconts σCs

+ λcont,contA Jcont
[
(1 + sAL

cont,cont
A )1−γeθv

cont(sA+
A )−θvcont(sA) − 1

]
+ λcont,contB Jcont

[
(1 + sBL

cont,cont
B )1−γeθv

cont(sB+
A )−θvcont(sA) − 1

]
+ λcont,calmJcont

[
eθv

calm(sA)−θvcont(sA) − 1
]

in the contagion state. The subscripts s and ss denote the first and second derivatives with respect to

sA. Plugging these expressions into the Bellman equation

0 = f (Ct, Jt) +DJt,

dividing by θJcalm and θJcont respectively, and rearranging some terms gives the following two ODEs

for the two unknown functions vcalm and vcont:

0 = e−v
calm

− β +

(
1− 1

ψ

)
µcalmC + vcalms µcalms (24)

− 1

2
γ

(
1− 1

ψ

)
σCC + (1− γ)vcalms σCs +

1

2

(
vcalmss + θ(vcalms )2

)
σss

+
1

θ
λcalm,calmA

[
(1 + sAL

calm,calm
A )1−γeθv

calm(sA+
A )−θvcalm(sA) − 1

]
+

1

θ
λcalm,contA

[
(1 + sAL

calm,cont
A )1−γeθv

cont(sA+
A )−θvcalm(sA) − 1

]
+

1

θ
λcalm,calmB

[
(1 + sBL

calm,calm
B )1−γeθv

calm(sB+
A )−θvcalm(sA) − 1

]
+

1

θ
λcalm,contB

[
(1 + sBL

calm,cont
B )1−γeθv

cont(sB+
A )−θvcalm(sA) − 1

]
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and

0 = e−v
cont

− β +

(
1− 1

ψ

)
µcontC + vconts µconts (25)

− 1

2
γ

(
1− 1

ψ

)
σCC + (1− γ)vconts σCs +

1

2

(
vcontss + θ(vconts )2

)
σss

+
1

θ
λcont,contA

[
(1 + sAL

cont,cont
A )1−γeθv

cont(sA+
A )−θvcont(sA) − 1

]
+

1

θ
λcont,contB

[
(1 + sBL

cont,cont
B )1−γeθv

cont(sB+
A )−θvcont(sA) − 1

]
+

1

θ
λcont,calm

[
eθv

calm(sA)−θvcont(sA) − 1
]
.

To derive boundary conditions, we study the behavior of the differential equations if the consumption share

sA goes to 0 or 1. Both limits can be interpreted as one tree economies with an additional (exogenous)

possibility of a regime shift, for which solutions exist under suitable conditions.16 This gives

0 = e−v
calm(0) − β +

(
1− 1

ψ

)
µcalmB − 1

2
γ

(
1− 1

ψ

)
σ2
B

+
1

θ
λcalm,contA

[
eθv

cont(0)−θvcalm(0) − 1
]

+
1

θ
λcalm,calmB

[
(1 + Lcalm,calmB )1−γ − 1

]
+

1

θ
λcalm,contB

[
(1 + Lcalm,contB )1−γeθv

cont(0)−θvcalm(0) − 1
]

0 = e−v
calm(1) − β +

(
1− 1

ψ

)
µcalmA − 1

2
γ

(
1− 1

ψ

)
σ2
A

+
1

θ
λcalm,calmA

[
(1 + Lcalm,calmA )1−γ − 1

]
+

1

θ
λcalm,contA

[
(1 + Lcalm,contA )1−γeθv

cont(1)−θvcalm(1) − 1
]

+
1

θ
λcalm,contB

[
eθv

cont(1)−θvcalm(1) − 1
]

0 = e−v
cont(0) − β +

(
1− 1

ψ

)
µcontB − 1

2
γ

(
1− 1

ψ

)
σ2
B

+
1

θ
λcont,contB

[
(1 + Lcont,contB )1−γ − 1

]
+

1

θ
λcont,calm

[
eθv

calm(0)−θvcont(0) − 1
]

0 = e−v
cont(1) − β +

(
1− 1

ψ

)
µcontA − 1

2
γ

(
1− 1

ψ

)
σ2
A

+
1

θ
λcont,contA

[
(1 + Lcont,contA )1−γ − 1

]
+

1

θ
λcont,calm

[
eθv

calm(1)−θvcont(1) − 1
]
.

This system of equations determines the four boundary values vcalm(0), vcont(0), vcalm(1) and vcont(1).

The resulting boundary problem for vcalm and vcont can then be solved using finite differences.

B.2 Pricing Kernel

The dynamics of the pricing kernel can be computed via Ito’s Lemma. The partial derivatives of ξ w.r.t.

C and v follow from (18). The dynamics of C are given in (20) and (21). The dynamics of v follow from

16See, e.g., Duffie and Epstein (1992a). Note that in the limit there can still be contagious jumps in the

tree with zero consumption share; these jumps influence the state of the economy and thus prices even if

the particular tree has a relative size of 0.
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Ito’s Lemma:

dvZtt = vsµ
Zt
s dt+

1

2
vssσssdt+ vssA,tsB,t

(
σAdWA,t − σBdWB,t

)
+ Jump Terms.

Plugging everything together and reallocating some terms gives

dξt
ξt−

=
[
−βθ + (θ − 1)e−v

calm
t

]
dt− γµcalmC dt+ (θ − 1)vcalms µcalms dt

−(θ − 1)vcalms γσCsdt+
1

2
(θ − 1)

(
vcalmss + (θ − 1)(vcalms )2

)
σssdt+

1

2
γ(1 + γ)σCCdt

−ηdiff,calmA dWA,t − ηdiff,calmB dWB,t

+dN calm,calm
A,t ηcalm,calmA + dN calm,cont

A,t ηcalm,contA + dN calm,calm
B,t ηcalm,calmB + dN calm,cont

B,t ηcalm,contB

in the calm state and

dξt
ξt−

=
[
−βθ + (θ − 1)e−v

cont
t

]
dt− γµcontC dt+ (θ − 1)vconts µconts dt

−(θ − 1)vconts γσCsdt+
1

2
(θ − 1)

(
vcontss + (θ − 1)(vconts )2

)
σssdt+

1

2
γ(1 + γ)σCCdt

−ηdiff,contA dWA,t − ηdiff,contB dWB,t

+dN cont,cont
A,t ηcont,contA + dN cont,cont

B,t ηcont,contB + dN cont,calm
t ηcont,calm

in the contagion state. The market prices of diffusion risk are given by

ηdiff,ZA =

[
γsA − (θ − 1)vZs sAsB

]
σA, ηdiff,ZB =

[
γsB + (θ − 1)vZs sAsB

]
σB

and the market prices of jump risk are given by:

ηcalm,calmA =
(

1 + sAL
calm,calm
A

)−γ
e
(θ−1)

(
vcalm(sA+

A )−vcalm(sA)

)
− 1

ηcalm,contA =
(

1 + sAL
calm,cont
A

)−γ
e
(θ−1)

(
vcont(sA+

A )−vcalm(sA)

)
− 1

ηcalm,calmB =
(

1 + sBL
calm,calm
B

)−γ
e
(θ−1)

(
vcalm(sB+

A )−vcalm(sA)

)
− 1

ηcalm,contB =
(

1 + sBL
calm,cont
B

)−γ
e
(θ−1)

(
vcont(sB+

A )−vcalm(sA)

)
− 1

ηcont,contA =
(
1 + sAL

cont,cont
A

)−γ
e
(θ−1)

(
vcont(sA+

A )−vcont(sA)

)
− 1

ηcont,contB =
(
1 + sBL

cont,cont
B

)−γ
e
(θ−1)

(
vcont(sB+

A )−vcont(sA)

)
− 1

ηcont,calm = e
(θ−1)

(
vcalm(sA)−vcont(sA)

)
− 1.

The market prices of jump risk η from above lead to risk-neutral jump intensities of the form λQ,j,ki =

λP,j,ki (1 + ηj,ki ). For later use, we abbbreviate the drift of the pricing kernel by

µZξ = −βθ + (θ − 1)e−v
Z

− γµZC + (θ − 1)vZs µ
Z
s

−(θ − 1)vZs γσCs +
1

2
(θ − 1)

(
vZss + (θ − 1)(vZs )2

)
σssdt+

1

2
γ(1 + γ)σCC .
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Replacing e−v
Z

using the ODEs (24) and (25) and then computing the expectation of the pricing kernel

results in the following expressions for the risk-free interest rate:

rcalmf = β +
1

ψ

(
µcalmC + sA

∑
k=calm,cont

Lcalm,kA λcalm,kA + sB
∑

k=calm,cont

Lcalm,kB λcalm,kB

)
− 1

2
γ(1 +

1

ψ
)σCC − (1− θ)vcalms σCs −

1

2
(1− θ)(vcalms )2σss

−
∑

k=calm,cont

λcalm,kA

[
ηcalm,kA +

1

ψ
sAL

calm,k
A +

1− θ
θ

(
(1 + sAL

calm,k
A )1−γeθ(v

k(sA+
A )−vcalm(sA)) − 1

)]

−
∑

k=calm,cont

λcalm,kB

[
ηcalm,kB +

1

ψ
sBL

calm,k
B +

1− θ
θ

(
(1 + sBL

calm,k
B )1−γeθ(v

k(sB+
A )−vcalm(sA)) − 1

)]
and

rcontf = β +
1

ψ

(
µcontC + sAL

cont,cont
A λcont,contA + sBL

cont,cont
B λcont,contB

)
− 1

2
γ(1 +

1

ψ
)σCC − (1− θ)vconts σCs −

1

2
(1− θ)(vconts )2σss

− λcont,contA

[
ηcont,contA +

1

ψ
sAL

cont,cont
A +

1− θ
θ

(
(1 + sAL

cont,cont
A )1−γeθ(v

cont(sA+
A )−vcont(sA)) − 1

)]
− λcont,contB

[
ηcont,contB +

1

ψ
sBL

cont,cont
B +

1− θ
θ

(
(1 + sBL

cont,cont
B )1−γeθ(v

cont(sB+
A )−vcont(sA)) − 1

)]
− λcont,calm

[
ηcont,calm +

1− θ
θ

(
eθ(v

calm(sA)−vcont(sA)) − 1
)]
.

B.3 Pricing the Dividend Claims

The price-dividend ratio of the dividend claims can be obtained from a Feynman-Kac argument as in the

one tree case. The dividends follow

dDi,t

Di,t−
= µcalmi dt+ φσdWi,t + ((1 + Lcalm,calmi )φ − 1)dN calm,calm

i,t + ((1 + Lcalm,conti )φ − 1)dN calm,cont
i,t

in the calm state and

dDi,t

Di,t−
= µconti dt+ φσdWi,t + ((1 + Lcont,conti )φ − 1)dN cont,cont

i,t

in the contagion state. Let wA denote the log price-dividend ratio of asset A. For g(ξ,DA, wA) = ξDAe
wA ,

the Feynman-Kac formula yields

Dg(ξ,DA, wA)

g(ξ,DA, wA)
+ e−wA = 0. (26)

Applied to our model specification, Ito’s Lemma gives

Dg

g
= µξ + µA + µw +

1

2

d 〈wcA〉
dt

+
d 〈ξc, Dc

A〉
ξDAdt

+
d 〈wcA, Dc

A〉
DAdt

+
d 〈wcA, ξc〉

ξdt
+ Jump Terms.
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Another application of Ito’s Lemma leads to

dwcalmA = wcalmA,s µcalms dt+
1

2
wcalmA,ss σssdt

+wcalmA,s sAsBσAdWA − wcalmA,s sAsBσBdWB

+
(
wcalmA (sA+

A )− wcalmA (sA)
)
dN calm,calm

A +
(
wcalmA (sB+

A )− wcalmA (sA)
)
dN calm,calm

B

+
(
wcontA (sA+

A )− wcalmA (sA)
)
dN calm,cont

A +
(
wcontA (sB+

A )− wcalmA (sA)
)
dN calm,cont

B

dwcontA = wcontA,s µ
cont
s dt+

1

2
wcontA,ssσssdt

+wcontA,s sAsBσAdWA − wcontA,s sAsBσBdWB

+
(
wcontA (sA+

A )− wcontA (sA)
)
dN cont,cont

A +
(
wcontA (sB+

A )− wcontA (sA)
)
dN cont,cont

B

+
(
wcalmA (sA)− wcontA (sA)

)
dN cont,calm,

where, again, the subscripts s and ss denote the first and second derivatives with respect to the con-

sumption share sA. Plugging everything into Equation (26) leads to two ODEs for wcalmA and wcontA :

0 = e−w
calm
A + µcalmξ + µcalmA +

1

2

(
wcalmA,ss + (wcalmA,s )2

)
σss (27)

−ηdiff,calmA

(
φσA + wcalmA,s sAsBσA − wcalmA,s sAsBρσB

)
−ηdiff,calmB

(
φρσA − wcalmA,s sAsBσB + wcalmA,s sAsBρσA

)
+wcalmA,s µcalms + wcalmA,s sAsBφσ

2
A − wcalmA,s sAsBφρσAσB

+λcalm,calmA

[
(1 + ηcalm,calmA )(1 + Lcalm,calmA )φew

calm
A (sA+

A )−wcalmA (sA) − 1
]

+λcalm,calmB

[
(1 + ηcalm,calmB )ew

calm
A (sB+

A )−wcalmA (sA) − 1
]

+λcalm,contA

[
(1 + ηcalm,contA )(1 + Lcalm,contA )φew

cont
A (sA+

A )−wcalmA (sA) − 1
]

+λcalm,contB

[
(1 + ηcalm,contB )ew

cont
A (sB+

A )−wcalmA (sA) − 1
]

0 = +e−w
cont
A + µcontξ + µcontA +

1

2

(
wcontA,ss + (wcontA,s )2

)
σss (28)

−ηdiff,contA

(
φσA + wcontA,s sAsBσA − wcontA,s sAsBρσB

)
−ηdiff,contB

(
φρσA − wcontA,s sAsBσB + wcontA,s sAsBρσA

)
+wcontA,s µ

cont
s + wcontA,s sAsBφσ

2
A − wcontA,s sAsBφρσAσB

+λcont,contA

[
(1 + ηcont,contA )(1 + Lcont,contA )φew

cont
A (sA+

A )−wcontA (sA) − 1
]

+λcont,contB

[
(1 + ηcont,contB )ew

cont
A (sB+

A )−wcontA (sA) − 1
]

+λcont,calm
[
(1 + ηcont,calm)ew

calm
A (sA)−wcontA (sA) − 1

]
.

Boundary conditions for the ODEs can be found as for the log wealth-consumption ratio v by studying
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the behavior in the limit as the consumption share sA goes to zero or one. This results in

0 = −βθ + (θ − 1)e−v
calm(0) + e−w

calm
A (0) + µcalmA − γµcalmB +

1

2
γ(1 + γ)σ2

B − γφρσAσB

+λcalm,calmA

[(
1 + Lcalm,calmA

)φ
− 1

]
+ λcalm,calmB

[(
1 + Lcalm,calmB

)−γ
− 1

]

+λcalm,contA

[
(1 + Lcalm,contA )φe

(θ−1)
(
vcont(0)−vcalm(0)

)
ew

cont
A (0)−wcalmA (0) − 1

]

+λcalm,contB

[(
1 + Lcalm,contB

)−γ
e
(θ−1)

(
vcont(0)−vcalm(0)

)
ew

cont
A (0)−wcalmA (0) − 1

]

0 = −βθ + (θ − 1)e−v
cont(0) + e−w

cont
A (0) + µcontA − γµcontB +

1

2
γ(1 + γ)σ2

B − γφρσAσB

+λcont,contA

[(
1 + Lcont,contA

)φ − 1
]

+ λcont,contB

[(
1 + Lcont,contB

)−γ − 1
]

+λcont,calm

[
e
(θ−1)

(
vcalm(0)−vcont(0)

)
ew

calm
A (0)−wcontA (0) − 1

]

for sA = 0 and

0 = −βθ + (θ − 1)e−v
calm(1) + e−w

calm
A (1) + (1− γ)µcalmA +

1

2
γ(1 + γ)σ2

A − γφσ2
A

+λcalm,calmA

[(
1 + Lcalm,calmA

)φ−γ
− 1

]

+λcalm,contA

[(
1 + Lcalm,contA

)φ−γ
e
(θ−1)

(
vcont(1)−vcalm(1)

)
ew

cont
A (1)−wcalmA (1) − 1

]

+λcalm,contB

[
e
(θ−1)

(
vcont(1)−vcalm(1)

)
ew

cont
A (1)−wcalmA (1) − 1

]

0 = −βθ + (θ − 1)e−v
cont(1) + e−w

cont
A (1) + (1− γ)µcontA +

1

2
γ(1 + γ)σ2

A − γφσ2
A

+λcont,contA

[(
1 + Lcont,contA

)φ−γ − 1
]

+λcont,calm

[
e
(θ−1)

(
vcalm(1)−vcont(1)

)
ew

calm
A (1)−wcontA (1) − 1

]

for sA = 1.

However, the price-dividend ratio of tree A can become infinitely large if its consumption share sA tends

to zero. If wA becomes infinitely large in the limit, we omit the boundary condition at sA = 0 in the

numerical computation and, instead, solve the initial value problem with the remaining initial condition

at sA = 1. The numerical results are not affected by this methodology. We emphasize again that the

boundary conditions at sA = 1 are not equal to the conditions for the price-dividend ratios in a single-

tree economy. The reason is that there can still be contagious jumps in tree B even if sA tends to 1. Even

if tree B has a relative size of zero, its jumps can influence the state of the economy and thus asset prices.

The price-dividend ratio of tree B can be computed symmetrically to the price-dividend ratio of tree A.

42



B.4 Exposures and Moments

Conditional on the state, the dynamics of the asset price PA = ewADA follow via Ito’s Lemma. In the

calm state, we have

dPA,t
PA,t−

=
Et[dPA,t]

PA,t−
+
(
wcalmA,s sA,tsB,tσA + φσA

)
dWA,t − wcalmA,s sA,tsB,tσBdWB,t

+ΥA,calm,calm
A

(
dN calm,calm

A,t − λcalm,calmA dt
)

+ ΥA,calm,cont
A

(
dN calm,cont

A,t − λcalm,contA dt
)

+ΥB,calm,calm
A

(
dN calm,calm

B,t − λcalm,calmB dt
)

+ ΥB,calm,cont
A

(
dN calm,cont

B,t − λcalm,contB dt
)
.

In the contagion state, the dynamics are

dPA,t
PA,t−

=
Et[dPA,t]

PA,t−
+
(
wcontA,s sA,tsB,tσA + φσA

)
dWA,t − wcontA,s sA,tsB,tσBdWB,t

+ ΥA,cont,cont
A

(
dN cont,cont

A,t − λcont,contA dt
)

+ ΥB,cont,cont
A

(
dN cont,cont

B,t − λcont,contB dt
)

+ Υcont,calm
A

(
dN cont,calm

t − λcont,calmdt
)
.

In the following, we set

ΥA,diff,Z
A =

(
wZA,ssAsB + φ

)
σA − wZA,ssAsBρσB

ΥB,diff,Z
A =

(
wZA,ssAsB + φ

)
ρσA − wZA,ssAsBσB

for Z ∈ {calm, cont}, which can be interpreted as the total sensitivities of asset A with respect to the

Brownian shocks A and B. The total sensitivities ΥA,diff,Z
B and ΥB,diff,Z

B are defined analogously. Υn,j,k
i

is the sensitivity of asset i with respect to jumps in dividend n (i, n ∈ {A,B}) and from state j to state

k ((j, k) ∈ {(calm, calm), (calm, cont), (cont, cont)}). Finally, Υcont,calm
i denotes the sensitivity of asset i

with respect to regime switches from the contagion state back to the calm state.

The sensitivities of asset A with respect to the jump processes are

ΥA,calm,calm
A =

(
1 + Lcalm,calmA

)φ
ew

calm
A,t (sA+

A )−wcalmA,t (sA) − 1

ΥA,calm,cont
A =

(
1 + Lcalm,contA

)φ
ew

cont
A,t (sA+

A )−wcalmA,t (sA) − 1

ΥA,cont,cont
A =

(
1 + Lcont,contA

)φ
ew

cont
A,t (sA+

A )−wcontA,t (sA) − 1

ΥB,calm,calm
A = ew

calm
A,t (sB+

A )−wcalmA,t (sA) − 1

ΥB,calm,cont
A = ew

cont
A,t (sB+

A )−wcalmA,t (sA) − 1

ΥB,cont,cont
A = ew

cont
A,t (sB+

A )−wcontA,t (sA) − 1

Υcont,calm
A = ew

calm
A,t (sA)−wcontA,t (sA) − 1.

For the exposures of asset B, one has to switch ’A’ and ’B’ (also on the left-hand side of the equations)

and replace every derivative ws by w1−s = −ws.

The expected return of asset A can be computed as the sum of expected price change and dividend yield:

Et[dRA,t]

dt
=

Et[dPA,t]

PA,tdt
+ e−wA,t .
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Replacing e−wA using the differential equations (27) and (28), computing the expectation of dPA, rear-

ranging some terms and finally using the expression for the risk-free rate, the expected excess return in

the calm state becomes[ (
wcalmA,s sAsB + φ

)
σA − wcalmA,s sAsBρσB

][
γsA − (θ − 1)vcalms sAsB

]
σA

+

[ (
wcalmA,s sAsB + φ

)
ρσA − wcalmA,s sAsBσB

][
γsB + (θ − 1)vcalms sAsB

]
σB

+ λcalm,calmA

[(
1 + Lcalm,calmA

)φ
ew

calm
A (sA+

A )−wcalmA (sA) − 1

][
1−

(
1 + sAL

calm,calm
A

)−γ
e
(θ−1)

(
vcalm(sA+

A )−vcalm(sA)

)]

+ λcalm,calmB

[
ew

calm
A (sB+

A )−wcalmA (sA) − 1
] [

1−
(

1 + sBL
calm,calm
B

)−γ
e
(θ−1)

(
vcalm(sB+

A )−vcalm(sA)

)]

+ λcalm,contA

[(
1 + Lcalm,contA

)φ
ew

cont
A (sA+

A )−wcalmA (sA) − 1

][
1−

(
1 + sAL

calm,cont
A

)−γ
e
(θ−1)

(
vcont(sA+

A )−vcalm(sA)

)]

+ λcalm,contB

[
ew

cont
A (sB+

A )−wcalmA (sA) − 1
] [

1−
(

1 + sBL
calm,cont
B

)−γ
e
(θ−1)

(
vcont(sB+

A )−vcalm(sA)

)]

and the expected excess return in the contagion state equals[ (
wcontA,s sAsB + φ

)
σA − wcontA,s sAsBρσB

][
γsA − (θ − 1)vcalms sAsB

]
σA

+

[ (
wcontA,s sAsB + φ

)
ρσA − wcontA,s sAsBσB

][
γsB + (θ − 1)vcalms sAsB

]
σB

+ λcont,contA

[(
1 + Lcont,contA

)φ
ew

cont
A (sA+

A )−wcontA (sA) − 1
] [

1−
(
1 + sAL

cont,cont
A

)−γ
e
(θ−1)

(
vcont(sA+

A )−vcont(sA)

)]

+ λcont,contB

[
ew

cont
A (sB+

A )−wcontA (sA) − 1
] [

1−
(
1 + sBL

cont,cont
B

)−γ
e
(θ−1)

(
vcont(sB+

A )−vcont(sA)

)]

+ λcont,calm
[
ew

calm
A (sA)−wcontA (sA) − 1

] [
1− e

(θ−1)
(
vcalm(sA)−vcont(sA)

)]
.

This formulation gives rise to the interpretation of the expected excess return as the sum over ’exposure’

times ’market price of risk’ for all priced risk factors as noted in Proposition 7.
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One Tree Economies Two Tree Economies
(Section 2) (Sections 3 and 4)

Economy Pure Regime Economy Identical Robust vs. Propensity
with Switching without Trees Contagion- to Trigger

Contagious Economy Regimes sensitive Contagion
Jumps Assets

µcalmA 0.058 0.058 0.058 0.058 0.058 0.058
µcontA 0.058 0.058 0.058 0.058 0.058 0.058
µcalmB — — — 0.058 0.058 0.058
µcontB — — — 0.058 0.058 0.058

σA 0.01 0.01 0.01 0.014 0.014 0.014
σB — — — 0.014 0.014 0.014
ρ — — — 0 0 0

Lcalm,calmA −0.03 −0.03 -0.03 −0.06 −0.06 −0.06

Lcalm,contA −0.03 0 0 −0.06 −0.06 −0.06

Lcalm,calmB — — — −0.06 −0.06 −0.06

Lcalm,contB — — — −0.06 −0.06 −0.06

Lcont,contA −0.03 −0.03 -0.03 −0.06 −0.06 −0.06

Lcont,contB — — — −0.06 −0.06 −0.06

λcalm,calmA 0.23 0.5 0.855 0.115 0.115 0

λcalm,contA 0.27 0.27 0.27 0.135 0.135 0.25

λcalm,calmB — — — 0.115 0.115 0.23

λcalm,contB — — — 0.135 0.135 0.02

λcont,contA 1.5 1.5 0.855 0.75 0.625 0.75

λcont,contB — — — 0.75 0.875 0.75
λcont,calm 0.49 0.49 0.49 0.49 0.49 0.49

Table 1: Parameters of Consumption Processes

The table reports the parameters of the consumption processes. The first three columns
refer to the different one tree economies discussed in Section 2: the economy with con-
tagious jumps, the pure regime switching economy, and the economy without regimes.
For simplicity, the single tree corresponds to tree A in these columns. The fourth col-
umn refers to the two tree economy with identical trees which is studied in Section 3.
The last two columns give the parameters if contagion mainly affects asset B (’Robust
versus Contagion-sensitive Assets’) or if contagion is mainly induced by asset A (’Propen-
sity to Trigger Contagion’). These settings are discussed in Section 4. All parameters are
annualized.
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Total Precautionary savings terms

risk-free β 1
ψ

Et[dCt]
Ct dt

Diffusion Pure cons. Contagious Regime

rate risk jumps jumps switches

Economy with Contagious Jumps

Calm state 0.0269 0.01 0.0287 −0.0008 −0.0021 −0.0089 —–

Contagion state 0.0033 0.01 0.0087 −0.0008 −0.0135 —– −0.0010

Pure Regime Switching Economy

Calm state 0.0321 0.01 0.0287 −0.0008 −0.0045 —– −0.0013

Contagion state 0.0030 0.01 0.0087 −0.0008 −0.0135 —– −0.0013

Economy without Regimes

Steady state 0.0230 0.01 0.0216 −0.0008 −0.0077 —– —–

Table 3: Decomposition of the Risk-free Rate (One Tree Economies)

The table reports the risk-free rate in the different one tree economies discussed in Section
2. The decomposition into its various components is based on Proposition 2.
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Total Diffusion Pure cons. Contagious Regime
premium risk jumps jumps switches

Economy with Contagious Jumps

Calm state 0.0544 0.003 0.0072 0.0442 —–

Contagion state 0.0641 0.003 0.0466 —– 0.0144

Pure Regime Switching Economy

Calm state 0.0342 0.003 0.0155 —– 0.0156

Contagion state 0.0700 0.003 0.0466 —– 0.0203

Economy without Regimes

Steady state 0.0296 0.003 0.0266 —– —–

Table 4: Decomposition of the Risk Premium (One Tree Economies)

The table reports the risk premium in the different one tree economies discussed in Section
2. The decomposition into its various components is based on Proposition 3. The premium
for contagious jumps in the first line is further decomposed in Table 5.

Premium Premium
Total for pure for pure Interaction

cons. jumps regime switches term

0.0442 0.0084 0.0107 0.0251

Table 5: Decomposition of the Risk Premium for Contagious Jumps

The table decomposes the risk premium for contagious jumps in a one tree economy (see
first line of Table 4) into its components as discussed in Section 2.
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Figure 1: Asset Prices and Returns (Identical Trees)

The figure depicts the price-dividend ratios in the calm state, the risk-free interest rate,
and the risk premia in both states as a function of the consumption share sA of tree A.
Price-dividend ratios and risk premia are given for asset A (red solid line) and asset B
(blue dashed line). The parameters for this case are given in column ’Identical Trees’ of
Table 1.
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Figure 4: Asset Prices and Returns (Robust versus Contagion-sensitive Assets)

The figure depicts the price-dividend ratios in the calm state, the risk-free interest rate,
and the risk premia in both states as a function of the consumption share sA of tree A.
Price-dividend ratios and risk premia are given for the robust asset A (red solid line) and
the contagion-sensitive asset B (blue dashed line). The parameters for this case are given
in column ’Robust versus Contagion-sensitive Assets’ of Table 1.
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Figure 5: Decomposition of Risk Premia (Robust versus Contagion-sensitive Assets)

The figure depicts the various components of the risk premia of asset A and asset B as a
function of the consumption share sA of tree A. The upper left-hand graph decomposes
the risk premium of the robust asset A into the risk premia for ordinary jumps of tree
A (black dashed line), ordinary jumps of tree B (red dashed line), contagious jumps
of tree A (black solid line), contagious jumps of tree B (red solid line), and diffusion
risk (blue dash-dotted line). The upper right-hand graph decomposes the premium for
contagious jumps of tree A further into the (hypothetical) premium for pure consumption
jumps (blue dotted line), the (hypothetical) premium for pure regime switches (red dash-
dotted line) and the additional interaction term arising from our model structure (black
dashed line). The lower graphs depict similar decompositions for the risk premium of the
contagion-sensitive asset B. The parameters for this case are given in column ’Robust
versus Contagion-sensitive Assets’ of Table 1.

55



0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30
Price−dividend ratios (calm state)

 

 
Asset A
Asset B

0 0.2 0.4 0.6 0.8 1
−0.02

−0.01

0

0.01

0.02

0.03
Risk−free interest rate

 

 

Calm state
Contagion state

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

0.12
Risk premia (calm state)

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

0.12
Risk premia (contagion state)

Figure 6: Asset Prices and Returns (Propensity to Trigger Contagion)

The figure depicts the price-dividend ratios in the calm state, the risk-free interest rate,
and the risk premia in both states as a function of the consumption share sA of tree A.
Price-dividend ratios and risk premia are given for the contagion-triggering asset A (red
solid line) and the non-toxic asset B (blue dashed line). The parameters for this case are
given in column ’Propensity to Trigger Contagion’ of Table 1.
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Figure 7: Decomposition of Risk Premia (Propensity to Trigger Contagion)

The figure depicts the various components of the risk premia of asset A and asset B as a
function of the consumption share sA of tree A. The upper left-hand graph decomposes the
risk premium of the contagion-triggering asset A into the risk premia for ordinary jumps of
tree A (black dashed line), ordinary jumps of tree B (red dashed line), contagious jumps
of tree A (black solid line), contagious jumps of tree B (red solid line), and diffusion
risk (blue dash-dotted line). The upper right-hand graph decomposes the premium for
contagious jumps of tree A further into the (hypothetical) premium for pure consumption
jumps (blue dotted line), the (hypothetical) premium for pure regime switches (red dash-
dotted line) and the additional interaction term arising from our model structure (black
dashed line). The lower graphs depict similar decompositions for the risk premium of the
non-toxic asset B. The parameters for this case are given in column ’Propensity to Trigger
Contagion’ of Table 1.
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