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Abstract

In this paper we prove asymptotic normality of the total length of external branches in Kingman’s
coalescent. The proof uses an embedded Markov chain, which can be described as follows: Take
an urn with n black balls. Empty it in n steps according to the rule: In each step remove a
randomly chosen pair of balls and replace it by one red ball. Finally remove the last remaining
ball. Then the numbers Uk, 0 ≤ k ≤ n, of red balls after k steps exhibit an unexpected property:
(U0, . . . , Un) and (Un, . . . , U0) are equal in distribution.
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1 Introduction and results

Our main result in this paper is that the total length Ln of all external branches in Kingman’s coales-
cent with n external branches is asymptotically normal as n→∞.

Kingman’s coalescent (1982) consists of two components. First there are the coalescent times T1 >

T2 > · · ·> Tn = 0. They are such that
�

k

2

�

(Tk−1− Tk) , k = 2, . . . , n

are independent, exponential random variables with expectation 1. Second there are partitions
π1 =

�

{1, . . . , n}
	

,π2, . . . ,πn =
�

{1}, . . . , {n}
	

of the set {1, . . . , n}, where the set πk containes k
disjoint subsets of {1, . . . , n} and πk−1 evolves from πk by merging two randomly chosen elements
of πk. Moreover, (Tn, . . . , T1) and (πn, . . . ,π1) are independent. For convenience we put π0 := ;.
As is customary the coalescent can be represented by a tree with n leaves labelled from 1 to n. Each
of these leaves corresponds to an external branch of the tree. The other node of the branch with
label i is located at level

ρ(i) :=max{k ≥ 1 : {i} 6∈ πk}

within the coalescent. The length of this branch is Tρ(i), The total external length of the coalescent
is given by

Ln :=
n
∑

i=1

Tρ(i) .

This quantity is of a certain statistical interest. Coalescent trees have been introduced by Kingman
(1982) as a model for the genealogy of n individuals, down to their most recent common ancestor.
Mutations can be located everywhere on the branches. Then mutations on external branches affect
only single individuals. This fact was used by Fu and Li (1993) in designing their D-statistic and
providing a test whether or not data fit to Kingman’s coalescent.

Elsewhere the total external length of coalescents has been studied by Möhle (2010). He obtained
results on the asymptotic distribution for a class of coalescents, which differ substantially from
Kingman’s coalescent. It includes so-called Beta(2−α,α)-coalescents with 0< α < 1. For 1< α < 2
Berestycki et al (2006) proved a law of large numbers (see the quantity M1(n) in their Theorem 9);
a more general result is contained in Berestycki et al (2011). Otherwise single external branches
have been investigated in the literature. The asymptotic distribution of Tρ(i) has been obtained
by Caliebe et al (2007), using a representation of its Laplace transform due to Blum and François
(2005). Freund and Möhle (2009) studied the Bolthausen-Sznitman coalescent, and Gnedin et al
(2008) the general Λ-coalescent.

Here is our main result.

Theorem 1. As n→∞,
1

2

r

n

log n
�

Ln− 2
� d→ N(0, 1) .

Here
d→ denotes convergence in distribution. The proof will show that the limiting normal distribu-

tion originates from the random partitions and not from the exponential waiting times.
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A second glance on this result reveals a peculiarity: The normalization of Ln is carried out using
its expectation, but only half of its variance. These two terms have been determined by Fu and Li
(1993) (with a correction given by Durrett (2002)). They obtained

E(Ln) = 2 , Var(Ln) =
8nhn− 16n+ 8

(n− 1)(n− 2)
∼

8 log n

n

with hn := 1+ 1
2
+ · · ·+ 1

n
, the n-th harmonic number. Below we derive a more general result.

To uncover this peculiarity we shall study the external lengths in more detail. First we look at the
point processes ηn on (0,∞), given by ηn =

∑n
i=1δ

p
nTρ(i) , i.e.

ηn(B) := #{i :
p

nTρ(i) ∈ B} (1)

for Borel sets B ⊆ (0,∞).

Theorem 2. As n→∞ the point process ηn converges in distribution, as point processes on (0,∞], to
a Poisson point process η on (0,∞) with intensity measure λ(d x) = 8x−3 d x.

We use (0,∞] in the statement of Theorem 2 instead of (0,∞) since it is stronger, including for

example ηn(a,∞) d→ η(a,∞) for every a > 0. The significance is that, as n → ∞, there will be
points clustering at 0 but not at ∞. (Below in the proof we recall the definition of convergence in
distribution of point processes.) It is not evident, whether there exists a connection to the Poisson
point processes introduced by Pitman (1999) for the construction of coalescent processes.

Theorem 2 permits a first orientation. Since
p

nLn =
∫

x ηn(d x), one is tempted to resort to in-
finitely divisible distributions. However, the intensity measure λ(d x) is slightly outside the range of
the Lévy-Chintchin formula. Shortly speaking this means that small points of ηn have a dominant
influence on the distribution of Ln and we are within the domain of the normal distribution.

Thus let us look in more detail on the external lengths and focus on

Lα,β
n :=

∑

nα≤ρ(i)<nβ
Tρ(i) , 0≤ α < β ≤ 1 ,

which is the total length of those external branches having their internal nodes between level dnαe
and dnβe within the coalescent. Obviously Ln = L0,1

n .

Proposition 3. For 0≤ α < β ≤ 1

E(Lα,β
n ) =

2

n(n− 1)
�

dnβe − dnαe
��

2n+ 1− dnβe − dnαe
�

and

Var(Lα,β
n )∼ 8(β −α)

log n

n
,

as n→∞.

In particular E(L1−ε,1
n ) ∼ E(L0,1

n ), whereas Var(L1−ε,1
n ) ∼ εVar(L0,1

n ). Thus the proposition indicates
that the systematic part of Ln and its fluctuations arise in different regions of the coalescent tree,
the former close to the leaves and the latter closer to the root.

However, this proposition gives an inadequate impression.
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Theorem 4. For 0≤ α < β < 1/2
P(Lα,β

n = 0) → 1

as n→∞. Moreover
p

nL
0, 1

2
n

d→
∫ ∞

2

x η(d x)

and for 1/2≤ α < β ≤ 1
Lα,β

n − E(Lα,β
n )

p

Var(Lα,β
n )

d→ N(0, 1) .

In addition Lα,β
n and Lγ,δ

n are asymptotically independent for α < β ≤ γ < δ.

This result implies Theorem 1: In Ln = L
0, 1

2
n + L

1
2

,1
n the summands are of order

p

1/n and
p

log n/n,
such that in the limit the second, asymptotically normal component dominates. To this end, however,

n has to become exponentially large, otherwise the few long branches, which make up L
0, 1

2
n , cannot

be neglected and may produce extraordinary large values of Ln. Thus the normal approximation for
the distribution of Ln seems little useful for practical purposes. One expects a fat right tail compared
to the normal distribution. Indeed

∫∞
2

x η(d x) has finite mean but infinite variance.

This is illustrated by the following two histograms from 10000 values of Ln, where the length of the
horizontal axis to the right indicates the range of the values.

-

6

2 4 6 8

0.1 n= 50

-

6

2 4 6 8

0.2

n= 1000

The heavy tails to the right are clearly visible. Also very large outliers appear: For n = 50 the
simulated values of Ln range from 0.685 to 8.38, and for n= 1000 from 1.57 to 7.87.

Also it turns out that the approximation of the variance in Proposition 3 is good only for very large
n. This can be seen already from the formula of Fu and Li. To get an exact formula for the variance
we look at a somewhat different quantity, namely

L̂α,β
n :=

n
∑

i=1

(Tρ(i) ∧ Tbnαc− Tρ(i) ∧ Tbnβ c)

with 0≤ α < β ≤ 1, which is the portion of the external length between level bnαc and bnβc within
the coalescent.
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Proposition 5. For 0≤ α≤ 1 with m := bnαc

E(L̂α,1
n ) = 2

n−m

n− 1

and

Var(L̂α,1
n ) =

8(hn−1− hm−1)(n+ 2m− 2)
(n− 1)(n− 2)

−
4(n−m)(4n+m− 5)
(n− 1)2(n− 2)

.

For α= 0 we recover the formula of Fu and Li. A similar expression holds for L̂α,β
n .

Proposition 3 and Theorem 4 carry over to L̂α,β
n , up to a change in expectation and with the limit

p
nL̂

0, 1
2

n
d→
∫∞

2
(x − 2)η(d x). The following histogram from a random sample of length 10000

shows that already for n= 50 the distribution of L̂
1
2

,1
n fits well to the normal distribution when using

the values for expectation and variance, given in Proposition 5.

-

6

1 2 3

0.1

Our main tool for the proofs is a representation of Ln by means of an imbedded Markov chain
U0, U1, . . . , Un, which is of interest of its own. We shall introduce it as an urn model. The relevant
fact is that this model possesses an unexpected hidden symmetry, namely it is reversible in time.
This is our second main result. For the proof we use another urn model, which allows reversal of
time in a simple manner.

The urn models are introduced and studied in Section 2. Proposition 3 is proven in Section 3,
Theorems 2 and 4 are derived in Section 4 and Proposition 5 in Section 5.

2 The urn models

Take an urn with n black balls. Empty it in n steps according to the rule: In each step remove
a randomly chosen pair of balls and replace it by one red ball. In the last step remove the last
remaining ball. Let

Uk := number of red balls in the urn after k steps .

Obviously U0 = Un = 0, U1 = Un−1 = 1 and 1 ≤ Uk ≤ min(k, n− k) for 2 ≤ k ≤ n− 2. U0, . . . , Un is
a time-inhomogeneous Markov chain with transition probabilities

P(Uk+1 = u′ | Uk = u) =







�u
2

���n−k
2

�

, if u′ = u− 1 ,

u(n− k− u)
��n−k

2

�

, if u′ = u ,
�n−k−u

2

���n−k
2

�

, if u′ = u+ 1 .

We begin our study of the model by calculating expectations and covariances.
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Proposition 6. For 0≤ k ≤ l ≤ n

E(Uk) =
k(n− k)

n− 1
, Cov(Uk, Ul) =

k(k− 1)(n− l)(n− l − 1)
(n− 1)2(n− 2)

.

Proof. Imagine that the black balls are numbered from 1 to n. Let Zik be the indicator variable of the
event that the black ball with number i is not yet removed after k steps. Then Uk = n− k−

∑n
i=1 Zik

and consequently
E(Uk) = n− k− nE(Z1k)

and for k ≤ l in view of Z1l ≤ Z1k

Cov(Uk, Ul) =
n
∑

i=1

n
∑

j=1

Cov(Zik, Z jl)

= n(n− 1)E(Z1kZ2l) + nE(Z1l)− n2E(Z1k)E(Z1l) .

Also

E(Z1k) = P(Z1k = 1) =

�n−1
2

�

�n
2

� · · ·

�n−k
2

�

�n−k+1
2

�

=
(n− k)(n− k− 1)

n(n− 1)

and for k ≤ l

E(Z1kZ2l) = P(Z1k = Z2l = 1) =

�n−2
2

�

�n
2

� · · ·

�n−k−1
2

�

�n−k+1
2

�

·

�n−k−1
2

�

�n−k
2

�

· · ·

�n−l
2

�

�n−l+1
2

�

=
(n− k− 1)(n− k− 2)(n− l)(n− l − 1)

n(n− 1)2(n− 2)
.

Our claim now follows by careful calculation.

Note that these expressions for expectations and covariances are invariant under the transformation
k 7→ n− k, l 7→ n− l. This is not by coincidence:

Theorem 7. (U0, U1, . . . , Un) and (Un, Un−1, . . . , U0) are equal in distribution.

Proof. Leaving aside U0 = Un = 0 we have Uk ≥ 1 a.s. for the other values of k. Instead we shall
look at U ′k = Uk − 1 for 1 ≤ k ≤ n− 1. It turns out that for this process one can specify different
dynamics, which are more lucid and amenable to reversing time.

Consider the following alternative box scheme: There are two boxes A and B. At the beginning A
contains n− 1 black balls whereas B is empty. The balls are converted in 2n− 2 steps into n− 1 red
balls lying in B. Namely, in steps number 1, 3, . . . , 2n− 3 a randomly drawn ball from A is shifted
to B and in steps number 2, 4, . . . , 2n− 2 a randomly chosen black ball (whether from A or B) is
recolored to a red ball. These 2n− 2 operations are carried out independently.

For 1≤ k ≤ n− 1 let

U ′k := number of red balls in box A after 2k− 1 steps,

that is at the moment after the kth move and before the kth recoloring. Obviously the sequence is a
Markov chain, also U ′1 = 0.
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As to the transition probabilities note that after 2k − 1 steps there are n− k black balls in all and
n− k− 1 balls in A. Thus given U ′k = r there are r red and n− k− r − 1 black balls in A, and the
remaining r + 1 black balls belong to B. Then U ′k+1 = r + 1 occurs only, if in the next step the ball
recolored from black to red belongs to A and subsequently the ball shifted from A to B is black. Thus

P(U ′k+1 = r + 1 | U ′k = r) = n−k−r−1
n−k

· n−k−r−2
n−k−1

=
�n−k−r−1

2

�

/
�n−k

2

�

.

Similarly U ′k+1 = r − 1 occurs, if the recolored ball belongs to B and next the ball shifted from A to
B is red. The corresponding probability is

P(U ′k+1 = r − 1 | U ′k = r) = r+1
n−k
· r

n−k−1
=
�r+1

2

�

/
�n−k

2

�

.

Since U1 = 1 = U ′1 + 1 and in view of the transition probabilities of (Uk) and (U ′k) we see that
(U1, . . . , Un−1) and (U ′1+ 1, . . . , U ′n−1+ 1) indeed coincide in distribution.

Next note that U ′n−1 = 0. Therefore U ′k can be considered as a function not only of the first 2k−1 but
also of the last 2n−2k−1 shifting and recoloring steps. Since the steps are independent, the process
backwards is equally easy to handle. Taking into account that backwards the order of moving and
recoloring balls is interchanged, one may just repeat the calculations above to obtain reversibility.

But this repetition can be avoided as well. Let us put our model more formally: Label the balls from
1 to n− 1 and write the state space as

S :=
��

(L1, c1), . . . , (Ln−1, cn−1)
�

| Li ∈ {A, B}, ci ∈ {b, r}
	

,

where Li is the location of ball i and ci its color. Then in our model the first and second coordinate
are changed in turn from A to B and from b to r. This is done completely at random, starting within
the first coordinates. Clearly we may interchange the role of the first and second coordinate. Thus
our box model is equivalent to the following version:

Again initially A contains n−1 black balls whereas B is empty. Now in the steps number 1,3, . . . , 2n−
3 a randomly chosen black ball is recolored to a red ball and in the steps number 2,4, . . . , 2n −
2 a randomly drawn ball from A is shifted to B. Again these 2n − 2 operations are carried out
independently. Here we consider

U ′′k := number of black balls in box B after 2k− 1 steps.

Then from the observed symmetry it is clear that the quantities (U ′1, . . . , U ′n−1) and (U ′′1 , . . . , U ′′n−1)
are equal in distribution.

If we finally interchange both colors and boxes as well, then we arrive at the dynamics of the
backward process. This finishes the proof.

There is a variant of our proof, which makes the reversibility of (U ′k) manifest in a different manner.
Let again the balls be labelled from 1 to n− 1. Denote

νm := instance between 1 and n− 1, when ball m is colored to red,

σm := instance between 1 and n− 1, when ball m is shifted to box B.

Then from our construction it is clear that ν = (νm) and σ = (σm) are two independent random
permutations of the numbers {1, . . . , n− 1}. Moreover, at instance k (i.e. after 2k − 1 steps) ball
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number m is red and belongs to box A, if it was colored before and shifted afterwards, i.e. νm < k <
σm. Thus we obtain the formula

U ′k = #{1≤ m≤ n− 1 : νm < k < σm} (2)

and we may conclude the following result.

Corollary 8. Let ν and σ be two independent random permutations of {1, . . . , n − 1}. Then
(U1, . . . , Un−1) is equal in distribution to the process

�

#{1≤ m≤ n− 1 : νm < k < σm}+ 1
�

1≤k≤n−1 .

Certainly this representation implies Theorem 7 again. Also it contains additional information. For
example, it is immediate that Uk − 1 has a hypergeometric distribution with parameters n− 1, k−
1, n− k− 1.

One might think to apply similar dimishing urn schemes to other coalescent processes. However, re-
versiblity will hardly be preserved. For related urn models compare the sock-sorting process studied
in Steinsaltz (1999) and Janson (2009), Section 8.

We conclude this section by imbedding our urn model into the coalescent. Let

Vk := k−#{i : ρ(i)< k} , (3)

and Uk := Vn−k, 0 ≤ k ≤ n. Thus Vk is the number of internal branches among the k branches
after the (n− k)-th coalescing event and Uk is the number of internal branches among the n− k
branches after the k-th coalescing event. The coalescing mechanism takes two random branches and
combines them into one internal branch. If we code the external branches by black balls and the
internal branches by red, this completely conforms to our urn model; thus (U0, . . . , Un) is as above.
By Theorem 7, (V0, . . . , Vn) has the same distribution as (U0, . . . , Un). In the next sections we make
use of the Markov chain V0, . . . , Vn and its properties.

3 Proof of Proposition 3

We use the representation
Lα,β

n =
∑

nα≤k<nβ
TkXk ,

where
Xk := #{i : ρ(i) = k} ,

1 ≤ k < n. In view of the coalescing procedure Xk takes only the values 0, 1,2, and from the
definition (3) of Vk

Xk = 1+ Vk − Vk+1 . (4)

From (4), Vk = Un−k and Proposition 6 we obtain after simple calculations

E(Xk) =
2k

n− 1
, Var(Xk) =

2k(n− k− 1)(n− 3)
(n− 1)2(n− 2)

(5)
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and for k < l

Cov(Xk, X l) =−
4k(n− l − 1)
(n− 1)2(n− 2)

. (6)

Also from Tk =
∑n

j=k+1(T j−1−T j)we have E(Tk) = 2
∑n

j=k+1
1

( j−1) j and Var(Tk) = 4
∑n

j=k+1
1

( j−1)2 j2
;

thus

E(Tk) = 2
�1

k
−

1

n

�

, Var(Tk)≤
c

k3 (7)

for a suitable c > 0, independent of n.

Thus from independence

E(Lα,β
n ) =

∑

nα≤k<nβ
2
�1

k
−

1

n

� 2k

n− 1
.

Now the first claim follows by simple computation.

Further from independence

Var
�
∑

nα≤k<nβ
(Tk − E(Tk))Xk

�

=
∑

nα≤k,l<nβ
Cov(Tk, Tl)E(XkX l) . (8)

Using (5)–(7) we have for k < l,

Cov(Tk, Tl)E(XkX l) = Var(Tl)E(XkX l)≤ Var(Tl)E(Xk)E(X l)≤
c

l3 ·
4kl

(n− 1)2
,

and it follows that

0≤
∑

nα≤k<l<nβ
Cov(Tk, Tl)E(XkX l)≤

∑

nα≤k<l<nβ

4ck

l2 (n− 1)−2

≤
∑

nα≤k<nβ
4c(n− 1)−2 = O(n−1) .

Consequently, (8) yields, using again (5)–(7),

Var
�
∑

nα≤k<nβ
(Tk − E(Tk))Xk

�

=
∑

nα≤k<nβ
Var(Tk)E(X

2
k ) +O(n−1)

≤ c
∑

nα≤k<nβ

1

k3

� 2k

n− 1
+

4k2

(n− 1)2
�

+O(n−1)

≤
6c

n− 1

∑

nα≤k<nβ

1

k2 +O(n−1) = O(n−1) .

(9)

It remains to show that

Var
�
∑

nα≤k<nβ
E(Tk)Xk

�

∼ 8(β −α)
log n

n
.
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Now
�

�

�

∑

nα≤k<l<nβ
E(Tk)E(Tl)Cov(Xk, X l)

�

�

�

≤
∑

nα≤k<l<nβ

2

k
·

2

l
·

4k

(n− 1)2
= 16

∑

nα<l<nβ

l − dnαe
l(n− 1)2

= O(n−1)

and consequently

Var
�
∑

nα≤k<nβ
E(Tk)Xk

�

=
∑

nα≤k<nβ
E(Tk)

2Var(Xk) +O(n−1)

=
∑

nα≤k<nβ

4

k2 ·
2k

n

�

1+O
�k

n

��

+O(n−1) = 8(β −α)
log n

n
+O(n−1) .

This gives our claim.

4 Proof of Theorems 2 and 4

In this section we use Theorem 7. Namely, V0, . . . , Vn is a Markov chain with transition probabilities,
which can be expressed by means of X1, . . . , Xn−1 as follows:

P(Xk = x | Vk = v) =







�n−k−v
2

�

/
�n−k

2

�

, if x = 0 ,

v(n− k− v)/
�n−k

2

�

, if x = 1 ,
�v

2

�

/
�n−k

2

�

, if x = 2 .

We would like to couple these random variables with suitable independent random variables taking
values 0 or 1. Note that Vk takes only values v ≤ k, thus for k ≤ n/3

�

n− k− v

2

�

.

�

n− k

2

�

≥
�

n− 2k

2

�

.

�

n− k

2

�

≥
n− 3k

n− k
.

Therefore we may enlarge our model by means of random variables Yk, k ≤ n/3, such that

P(Xk = x , Yk = y | Vk = v, Vk−1, . . . , V0, Yk−1, . . . , Y1)

=















n−3k
n−k

, if x = 0, y = 0 ,
�n−k−v

2

�

/
�n−k

2

�

− n−3k
n−k

, if x = 0, y = 1 ,

v(n− k− v)/
�n−k

2

�

, if x = 1, y = 1 ,
�v

2

�

/
�n−k

2

�

, if x = 2, y = 1 .

For P(Xk = x | Vk = v) this gives the above formula, whereas

P(Yk = y | Vk = v, Vk−1, . . . , V0, Yk−1, . . . , Y1) =

(

n−3k
n−k

, if y = 0 ,
2k

n−k
, if y = 1 .
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This means that the 0/1-valued random variables Yk, k ≤ n/3, are independent. For convenience
we put Yk = 0 for k > n/3. A straightforward computation gives

E(Yk − Xk | Vk = v) =
2(k− v)

n− k
, (10)

E((Yk − Xk)
2 | Vk = v) =

2(k− v)
n− k

+
2v(v− 1)

(n− k)(n− k− 1)

≤
2(k− v)

n− k
+

2k(k− 1)
(n− k)(n− k− 1)

(11)

for k ≤ n/3. Since k− E(Vk) = k(k− 1)/(n− 1) from Proposition 6, it follows

E((Yk − Xk)
2)≤

4k(k− 1)
(n− k)(n− k− 1)

. (12)

Proof of Theorem 2. Recall that, by (1) and (4),

ηn =
n
∑

i=1

δpnTρ(i) =
n−1
∑

k=1

Xkδ
p

nTk
. (13)

Recall also that ηn
d→ η as point processes on the interval (0,∞] means that

∫

f dηn
d→
∫

f dη

for every continuous f with compact support in (0,∞], or equivalently ηn(B)
d→ η(B) for every

relatively compact Borel subset B of (0,∞] such that η(∂ B) = 0 a.s. (Here B is relatively compact,
if B ⊆ [δ,∞] for some δ > 0.) See, for example, the Appendix in Janson and Spencer (2007) and
Chapter 16 (in particular Theorem 16.16) in Kallenberg (2002).

Let us first look at the point process

η′n :=
n−1
∑

k=1

Ykδ2
p

n/k . (14)

For 0< a < b ≤∞
η′n([a, b)) =

∑

2
p

n
b <k≤ 2

p
n

a

Yk

and

E
�

η′n([a, b))
�

=
∑

2
p

n
b <k≤ 2

p
n

a

2k

n− k
→ 4(a−2− b−2) = 8

∫ b

a

d x

x3 ,

thus we obtain from standard results on sums of independent 0/1-valued random variables that
η′n([a, b)) has asymptotically a Poisson distribution. Also η′n(B1), . . . ,η′n(Bi) are independent for
disjoint B1, . . . , Bi . Therefore we obtain from standard results on point processes (for example
Kallenberg (2002), Proposition 16.17) weak convergence of η′n to the Poisson point process η on
(0,∞] with intensity 8x−3 d x .

Next we prove that for all 0< a < b ≤∞

ηn([a, b))−η′n([a, b))→ 0
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in probability. To this end note that from (12)

E
h
∑

k≤ 2
p

n
a

(Yk − Xk)
2
i

= O(n−1/2) ,

which implies that P(Xk = Yk for all k ≤ 2
p

n
a
) → 1. Therefore we may well replace Yk by Xk in

η′n([a, b)).

Also, by (7),
p

nTk − 2
p

n/k =
p

nTk −
p

nE(Tk)− 2/
p

n. From (7) and Doob’s inequality for any
ε > 0

P
�

max
k≥n2/5

p
n|Tk − E(Tk)| ≥ ε

�

≤
n

ε2 Var(Tdn2/5e) = O(n−1/5) .

Since P(Yk = 0 for all k < n2/5) → 1, we may as well also replace 2
p

n/k by
p

nTk in η′n, which
yields ηn by (13) and (14) (use for example Kallenberg (2002), Theorem 16.16). Thus the proof of
Theorem 2 is complete.

Proof of Theorem 4. As to the first claim of Theorem 4 observe that the events {L0,β
n = 0} = {Xk =

0 for all k < nβ} and {Vdnβ e = dnβe} are equal. Thus

P(Lα,β
n > 0)≤ P(L0,β

n > 0) = P(dnβe − Vdnβ e ≥ 1)

≤ E(dnβe − Vdnβ e) =
dnβe(dnβe − 1)

n− 1
.

For β < 1/2 this quantity converges to zero, which gives the first claim of the theorem.

For the next claim we use that because of (7)
p

nTdn1/2e has expectation 2+O(n−1/2) and variance
of order n−1/2. Thus P(2−ε <

p
nTdn1/2e < 2+ε)→ 1 for all ε > 0. This implies that the probability

of the event
∫

[2+ε,∞)
x ηn(d x) =

p
n

n
∑

k=1

TkXk I{pnTk≥2+ε}

≤
p

n
∑

k<
p

n

TkXk =
p

nL
0, 1

2
n

≤
p

n
n
∑

k=1

TkXk I{pnTk≥2−ε} =

∫

[2−ε,∞)
x ηn(d x)

goes to 1. Also for a > 0 from Theorem 2
∫∞

a
x ηn(d x)→

∫∞
a

x η(d x) in distribution. Altogether
we obtain, letting ε→ 0,

p
nL

0, 1
2

n →
∫ ∞

2

x η(d x) ,

which is our second claim.

As to the last claim of Theorem 4 we note that from (9)

Lα,β
n =

∑

nα≤k<nβ
E(Tk)Xk +O(n−1/2) (15)
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meaning that the remainder term is of order O(n−1/2) in the L1-norm. In this representation, we
would like to replace Xk by Yk. We assume first β < 1. Note that for β < 1 in view of (7) and (12)

Var
�
∑

nα≤k<nβ
E(Tk)(Yk − Xk − E(Yk − Xk | Vk))

�

≤
∑

nα≤k<nβ

4

k2 E((Yk − Xk)
2) = O(nβ−2)

and from (10), (7) and Proposition 6

Var
�
∑

nα≤k<nβ
E(Tk)E(Yk − Xk | Vk)

�

= Var
�
∑

nα≤k<nβ
E(Tk)

2Vk

n− k

�

≤ 2
∑

nα≤k≤l<nβ
4

E(Tk)E(Tl)
(n− k)(n− l)

Cov(Vk, Vl)

≤ 32
∑

nα≤k≤l<nβ

k

l
·

(n− l)
(n− k)(n− 1)2(n− 2)

= O(n2β−3) .

Thus
∑

nα≤k<nβ E(Tk)
�

(Yk − Xk)− E(Yk − Xk)
�

= OP(n−1/2) and (15) yields

Lα,β
n − E(Lα,β

n ) =
∑

nα≤k<nβ
E(Tk)(Yk − E(Yk)) +OP(n

−1/2) .

Also Var( 1
n

∑

nα≤k<nβ Yk)≤ n−2
∑

nα≤k<nβ 2k/(n− k) = O(n−1), and because of (7) we end up with

Lα,β
n − E(Lα,β

n ) = 2
∑

nα≤k<nβ

Yk − E(Yk)
k

+OP(n
−1/2) . (16)

This is a representation of the external length by a sum of independent random variables.

Now Var(Yk) =
2k

n−k
− 4k2

(n−k)2 , thus for β < 1

Var
�

2
∑

nα≤k<nβ

Yk − E(Yk)
k

�

= 4
∑

nα≤k<nβ

� 2

k(n− k)
−

4

(n− k)2
�

∼ 8(β −α)
log n

n
.

Moreover for δ > 0 we have E(|Yk − E(Yk)|2+δ)≤
2k

n−k
+ ( 2k

n−k
)2+δ ≤ 4k

n−k
for k ≤ n/3, thus

∑

nα≤k<nβ

1

k2+δE(|Yk − E(Yk)|2+δ)≤ 4
∑

nα≤k<nβ

1

k1+δ(n− k)
≤

8

δn

1

(nα− 1)δ
.

Thus for α≥ 1/2 we get

∑

nα≤k<nβ

1

k2+δE(|Yk − E(Yk)|2+δ) = o
�(log n)1+δ/2

n1+δ/2

�

,
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and we may use Lyapunov’s criterion for the central limit theorem. Consequently, (16) implies

Lα,β
n − E(Lα,β

n )
p

8(β −α) log n/n

d→ N(0, 1).

This finishes the proof in the case β < 1, using Proposition 3.

The case β = 1 then follows from Lα,1
n = Lα,1−ε

n + L1−ε,1
n using Proposition 3.

The last claim on asymptotic independence follows from (16), too.

5 Proof of Proposition 5

Let 0 ≤ α ≤ 1 and m = bnαc. Since k − Vk = #{i : ρ(i) < k} is the number of external branches,
which are found between level k− 1 and k,

L̂α,1
n =

∑

m<k≤n

(Tk−1− Tk)(k− Vk) .

From independence

E(L̂α,1
n ) =

∑

m<k≤n

2

k(k− 1)
·

k(k− 1)
n− 1

.

This gives the first claim. Next, letting

En := E(L̂α,1
n | V0, . . . , Vn) =

∑

m<k≤n

k− Vk
�k

2

�

,

we have
Var(L̂α,1

n ) = Var(L̂α,1
n − En) +Var(En) .

Now, using Proposition 6,

Var(L̂α,1
n − En) =

∑

m<k≤n

E
��

Tk−1− Tk −
1
�k

2

�

�2�

E((k− Vk)
2)

=
∑

m<k≤n

1
�k

2

�2

�k2(k− 1)2

(n− 1)2
+

k(k− 1)(n− k)(n− k− 1)
(n− 1)2(n− 2)

�

= 4
n−m

(n− 1)2
+ 4

∑

m<k≤n

(n− k)(n− k− 1)
k(k− 1)(n− 1)2(n− 2)

and

Var(En) =
∑

m<k,l≤n

1
�k

2

�� l
2

�

Cov(Vk, Vl)

= 4
∑

m<k≤n

(n− k)(n− k− 1)
k(k− 1)(n− 1)2(n− 2)

+ 8
∑

m<k<l≤n

(n− l)(n− l − 1)
l(l − 1)(n− 1)2(n− 2)

= 4
∑

m<k≤n

(n− k)(n− k− 1)
k(k− 1)(n− 1)2(n− 2)

+ 8
∑

m<l≤n

(l −m− 1)(n− l)(n− l − 1)
l(l − 1)(n− 1)2(n− 2)

.
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Thus

Var(L̂α,1
n ) = 4

n−m

(n− 1)2
+ 8

∑

m<k≤n

(k−m)(n− k)(n− k− 1)
k(k− 1)(n− 1)2(n− 2)

.

Now

(k−m)(n− k)(n− k− 1)

=
�

k− 1− (m− 1)
��

k(k− 1)− 2(n− 1)k+ n(n− 1)
�

= k(k− 1)2− (2n+m− 3)k(k− 1)

+ (n+ 2m− 2)(n− 1)k−mn(n− 1),

thus

1
2
(n−m)(n− 2) +

∑

m<k≤n

(k−m)(n− k)(n− k− 1)
k(k− 1)

= 1
2
(n−m)(n− 2) + 1

2
(n−m)(n+m− 1)− (n−m)(2n+m− 3)

+ (hn−1− hm−1)(n+ 2m− 2)(n− 1)−
� 1

m
−

1

n

�

mn(n− 1)

= (hn−1− hm−1)(n+ 2m− 2)(n− 1)− 1
2
(n−m)(4n+m− 5) .

Combining our formulas the result follows.
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