
A Finite Simulation Method in a
Non-Deterministic Call-by-Need Calculus with

letrec, constructors and case

Manfred Schmidt-Schauss1 and Elena Machkasova2

1 Fachbereich Informatik und Mathematik,
Institut für Informatik, Johann Wolfgang Goethe-Universität,

Postfach 11 19 32, D-60054 Frankfurt, Germany,
{schauss}@ki.informatik.uni-frankfurt.de

2 Division of Science and Mathematics,
University of Minnesota, Morris
Morris, MN 56267-2134, U.S.A
{elenam}@morris.umn.edu

Technical Report Frank-32

12. February 2008

Note added: 23. July 2009

Abstract. The paper proposes a variation of simulation for checking
and proving contextual equivalence in a non-deterministic call-by-need
lambda-calculus with constructors, case, seq, and a letrec with cyclic
dependencies. It also proposes a novel method to prove its correctness.
The calculus’ semantics is based on a small-step rewrite semantics and
on may-convergence. The cyclic nature of letrec bindings, as well as non-
determinism, makes known approaches to prove that simulation implies
contextual equivalence, such as Howe’s proof technique, inapplicable in
this setting. The basic technique for the simulation as well as the cor-
rectness proof is called pre-evaluation, which computes a set of answers
for every closed expression. If simulation succeeds in finite computation
depth, then it is guaranteed to show contextual preorder of expressions.

1 Introduction

The construction of compilers and the compilation of programs in higher level,
expressive programming languages is an important process in computer science
that is a highly sophisticated engineering task. Unfortunately there remains a gap
between theory and practice. Usually compilers incorporating lots of complicated
transformations and optimizations are built with only a partial knowledge about

correctness issues. This gap increases with the number of features, in particular
if higher-order functions, concurrency, store, and system- or user-interaction is
permitted. Unfortunately, there is also no common agreement on a standard
notion of correctness, in particular for languages with concurrency constructs.
We approach these issues for non-strict functional programming languages with
concurrency by studying a call-by-need lambda-calculus with data structures and
non-determinism that in addition has letrec allowing cyclic binding dependen-
cies. This is rather close to Haskell [Pey03] and also concurrent Haskell [PGF96],
but is also applicable to other lazy non-deterministic languages [Han96]. Our lan-
guage L comes with a rewrite semantics (a small-step semantics) that is more
appropriate to investigate non-determinism than a big-step semantics, since this
presents interleaving reductions and atomic reductions explicitly. On top of the
operational semantics we define as equivalence an observational semantics (also
called contextual semantics) that can be seen as a maximal equivalence that
is also a congruence with respect to the observation of successful termination.
The congruence is maximal, since all expressions are identified that cannot be
distinguished by observations.
This follows an approach pioneered in [Plo75] of considering two small-step re-
lations in a calculus: a normal order reduction which represents evaluation of
a term by some evaluation engine, such as an interpreter, and transformation
steps performed by a compiler to optimize a program. The latter steps include
the same kind of reductions as the normal order reduction, only performed in a
context different from the one chosen by the interpreter. These steps may also be
transformations different from any normal order steps. The goal is to prove con-
textual equivalence of the original and the transformed expressions, i.e. that any
transformation step performed anywhere in a term does not change the term’s
terminational behavior.
Unfortunately the approach in [Plo75] cannot be applied to systems with cyclic
dependencies (such as letrec) since the approach requires confluence of trans-
formations which fails in such systems (see [AK96]). Some alternative approaches
include restrictions on cyclic substitution [AK97] or considering terms up to in-
finite unwindings of cycles [AB02]. However, the former approach is undesirable
for our work since it introduces extra restrictions and the latter one is quite
complex even for the original system and it is unclear whether it is adaptable to
non-deterministic call-by-need calculi.
Investigations of correctness (also called meaning-preservation) for a call-by-
value system of mutually recursive components with applications to modules
and linking were undertaken in [MT00,Mac02] where a proof method based on
diagrams called lift and project was introduced. The diagram approach was
later extended and generalized in [WPK03] in an abstract setting. Another
approach based on multihole contexts was used for a call-by-name system of
mutually recursive components in [Mac07]. However, the diagram-based and
context-based approaches above require that all normal-order reductions pre-
serve behavior of a term, which is not the case for (choice)-reduction. Contex-
tual equivalence for non-deterministic call-by-need calculi was also investigated

2

in [KSS98,MSC99,SSS07,SSSS08] using the method of forking and commuting
diagrams, and in [MSC99] using abstract machine-reductions.
An important tool to prove contextual equivalence of concrete expressions is
simulation-based (also called applicative simulation) since it allows to show con-
textual equivalence of expressions s, t based only on the analysis of the reduc-
tions of s, t, in contrast to the definition, which requires checking reduction in
infinitely many contexts. This method was also used for other lambda calculi, see
e.g [Abr90,How89,Gor99]. Application of simulation to a non-deterministic call-
by-need calculus was done in [Man04], where Howe’s [How89,How96] proof tech-
nique is extended to call-by-need by using an intermediate approximation cal-
culus. This was generalized to a calculus also including constructors in [SSM07].
Unfortunately, these proof methods based on the approach of Howe appear not
to be adaptable to call-by-need non-deterministic calculi with letrec, since the
cyclic dependencies cannot be treated using the proof method.

In this paper we propose a method of pre-evaluation of closed expressions to
answers as a substitute for simulation in these calculi, and then to compare
expressions based on the set of answers. In contrast to the method of Howe,
our method allows only simulations of finite depth, whereas common simula-
tion is defined also for infinite depth. An answer is either an abstraction or an
expression built from constructors, Ω, and abstractions, like partial lists. Pre-
evaluation means to look at the set of answers that can be reached from a closed
expression t by applying reduction rules from the calculus, where also certain
non-normal-order reductions are permitted, and also a rule that stops further
reduction by approximating sub-expressions with an Ω. We present in an infor-
mal way an illustrating example that will be made more precise later. Consider
the two (non-convertible) expressions s, t where s = repeat True, which will
evaluate to a nonending list that only contains the element True, where t is the
recursively defined expression t = choice ⊥ (Cons True t). The latter will evalu-
ate, depending on the choices to ⊥, (Cons True ⊥), (Cons True (Cons True ⊥)),
. . . . Since the observational equivalence is a maximal equivalence, it is not pos-
sible to distinguish these two expressions using contexts and may-convergence.
Our simulation method permits to compute the equivalence only on the basis of
the (approximative) answers that can be derived from each one, and also shows
that they are contextually equivalent.
The method to prove this result for an extended call-by-need lambda calculus L
with letrec requires several steps. The first one is to investigate the correctness of
several reductions and transformations in L. Note that the normal-order reduc-
tion in the language L treats chains of variable-variable bindings as transparent
for several reductions, which is indispensable, since otherwise the correctness
proofs are not possible. A context lemma and standardization of reductions are
proved. We also have to analyze length-properties of normal-order reduction se-
quences. The second step is a transfer from L to the calculus LS , which is a
simpler calculus with the same contextual equivalence, but with simpler reduc-
tion rules. In particular, variable-variable bindings are now opaque and have to
be treated locally. The calculus LS employs an eager copy of abstractions and

3

flat values. The third step is to define the computation of answers from a closed
expression, and to prove criteria for contextual equivalence on the basis of the
answer sets. We also provide a method to analyze contextual equivalence and
preorder of answers, which is necessary for comparing the answer-sets. Here we
solved a particular hard case for these kind of calculi: we can compare abstrac-
tions based on applying them to all closed answer or to Ω.
As an application of this technique, we show that choice, seen as a binary infix-
operator, has useful algebraic properties, such as idempotency, commutativity
and associativity, for all expressions, including open ones.

2 The Calculus L

In this part we introduce the calculus L, i.e. its syntax, the operational semantics
and the program equivalence based on contextual equivalence. In Subsection 2.1
we introduce the syntax of L, followed by Subsection 2.2 where we define the
normal order reduction for L. Based on the notion of termination we introduce
contextual equivalence in Subsection 2.2.2. The calculus is the same as the one
considered in [SSSS04] and extension by choice of the one in [SSSS08].

2.1 Syntax and Reductions of the Functional Core Language L

We define the calculus L consisting of a language L(L) and its reduction rules,
presented in this section, and the normal order reduction strategy and contextual
equivalence, presented in Section 2.2. If no confusion arises, we also speak of the
language L.
In our language, L, expressions have the following syntax: there are finitely many
constants, called constructors. The set of constructors is partitioned into (non-
empty) types. For every type T there are finitely many constructors, say #(T).
We denote the constructors as cT,i, i = 1, . . . ,#(T). Every constructor has an
arity ar(cT,i) ≥ 0.
The syntax for expressions E, case alternatives Alt and patterns Pat is as follows:

E ::= V | (c E1 . . . Ear(c)) | (seq E1 E2) | (caseT E Alt1 . . . Alt#(T)) | (E1 E2)
(choice E1 E2) | (λ V.E) | (letrec V1 = E1, . . . , Vn = En in E)

Alt ::= (Pat → E)
Pat ::= (c V1 . . . Var(c))

where E,Ei are expressions, V, Vi are variables and where c denotes a con-
structor. Within each individual pattern, variables are not repeated. In a case-
expression of the form (caseT . . .), for every constructor cT,i, i = 1, . . . ,#(T) of
type T , there is exactly one alternative with a pattern of the form (cT,i y1 . . . yn)
where n = ar(cT,i). We assign the names application, abstraction, constructor ap-
plication, seq-expression, case-expression, or letrec-expression to the expres-
sions (E1 E2), (λV.E), (c E1 . . . Ear(c)), (seq E1 E2), (caseT E Alt1 . . . Alt#(T)),

4

(letrec V1 = E1, . . . , Vn = En in E), respectively. We use the notation
λV1, V2, . . . , Vn.E as an abbreviation for λV1.λV2. . . . λVn.E.
The constructs case, seq, choice and the constructors cT,i can only occur in
special syntactic constructions. Thus expressions where case, seq, choice or a
constructor is applied to the wrong number of arguments are not allowed.
The structure letrec obeys the following conditions: The variables Vi in the
bindings are all distinct. We also assume that the bindings in letrec are commu-
tative, i.e. letrecs with bindings interchanged are considered to be syntactically
equivalent. letrec is recursive: I.e., the scope of xj in (letrec x1 = E1, . . . , xj =
Ej , . . . in E) is E and all expressions Ei. This fixes the notions of closed, open
expressions and α-renamings. Free and bound variables in expressions are de-
fined using the usual conventions. Variable binding primitives are λ, letrec,
patterns, and the scope of variables bound in a letrec are all the expressions
occurring in it. The set of free variables in an expression t is denoted as FV (t).
For simplicity we use the distinct variable convention: I.e., all bound variables
in expressions are assumed to be distinct, and free variables are distinct from
bound variables. The reduction rules are assumed to implicitly rename bound
variables in the result by α-renaming if necessary to obey this convention. Note
that this is only necessary for the copy rule (cp) (see figure 1). We follow the
convention by omitting parentheses in nested applications: (s1 . . . sn) denotes
(. . . (s1 s2) . . . sn) provided s1 is an expression. The set of closed L-expressions
is denoted as L0.
To abbreviate the notation, we will sometimes use (caseT E alts) instead of
(caseT E alt1 . . . alt#(T)). Sometimes we abbreviate the notation of letrec-
expression (letrec x1 = E1, . . . , xn = En in E), as (letrec Env in E), where
Env ≡ {x1 = E1, . . . , xn = En}. This will also be used freely for parts of
the bindings. The notation {xg(i) = sh(i)}ni=m is used for the chain xg(m) =
sh(m), xg(m+1) = sh(m+1), . . . , xg(n) = sh(n) of bindings where g, h : IN → IN,
e.g., {xi = si−1}ni=m means the bindings xm = sm−1, xm+1 = sm, . . . xn =
sn−1. We assume that letrec-expressions have at least one binding. The set
{x1, . . . , xn} of variables that are bound by the letrec-environment Env =
{x1 = s1, . . . , xn = sn} is denoted as LV (Env). In examples we will use : as an
infix binary list-constructor, and Nil as the constant constructor for lists. We
will write (ci

−→z) as shorthand for the constructor application (ci z1 . . . zar(ci)).
In the following we define different context classes and contexts. To visually
distinguish context classes from individual contexts, we use different text styles.

Definition 2.1. The class C of all contexts is defined as the set of expressions
C from L, where the symbol [·], the hole, is a predefined context, treated as an
atomic expression, such that [·] occurs exactly once in C.
Given a term t and a context C, we will write C[t] for the expression constructed
from C by plugging t into the hole, i.e, by replacing [·] in C by t, where this
replacement is meant syntactically, i.e., a variable capture is permitted.

Definition 2.2. A value is either an abstraction, or a constructor application.
We denote values by the letters v, w.

5

The reduction rules in Definition 2.3, i.e. in figures 1 and 2 are defined more
liberally than necessary for the normal order reduction, in order to permit an
easy use as transformations.

Definition 2.3 (Reduction Rules of the Calculus L). The (base) reduction
rules for the calculus and language L are defined in figures 1 and 2, where the
labels S, V, T are to be ignored in this subsection, but will be used in subsection
2.2. The reduction rules can be applied in any context. The union of (llet-in) and
(llet-e) is called (llet), the union of the rules (choice-l) and (choice-r) is called
(choice), the union of (case-c), (case-in), (case-e) is called (case), the union of
(seq-c), (seq-in), (seq-e) is called (seq), the union of (cp-in) and (cp-e) is called
(cp), and the union of (llet), (lcase), (lapp), (lseq) is called (lll).
Reductions (and transformations) are denoted using an arrow with super and/or
subscripts: e.g. llet−−→. To explicitly state the context in which a particular reduc-
tion is executed we annotate the reduction arrow with the context in which the
reduction takes place. If no confusion arises, we omit the context at the arrow.
The redex of a reduction is the term as given on the left side of a reduction rule.
We will also speak of the inner redex, which is the focused case-expression for
(case)-reductions, the focused seq-expression for (seq)-reductions, or the variable
position which is replaced by a (cp), depending on the applied rule. Otherwise it
is the same as the redex.
Transitive closure of reductions is denoted by a +, reflexive transitive closure by
a ∗. E.g. ∗−→ is the reflexive, transitive closure of →. We also use ? to denote
one or zero occurrences of a step. If necessary, we attach more information to
the arrow.

Note that the reduction rules generate only syntactically correct expressions,
since reductions, transformations and contexts are appropriately defined.

2.2 Normal Order Reduction and Contextual Equivalence

We define and explain the final components of the calculus L.

2.2.1 Normal Order Reduction The normal order reduction strategy of the
calculus L is a call-by-need strategy, which is a call-by-name strategy adapted
to sharing. The following labeling algorithm will detect the position to which
a reduction rule will be applied according to normal order. It uses the labels:
S, T, V, W , where T means reduction of the top term, S means reduction of a
subterm, and V,W mark already visited subexpressions, where W at a variable
indicates that the variable must not be replaced by a (cp)-reduction. Note that
the labeling algorithm does not look into S-labeled letrec-expressions. For a
term s the labeling algorithm starts with sT , where no other subexpression in s
is labeled and proceeds until no more labeling is possible or until a fail occurs.

6

(lbeta) ((λx.s)S r)→ (letrec x = r in s)
(cp-in) (letrec x1 = vS , {xi = xi−1}mi=2,Env in C[xV

m])
→ (letrec x1 = v, {xi = xi−1}mi=2,Env in C[v])

where v is an abstraction
(cp-e) (letrec x1 = vS , {xi = xi−1}mi=2,Env , y = C[xV

m] in r)
→ (letrec x1 = v, {xi = xi−1}mi=2,Env , y = C[v] in r)

where v is an abstraction
(llet-in) (letrec Env1 in (letrec Env2 in r)S)

→ (letrec Env1,Env2 in r)
(llet-e) (letrec Env1, x = (letrec Env2 in sx)S in r)

→ (letrec Env1,Env2, x = sx in r)
(lapp) ((letrec Env in t)S s)→ (letrec Env in (t s))
(lcase) (caseT (letrec Env in t)S alts)→ (letrec Env in (caseT t alts))
(seq-c) (seq vS t)→ t if v is a value
(seq-in) (letrec x1 = vS , {xi = xi−1}mi=2,Env in C[(seq xV

m t)])
→ (letrec x1 = v, {xi = xi−1}mi=2,Env in C[t])

if v is a value
(seq-e) (letrec x1 = vS , {xi = xi−1}mi=2,Env , y = C[(seq xV

m t)] in r)
→ (letrec x1 = v, {xi = xi−1}mi=2,Env , y = C[t] in r)

if v is a value
(lseq) (seq (letrec Env in s)S t)→ (letrec Env in (seq s t))
(choice-l) (choice s t)S∨T → s
(choice-r) (choice s t)S∨T → t

Fig. 1. Reduction rules, part a

The rules of the labeling algorithm are as follows, where the rules can be applied
in any context.

(letrec Env in t)T → (letrec Env in tS)V

(s t)S∨T → (sS t)V

(seq s t)S∨T → (seq sS t)V

(caseT s alts)S∨T → (caseT sS alts)V

(letrec x = s,Env in C[xS]) → (letrec x = sS ,Env in C[xV])
(letrec x = s, y = C[xS],Env in t)→ (letrec x = sS , y = C[xV],Env in t)

if C[x] 6= x
(letrec x = s, y = xS ,Env in t) → (letrec x = sS , y = xW ,Env in t)

The notation S ∨ T stands for S or T . If a rule tries to label a subexpression
already labeled V or W , then a loop has been detected and the algorithm stops
with fail. Otherwise, if the labeling algorithm terminates, since it is no longer
possible to apply a rule, then we say the termination is successful, and a potential
normal order redex is found, which can only be the direct superterm of the S-
marked subexpression. It is possible that there is no normal order reduction: in
this case either the evaluation is already finished, or it is a dynamically detected
error (like a type-error), or it is prevented by the loop-check above.

7

(case-c) (caseT (ci
−→
t)S . . . ((ci

−→y)→ t) . . .)→ (letrec {yi = ti}ni=1 in t)
where n = ar(ci) ≥ 1

(case-c) (caseT cS
i . . . (ci → t) . . .)→ t if ar(ci) = 0

(case-in) letrec x1 = (ci
−→
t)S , {xi = xi−1}mi=2, Env

in C[caseT xV
m . . . ((ci

−→z) . . .→ t) . . .]
→ letrec x1 = (ci

−→y), {yi = ti}ni=1, {xi = xi−1}mi=2, Env
in C[(letrec {zi = yi}ni=1 in t)]

where n = ar(ci) ≥ 1 and yi are fresh variables
(case-in) letrec x1 = cS

i , {xi = xi−1}mi=2, Env in C[caseT xV
m . . . (ci → t) . . .]

→ letrec x1 = ci, {xi = xi−1}mi=2, Env in C[t]
if ar(ci) = 0

(case-e) letrec x1 = (ci
−→
t)S , {xi = xi−1}mi=2,

u = C[caseT xV
m . . . ((ci

−→z)→ r1) . . .], Env
in r2

→ letrec x1 = (ci
−→y), {yi = ti}ni=1, {xi = xi−1}mi=2,

u = C[(letrec z1 = y1, . . . , zn = yn in r1)], Env
in r2

where n = ar(ci) ≥ 1 and yi are fresh variables
(case-e) letrec x1 = cS

i , {xi = xi−1}mi=2, u = C[caseT xV
m . . . (ci → r1) . . .], Env

in r2

→ letrec x1 = ci, {xi = xi−1}mi=2 . . . , u = C[r1], Env in r2

if ar(ci) = 0

Fig. 2. Reduction rules, part b

We define reduction contexts and weak reduction contexts:

Definition 2.4. A reduction context R is any context, such that its hole will be
labeled with S or T by the labeling algorithm. A weak reduction context, R−, is
a reduction context, where the hole is not within a letrec-expression.
A maximal reduction context of an expression s is a reduction context R with
R[s′] = s, such that the labeling algorithm applied to s will label the subexpression
s′ with S or T and will then stop with success.

For example the maximal reduction context of (letrec x2 = λx.x, x1 =
x2 x1 in x1) is (letrec x2 = [·], x1 = x2 x1 in x1), in contrast to the non-
maximal reduction context (letrec x2 = λx.x, x1 = x2 x1 in [·]).

Definition 2.5 (Normal Order Reduction of L). Let t be an expression.
Then a single normal order reduction step no−→ is defined by first applying the
labeling algorithm to t, and if the labeling algorithm terminates successfully, then
one of the rules in figures 1 and 2 has to be applied, if possible, where the labels
S, V, T must match the labels in the expression t.
The normal order redex is defined as the subexpression as given on the left side
of a reduction rule. This includes the letrec-expression that is mentioned in the
reduction rules, for example in (cp-e).

8

The inner normal order redex is the following subterm in t: it is the case-
expression that is replaced by a letrec-expression for (case)-reductions, the seq-
expression that is replaced by a value for (seq)-reductions, or the V -labeled vari-
able position which is replaced by a value for (cp)-reductions. Otherwise it is the
same as the normal order redex.

The normal order reduction implies that seq behaves like a function strict in its
first argument, and that the case-construct is strict in its first argument, i.e.
these rules can only be applied if the corresponding argument is a value or if the
argument is a variable bound to a value.
We are interested in normal order reduction sequences, i.e.

no,∗−−−→-reductions, and
mainly those that end with a generalized value, also called weak head normal
form.

Definition 2.6. A weak head normal form (WHNF) is one of the cases:

1. A value v.
2. A term of the form (letrec Env in v), where v is a value.
3. A term of the form (letrec x1 = (c

−→
t), {xi = xi−1}mi=2,Env in xm).

If the value v in the WHNF t is an abstraction, we call t a functional WHNF
(FWHNF), otherwise, if v is a constructor application, we call t a constructor
WHNF (CWHNF).

Lemma 2.7. For every term t: if t has a normal order redex, then the nor-
mal order redex, the inner normal order redex are unique, and for all rule-
applications, with the exception of (choice), the normal order reduction is unique.

Definition 2.8. A normal order reduction sequence is called a (normal-order)
evaluation if the last term is a WHNF. Otherwise, i.e. if the normal order reduc-
tion sequence is non-terminating, or if the last term is not a WHNF, but has no
normal order reduction, then we say that it is a failing normal order reduction
sequence.
For a term t, we write t↓ iff there is an evaluation starting from t. We call this
the evaluation of t and denote it as nor(t). If t↓, we also say that t is converging
(or terminating). Otherwise, if there is no evaluation of t, we write t⇑. A specific
representative of the non-converging expressions is Ω, which can be defined as

Ω := (λz.(z z)) (λx.(x x)).

Note that there are useful open terms t that might not have an evaluation,
e.g. x is such a term. Note also that there are (closed) terms t that are nei-
ther WHNFs nor have a normal order redex. For example (caseT (λx.x) alts)
or ((cons 1 2) 3), where cons is a constructor of arity 2. These terms are
bot-terms and could be considered as violating type conditions. Consider the
closed “cyclic term” (letrec x = x in x). A reduction context for this term is
(letrec x = [·] in x). Obviously, there is no normal order reduction defined for
this term, hence also no evaluation of t.

9

As an example, we show the first normal order reduction steps of an evaluation
of Ω = (λz.(z z)) (λx.(x x)):

(λz.(z z)) (λx.(x x))
no,lbeta−−−−−→ (letrec z = λx.(x x) in (z z))

no,cp−−−→ (letrec z =

λx.(x x) in ((λx′.(x′ x′)) z))
no,lbeta−−−−−→ (letrec z = λx.(x x) in (letrec x1 =

z in (x1 x1)))
no,llet−−−−→ (letrec z = λx.(x x), x1 = z in (x1 x1)) −−→

2.2.2 Contextual Equivalence The semantic foundation of our calculus
L is the equality of expressions defined by contextual equivalence. We define
contextual equivalence w.r.t. evaluations.

Definition 2.9 (contextual preorder and equivalence). Let s, t be terms.
Then:

s ≤c t iff ∀C[·] : C[s]↓ ⇒ C[t]↓
s ∼c t iff s ≤c t ∧ t ≤c s

Note that we permit contexts C[] such that C[s] may be an open term.
By standard arguments, we see that ≤c is a precongruence and that ∼c is a
congruence, where a precongruence ≤c is a preorder on expressions, such that
s ≤c t ⇒ C[s] ≤c C[t] for all contexts C, and a congruence is a precongruence
that is also an equivalence relation.

3 Contextual Equivalence of L

This part provides methods and tools used in the correctness proof of transfor-
mations the pre-evaluation and the finite simulation method. In Subsection 3.1
and Section 4 we develop the proof methods using a context lemma and over-
lap diagrams in order to show that s ∼c t for all reduction rules s → t except
for (choice). A set of extra transformation rules is defined and investigated in
Section 4.
We introduce extra transformation rules below and two kinds of surface contexts.

Definition 3.1 (Surface Context Classes). A surface context is a context
where the hole is not contained in an abstraction. The class of surface contexts is
denoted as S. An application surface context is a surface context where the hole
is neither contained in an abstraction nor in an alternative of a case-expression,
denoted as AS. A weak application surface context is an application surface con-
text where the hole is in addition not contained in a letrec-expression, denoted
as W.
For a context C its main depth is defined as the depth of its hole. With C(i) we
denote a context of main depth i.

Note that every reduction context is also a surface context and an application
surface context, and that a weak reduction context is also a weak application
surface context.

10

3.1 Context Lemma

The Context Lemma restricts the criterion for contextual equivalence to reduc-
tion contexts. This restriction is of great value in proving the conservation of
contextual equivalence by certain reductions.

Lemma 3.2 (Context Lemma). Let s, t be terms. If for all reduction contexts
R: (R[s]↓⇒ R[t]↓), then ∀C : (C[s]↓⇒ C[t]↓); i.e. s ≤c t.

The proof of the context lemma 3.2 follows the structure of a similar proof
in [SSS06]. It uses multihole contexts (multicontexts) and derives the context
lemma from a stronger statement (see Lemma 3.4). The presence of (choice)
reduction in the calculus does not change the proof.

Definition 3.3 (Multicontext). A multicontext is the result of replacing n
subterms (where n ≥ 0) in a well-formed term by a special symbol · called a hole.
Multicontexts are denoted as C[·1, . . . , ·n]. An n-hole context C[·1, . . . , ·n] can be
filled with n terms s1, . . . , sn, resulting in a term C[s1, . . . , sn]. Free variables of
the terms si may be captured in the process. We may also fill only some holes in a
multicontext, leaving the rest as holes. The result of filling an n-hole multicontext
with m ≤ n terms is a multicontext with n−m holes.

A regular one-hole context is a partial case of a multicontext. Note that, unlike
terms, contexts are not subject to α-renaming.
Following the approach in [SSS06], we prove the claim that is more general than
the desired context lemma 3.2:

Lemma 3.4. For all expressions s1, . . . , sn and t1, . . . , tn, where n ≥ 0, the
following holds: If for all i s.t. 1 ≤ i ≤ n and for all reduction contexts R: if
(R[si]↓⇒ R[ti]↓) then C[s1, . . . , sn]↓⇒ C[t1, . . . , tn]↓ for all n-hole multicontexts
C.

Proof. The proof is completely analogous to that in [SSS06]. 2

The context lemma (Lemma 3.2) is a partial case of the above lemma.
The context lemma has as consequence the following useful corollary:

Corollary 3.5. Let s, t be terms. If for all surface contexts S: (S[s]↓ ⇒ S[t]↓),
then ∀C : (C[s]↓⇒ C[t]↓); i.e. s ≤c t.

4 Correctness of Transformations

We say that a transformation ; on terms is correct, if s ; t implies s ∼c t for all
terms s, t. In the following we will use the base reductions also as transformations
(ignoring the labels S, V, T). The goal is to prove the following correctness claim
for all transformations.

All the reductions (viewed as transformations) in the base calculus L with
the exception of (choice) maintain contextual equivalence. I.e. whenever
t

a−→ t′, with a ∈ {cp, lll, case, seq, lbeta}, then t ∼c t′.

11

Note that the correctness proof for a ∈ {cp, lll, seq, lbeta} can be done in a
standard way (see e.g. the appendix of [SSSS08]) using the context lemma and
complete sets of diagrams. However, the correctness proof for (case) requires
further tools, in particular the extra transformations defined below in the next
subsection.

4.1 Extra Transformations

In addition to transformations based on the L-calculus rules applied in a non-
reduction context, we define several other transformations given in Figure 3.
Several transformations have two or more forms. For instance, the variable elim-
ination rule has forms (ve1) and (ve2). We use the rule abbreviation without a
number (such as (ve)) to refer to the union of all forms of that transformation
so (ve) stands for a transformation that is either (ve1) or (ve2).
We use (abs1) and (ve) as a part of the correctness proof of the calculus-based
transformations. Additionally we use (cpcx), (abs2), and (ve) for showing that
the calculus L is equivalent to a simpler calculus LS . The transformation (ucp)
is used in Section 7 and (gc) is needed for showing correctness of (ucp).

(ve1) letrec x = y, x1 = t1, . . . , xn = tn in r → letrec x1 = t′1, . . . , xn = t′n in r′

where t′i = ti[y/x], r′ = r[y/x], n ≥ 1 and if x 6= y
(ve2) letrec x = y in s→ s[y/x] if x 6= y

(abs1) (letrec x = c
−→
t ,Env in s)→ (letrec x = c −→x , {xi = ti}ar(c)i=1 ,Env in s)

where ar(c) ≥ 1 and for 1 ≤ i ≤ ar(c):xi is fresh
(abs2) (c t1 . . . tn)→ letrec x1 = t1, . . . , xn = tn in (c x1 . . . xn)

where at least one of ti is not a variable and n ≥ 1

(cpcx-in) (letrec x = c
−→
t ,Env in C[x])

→ (letrec x = c −→y , {yi = ti}ar(c)i=1 ,Env in C[c −→y])

(cpcx-e) (letrec x = c
−→
t , z = C[x],Env in t)

→ (letrec x = c −→y , {yi = ti}ar(c)i=1 , z = C[c −→y],Env in t)
(gc1) (letrec {xi = si}ni=1,Env in t)→ (letrec Env in t)

if for all i : xi does not occur in Env nor in t
(gc2) (letrec {xi = si}ni=1 in t)→ t

if for all i : xi does not occur in t
(ucp1) (letrec Env , x = t in S[x])→ (letrec Env in S[t])
(ucp2) (letrec Env , x = t, y = S[x] in r)→ (letrec Env , y = S[t] in r)
(ucp3) (letrec x = t in S[x])→ S[t]

where in the (ucp)-rules, x has at most one occurrence in S[x] and no
occurrence in Env , t, r; and S is a surface context

Fig. 3. Transformations in L calculus

12

4.2 Correctness of (lbeta), (lapp), (lcase), (lseq), (seq-c), (case-c)

Proposition 4.1. The following rules produce correct transformations in any
context: (lbeta), (lapp), (lcase), (lseq), (seq-c), and (case-c).

Proof. The argument is completely analogous to that in [SSS06,SSSS08]: if any
of these reductions appears in a reduction context, then it must be a normal
order reduction. Since the normal-order reduction is unique for these reductions,
the context lemma 3.2 is applicable and implies correctness. 2

The missing reductions are (llet), (seq-in), (seq-e), (case-c), (case-e), and (cp).
Their correctness is proven in Section 4.3 using overlap diagrams.

4.3 The Correctness Proof Method Using Diagrams.

Correctness proofs in this section are based on overlap diagrams. Overlap di-
agrams summarize cases when a normal-order step and a transformation step
originate in the same term. These diagrams are used to transform an evalua-
tion of a non-transformed term into an evaluation of this term after a given
transformation, and vice-versa.
There are two basic kinds of overlap diagrams: commuting and forking diagrams.
In both kinds of diagrams a normal order step (below denoted by

no,a−−−→) and a
transformation step or a non-normal order reduction in a surface context (below
denoted by b−→) are given and both diagrams show how the given pair can be
replaced by another sequence connecting the same given terms which may have
non-normal-order steps in forward or backward direction, relative to the direction
of the given normal order step.
The two kinds of diagrams differ by directions of the given steps as follows. In a
commuting diagram a given pair of reduction steps has the form s1

b−→ s2
no,a−−−→ s3

where b−→ is not normal-order and the diagram is completed by a stating that
there exists a sequence of steps from s1 to s3. In a forking diagram a given pair
of reductions is of the form s1

b←− s2
no,a−−−→ s3 where b−→ is not normal-order and

the diagram is completed by stating the existence of a sequence from s1 to s3.
Note that by the context lemma 3.2 it is sufficient to show that any transforma-
tion in a reduction context preserves convergence since this would imply that it
preserves convergence in any context. However, it is more convenient to prove
a more general statement by showing that a given transformation in a surface
context preserves convergence (recall that a reduction context is a partial case
of a surface context; see Corollary 3.5). Hence we assume that the given non-
normal-order step or transformation is in a surface context. All the resulting
non-normal-order steps are also in a surface context unless stated otherwise. We
omit the S mark for a reduction in a surface context since it is always implied.
In a graphical representation of overlap diagrams we often combine commuting
and forking diagrams since they both can be read off of the same diagram. If we
show commuting and forking diagrams separately then we use a dashed line to
show steps whose existence is claimed by the diagram.

13

As an example illustrating all the notations and conventions, consider the fol-
lowing overlap diagram:

· case−in //

no,case

��

·
no,case

��
·case−in// · ve1,∗ // · ·ve1,∗oo

The diagram shows interactions between a normal order (case) reduction, de-
noted no,case, and a transformation, i.e. a non-normal-order, denoted case-in,
step. The diagram combines a commuting and a forking diagram, representing
the following two claims:

– Commuting diagram: in some cases given the reduction s1
S,case−in−−−−−−→

s2
no,case−−−−−→ s3 there exist terms t1, t2, t3 such that s1

no,case−−−−−→ t1
S,case−in−−−−−−→

t2
S,ve1,∗←−−−− t3

S,ve1,∗−−−−→ s3, where ∗ denotes 0 or more occurrences of a step.
– Forking diagram: in some cases given the reduction s1

S,case−in←−−−−−− s2
no,case−−−−−→

there exist terms t1, t2, t3 such that s1
no,case−−−−−→ t1

S,ve1,∗−−−−→ t2
S,ve1,∗←−−−−

t3
S,case−in←−−−−−− s3.

Note that each of the diagrams takes place only for some, but not for all cases
of the given reduction pair. A complete set of diagrams is a set that includes
all possible interaction cases of a given transformation step and a normal order
step. The complete set of diagrams for a (case-in) transformation in a surface
context is given in Subsection 4.9.
In addition to overlap diagrams correctness proofs use the lemma stated below.

Lemma 4.2. If s
S,a−−→ t, where S denotes a surface context and a is any reduc-

tion step or a transformation step, then for any reduction context R there exists

a surface context S′ s.t. R[s]
S′,a−−→ R[t].

Proof. Since S context is any context that does not reach under a λ and R
does not reach under a λ either, S′ = R[S] is a surface context. 2

In several proofs we use the following measure:

Definition 4.3. Ordered sequence measure M is an ordered set of sequences
of non-negative integers defined as follows: the elements of the set are finite
sequences of non-negative integers s1, . . . , sn s.t. for all i < n si ≥ si+1, n ≥ 0.
The sequences are ordered lexicographically.

The lexicographic ordering works as follows: (1, 1) < (2, 1), (1, 1) < (2), (1, 1) <
(1, 1, 1). The empty sequence is less than any other sequence. This measure is
equivalent to the multiset order (for a total base ordering) defined in [BN98].
However, this representation of this measure is more intuitive for our proofs than
the multiset order.

Lemma 4.4. For the measure M defined in Definition 4.3 the following is true:

14

– The lexicographic ordering is a total ordering on M .
– Given a sequence s, there is no infinite descending chain s > s1 > s2 > . . .

Proof. Part 1 is trivial since a lexicographic ordering of strings whose elements
belong to an ordered set is a total order. The second part follows from well-
foundedness of a multiset ordering with well-founded base ordering [BN98]. 2

4.4 Correctness of (cp)

Following the approach in [SSS06,SSSS08], we distinguish between the following
versions of (cp):

– (cpS) - the variable occurrence that gets replaced is in a surface context.
– (cpd) - the variable occurrence that gets replaced is not in a surface context.

Note that the distinction is based on the target variable occurrence, not on the
context in which the (cp) redex appears. For instance, in the following example
the (cpd) redex appears in a surface context:

letrec x = v in λy.x

For (cpS) we have the following complete sets of diagrams.

· cpS //

no,a

��

·
no,a

��

· cpS //

no,a

��

·

no,a
���������

· cpS // · ·

Here (cpS) happens in a surface context and a is any normal order reduction. In
the first diagram the resulting (cpS) step may also be a normal order reduction.
The diagrams for (cpd) are as follows:

· cpd //

no,a

��

·
no,a

��

· cpd //

no,a

��

·

no,a
���������

· cpd //

no,lbeta

��

·
no,lbeta

��
· cpd // · · · cpS // ·

· cpd //

no,cp

��

·
no,cp

��
· cpd // · cpd // ·

The following is easy to show by cases of WHNF.

Lemma 4.5. If s
cp−→ t is not a normal order step then s is a WHNF if and

only if t is a WHNF.

Proposition 4.6. (cp) is correct, i.e. if s
cp−→ t then s ∼c t.

Proof. The proof is analogous to that in [SSS06]. The added (choice) reduction
does not change the diagrams. 2

15

4.5 Correctness of (lll)

Diagrams for (lll) rules are as follows:

· lll //

no,a

��

·
no,a

��

· lll //

no,a

��

·

no,a
���������

· lll //

no,lll,+

��

·
no,lll,+

��

· lll //

no,lll,+

��

·

no,lll,+���������

· lll // · · · lll // · ·

Proposition 4.7. (lll) is correct, i.e. if s
lll−→ t then s ∼c t.

Proof. The proof is analogous to that in [SSS06]. The added (choice) reduction
does not change the diagrams. 2

Lemma 4.8. (lll) transformation is terminating, i.e. there is no infinite trans-
formation sequence that consists only of (lll) steps.

Proof. The proof is analogous to that in [SSS06]. 2

4.6 Correctness of (seq)

The diagrams for (seq) are very similar to those of (cp). Note that according to
the convention in Section 4.3 all (seq) reductions take place in a surface context.

· seq //

no,a

��

·
no,a

��

· seq //

no,a

��

·

no,a
���������

· seq //

no,cp

��

·
no,cp

��
· seq // · · · seq // · seq // ·

In the first diagram the resulting (seq) step may or may not be a normal order
reduction. The last diagram takes place when the (seq) redex gets duplicated by
a (cp) reduction, as shown in the following example:

letrec x = λz.(seq y t), y = v in x
seq−e−−−−→

letrec x = λz.t, y = v in x
no,cp−−−→

letrec x = λz.t, y = v in λz.t

letrec x = λz.(seq y t), y = v in x
no,cp−−−→

letrec x = λz.(seq y t), y = v in λz.(seq y t)
seq−e−−−−→

letrec x = λz.t, y = v in λz.(seq y t)
seq−in−−−−→

letrec x = λz.t, y = v in λz.t

Lemma 4.9. If s
seq,∗−−−→ t and none of the reductions are normal order then s

is a WHNF if and only if t is a WHNF.

16

Proof. By a simple case analysis on definition of WHNF. 2

Proposition 4.10. (seq) is correct, i.e. if s
seq−−→ t then s ∼c t.

Proof. The following diagram follows from the commuting and forking diagrams
by induction on the number of (seq).

· seq,∗ //

no,a

��

·
no,a

��
·no,seq,∗// · seq,∗ // ·

We use (I,seq) to denote a non-normal-order reduction. A reduction
seq,S,∗−−−−→

is a mixture of (no,seq) and (I,S,seq)-reductions. A pair
I,S,seq−−−−→ .

no,seq−−−−→ can
be switched using the complete set of commuting diagrams for (seq) to either
no,seq−−−−→,

no,seq−−−−→ .
I,S,seq−−−−→, or

no,seq−−−−→ .
no,seq−−−−→. Now an induction shows that the

switching will produce a sequence
no,seq,∗−−−−−→ .

I,S,seq,∗−−−−−−→. The corresponding com-
muting and forking properties are as follows, assuming that the (seq) sequence
not marked as a normal order sequence does not have any normal order steps:

– Commuting property: If s1
seq,∗−−−→ s2

no,a−−−→ s3 then there exist t1, t2 s.t.
s1

no,a−−−→ t1
no,seq,∗−−−−−→ t2

seq,∗−−−→ s3.
– Forking property: If s1

seq,∗←−−− s2
no,a−−−→ s3 then there exist t1, t2 s.t. s1

no,a−−−→
t1

seq,∗←−−− t2
no,seq,∗←−−−−− s3.

Applying induction on the number of given normal order steps to the commuting
diagram above, we conclude that if s

seq−−→ t in a surface context and for a
reduction context R we have R[t]

no,∗−−−→ t′, where t′ is a WHNF, then there exist
s′, s′′ s.t. R[s]

no,∗−−−→ s′
no,seq,∗−−−−−→ s′′

seq,∗−−−→ t′ where none of the (seq) steps in the
sequence s′′

seq,∗−−−→ t′ are normal order steps. By Lemma 4.9 s′′ is a WHNF.
Similarly we can use the forking diagram to prove the other direction of the
lemma. Suppose s

seq−−→ t in a surface context and for a reduction context R we
have R[s]

no,∗−−−→ s′, where s′ is a WHNF. Then by the forking diagram above
there exist t′, t′′ s.t. s′

no,seq,∗−−−−−→ t′
seq,∗−−−→ t′′. Since s′ is a WHNF, the subsequence

s′
no,seq,∗−−−−−→ t′ is empty and s′

seq,∗−−−→ t′′, where all (seq) steps are non-normal-
order. Then by Lemma 4.9 is a WHNF.
We have proven that if s

seq−−→ t then for any reduction context R R[s]↓ if and
only if R[t]↓. The claim of the lemma follows from the Context Lemma 3.2. 2

4.7 Correctness of (ve)

The variable elimination transformation (ve) is used in the correctness proof of
(case). It has two versions, (ve1) and (ve2), defined in Figure 3.

17

The forking diagrams for (ve) are as follows:

· ve //

no,a

��

·
no,a

���
�
� · ve //

no,a1

��

·

no,a1
���

�
�

�
· ve2 //

no,lll

��

·

· ve //___ · · ·
ve

@@�
�

�
�

Here a is any normal order reduction and a1 ∈ {seq, choice, case}. Note that if
the given (ve) step is a (ve1) then the resulting step may not be a (ve2).
In the following example for the first diagram the second (ve) step happens in a
different letrec than the first one.

letrec y = v in (letrec x = y, x1 = t1, . . . , xn = tn in (seq x s)) ve1−−→
letrec y = v in (letrec x1 = t1[y/x], . . . , xn = tn[y/x] in (seq x s[y/x]))

no,llet−in−−−−−−−→
letrec y = v, x1 = t1[y/x], . . . , xn = tn[y/x] in (seq x s[y/x])

letrec y = v in (letrec x = y, Env in (seq x s))
no,llet−in−−−−−−−→

letrec y = v, x = y,Env in (seq x s) ve1−−→
letrec y = v, x1 = t1[y/x], . . . , xn = tn[y/x] in (seq x s[y/x])

In this case the inner letrec will be marked with S by the unwinding algorithm.
Since the unwinding does not descend into S-marked letrec, there is no possi-
bility for a normal-order (cp), (seq), or (case) reduction of the outer letrec with
y as a target. For instance, in the above example the normal order reduction is
(llet-in), and not (cp) or (seq). Thus the binding x = y in s will be lifted to the
letrec where y is bound before a reduction under the inner letrec takes place.
An example for the last diagram is when a (ve2) step removes a letrec. Such
examples can be constructed for any (lll) step, we show it for (lapp):

(letrec x = y in t) s
ve2−−→ (t′ s′)

(letrec x = y in t) s
no,lapp−−−−−→ letrec x = y in (t s) ve2−−→ (t′ s′)

where t′ = t[y/x], s′ = s[y/x].
Another example for the last diagram shows that (ve2) can be transformed into
(ve1):

letrec x = (letrec y = z in s) in x
ve2−−→

letrec x = s[z/y] in x

letrec x = (letrec y = z in s) in x
no,llet−e−−−−−−→

letrec x = s, y = z in x
ve1−−→

letrec x = s[z/y] in x

18

Lemma 4.11. Commuting diagrams for (ve) are as follows:

· ve //

no,a

���
�
�
� ·

no,a

��

· ve //

no,a

���
�
�
� ·

no,a

�����������
· ve2 //

no,lll ���
� ·

no,a

��

·
no,a ���

�

· ve //___ · · ·
ve

//___ ·

Proof. The first two diagrams are the same as the forking diagrams. The last
commuting diagram is a combination of the reverse forms of the first and the
last forking diagrams: the last diagram turns a given sequence ve2−−→ no,a−−−→ into
no,lll−−−→ ve−→ no,a−−−→, and then the first diagram converts the latter sequence into
no,lll−−−→ no,a−−−→ ve−→. Note that the last diagram may be applied only once since
the (lll) step is applied to the letrec used in the (ve) step, and there is only
one such letrec (see the example below). Also note that the reverse form of
the second forking diagram cannot be combined with the last one since the
second diagram only happens when the (ve) step is inside an argument of a
seq, choice, or case, but this means that the letrec eliminated by (ve2) is
not in a normal order reduction context. 2

As an illustration of the last commuting diagram in the above lemma consider:

letrec x = (letrec y = z in v) in x
ve2−−→

letrec x = v[z/y] in x
no,cp−−−→

letrec x = v[z/y] in v[z/y]

letrec x = (letrec y = z in v) in x
no,lll−−−→

letrec x = v, y = z in x
no,cp−−−→

letrec x = v, y = z in v
ve−→

letrec x = v[z/y] in v[z/y]

Lemma 4.12. – If s
ve1−−→ t then s is a WHNF if and only if t is a WHNF.

– If s
ve2−−→ t then: if s is a WHNF then t is a WHNF; if t is a WHNF then

either s is a WHNF or there is a WHNF s′ s.t. s
no,lll−−−→ s′

ve−→ t.

Proof.

– (ve1) does not change the shape of a term. In the last case of WHNF if the
last binding in the chain is removed by (ve1) then the variable in the body
of the letrec will be renamed accordingly.

– The following are non-trivial cases for (ve2) (we omit some that are very
similar to the ones given below). If Env stands for x1 = t1, . . . , xn = tn then
Env[y/x] denotes x1 = t1[y/x], . . . , xn = tn[y/x]. Similarly we use

−→
t [y/x]

to denote the result of replacing x by y in each of ti in
−→
t . For simplicity we

19

do not show variable chains when showing the cases below.

letrec x = y in (letrec Env in v) ve2−−→ letrec Env[y/x] in v[y/x]

letrec x = y in (letrec Env in v)
no,lll−−−→ letrec x = y, Env in v

ve2−−→
letrec Env[y/x] in v[y/x]

letrec Env in (letrec x = y in v) ve2−−→ letrec Env in v[y/x]

letrec Env in (letrec x = y in v)
no,lll−−−→ letrec Env, x = y in v

ve−→
letrec Env in v[y/x]

letrec x = y in (letrec x1 = (c
−→
t), Env in x1)

ve2−−→
letrec x1 = (c

−→
t [y/x]), Env[y/x] in x1

letrec x = y in (letrec x1 = (c
−→
t), Env in x1)

lll−→
letrec x = y, x1 = (c

−→
t), Env in x1

ve−→
letrec x1 = (c

−→
t [y/x]), Env[y/x] in x1

letrec x1 = (letrec x = y in (c
−→
t)), Env in x1

ve2−−→
letrec x1 = (c

−→
t [y/x]), Env[y/x] in x1

letrec x1 = (letrec x = y in (c
−→
t)), Env in x1

lll−→
letrec x1 = (c

−→
t), x = y, Env in x1

ve−→
letrec x1 = (c

−→
t [y/x]), Env[y/x] in x1

Note that Env[y/x] = Env

letrec x1 = (c
−→
t), Env in (letrec y = x1 in y) ve2−−→

letrec x1 = (c
−→
t), Env in x1

letrec x1 = (c
−→
t), Env in (letrec y = x1 in y) lll−→

letrec x1 = (c
−→
t), Env, y = x1 in y

ve−→
letrec x1 = (c

−→
t), Env in x1

2

Proposition 4.13. The transformation (ve) preserves contextual equivalence,
i.e. if s

ve−→ t then s ∼c t.

Proof. By the Context Lemma 3.2 it is sufficient to consider (ve) in a surface
context. Commuting and forking diagrams summarize such cases.
Let s

ve−→ t where the step takes place in a surface context. Suppose R[s]
no,∗−−−→ s′

where s′ is a WHNF. By Lemma 4.2 R[s] ve−→ R[t], where the step also takes
place in a surface context. We show that we can transform the sequence R[t] ve←−
R[s]

no,∗−−−→ s′ into a sequence R[t]
no,∗−−−→ t′

ve?←−− s′, where ? denotes one or zero
occurrences of a step and t′ is a WHNF.
We use the forking diagrams to transform the given sequence by replacing a seg-
ment matching a diagram by the result of the diagram. The diagrams are applied

20

at the leftmost matching occurrence in the sequence. Each of the applications
of forking diagrams reduces the number of normal order reduction steps to the
right of the (ve) step in the sequence. If there is no (ve) steps, the measure is 0
and the process stops. Note that there may not be more than one (ve) step since
none of the forking diagrams duplicate (ve) steps.
Below are the cases of the forking diagrams:

– ve←− no−→;
no−→ ve←− - the number of normal order steps to the right of (ve) is

reduced by 1.
– ve←− no−→;

no−→ - the (ve) step is eliminated, the resulting sequence is normal
order.

– ve2←−− no,lll−−−→;
ve←− - the number of normal order steps to the right of (ve) is

reduced by 1.

The procedure stops when the sequence is as follows: R[t]
no,∗−−−→ t′

ve?←−− s′. Since
s′ is a WHNF, by Lemma 4.12 so is t′. Thus we have shown that s ≤c t.
For the other direction of the lemma let R[s] ve−→ R[t] and suppose R[t] evaluates
to WHNF. We show that, given a normal order sequence reduction R[t]

no,∗−−−→ t′,
where t′ is a WHNF, we can transform the sequence R[s] ve−→ R[t]

no,∗−−−→ t′ into a
sequence R[s]

no,∗−−−→ s′
ve,∗−−→ t′ using commuting diagrams in Lemma 4.11. We use

the same measure as we used for the forking diagrams. The cases of commuting
diagrams are as follows:

– ve−→ no−→;
no−→ ve−→ - the number of normal order steps to the right of (ve) is

reduced by 1.
– ve−→ no−→;

no−→ - the (ve) step is eliminated, the resulting sequence is normal
order.

– ve−→ no−→ ;
lll−→ no−→ ve−→ - the number of normal order steps to the right of

(ve) is reduced by 1.

The procedure stops when the sequence is as follows: R[s]
no,∗−−−→ s′

ve?−−→ t′, where
t′ is a WHNF. Then by Lemma 4.12 either s′ is a WHNF or there exists s′′ s.t.
s′

lll−→ s′′
ve−→ t′. Thus R[s] reduces to a WHNF by a normal order reduction, and

therefore t ≤c s.
Combining the two direction of the proof and applying the context lemma, we
conclude that s ∼c t. 2

The following lemma is used in further proofs:

Lemma 4.14. 1. If s1
ve1,∗←→ s2

no−→ s3 then there exists s4 s.t. s1
no−→ s4

ve1,∗←→ s3.
2. If s1

no−→ s2
ve1,∗←→ s3 then there exists s4 s.t. s1

ve1,∗←→ s4
no−→ s3.

The properties are summarized by the following diagrams:

· oo ve1,∗ //

no,a

��

·
no,a

���
�
� · oo ve1,∗ //

no,a

���
�
� ·

no,a

��
· oo ve1,∗ //___ · · oo ve1,∗ //___ ·

21

Proof. the non-trivial diagrams (the last forking diagram and the last commut-
ing diagram) happen only when the given step is a (ve2), and a (ve1) may not
turn into a (ve2), therefore only the first and the second diagrams (both forking
and commuting ones) take place for (ve1). A straightforward induction on the
number of (ve1) steps gives the desired properties. 2

4.8 Correctness of (abs1)

The (abs1) transformation has the following commuting and forking diagrams:

· abs1 //

no,a

��

·
no,a

��

· abs1 //

no,a

��

·

no,a
���������

· abs1 //

no,case

��

·
no,case

��
· abs1 // · · · ·ve1,∗oo

The last diagram corresponds to interactions between (abs1) and (case). A typ-
ical example is as follows. Note that the number of (ve) steps in each sequence
always equals to the number of arguments of the constructor.

letrec x = (c t1 t2) in case x(c y1 y2)→ s
case−−−→

letrec x = (c z1 z2), z1 = t1, z2 = t2 in letrec y1 = z1, y2 = z2 in s

letrec x = (c t1 t2) in case x(c y1 y2)→ s
abs1−−−→

letrec x = (c z1 z2), z1 = t1, z2 = t2 in case x(c y1 y2)→ s
case−−−→

letrec x = (c q1 q2), q1 = z1, q2 = z2, z1 = t1, z2 = t2

in letrec y1 = q1, y2 = q2 in s
ve1,∗−−−→

letrec x = (c z1 z2), z1 = t1, z2 = t2 in letrec y1 = z1, y2 = z2 in s

Note that (case-c) does not have letrec as a part of its redex, thus it does not
interact with (abs1).

Lemma 4.15. If s
abs1−−−→ t then s is a WHNF if and only if t is a WHNF.

Proof. By cases of definition of WHNF. 2

The correctness proof for (abs1) requires diagrams for both (abs1) and (ve1)
since (abs1) is transformed into (ve1) in diagram 3 above. We use the diagrams
for (ve1) given in Lemma 4.14.

Proposition 4.16. If s
abs1−−−→ t then s ∼c t.

Proof. By Context Lemma 3.2 it is sufficient to consider cases when (abs1)
takes place in a surface context which are given in the commuting and forking
diagrams. Commuting and forking diagrams for (abs1) and (ve1) are given in
Sections 4.7 and earlier in this section. We use the diagrams in Lemma 4.14 for
(ve1). The diagrams used in this proof are as follows:

22

– Commuting diagrams:

abs1−−−→ no,a−−−→ ;
no,a−−−→ abs1−−−→

abs1−−−→ no,a−−−→ ;
no,a−−−→

abs1−−−→ no,case−−−−−→;
no,case−−−−−→ ve1,∗←−−−

ve1,∗←→ no,a−−−→ ;
no,a−−−→ ve1,∗←→

– Forking diagrams:

abs1←−−− no,a−−−→ ;
no,a−−−→ abs1←−−−

abs1←−−− no,a−−−→ ;
no,a−−−→

abs1←−−− no,case−−−−−→;
no,case−−−−−→ ve1,∗−−−→

ve1,∗←→ no,a−−−→ ;
no,a−−−→ ve1,∗←→

Let s
abs1−−−→ t. We would like to show that for any reduction context R if R[s]↓

then R[t]↓, and also that if R[t]↓ then R[s]↓.
We use the diagrams above to convert a given evaluation of R[s] into an evalu-

ation of R[t] and the other way around. We use Lemma 4.2: if s
S,abs1−−−−→ t then

R[s]
S′,abs1−−−−−→ R[t] (where S and S′ are surface contexts) so we can apply the

diagrams to the reduction sequences for R[s] and R[t].
None of the commuting and forking diagrams change the number of normal order
steps. The diagrams also guarantee that at any given moment the reduction
sequence has either a single (abs1) step or a single (ve1) segment (a sequence of
(ve1) steps in either direction) or no transformation steps at all. A sequence of
(ve1) steps acts as a single step since the entire sequence can be switched with a
normal order step at once by Lemma 4.14. Thus the proof is trivial by induction
on the number of steps to the right of the (abs1) step or the (ve1) segment.
By Lemmas 4.12 and 4.15 weak head normal forms are preserved by both (abs1)
and (ve1) so the base case is valid. 2

4.9 Correctness of a Surface Version of (case-in), (case-e)

Recall that the (case-c) transformation is correct by Lemma 4.1. There are two
kinds of (case-in) and (case-e) reductions in a surface context:

– The “surface” case, i.e. when the context C in the definition of the rule is a
surface context as well; this version is denoted as (caseS). For example,

letrec x = (c t1 t2) in (seq y (case x ((c z1 z2)→ z1 z2)))

– The “deep” case when, although the entire (case) reduction takes place in a
surface context, the context C in the definition of the rule is not a surface
context; this version is denoted as (caseD). For example,

letrec x = (c t1 t2) in λy.(case x ((c z1 z2)→ z1 z2))

23

In this section we prove correctness of a specialization (caseS). The proof for
(caseD) requires an additional transformation (cpcx) and is given in subsec-
tion 4.11, where also more examples can be found.
The complete set of forking and commuting diagrams for (caseS) are given below.

· caseS //

no,a

��

·
no,a

��

· caseS //

no,a1

��

·

no,a1
���������

· caseS //

no,a1

��

·
no,a1

��

· caseS //

no,case

��

·
no,case

��
· caseS // · · · abs1 // · · ·ve1,∗oo

· caseS //

no,case

��

·
no,case

��
· caseS // · oo ve1,∗ // ·

Here a1 ∈ {seq-c, choice, case}. In the first and last diagram the resulting (case)
step may or may not be a normal order reduction.
The third diagram happens when a (case) target is removed by a normal order
step but the letrec where the constructor is bound remains. Below is an example
with a normal order (choice) reduction. Similar examples may happen for (seq)
and (case) normal order reductions.

letrec x = (c t) in (choice (case x (c y)→ s) u)
no,choice−−−−−−→

letrec x = (c t) in u
abs1−−−→

letrec x = (c z), z = t in u

letrec x = (c t) in (choice (case x (c y)→ s) u) case−in−−−−−→
letrec x = (c z), z = t in (choice (letrec y = z in s) u)

no,choice−−−−−−→
letrec x = (c z), z = t in u

The fourth diagram arises when two case expressions share the constructor and
one of the case expressions is in the pattern expression that does not get matched.
Here c′ is any constructor other than c.

letrec x = (c t) in
(case x ((c y)→ s)((c′ y′)→ (case x (c z)→ s′))) case−in−−−−−→
letrec x = (c u), u = t in

(case x ((c y)→ s)((c′ y′)→ (letrec z = u in s′)))
no,case−in−−−−−−−→

letrec x = (c w), w = u, u = t in letrec y = w in s
ve1−−→

letrec x = (c u), u = t in letrec y = u in s

letrec x = (c t) in

(case x ((c y)→ s)((c′ y′)→ (case x (c z)→ s′)))
no,case−in−−−−−−−→

letrec x = (c u), u = t in letrec y = u in s

24

The number of (ve1) steps is the same as the number of arguments of the con-
structor. This situation arises for both (case-in) and (case-e) reductions.

The fifth diagram arises in situations illustrated by the following example:

letrec x = (c t1 t2) in (case x ((c y1 y2)→ case x ((c z1 z2)→ s)))
no,case−−−−−→

letrec x = (c q1, q2), q1 = t1, q2 = t2 in

(letrec y1 = q1, y2 = q2 in case x ((c z1 z2)→ s)) case−−−→
letrec x = (c q3, q4), q1 = t1, q2 = t2, q3 = q1, q4 = q2 in

(letrec y1 = q1, y2 = q2 in letrec z1 = q3, z2 = q4 in s)
ve1,∗−−−→

letrec x = (c q1, q2), q1 = t1, q2 = t2 in
(letrec y1 = q1, y2 = q2 in (letrec z1 = q1, z2 = q2 in s))

letrec x = (c t1 t2) in (case x ((c y1 y2)→ case x ((c z1 z2)→ s))) case−−−→
letrec x = (c q1, q2), q1 = t1, q2 = t2 in

(case x ((c y1 y2)→ (letrec z1 = q1, z2 = q2 in s)))
no,case−−−−−→

letrec x = (c q3, q4), q1 = t1, q2 = t2, q3 = q1, q4 = q2 in

(letrec y1 = q3, y2 = q4 in (letrec z1 = q1, z2 = q2 in s))
ve1,∗−−−→

letrec x = (c q1, q2), q1 = t1, q2 = t2 in
(letrec y1 = q1, y2 = q2 in (letrec z1 = q1, z2 = q2 in s))

The number of (ve1) steps equals to the number of variables that need to be
eliminated, i.e. the number of arguments to the constructor. The resulting (case)
reduction on the bottom of the diagram is never a normal order reduction since
the marking algorithm on the term resulting from a normal-order case will mark
the newly added letrec with S, so the next normal order step would be (llet-in)
or (llet-e).

The following lemma is easily derived by considering cases in definition of
WHNF:

Lemma 4.17. If s
case−−−→ t is not a normal order reduction then s is a WHNF

if and only if t is a WHNF.

Proposition 4.18. The transformation (caseS), i.e. the surface version of
(case-in) and (case-e), is correct, i.e. if s

caseS−−−−→ t then s ∼c t.

Proof. We show that (caseS) preserves convergence in a surface context S, then
by the Context Lemma 3.2 and by the Corollary 3.5 it preserves convergence in
any context C.

We start by listing all commuting and forking diagrams involved in the proof.
As in the above diagrams, a1 ∈ {seq-c, choice, case}.

25

– Commuting diagrams:

(1) caseS−−−−→ no,a−−−→ ;
no,a−−−→ caseS−−−−→

(2) caseS−−−−→ no,a−−−→ ;
no,a−−−→

(3) caseS−−−−→ no,a1−−−→ ;
no,a1−−−→ abs1−−−→

(4) caseS−−−−→ no,case−−−−−→;
no,case−−−−−→ ve1,∗←−−−

(5) caseS−−−−→ no,case−−−−−→;
no,case−−−−−→ caseS−−−−→ ve1,∗←→

(6) abs1−−−→ no,a−−−→ ;
no,a−−−→ abs1−−−→

(7) abs1−−−→ no,a−−−→ ;
no,a−−−→

(8) abs1−−−→ no,case−−−−−→;
no,case−−−−−→ ve1,∗←−−−

(9)
ve1,∗←→ no,a−−−→ ;

no,a−−−→ ve1,∗←→

– Forking diagrams:

(1) caseS←−−−− no,a−−−→ ;
no,a−−−→ caseS←−−−−

(2) caseS←−−−− no,a−−−→ ;
no,a−−−→

(3) caseS←−−−− no,a1−−−→ ;
abs1−−−→ no,a←−−−

(4) caseS←−−−− no,case−−−−−→;
no,case−−−−−→ ve1,∗−−−→

(5) caseS←−−−− no,case−−−−−→;
no,case−−−−−→ ve1,∗←→ caseS←−−−−

(6) abs1←−−− no,a−−−→ ;
no,a−−−→ abs1←−−−

(7) abs1←−−− no,a−−−→ ;
no,a−−−→

(8) abs1←−−− no,case−−−−−→;
no,case−−−−−→ ve1,∗−−−→

(9)
ve1,∗←→ no,a−−−→ ;

no,a−−−→ ve1,∗←→

Assume R[t]↓, i.e. there exists a normal order reduction sequence R[t] ∗−→ t′, where
t′ is a WHNF. We consider a reduction sequence R[s] caseS−−−−→ R[t] ∗−→ t′, where
R[t] ∗−→ t′ is the given evaluation of R[t]. By Lemma 4.2 R[t] caseS−−−−→ R[s] in a
surface context, thus we can use the above commuting diagrams to transform the
given sequence into a normal order sequence R[s] ∗−→ s′, where s′ is a WHNF. We
apply the transformations at the leftmost matching position of the sequence. In
a pattern that includes a multidirectional (ve1) sequence (diagram 9) we always
select the longest (ve1) sequence that matches.
We call each of the non-normal-order caseS−−−−→, abs1−−−→, and

ve1,∗←→ a segment. The
counter of a segment is the number of normal order steps to the right of that
segment. The measure is the string of counters for all segments in a reduction
sequence, where the segments are ordered left-to-right. For instance, the sequence

caseS−−−−→ no,a1−−−→ ve1←→ no,a2−−−→

where the (case) reduction is not normal order, has the measure (2, 1) since there
are two normal order steps to the right of (case) and one to the right of the (ve1)
segment.

26

The sequences of counters ordered lexicographically form an ordered sequence
measure defined in Definition 4.3. The measure strictly decreases with each trans-
formation in the commuting diagrams above:

– In diagrams 1 (in the case when the bottom (case) step is not a normal order
step), 3, 4, 6, 8, and 9 a normal order step is switched with a segment (the
kind of a segment may change during the switch). Then the new segment
has the counter 1 less than the old one and no other counters change so the
measure decreases. Note that in diagrams 4, 8, 9 the resulting (ve1) segment
may be merged with another (ve1) segment in the following situation (shown
for diagram 4):

caseS−−−−→ no,a−−−→ ve1←→;
no,a−−−→ ve1←→ ve1←→ =

no,a−−−→ ve1←→

In this case the measure decreases even further since the total number of
segments is reduced as well.

– In diagram 1 it is also possible that the resulting (caseS) becomes a normal
order step. Since there is only one (caseS) step in the sequence and there
are no (abs) or (ve1) segments to the left of it, no counters increase by this
transformation. The segment corresponding to (caseS) step is removed. Thus
the measure decreases.

– In diagrams 2, 7 one of the segments is removed, and the next segment to the
right (if any) has a counter that is at least 1 less than the removed segment.

– In diagram 5 one segment is replaced by two, each with a counter lower by
1 than that of the removed segment. Since the sequences of counters are
ordered lexicographically, the new sequence is less than the one it replaced.
Note that it may be possible that the (caseS) is turned into a normal-order
reduction. In this case the arguments are similar as for diagram 1.

Alternatively in this case it is possible that the (ve1) segment is merged
with a subsequent one, as discussed for diagrams 4, 8, 9 above. In this case
the counter for the (ve1) segment does not change and there is only one new
segment, the non-normal-order (case) step, which has a counter one less than
the counter for the old (case) step.

Since by Lemma 4.4 there is no infinite descending chain of sequences of counters,
the transformation process terminates. Therefore we have constructed a sequence
R[s] ∗−→ s′

a,∗−−→ t′ where a ∈ {case, abs1, ve1}. Recall that t′ is a WHNF. Then by
Lemmas 4.12,4.15, and 4.17 s′ is also a WHNF and one direction of the lemma
is proven.

The other direction is analogous, using the forking diagrams and the same
measure. 2

27

4.10 Correctness of (cpcx).

The (cpcx) transformation is needed in further proofs. It has the following com-
muting and forking diagrams, taking into account the (ve1) rule:

· cpcx //

no,a

��

·
no,a

��

· cpcx //

no,a1

��

·

no,a1
���������

· cpcx //

no,a1

��

·
no,a1

��
· cpcx // · · · abs1 // ·

· cpcx //

no,case

��

·
no,case

��

· cpcx //

no,cp

��

·
no,cp

��
· ·

ve1,∗
oo ·

cpcx
// ·

cpcx
// ·

ve1,∗
// ·

· cpcx //

no,case

��

·
no,case

��
· cpcx // · ve1,∗ // · ·ve1,∗oo

Where a1 ∈ {seq, case, choice}

An example for the fourth diagram is when the target of (cpcx) occurs in an
unused alternative of a case:

letrec x = (c1 t) in (case x (c1y → s)(c2 y′ → C[x]))
cpcx−−−→

letrec x = (c1 z), z = t in (case x (c1y → s)(c2 y′ → C[c1 z]))
no,case−−−−−→

letrec x = (c1 z′), z′ = z, z = t in letrec y = z′ in s
ve1−−→

letrec x = (c1 z), z = t in letrec y = z in s

letrec x = (c1 t) in (case x (c1y → s)(c2 y′ → C[x]))
no,case−−−−−→

letrec x = (c1 z), z = t in letrec y = z in s

The fifth diagram occurs when a (cpcx) target variable is duplicated using a (cp)
step. The (ve1) steps are needed to remove the extra chain variables generated
by the second (cpcx) in the bottom row of the diagram.

28

One non-trivial example of the last diagram is when the target of (cpcx) is a
part of a variable chain:

letrec x = (c t), y = x in (case y (c z → s))
cpcx−−−→

letrec x = (c q), q = t, y = (c q) in (case y (c z → s))
no,case−−−−−→

letrec x = (c q′), q′ = q, q = t, y = (c q) in letrec z = q′ in s
ve1−−→

letrec x = (c q), q = t, y = (c q) in letrec z = q in s

letrec x = (c t), y = x in (case y (c z → s))
no,case−−−−−→

letrec x = (c q), q = t, y = x in letrec z = q in s
cpcx−−−→

letrec x = (c q′), q′ = q, q = t, y = (c q′) in letrec z = q in s
ve1−−→

letrec x = (c q), q = t, y = (c q) in letrec z = q in s

Lemma 4.19. If s
cpcx−−−→ t then s is a WHNF if and only if t is.

Proof. The first two cases of WHNF are trivial. Consider the last case and
the (cpcx) reduction. For simplicity we are showing only one argument of the
constructor.

letrec x1 = (c t), {xi = xi−1}ni=2, Env in xn
cpcx−−−→

letrec x1 = (c y), y = t, {xi = xi−1}ni=2, Env in (c y)

Since (c y) is a value, the resulting term fits case 2 of the definition. 2

Proposition 4.20. If s
cpcx−−−→ t then s ∼c t.

Proof. By the Context lemma it is sufficient to show that R[t]↓ if and only if
R[s]↓. Moreover, by Lemma 4.2 R[s]

cpcx−−−→ R[t] in a surface context, thus the
commuting and forking diagrams are applicable.
Assume that R[t]↓. We would like to prove that R[s]↓.
Commuting diagrams are generated from their pictorial representation above.
We also need diagrams for (abs1) given in Section 4.8 and for (ve1) given in
Section 4.7.

(1)
cpcx−−−→ no,a−−−→ ;

no,a−−−→ cpcx−−−→
(2)

cpcx−−−→ no,a1−−−→ ;
no,a1−−−→

(3)
cpcx−−−→ no,a1−−−→ ;

no,a1−−−→ abs1−−−→
(4)

cpcx−−−→ no,case−−−−−→;
no,case−−−−−→ ve1,∗←−−−

(5)
cpcx−−−→ no,case−−−−−→;

no,case−−−−−→ cpcx−−−→ ve1,∗←→
(6)

cpcx−−−→ no,cp−−−→ ;
no,cp−−−→ cpcx−−−→ cpcx−−−→ ve1,∗←→

(7) abs1−−−→ no,a−−−→ ;
no,a−−−→ abs1−−−→

(8) abs1−−−→ no,a−−−→ ;
no,a−−−→

(9) abs1−−−→ no,case−−−−−→;
no,case−−−−−→ ve1,∗←−−−

(10)
ve1,∗←→ no,a−−−→ ;

no,a−−−→ ve1,∗←→

29

We introduce a counter-based measure, similar to that in the proof of Propo-
sition 4.18. There are three kinds of segments of non-normal-order steps: each
of (cpcx) and (abs1) forms its own segment and every contiguous sequence of
forward and backward (ve1) steps is a segment. For each such segment we define
a counter as the total number of normal-order steps to the right of the segment
in the reduction sequence. As in the proof of Proposition 4.18, we consider an
ordered (left-to-right) sequence of these numbers and order these sequences lex-
icographically. This is an ordered sequence measure (see Definition 4.3) and by
Lemma 4.4 there is no infinitely decreasing chain of such sequences.
Commuting diagrams can be applied at any matching position in a reduction
sequence. We show that every transformation modifies a part of the reduction
sequence in such a way that the measure strictly decreases. We consider cases of
the diagram. Note that we have to assume that there possibly are other (cpcx),
(abs1), and (ve) steps generated in earlier transformations. However, since the
transformations do not generate normal order steps, only a part of the reduction
sequence that actually gets transformed changes its corresponding numbers in
the measure.
Below we consider cases of commuting diagrams. The case numbers correspond
to the numbering of the commuting diagrams above.

– Cases 1, 3, and 7 of the commuting diagrams remove a segment to the left
of a normal order step and create a segment to the right of it so the counter
for that segment is one less than the counter of the one removed, and the
rest of the counters are not changed.

– Cases 2, 8 remove a segment and don’t change any other counters, thus the
measure decreases.

– Cases 4, 9, and 10 are similar to cases 1, 3, and 7 in that the counter of the
generated (ve1) segment is one less than the counter of the one removed,
with the difference that if there is another (ve1) segment directly following
the transformed sequence than the two (ve1) segments are merged and the
measure decreases even further.

– Cases 5 and 6 remove a (cpcx) segment on the left of a normal order step and
replace it by several segments to the right. Each of the new segments has a
counter one less than that of the removed one, thus the measure decreases.

Thus we have shown that if there is a normal order reduction of R[t] to a WHNF
t′ then there is a normal order reduction of R[s] that leads to a term s′ connected
to t′ by a sequence of (cpcx), (abs1), and (ve) reductions. By Lemmas 4.12,4.15,
and 4.19 s′ is a WHNF so the claim holds.
The proof in the other direction (i.e. assuming that R[s]↓ and proving that R[t]↓
is similar, using the forking diagrams and the same measure.
By the Context Lemma 3.2 it follows that s ∼c t. 2

4.11 Correctness of (caseD)

Recall that (caseD) refers to the “deep” version of (case-in) and (case-e), i.e.
the version where the entire reduction takes place in a surface context, but the

30

context C in the rule is not a surface context. The following example shows that
diagrams for (caseD) may duplicate (case) steps.

letrec x = (λz.case y (c u1 u2)→ s), y = (c s1 s2) in (x t) caseD−−−−→
letrec x = (λz.letrec u1 = q1, u2 = q2 in s), y = (c q1, q2),

q1 = s1, q2 = s2 in (x t)
no,cp−−−→

letrec x = (λz.letrec u1 = q1, u2 = q2 in s), y = (c q1, q2),
q1 = s1, q2 = s2 in ((λz.letrec u1 = q1, u2 = q2 in s) t)

letrec x = (λz.case y (c u1 u2)→ s), y = (c s1 s2) in (x t)
no,cp−−−→

letrec x = (λz.case y (c u1 u2)→ s), y = (c s1 s2) in
(((λz.case y (c u1 u2)→ s)) t) caseD−−−−→

letrec x = (λz.letrec u1 = q1, u2 = q2 in s)→ s), y = (c q1 q2),
q1 = s1, q2 = s2 in (((λz.case y (c u1 u2)→ s)) t) caseD−−−−→

letrec x = (λz.letrec u1 = q1, u2 = q2 in s)→ s), y = (c q′1 q′2), q
′
1 = q1,

q′2 = q2, q1 = s1, q2 = s2 in ((λz.letrec u1 = q′1, u2 = q′2 in s) ve1∗−−−→
letrec x = (λz.letrec u1 = q1, u2 = q2 in s), y = (c q1, q2),

q1 = s1, q2 = s2 in ((λz.letrec u1 = q1, u2 = q2 in s) t)

Note that, unlike in a similar case for (seq), multiple copies of (caseD) may also be
interleaved with (abs) and (ve1) steps. This complicates constructing a sequence
where only leftmost (case) steps may become normal order reductions, which
in turn complicates the measure-based argument. Instead we prove correctness
of (caseD) by representing it as a sequence of steps whose correctness we have
already proven.

Proposition 4.21. (caseD) is a correct program transformation.

Proof. Proposition 4.1 shows that (case-c) is a correct program transformation.
From Propositions 4.13 and 4.20 above we obtain we obtain that (ve) and (cpcx)
are correct program transformations. We show by induction that (caseD) is cor-
rect by using the correctness of the transformations (cpcx), (case-c) and (ve).
The induction is on the length of the variable chain in the reduction (caseD).
We use (cpcx) to copy the constructor into each of the variables in the chain,
one by one. For the base case the (caseD) reduction can also be performed by
the sequence of reductions:

cpcx−−−→ · case−c−−−−→

(letrec x = c t,Env in C[caset x (c z → s) alts])
cpcx−−−→ (letrec x = c y, y = t,Env in C[caseT (c y) (c z → s) alts])
case−c−−−−→ (letrec x = c y, y = t,Env in C[(letrec z = y in s)])

For the induction we replace a (caseD) reduction operating on a chain

{xi = xi−1}mi=2 with the sequence
cpcx−−−→ · caseD−−−−→ · ven

−−→ · ven

←−− · cpcx←−−−, where

31

n is the arity of the constructor and the (caseD) reduction operates on the chain
{xi = xi−1}mi=3:

(letrec x1 = c
−→
t , {xi = xi−1}mi=2,Env in C[caseT xm (c −→z → s) alts])

cpcx−−−→ letrec x1 = c −→y , {yi = ti}ni=1, x2 = c −→y , {xi = xi−1}mi=3,Env
in C[caseT x1 (c −→z → s) alts]

caseD−−−−→ letrec x1 = c −→y , {yi = ti}ni=1, x2 = c
−→
y′ , {y′i = yi}ni=1, {xi = xi−1}mi=3,Env

in C[(letrec {zi = y′i}ni=1 in s)]
ve,∗−−−→ letrec x1 = c −→y , {yi = ti}ni=1, x2 = c

−→
y′ , {y′i = yi}ni=1, {xi = xi−1}mi=3,Env

in C[(letrec {zi = yi}ni=1 in s)]
ve,∗←−−− letrec x1 = c

−→
y′ , {yi = ti}ni=1, x2 = c

−→
y′ , {y′i = yi}ni=1, {xi = xi−1}mi=3,Env

in C[(letrec {zi = yi}ni=1 in s)]
cpcx←−−− letrec x1 = c −→y , {yi = ti}ni=1, {xi = xi−1}mi=2,Env

in C[(letrec {zi = yi}ni=1 in s)] 2

By the inductive hypothesis the (caseD) step above may in turn be replaced by
a sequence of (cpcx), (caseD), and (ve) steps. Since the length of the variable
chain decreases with every induction step, eventually the base case (no variable
chain) will be reached.

Proposition 4.22. The reduction (case) is a correct program transformation.

Proof. Follows from Propositions 4.21 and 4.1. 2

4.12 Correctness of (gc), (ucp), and (abs2)

In this section we prove correctness of transformation rules (gc) and (ucp). The
(gc) rule has two versions, denoted (gc1) and (gc2), and the (ucp) rule has three
versions, denoted (ucp1), (ucp2), and (ucp3). The rules are defined in Figure 3.
We use a notation ucp/gc to denote a step that can be either a ucp or a gc step.
As we discuss further in this section, ucp/gc transformation rules are different
from the ones considered earlier in that they may perform a step that would
otherwise require a normal-order reduction. At the end of the section we also
show correctness of (abs2) based on correctness of (ucp).
We start by showing forking diagrams for (ucp) and (gc) rules. Commuting
diagrams are more complex. They are given in Lemma 4.25.
A complete set of forking diagrams for (gc) rules is as follows:

· gc //

no,a

��
A

·
no,a

���
�
� · gc //

no,a1

��

B

·

no,a1
���

�
�

�
· gc2 //

no,lll

��

C

·

· gc //___ · · ·
gc

@@�
�

�
�

where a1 ∈ {seq, choice, case}.

32

An example for diagram C is as follows:

letrec x = s in (letrec Env in t)
gc2−−→

letrec Env in t

letrec x = s in (letrec Env in t) llet−in−−−−−→
letrec x = s, Env in t

gc1−−→
letrec Env in t

A complete set of forking diagrams for (ucp) is as follows:

· ucp //

no,a

��
A

·
no,a

���
�
� · ucp //

no,a1

��

B

·

no,a1
���

�
�

�
· ucp //

no,cp

��

C

·

· ucp //___ · · ·
gc

@@�
�

�
�

· ucp //

no,lll+

��
D

·
no,lll∗

���
�
� · ucp //

no,a

��
E

·
no,a

���
�
� · ucp //

no,case

��

·
no,case

���
�
�

· ucp //___ · gc //___ · ·
no,llet

��

F ·
no,llet?

���
�
�

· gc //___ · ve1∗ //___ ·

where a1 ∈ {seq, choice, case}.
An example for diagram C is as follows:

letrec x = v, Env in x
ucp1−−−→

letrec Env in v

letrec x = v, Env in x
no,cp−−−→

letrec x = v, Env in v
gc1−−→

letrec Env in v

There is also a similar example that involves (ucp3) and (gc2).
A example for diagram D is as follows (s is a constructor):

letrec y = (letrec x = s in x) in y
ucp3−−−→

letrec y = s in y

letrec y = (letrec x = s in x) in y
no,llet−e−−−−−−→

letrec y = x, x = s in y
ucp−−→

letrec y = s in y

33

The following example illustrates diagram D for cases when the given normal
order sequence is non-empty. A similar situation occurs also for (lseq) and (lcase).

letrec x = (letrec y = s in t), Env in (x r)
ucp1−−−→

letrec Env in ((letrec y = s in t) r)
no,lapp−−−−−→

letrec Env in (letrec y = s in (t r))
no,llet−in−−−−−−−→

letrec Env, y = s in (t r)

letrec x = (letrec y = s in t), Env in (x r) llet−e−−−−→
letrec Env, x = t, y = s in (x r)

ucp1−−−→
letrec Env, y = s in (t r)

Another case for diagram D is as follows (analogous to that in [SSS06]). We
assume that x is not referenced anywhere else in the term.

letrec x = (letrec y = s in t), z = R[x], Env in R′[z]
ucp2−−−→

letrec z = R[(letrec y = s in t)], Env in R′[z]
no,llet+−−−−−→

letrec y = s, z = R[t], Env in R′[z]

letrec x = (letrec y = s in t), z = R[x], Env in R′[z]
no,llet−−−−→

letrec y = s, x = t, z = R[x], Env in R′[z]
ucp2−−−→

letrec y = s, z = R[t], Env in R′[z]

Here the number of (lll) steps in the sequence depends on the structure of the
R context, lifting the letrec through the context. Note that for the term

letrec x = (letrec y = t in s) in (choice x r)

the normal order reduction is (choice), not (llet-e), so diagrams for (lll) do not
need to take into account interactions with choice.

A sample case for diagram E is as follows:

letrec x = s in (choice x r)
ucp3−−−→

(choice s r)
no,choice−−−−−−→

r

letrec x = s in (choice x r)
no,choice−−−−−−→

letrec x = s in r
gc2−−→

r

34

Diagram F arises in the following and similar cases:

letrec x = (c t1 t2), Env in case x ((c y1 y2)→ s)
ucp1−−−→

letrec x = (c t1 t2), Env in case (c t1 t2) ((c y1 y2)→ s)
no,case−−−−−→

letrec Env in letrec y1 = t1, y2 = t2 in s
no,llet−−−−→

letrec Env, y1 = t1, y2 = t2 in s

letrec x = (c t1 t2), Env in case x ((c y1 y2)→ s)
no,case−−−−−→

letrec x = (c z1 z2), z1 = t1, z2 = t2, Env in letrec y1 = z1, y2 = z2 in s
llet−−→

letrec x = (c z1 z2), z1 = t1, z2 = t2, Envy1 = z1, y2 = z2 in s
gc1−−→

letrec Env, z1 = t1, z2 = t2, y1 = z1, y2 = z2 in s
ve1,∗−−−→

letrec Env, z1 = t1, z2 = t2 in s[z1/y1, z2/y2]

The two resulting terms are alpha-equivalent. Note that (llet) steps in this and
similar examples are normal order since (case) is a normal order reduction. A
variant of this example with an empty environment uses a (ucp3) step instead
of a (ucp1) and does not have the first (llet) step:

letrec x = (c t1 t2) in case x ((c y1 y2)→ s)
ucp3−−−→

case (c t1 t2) ((c y1 y2)→ s)
no,case−−−−−→

letrec y1 = t1, y2 = t2 in s

letrec x = (c t1 t2) in case x ((c y1 y2)→ s)
no,case−−−−−→

letrec x = (c z1 z2), z1 = t1, z2 = t2 in letrec y1 = z1, y2 = z2 in s
no,llet−−−−→

letrec x = (c z1 z2), z1 = t1, z2 = t2, y1 = z1, y2 = z2 in s
gc1−−→

letrec z1 = t1, z2 = t2, y1 = z1, y2 = z2 in s
ve1,∗−−−→

letrec z1 = t1, z2 = t2 in s[z1/y1, z2/y2]

Note that forking diagrams C for (gc) and C and a particular case of D for (ucp)
replace a normal order step by transformation steps only. We call such diagrams
erasing since they “erase” a normal order step.

Definition 4.23. A forking diagram in which the resulting sequence does not
contain a normal order step is called erasing.

Diagram D becomes an erasing one in cases when the given normal order (lll)
sequence is not empty and the resulting sequence does not have any normal order
steps, i.e. it is of the form

ucp←−− lll,no,+−−−−−→;
ucp←−−, such as in the first example for

diagram D above.
The presence of erasing diagrams complicates commuting diagrams since an
erasing diagram considered in the reverse direction allows a transformation step
to turn into a normal order step followed by another transformation step. For
instance, a (ucp) step is transformed by diagram C into a normal-order (cp)
step followed by a (gc) step. We refer to the reverse forms of erasing diagrams

35

as generating diagrams since they generate a normal order step. The generating
diagrams for (gc) and (ucp), labeled by G1, G2, G3, are as follows:

· gc //

no,lll

���
�
�

G1

· · ucp //

no,lll

���
�
�

G2

· · ucp //

no,cp

���
�
�

G3

·

·
gc

@@�
�

�
�

·
ucp

@@�
�

�
�

·
gc

@@�
�

�
�

When constructing commuting diagrams, we need to take generating diagrams
into account. For instance, to construct a commuting diagram for a sequence

ucp−−→
no,a−−−→, we need to take into consideration that the (ucp) step may be transformed
into a (cp) step followed by a (gc) step, so one possible way to transform

ucp−−→
no,a−−−→ is to a sequence

no,cp−−−→ gc−→ no,a−−−→.
An example of a commuting diagram that involves such extra steps (in this case
generated by diagram G2) is as follows, based on diagram A:

letrec x = (letrec y = c
−→
t in y) in case x (c −→z → s)

ucp−−→
letrec x = c

−→
t in case x (c −→z → s)

no,case−−−−−→
letrec x = c −→u ,−→u =

−→
t in letrec −→z = −→u in s

letrec x = (letrec y = c
−→
t in y) in case x (c −→z → s)

no,lll−−−→
letrec x = y, y = c

−→
t in case x (c −→z → s)

no,case−−−−−→
letrec x = y, y = c −→u ,−→u =

−→
t in letrec −→z = −→u in s

ucp−−→
letrec x = c −→u ,−→u =

−→
t in letrec −→z = −→u in s

After some discussion and preliminary lemmas we present a complete set of
commuting diagrams for ucp/gc in Lemma 4.25.

We introduce the following notation: we use
no,lll/cp?,∗−−−−−−−→ denote a sequence of the

form
no,lll,∗−−−−→ no,cp?−−−−→ no,lll,∗−−−−→, i.e. a sequence of 0 or more (lll) steps and at most

one (cp) step. The sequence may be empty.
Lemma 4.24 below allows us to construct commuting diagrams for (gc) and
(ucp).

Lemma 4.24. If s1
ucp/gc−−−−→ s2 and an arbitrary number of generating dia-

grams takes place, then the resulting sequence is as follows: there exists s3 s.t.

s1
no,lll/cp?,∗−−−−−−−→ s3

ucp/gc−−−−→ s2.

Proof. The proof is straightforward by examining the generating diagrams
G1, G2, and G3. Note that the only diagram that generates a (cp) step is G3 that
changes a (ucp) step into a (gc) step. Thus there may be at most one (cp) step. 2

36

The following example combines a forking diagram F with the generating dia-
gram G2:

case (letrec x = c
−→
t in x) ((c −→y)→ s)

ucp−−→
case c

−→
t ((c −→y)→ s)

no,case−c−−−−−−→
letrec −→y =

−→
t in s

case (letrec x = c
−→
t in x) ((c −→y)→ s)

no,lcase−−−−−→
letrec x = c

−→
t in case x ((c −→y)→ s)

no,case−in−−−−−−−→
letrec x = c −→z ,−→z =

−→
t in letrec −→y = −→z in s

llet−−→
letrec x = c −→z ,−→z =

−→
t ,−→y = −→z in s

gc1−−→
letrec −→z =

−→
t ,−→y = −→z in s

ve1,∗−−−→
letrec −→z =

−→
t in s[z1/y1, . . . , zn/yn]

Lemma 4.25. The complete set of commuting diagrams for ucp/gc is as follows:

·
ucp/gc//

no,lll/cp?,∗ ���
� ·

no,a

��

·
ucp/gc//

no,lll/cp?,∗ ���
� ·

no,a

�����������
·

ucp/gc //
no,lll/cp?,∗ ���

� ·

no,case

��

·
no,a ���

� ·
no,a ���

� ·
no,case ���

�

·
ucp/gc//___ · · ·

no,llet ���
� ·

no,llet?��
· gc //___ · ve1,∗ //___ ·

Proof. The following is a graphical representation of the proof for each of the
diagrams. Note that there are two ways of obtaining the first commuting dia-
gram: one is by using diagrams A (gc, ucp) or E (ucp), the other one is by using
diagram D (ucp).

·
ucp/gc //

lll/cp?,∗ ���
�

1
·

no,a

��

·
ucp/gc //

lll/cp?,∗ ���
�

1
·

no,lll

��

·
ucp/gc //

lll/cp?,∗ ���
�

1
·

no,a

}}{{{{{{{{{{{{

·
no,a ���

�
ucp/gc

66mmmmm

2

·
no,lll,+ ���

�
ucp/gc

66mmmmm

3

·
no,a ���

�
ucp/gc

66mmmmm
4

·
ucp/gc //_____ · ·

ucp/gc //_____ · ·

·
ucp/gc //

lll/cp?,∗ ���
�

1
·

no,case

��

·
no,case ���

�
ucp/gc

33ffffffffff

5·
no,llet ���

� ·
no,llet?��

· gc //_____ · ve1,∗ //_____ ·

The diagrams are completed using the following facts:

– 1 - by Lemma 4.24,

37

– 2 - by diagrams A for (gc) and (ucp) and E for (ucp),
– 3 - by diagram D for (ucp),
– 4 - by diagrams B for (gc) and (ucp),
– 5 - by diagram F for (ucp). 2

Before we prove correctness of ucp/gc, we need to prove properties of WHNF
with respect to these transformations. The needed property for (gc) is proven in
Lemma 4.26, the corresponding property for (ucp) is proven in Lemma 4.27

Lemma 4.26. If s
gc−→ t then:

– if s is a WHNF then t is a WHNF.
– if t is a WHNF then either s is a WHNF, or s

no,lll−−−→ s′
gc?−−→ s′′, and s′, s′′

are WHNFs.

Proof. Suppose s
gc−→ t and s is a WHNF. If s is a value then t is also

a value. If s = letrec Env in v then either t = letrec Env′ in v
or t = v. If s = letrec x1 = (c

−→
t), {xi = xi−1}ni=2, Env in xn then

t = letrec x1 = (c
−→
t), {xi = xi−1}ni=2, Env′ in xn or t = letrec x1 =

(c
−→
t), {xi = xi−1}ni=2, Env′ in xn since x and variables along the chain are

referenced and thus cannot be removed by (gc). In all of these cases t is a
WHNF.
Suppose t is a WHNF. Cases when s is also a WHNF are listed in the other
direction of the proof. The remaining cases are shown below. For simplicity we
assume that (gc) removes only a single binding, the case of multiple bindings is
analogous). We show the completion of the diagram in the first case (below).

s = letrec Env in (letrec x = r in v)
gc−→

t = letrec Env in v

s = letrec Env in (letrec x = r in v) llet−in−−−−−→
s′ = letrec Env, x = r in

gc−→
s′′ = letrec Env in v

The remaining cases are listed below and are completed in a similar manner by
a (llet-in) and a (gc) steps so that the result of the (llet-in) step is a WHNF. We
assume that y is not referenced in the body of the corresponding letrec.

s = letrec x = r in (letrec Env in v)
s = letrec y = r in letrec x1 = (c

−→
t), {xi = xi−1}ni=2, Env in xn

s = letrec x1 = (letrec y = r in (c
−→
t)), {xi = xi−1}ni=2, Env in xn

s = letrec x1 = (c
−→
t), {xi = xi−1}ni=2, Env in (letrec y = r in xn)

s = letrec x1 = (c
−→
t), {xi = xi−1}m−1

2 , (letrec y = r in xm),
{xi = xi−1}nm+1, Env in xn

2

38

Lemma 4.27. If s
ucp−−→ t then:

– if s is a WHNF then t is a WHNF.

– if t is a WHNF then either s is a WHNF, or s
no,llet?−−−−−→ no,cp?−−−−→ s′

ucp/gc−−−−→ t
and s′ is a WHNF.

The following diagram summarizes lemma 4.27:

s
ucp

//

no,lll?

��

t(WHNF)

·

no,cp?

��
s′(WHNF)

ucp/gc

>>}}}}}}}}}}}}}}}}}}

Proof. Let s be a WHNF. A (ucp) step may transform case 1 of definition of a
WHNF (a value) into case 1, case 2 into case 1 or case 2, and case 3 into cases
1,2, or 3. There are no other possibilities.
Let t be a WHNF. Possibilities when s is not a WHNF include:

– t = letrec Env in c
−→
t

s = letrec x = c
−→
t in (letrec Env in x) lll−→

s′ = letrec x = c
−→
t , Env in x

ucp−−→ letrec Env in c
−→
t = t

– t = letrec Env in c
−→
t

s = letrec Env in (letrec x = c
−→
t in x) lll−→

s′ = letrec Env, x = c
−→
t in x

ucp−−→ letrec Env in c
−→
t = t

– t = letrec Env in λy.r

s = letrec x = λy.r in (letrec Env in x) lll−→
letrec x = λy.r, Env in x

cp−→
s′ = letrec x = λy.r, Env in λy.r

gc−→ letrec Env in λy.r = t

– t = letrec Env in λy.r

s = letrec Env, x = λy.r in x
cp−→

s′ = letrec Env, x = λy.r in λy.r
gc−→

letrec Env in λy.r = t

– t = letrec x1 = c
−→
t , {xi = xi−1}mi=2 in xm.

s = letrec x1 = (letrec y = c
−→
t in y){xi = xi−1}mi=2, Env in xm

lll−→
s′ = letrec x1 = y, y = c

−→
t , {xi = xi−1}mi=2, Env in xm

ucp−−→
letrec x1 = c

−→
t , {xi = xi−1}mi=2, Env in xm = t

39

– t = letrec x1 = c
−→
t , {xi = xi−1}mi=2 in xm. The following situation may

occur anywhere in a variable chain.

s = letrec x1 = c
−→
t , x2 = (letrec y = x1 in y), {xi = xi−1}mi=3 in xm

lll−→
s′ = letrec x1 = c

−→
t , x2 = y, y = x1, {xi = xi−1}mi=3 in xm

ucp−−→
letrec x1 = c

−→
t , {xi = xi−1}mi=2 in xm = t

– t = letrec x1 = c
−→
t , {xi = xi−1}mi=2 in xm.

s = letrec x1 = c
−→
t , {xi = xi−1}mi=2 in (letrec y = xm in y) lll−→

s′ = letrec x1 = c
−→
t , {xi = xi−1}mi=2, y = xm in y

ucp−−→
letrec x1 = c

−→
t , {xi = xi−1}mi=2 in xm = t

All of the above cases follow the pattern stated in the lemma. 2

Proposition 4.28. If s
ucp/gc−−−−→ t then s ∼c t.

Proof. Let s
ucp/gc−−−−→ t. We show that, for any context R, given a normal order

reduction sequence R[s]
no,∗−−−→ s′, where s′ is a WHNF, we can transform the

sequence R[t]
ucp/gc←−−−− R[s]

no,∗−−−→ s′ into R[t]
no,∗−−−→ t′

ucp/gc,∗←−−−−− s′. By Lemma 4.2

R[s]
ucp/gc−−−−→ R[t] in a surface context, thus the commuting and forking diagrams

are applicable.
We consider forking diagrams given in the beginning of the section. We define
a measure similar to the one used in the proof of Proposition 4.18: the mea-
sure is an ordered (left-to-right) sequence of counters for each segment, where
a segment is either a ucp/gc step (note that there may be at most one) or a
contiguous sequence of (ve1) steps. Each counter is the total number of normal
order steps to the right of each the segment. The sequences of counters ordered
lexicographically form the ordered sequence measure defined in Definition 4.3.
For each forking diagram the measure strictly decreases. Note that there are no
(ve1) segments to the left of a ucp/gc steps, thus the counter for a (ve1) segment
does not change when a ucp/gc step is moved.

– Diagrams A for (ucp) and (gc), E for (ucp):
ucp/gc←−−−− no,a−−−→ ;

no,a−−−→ ucp/gc←−−−−.
In this case the count decreases for the (ucp) step since it get switched with
a normal order step.

– Diagrams B for (ucp) and (gc):
ucp/gc←−−−− no,a−−−→;

no,a−−−→. In this case one of the
ucp/gc steps is removed, the counters for the other ones are left unchanged,
so the measure decreases.

– Diagrams C for (ucp) and (gc):
ucp/gc←−−−− no,a−−−→;

ucp/gc←−−−−. A normal order step
is removed so the count for the resulting ucp/gc step is 1 less than for the
given one.

– Diagram D for (ucp):
ucp/gc←−−−− no,lll,+−−−−−→;

no,lll,∗−−−−→ ucp/gc←−−−−. Since all (lll) steps
were moved to the left of the ucp/gc step, the measure decreases by the
number of given (lll) steps.

40

– Diagram F for (ucp):
ucp←−− no,case−−−−−→ no,lll?−−−−→;

no,case−−−−−→ no,lll−−−→ gc←− ve1,∗←−−−. The
counter for the new (gc) step and for the (ve1) segment is at least 1 less than
the counter for the given (ucp) step.

– By Lemma 4.14 switching a (ve1) segment with a normal order reduction
step decreases the counter for the segment and does not change any other
counter.

Since the measure decreases with every transformation step, by Lemma 4.4 the

process terminates. We have constructed a sequence R[t]
no,∗−−−→ t′

ucp/gc←−−−− s′. Since
s′ is a WHNF, by Lemmas 4.26, 4.27, and 4.12 t′ is also a WHNF. Thus, we
have shown that R[t] has a normal order sequence that leads to a WHNF, so
s ≤c t.

For the other direction of the lemma let s
ucp/gc−−−−→ t and suppose R[t] evaluates

to WHNF.
We show that, given a normal order sequence reduction R[t]

no,∗−−−→ t′, where t′

is a WHNF, we can transform the sequence R[s]
ucp/gc−−−−→ R[t]

no,∗−−−→ t′ into a

sequence R[s]
no,∗−−−→ s′

ucp/gc−−−−→ t′ using commutative diagrams in Lemma 4.25.
The measure is similar to the other proof direction: each ucp/gc step has a
counter equal to the total number of normal order steps to its right; the ordered
sequences of such counters are ordered lexicographically.
The case analysis below shows that the measure decreases with every application
of a commuting diagram.

1.
ucp/gc−−−−→ no,a−−−→ ;

lll/cp?,∗−−−−−→ no,a−−−→ ucp/gc−−−−→ - the counter for the (ucp/gc) is
decreased by 1.

2.
ucp/gc−−−−→ no,a−−−→;

lll/cp?,∗−−−−−→ no,a−−−→;
lll/cp,∗−−−−−→ no,a−−−→ - the resulting sequence does

not have a ucp/gc reduction so the counters appear only on (ve1) segments
to the right of the transformed sequence. Since these counters are all smaller
than the counter on ucp/gc before the transformation, the measure decreases.

3.
ucp−−→ no,case−−−−−→ no,lll?−−−−→ ;

lll/cp?,∗−−−−−→ no,case−−−−−→ no,lll−−−→ gc−→ ve1,∗←−−−. In this case a
(ucp) step is replaced by a (gc) step and possibly a (ve1) segment. However,
each of these steps has a smaller counter than the original (ucp) step.

4. By Lemma 4.14 switching a (ve1) segment with any normal order step de-
creases the measure.

We have shown that we can transform a sequence R[s]
ucp/gc−−−−→ R[t]

no,∗−−−→ t′, where

t′ is a WHNF, into a sequence R[s]
no,∗−−−→ s′

ucp/gc−−−−→ t′. By Lemmas 4.26, 4.27,

and 4.12 there exists a WHNF s′′ s.t. s′
lll/cp?,∗−−−−−→ s′′

ucp/gc−−−−→ s′′′
ve1,∗−−−→ t′. Thus we

have constructed a terminating sequence for R[s] so by the Context Lemma 3.2
t ≤c s.
Combining the two direction of the proof, we conclude that s ∼c t. 2

Observe that the rule (abs2) defined in Figure 3 is is just a sequence of reverse
(ucp) steps: if s

abs2−−−→ t then s
ucp,∗←−−− t. Note that since (abs2) introduces fresh

41

variables xi, each of these variables appears only once, hence the condition for
(ucp) is satisfied. Thus the following result holds:

Proposition 4.29. If s
abs2−−−→ t then s ∼c t.

The (abs2) rule is needed for conversion to a simpler calculus LS in Section 5.

4.13 Property of (choice)

Proposition 4.30. If s
choice−−−−→ t then t ≤c s.

Proof. Without loss of generality assume that (choice-l) takes place, (choice-r)
is completely analogous. By the Context Lemma 3.2 it is sufficient to consider
the reduction in a reduction context R. Suppose s = R[(choice s1 s2)] and
t = R[s1]. By the labeling algorithm the normal order step from s is a choice
reduction, which results in either R[s1] (if (choice-l) takes place) or R[s2] (if
(choice-r) takes place). It trivially follows that if R[s1]↓ then R[(choice s1 s2)↓
since R[(choice s1 s2)]

choice−l−−−−−→ R[s1].
By the Context Lemma 3.2 this implies that for any context C: C[s1]↓ ⇒
C[(choice s1 s2)]↓ 2

Note that the converse of the claim is not true: if R[(choice s1 s2)↓, it is possible
that the convergence path is R[(choice s1 s2)]

choice−r−−−−−−→ R[s2] . . . , and R[s1] does
not converge. However, the following obvious property holds for any reduction
context R:

Lemma 4.31. If R[(choice s1 s2)]↓ then at least one of R[s1] or R[s2] converges.

Remark 4.32. Note that the lemma above does not hold in the general case. I.e.
C[(choice s1 s2)]↓, but neither C[s1]↓ nor C[s2]↓. The expression

letrec y = λx.choice True False
in if (y True) then ⊥ else

(if (y True) then True else ⊥)

is an example for such a behaviour.

4.14 Property of Ω.

In the following, we will use the technical observation that during a normal-
order reduction of t, we can trace the bindings xi = ri of a closed subexpression
s = (letrec x1 = s1, . . . , xn = sn in s′) of t, if r occurs on the surface of t.
The application of this observation allows to draw several nice and important
conclusions. This technique is also used in a later chapter for the approximation.
An LR-context is defined as LR ::= [·] | (letrec Env in LR).

Proposition 4.33. The expression Ω is the least element w.r.t. ≤c, and for
every closed expression s with s⇑, the equation s ∼c Ω holds.

42

Proof. Due to the Context Lemma 3.2, it is sufficient to show that for all
reduction contexts R and all closed expression s with s⇑, we have R[s]⇑. Assume
otherwise, that R[s]↓. We show that this is impossible. In the normal-order
reduction corresponding to R[s]↓, we distinguish the descendents of s and of
R by labeling the descendents of s with †. The components are of two kinds:
bindings x1 = s1, . . . , xn = sn, and an expression s′, where the expression s′ is
a descendent of s. It is in a reduction context or in an LR-context, such that it
is in a reduction context again after some (no,lll)-reductions. The cases of the
labeling and the labeling operations are as follows, where we use an exponent
notation to indicate the †-label.

– R[(letrec x1 = r1, . . . , xn = rn in u))†] → R[(letrec x†1 = r†1, . . . , x
†
n =

r†n in u†))†].
– R[((λx.r) u)†] no−→ R[(letrec x† = u† in r†).

In the case that the (lbeta)-redex itself is in an environment, i.e if R =
(letrec Env in R′[·]), a subsequent (no,lll,*) achieves that u is again
in a reduction context in the expression (letrec Env , x†1 = r†1, . . . , x

†
n =

r†n in R′[u†]).
– R[case (c u1 . . . un) ((c x1 . . . xn) → r) . . .] no−→ R[(letrec x†1 =

u†1, . . . , x
†
n = u†n in r†)]. Here the same remarks as above are valid.

– A (cp)-reduction (letrec y = r†,Env in C[y]) → (letrec y =
r†,Env in C[r]) does not copy the label into C[r], only if the subterm y
is labeled as an expression, then we have:
(letrec y = r†,Env in C[y†])→ (letrec y = r†,Env in C[r†]).

Note that a (llet)-reduction may produce a mixture of s-components and
descendents of R in a common letrec-environment. Moreover, since the initial
s is closed, it cannot happen that there are free variables in an †-labeled
expression that are not themselves labeled with †. For every intermediate
expression in the reduction, a complete s-descendent can be generated as
(letrec x1 = s1, . . . , xn = sn in sn+1), where xi = si are the bindings derived
from s (i.e. the †-labeled ones), and sn+1 is the “in”-expression derived from s
that is in a reduction context, and also †-labeled. Up to some (lll)-reductions,
the normal-order-reduction of R[s]↓ generates a reduction sequence of s,
where all reductions are in surface contexts. The reduction of R[s]↓ can only
stop with a WHNF, if also the reduction sequence of s stops with a WHNF.
The standardization theorem 4.35 then shows that s↓, which is a contradiction. 2

Let (cpbot) be the transformations:

(letrec x = Ω,Env in C[x]) → (letrec x = Ω,Env in C[Ω])
(letrec x = Ω, y = C[x],Env in r)→ (letrec x = Ω, y = C[Ω],Env in r)

It is permitted to copy closed bot-expressions:

Proposition 4.34. The transformation (cpbot) is correct.

43

Proof. If t
cpbot−−−→ t′, then it is easy to see that the two reductions commute with

normal-order reductions until a WHNF is reached for both terms, or in each
expression, x is in a reduction context. In the latter case, both expressions do
not have a WHNF, by Proposition 4.33. Since t, t′ have the same convergence
behavior in all contexts, we have t ∼c t′. 2

4.15 Standardization

We summarize correctness of transformations and decreasing property of (choice)
in the standardization result. This result is technically similar to standardization
for deterministic calculi, where standardization means that if t can be evaluated
to a WHNF using any reductions, then also normal-order can evaluate t. In a
deterministic calculus, the reduction is unique, so it can be interpreted as a stan-
dardized evaluation, whereas in non-deterministic calculi, the meaning is that
reduction sequences can be standardized. We formulate it only as convergence,
but it also holds in the more general form that t

∗−→ t′ implies that there exists
t′′ s.t. t

no,∗−−−→ t′′
∗←→ t′ where the sequence t′′

∗←→ t′ contains only correct non-
normal-order steps and correct transformations (in either direction), and thus
t′′ ∼c t′. However, this is not required for the further results in this paper.

Theorem 4.35 (Standardization). If t
∗−→ t′ where t′ is a WHNF and the

sequence ∗−→ consists of any reduction from L in figures 1 and 2 and of transfor-
mation steps from figure 3, or (cpbot), then t↓.

Proof. Let t
∗−→ t′ be a sequence of reductions and transformations as above,

where t′ is a WHNF. By Lemmas and Propositions 4.1, 4.6, 4.7, 4.10, 4.13,
4.16, 4.18, 4.20, 4.28, 4.34 and 4.29, for every single reduction step ti → ti+1,
which are not choice-reductions, the relation ti ∼c ti+1 holds.
By Proposition 4.30, an intermediate (choice)-reduction ti → ti+1 decreases the
terms, i.e. ti ≥c ti+1 holds. Since ≤c is transitive, we obtain t′ ≤c t. Since t′↓,
this immediately implies t′↓. 2

4.16 On Reduction Lengths

The following length property is used in further proofs. It states that forking
diagrams for (cpcx), (cpS), (ve) do not increase the length of a normal-order-
reduction:

Proposition 4.36. Given a normal-order reduction s U s′, where s′ is a
WHNF, and a closed expression t such that s

a,S−−→ t, with a ∈ {(cpcx), (cpS),
(ve)}. Then there exists a normal-order reduction sequence U ′ of t to a WHNF,
i.e. t U ′ t′ such that U ′ is not longer than U .

Proof. This follows from the diagrams in Section 3.1, where (cpcx) requires
ve1,∗−−−→,

ve1,∗←−−−, and
abs1,∗−−−−→, which in turn requires

ve1,∗←−−−. Scanning all these

44

diagrams shows by induction on the length of U that U ′ can be constructed,
such that U ′ does not require more normal-order reductions. 2

5 A Simpler Calculus

We define a simpler calculus LS that is used to produce a set of values for
any closed expression. It is formulated such that a so-called pre-evaluation can
be defined and shown to be a correct tool to prove contextual preorder and
contextual equivalence of expressions in almost the same way as the simulation
method would do it.
We will show that the two calculi L, LS are equivalent. The calculus LS does
not use variable-binding chains for reduction steps, and permits a generalized
copy-reduction that also may copy expression of the form (c x1 . . . xn), where xi

are variables. These expressions are called cv-expression in the following.

The rules of the calculus LS are defined in figure 4, which can be applied in any
context. We use labels indicating the normal order redex, where T means the
top-term, S means a subterm reduction, V means visited. The labelng algorithm
(unwind) starts with tT , where no subexpression of t is labeled, and uses the
following rules exhaustively. The labeling rules can be used in any context.

(s t)S∨T → (sS t)V

(letrec Env in t)T → (letrec Env in tS)V

(letrec x = s,Env in C[xS]) → (letrec x = sS ,Env in C[xV])
(letrec x = s, y = C[xS],Env in r)→ (letrec x = sS , y = C[xV],Env in r)

if C 6= [.]
(seq s t)S∨T → (seq sS t)V

(case s alts)S∨T → (case sS alts)V

An LS-WHNF is defined as an abstraction or a cv-expression, or an expression
(letrec Env in v), where v is an abstraction or a cv-expression.
It is easy to see that for every LS-WHNF is also an L-WHNF, a nd that for
every L-WHNF t, there is a reduction to a an LS-WHNF: t

no,∗−−−→ t′ using only
(LS , (abs)), (LS , (lll)), and (LS , (cp))-reductions.

Theorem 5.1. Let s be an expression. Then s↓LS
⇔ s↓L.

Proof. One direction follows from the standardization theorem 4.35 as follows:
Let s be a term and let ULS

be an LS-evaluation of s. All reduction steps of LS

appear in L, either as reduction steps or as transformations (see below), with
the only exception of LS (cp-in) and (cp-e) reductions for the case when the
copied value is a cv-expression. In this case the LS reduction is represented in L
as the following sequence (shown for (cp-in), completely analogous for (cp-e)):

letrec x = (c x1, . . . , xn), Env in C[x]
cpcx−−−→

letrec x = (c y1, . . . , yn), y1 = x1, . . . , yn = xn, Env in C[(c y1, . . . , yn)]
ve,∗−−→

letrec x = (c x1, . . . , xn), Env in C[(c x1, . . . , xn)]

45

(lbeta) ((λx.s)S r)→ (letrec x = r in s)
(cp-in) (letrec x = vS ,Env in C[xV])

→ (letrec x = v,Env in C[v])
where v is an abstraction or a cv-expression

(cp-e) (letrec x = vS ,Env , y = C[xV] in r)
→ (letrec x = v,Env , y = C[v] in r)

where v is an abstraction or a cv-expression
(abs) (c t1 . . . tn)S∨T → (letrec x1 = t1, . . . , xn = tn in (c x1 . . . xn))

if (c t1 . . . tn) is not a cv-expression
(llet-in) (letrec Env1 in (letrec Env2 in r)S)

→ (letrec Env1,Env2 in r)
(llet-e) (letrec Env1, x = (letrec Env2 in sx)S in r)

→ (letrec Env1,Env2, x = sx in r)
(lapp) ((letrec Env in t)S s)→ (letrec Env in (t s))
(lcase) (caseT (letrec Env in t)S alts)→ (letrec Env in (caseT t alts))
(seq-c) (seq vS t)→ t if v is a value
(lseq) (seq (letrec Env in s)S t)→ (letrec Env in (seq s t))
(case) (case (c t1 . . . tn)S . . . ((c y1 . . . yn)→ s) . . .)

→ (letrec y1 = t1, . . . , yn = tn in s)
(choice-l) (choice s t)S∨T → s
(choice-r) (choice s t)S∨T → t

Fig. 4. Reduction rules of LS

By the standardization theorem 4.35 all reduction and transformation steps in
L preserve evaluation to an L-WHNF. Thus if s↓LS

then s↓L.

For the other direction let U be a normal order L reduction for s. We show by
induction on len(U) that there exists a normal order LS-reduction ULS

for s.

For the base case let len(U) = 0. Then s is a L-WHNF, which can be reduced
to an LS-WHNF in some steps as observed above.
If the first reduction is an (lll)-reduction, then this is also a normal-order LS-
reduction.

Now let s1
no,L,a−−−−→ s2 be the first reduction of U ′, where a is not an (lll)-reduction.

If a ∈ {(lbeta), (case-c), (seq-c), (choice)} then
no,L,a−−−−→ is also a normal order re-

duction for LS . Using the induction hypothesis we derive the demanded normal-
order LS-reduction-sequence.

Otherwise, i.e. if the L-reduction exploits bindings over several variable-variable-
bindings, the diagrams in figure 5 show how a normal-order LS-reduction
sequence can be derived for the first reduction. Then Proposition 4.36 shows
that there is a normal-order reduction of length not greater than the length
of a normal-order reduction of s′, since the corresponding right and downward
reduction sequences are covered by the proposition. 2

46

x = (c t1 t2) x = (c x1 x2) x = (c t1 t2)
in case x . . . in case x . . . in seq x . . .

s1

no,LS ,abs

��

no,L,case−e// s2

S,cpcx,∗

�������������

·

no,LS ,lll

��
·

no,LS ,cp,+

��

·

S,ve,∗

���������������

·

no,LS ,case

��
s′

s1

no,LS ,cp,+

��

no,L,case−e// s2

S,cpcx,∗
��������

·

no,LS ,case

��

·

S,ve,∗

���������������

s′

s1

no,LS ,abs

��

no,L,seq−e// s2·

S,cpcx,∗

		���������������������������

·

no,LS ,lll

��
·

no,LS ,cp,+

��
·

no,LS ,seq

��
s′

x = (c x1 x2) x = (λx.t) x = λz.t, y = x
in seq x . . . in seq x . . . in (y s) . . .

where a ∈ {(lbeta), (seq)}

s1

no,LS ,cp,+

��

no,L,seq−e// s2

S,cpcx,∗

��

·

no,LS ,seq

��
s′

s1

no,LS ,cp,+

��

no,L,seq−e// s2

S,cpS,+

��

·

no,LS ,seq

��
s′

s1

no,LS ,cp,∗

��

no,L,cp// s2

S,cpS,∗

���������������

s′

Fig. 5. Diagrams for converting L-reductions into LS-reductions

Remark 5.2. We include the prototypical examples for all the diagrams in figure
5 in the same sequence as the diagrams:

letrec x = (c t1 t2), y = x in case y (c y1 y2)→ s
no,L,case−e−−−−−−−−→

letrec x = (c z1 z2), z1 = t1, z2 = t2, y = x

in letrec y1 = z1, y2 = z2 in s
L,(cpcx)−−−−−→

letrec x = (c u1 u2), u1 = z1, u2 = z2, z1 = t1, z2 = t2, y = (c u1 u2)

in letrec y1 = z1, y2 = z2 in s
L,(ve),∗−−−−−→

letrec x = (c z1 z2), z1 = t1, z2 = t2, y = (c u1 u2)
in letrec y1 = z1, y2 = z2 in s

47

letrec x = (c t1 t2), y = x in case y (c y1 y2)→ s
no,LS ,abs−−−−−−→
no,LS ,llet−−−−−−−→

letrec x = (c z1 z2), z1 = t1, z2 = t2, y = x in case y (c y1 y2)→ s
no,LS ,cp−−−−−−→

letrec x = (c z1 z2), z1 = t1, z2 = t2, y = (c z1 z2)

in case y (cy1 y2)→ s
no,LS ,cp−−−−−−→

letrec x = (c z1 z2), z1 = t1, z2 = t2, y = (c z1 z2)

in case (c z1 z2) (c y1 y2)→ s
no,LS ,case−−−−−−−→

letrec x = (c z1 z2), z1 = t1, z2 = t2, y = (c z1 z2)
in letrec y1 = z1, y2 = z2 in s

letrec x = (c x1 x2), y = x in case y (c y1 y2)→ s
no,L,case−e−−−−−−−−→

letrec x = (c z1 z2), z1 = x1, z2 = x2, y = x

in letrec y1 = z1, y2 = z2 in s
L,(cpcx)−−−−−→

letrec x = (c u1 u2), u1 = z1, u2 = z2, z1 = x1, z2 = x2, y = (c u1 u2)

in letrec y1 = z1, y2 = z2 in s
L,(ve),∗−−−−−→

letrec x = (c x1 x2), y = (c x1 x2)
in letrec y1 = x1, y2 = x2 in s

letrec x = (c x1 x2), y = x in case y (c y1 y2)→ s
no,LS ,cp−−−−−−→

letrec x = (c x1 x2), y = (c x1 x2)

in case y (cy1 y2)→ s
no,LS ,cp−−−−−−→

letrec x = (c x1 x2), y = (c x1 x2)

in case (c x1 x2) (c y1 y2)→ s
no,LS ,case−−−−−−−→

letrec x = (c x1 x2), y = (c x1 x2)
in letrec y1 = x1, y2 = x2 in s

letrec x = (c t1 t2), y = x in seq y s
no,L,seq−e−−−−−−−→

letrec x = (c t1 t2), y = x in s
L,(cpcx)−−−−−→

letrec x = (c x1 x2), x1 = t1, x2 = t2, y = (c x1 x2) in s

letrec x = (c t1 t2), y = x in seq y s
no,LS ,abs−−−−−−→
no,LS ,llet−−−−−−−→

letrec x = (c x1 x2), x1 = t1, x2 = t2, y = x

in seq y s
no,LS ,cp−−−−−−→

letrec x = (c x1 x2), x1 = t1, x2 = t2, y = (c x1 x2)

in seq y s
no,LS ,cp−−−−−−→

letrec x = (c x1 x2), x1 = t1, x2 = t2, y = (c x1 x2)

in seq (c x1 x2) s
no,LS ,seq−−−−−−→

letrec x = (c x1 x2), x1 = t1, x2 = t2, y = (c x1 x2) in s

48

letrec x = (c x1 x2), y = x in seq y s
no,L,seq−e−−−−−−−→

letrec x = (c x1 x2), y = x in s
cpS−−→

letrec x = (c x1 x2), y = (c x1 x2) in s

letrec x = (c x1 x2), y = x in seq y s
no,LS ,cp−−−−−−→

letrec x = (c x1 x2), y = (c x1 x2) in seq y s
no,LS ,cp−−−−−−→

letrec x = (c x1 x2), y = (c x1 x2) in seq (c x1 x2) s
no,LS ,seq−−−−−−→

letrec x = (c x1 x2), y = (c x1 x2) in s

letrec x = λu.t, y = x in seq y s
no,L,seq−e−−−−−−−→

letrec x = λu.t, y = x in s
L,cpS−−−−→

letrec x = λu.t, y = λu.t in s

letrec x = λu.t, y = x in seq y s
no,LS ,cp−−−−−−→

letrec x = λu.t, y = λu.t in seq y s
no,LS ,cp−−−−−−→

letrec x = λu.t, y = λu.t in seq λu.t s
no,LS ,seq−−−−−−→

letrec x = λu.t, y = λu.t in s

letrec x = λu.t, y = x in y s
no,L,cp−−−−−→

letrec x = λu.t, y = x in (λu.t) s
no,L,lbeta−−−−−−→

letrec x = λu.t, y = x in letrec u = s in t
L,cpS−−−−→

letrec x = λu.t, y = λu.t in letrec u = s in t

letrec x = λu.t, y = x in y s
no,LS ,cp−−−−−−→

letrec x = λu.t, y = λu.t in y s
no,LS ,cp−−−−−−→

letrec x = λu.t, y = λu.t in (λu.t) s
no,LS ,lbeta−−−−−−−→

letrec x = λu.t, y = λu.t in letrec u = s in t

Theorem 5.1 implies that the observational semantics of L and LS completely
agree:

Corollary 5.3. Let s, t be expressions. Then s ≤c,L t ⇔ s ≤c,LS
t.

Proof. This follows from Theorem 5.1 since for any context C it holds that
C[s]↓L ⇔ C[s]↓LS

as well as C[t]↓L ⇔ C[t]↓LS
. 2

By Proposition 4.33, the expression Ω is the least element w.r.t. ≤c, and for
every closed expression s with s⇑, the equation s ∼c Ω holds, which holds by
Corollary 5.3 also for the calculus LS .

6 Pre-Evaluation of Expressions

In the following, we will again use the technical observation that during a normal-
order reduction of t, we can trace the bindings xi = ri of a closed subexpression

49

r = (letrec x1 = r1, . . . , xn = rn in s′) of t, if r occurs on the surface of t.
The application of this observation allows to draw several nice and important
conclusions.
We will use evaluation in LS to reduce closed expressions in all possible ways,
where reduction takes place in surface contexts. The intention is to have a means
to compare closed expressions by a set of results, even perhaps an infinite set.
We use the additional constant } (called stop) in order to indicate stopped
reductions. Its semantical value is ⊥, but it is clearer if there is a notational
distinction between them. One may also think of } as a synonym to Ω. This
allows us to extend the notion of ≤c to include }.

Definition 6.1. A pseudo-value is an expression built from }, constructors,
and abstractions. A answer is an expression built from }, constructors, and
abstractions which is not the constant } itself, i.e. a pseudo-value is an answer
or }.

We show the intention of the pre-evaluation by an example. The idea of pre-
evaluation is to first obtain by LS-normal order reduction all possible WHNFs,
and then to apply normal-order reductions locally to the bindings. Since this
does in general not terminate, we stop the reduction at any point and then
fill the results into the in-expression: The bindings that are cv-expressions or
abstractions are copied sufficiently often into the in-expression. Due to recursive
bindings, this may also be a non-terminating process that has to stopped. Then
we strip away the top letrec-environment and replace the occurrences of the
bound variables by }.

Example 6.2. The expression (letrec x = λy.True in x) has λy.True as result-
ing answer.
The expression (letrec x = (Cons True x) in x) has the following re-
sulting answers: (Cons } }), (Cons True }), (Cons } (Cons True })),
(Cons True (Cons True })),

The approximation reduction A−→ is a slight extension of the LS-reduction for
the pre-evaluation and defined as follows:

Definition 6.3. Let s be a closed expression. We define the approximation re-
duction A−→as follows:
s

A−→ v holds for some closed answer v iff there is a reduction from (letrec x =
s in x) to v using the following intermediate steps, in the given order:

1. (letrec x = s in x) ∗−→ s′ using an LS-evaluation to a WHNF s′. From s′ we
perform any number of LS-reductions in application surface contexts (non-
deterministically), where the target variables of (cp) are also in application
surface contexts.

2. Perform any number of copy-reductions into the “in”-expression. Here the
target variable of (cp) may be in any context C.

50

3. The last step is to remove the top-letrec-environment, and to replace all
remaining let-bound variables in the “in”-expression by }. The resulting ex-
pression is now either } or one of the desired answers v.

The set of answers reachable from s by this procedure is defined as ans(s).

Lemma 6.4. Let s be closed expression and v ∈ ans(s). Then v ≤c s.

Proof. This follows from the correctness of the transformations proved in the
previous sections, from decreasingness of (choice) (see Proposition 4.30) and
from the fact that ⊥ ∼c Ω is the least element w.r.t. ≤c (see Proposition 4.33). 2

Now we prove that sufficiently many answers are reached by these reduction
possibilities.

Theorem 6.5. Let R be a reduction context, s be a closed expression such that
R[s]↓. Then there is an answer v with (letrec x = s in x) A−→ v, such that
R[v]↓. Note that s ∼c (letrec x = s in x) (see Proposition 4.28).

Proof. For the proof we always refer to the calculus LS unless mentioned oth-
erwise.
Let R be a reduction context and s be a closed expression. Let Red be a normal-
order reduction of R[(letrec x = s in x)] no−→ r1

no−→ . . .
no−→ rn, where rn is a

WHNF, and n is the number of normal-order reductions. We use a similar label-
ing technique as in the proof of Proposition 4.33. In every expression of Red , the
bindings inherited from x = s can be identified in every ri by labeling them with
†. Thus we label letrec-bound variables and the bound expressions in surface po-
sitions that are derived from s. However, in contrast to the proof of Proposition
4.33, we do not label the in-expression, only the bindings. An important invariant
is that for all †-labeled bindings yi = ai, and all free variables y in ai, y is also a
†-labeled variable, which follows by induction on the length of the reduction from
the fact that s is closed. If a WHNF w of R[(letrec x = s in x)] is reached, then
from the WHNF we can gather all the labeled bindings in the top level letrec
environment of w, and construct the expression s′ := (letrec Env in x), where
we denote x1 = s1, . . . , xm = sm by Env and where x1 = x for convenience. Now
we compute one possible answer v from s′ as required by our claim as follows.
We perform n of the following macro-copy-steps within the environment Env
into the “in”-expression:
One step consists of replacing all occurrences of xi by si in the “in”-expression
(initially x) for all xi = si in Env s.t. si is an abstraction or a cv-expression. We
do this in parallel for every letrec-bound variable, which is the same as applying
the substitution σ formed from Env . This is repeated n + 1 times. The last step
is to remove the top-environment, and to replace all letrec-bound variables in
the in-expression by }. This may produce either }, or the desired answer v, and
we have s′

A−→ v according to Definition 6.3. Since we assumed that a WHNF is
reached, and s was in a reduction context before, it is not possible that only }
is reached, since the initial variable x was in a reduction context and there must

51

be at least one normal-order copy into x. Thus at least one of the macro-copy
steps will replace x by a constructor-expression or an abstraction.

Now we have to show that R[v]↓. We start with the normal-order reduction
Red of R[(letrec x = s in x)]. This reduction Red can be rearranged, such
that all the reductions that are within the †-labeled Env are performed before
all other reductions, i.e., R[(letrec x = s in x)] ∗−→ R[s′]

no,∗−−−→ rn. Note that
R[(letrec x = s in x)] ∗−→ R[s′] is in general not a normal-order-reduction, how-
ever, it is easy to see that the first part of the reduction of (letrec x = s in x)
is an LS-normal-order reduction to a WHNF, since x is “demanded” first. The
subsequent reductions remain in application surface positions. The reduction
R[s′]

no,∗−−−→ rn is normal-order, and has length at most n. Now we argue why
this is true: We view the reduction sequence Red as a mixture of reduction steps
within †-labeled components, or reduction steps that modify the non-†-labeled
components. All reductions are in surface contexts. Hence the †-reductions can
be shifted to the left over non-†-reductions, since they are independent. The
arguments are: the only interactions between the †-labeled expressions and the
rest are (lll)-reductions, or (cp)-reductions of †-labeled values into other parts of
the expression. Further invariants are: all †-labeled bindings in s′ are at appli-
cation surface positions, and it is not possible to copy non-†-labeled values into
terms within a labeled binding.

Now we focus on the reduction sequence R[s′]
no,∗−−−→ rn of length at most n.

We have to show that for s′
∗−→ v, we also have R[v]

no,∗−−−→ u, where u is a
WHNF. The term v and its descendents can be represented using φ≥k, which
is defined as follows: φ≥k(r) denotes r modified by the following operations:
first k applications of σ are performed (the substitution corresponding to the s-
environment Env), then any number of (cp)-steps using Env and variables in r
as target variables, and as a final step [}/xi]-replacements in r for all let-bound
variables in Env . Now we have to show that (φ≥n+1R[s′])↓. This can be done by
first computing forking diagrams, which are as follows:

·

no,a

��

φ≥k // ·

({(no,a)∪(abs)∪(lll)∪(cp)∪(cpbot)∪(ve)},∗)

���
�
�
�
�
�

·
φ≥k−1 //_____ ·

We show the prototypical (non-trivial) examples for the diagram above:

C[(x a)]

no,cp

��

φ≥k // C[(vi a)]

C[(si a)]
φ≥k−1 //_____ C[(vi a)]

52

C[(letrec y = c y1 y2 in D[y])]

no,cp

��

φ≥k // C[(letrec y = c v1 v2 in D[y])]

{(abs)∪(lll)∪(no,cp)∪(cp)∪(cpbot)∪(ve)},∗

���
�
�
�
�
�

C

[
letrec y = c y1 y2

in D[c y1 y2]

]
φ≥k−1 //________ C

[
letrec y = c v1 v2

in D[c v1 v2]

]
Using the diagrams, it is easily shown by induction that, finally, we obtain a
WHNF that is the result of a macro-copy reduction, using φ≥i, where i ≥ 1. The
argument now is that the replaced positions do not contribute to the WHNF w,
hence it remains a WHNF after applying φ≥1. This means there is a reduction
sequence R[v] ∗−→ w′, where w′ is a WHNF. Finally, the standardization theorem
4.35 shows that R[v]↓.

2

7 Least Upper Bounds and Sets of Answers

In the following we use the approximation calculus.

7.1 On Contextual least Upper Bounds

In the following we use the calculus LS .

Definition 7.1. Let W be a set of expressions, and let t be an expression. Then
t is a lub of W iff ∀u ∈ W : u ≤c t, and for every s with ∀u ∈ W : u ≤c s, it is
t ≤c s.
The expression t is called a contextual lub (club) of W , iff for all contexts C:
C[t] is a lub of {C[r] | r ∈W}. The notation is t ∈ club(W).
An expression t is called a linear club (lclub) of W , if the set W is a ≤c-ascending
chain of expressions. The notation is t ∈ lclub(W). The set of all t such that
t ∈ lclub(A) for some A ⊆W is denoted as sublclub(W).

We write C[W] for the set {C[r] | r ∈W} and a context C in the following.

Proposition 7.2. The following are equivalent:

1. t is a club of W :
2. ∀u ∈W : u ≤c t and for every context C: if C[t]↓, then there is some u ∈W ,

such that C[u]↓.

53

Proof. 1 =⇒ 2:
Let t be a club of W , and let C be a context such that C[t]↓, but for all u ∈
W : C[u]↓ is false. If for some u ∈ W : C[u] is open, or if C[t] is open, then
we instantiate all free variables in C[t], C[u] for u ∈ W by Ω, say σ is this
substitution, and obtain the same properties. But then Ω is the club of σ(C[W]),
which is a contradiction to σ(C[t])↓.
2 =⇒ 1:
Let C, D be contexts. We will show that D[t] = lub((D[W])). Let r be an ex-
pression with ∀u ∈ W : D[u] ≤c r. The assumption implies that if CD[t]↓, then
there exists a u ∈ W with CD[u]↓. Since D[u] ≤c r we have also C[r]↓. Hence
CD[t]↓ ⇒ C[r]↓. Since this holds for all contexts C, we have proved D[t] ≤c r.
This implies for all contexts D : D[t] = lub(D[W]), hence t is a club of W .

2

Example 7.3. The following ascending chain λx1.Ω, λx1, x2.Ω, . . .λx1, . . . , xn.Ω
has Y K as lclub, which is equivalent to the value λx.(Y K).

Lemma 7.4. Let s be a closed expression. Then s ∼c Ω if and only if ans(s) =
∅.

Proof. If s ∼c Ω then obviously ans(s) = ∅. On the other hand, if s 6∼c Ω,
then s↓, hence there is some WHNF w wth s

∗−→ w, and from a WHNF, we can
construct at least one v with s

A−→ v. 2

Lemma 7.5. Let t be a closed expression with t 6∼c Ω. Then t ∈ club(ans(t)).

Proof. For v ∈ ans(t) 6= ∅, we have v ≤c t by Lemma 6.4. Assume there is
some r with v ≤c r for all v ∈ ans(t). We have to show that t ≤c r: Therefore
let R be a reduction context with R[t]↓. By Theorem 6.5, there is some answer
v ∈ ans(t), such that R[v]↓. Hence R[r]↓, since v ≤c r. This means that
R[t]↓ =⇒ R[r]↓, hence by the context lemma we have t ≤c r. 2

This yields an immediate criterion for contextual preorder:

Corollary 7.6. Let s, t be closed expressions. If for all w ∈ ans(s), we also have
w ≤c t, then s ≤c t.

Now we are left with the task to devise a method for showing that w ≤c t for
an answer w.

Definition 7.7. Let W be a set of closed expressions. The set cl lclubω(W) is
defined as the least set that contains all its linear clubs of ascending chains, and
contains W . If sublclub(W) = W , then we say the set W is closed w.r.t. linear
clubs.

Proposition 7.8. Let w be a closed answer and t be a closed expression. If
w ≤c r for some r ∈ cl lclubω(ans(t)), then w ≤c t.

54

Proof. Let ri be an ascending chain with ri ≤c t for all i, let r be the club of
the chain ri, and let w ≤c r. Then r ≤c t by the definition of club. Transitivity
of ≤c implies w ≤c t. 2

Another criterion is:

Theorem 7.9. Let s, t be closed expressions. If for all v ∈ ans(s) there is some
w ∈ sublclub(ans(t)) with v ≤c w, then s ≤c t.

Proof. This follows from Corollary 7.6 and Proposition 7.8. 2

However, note that a simplistic subset-condition is insufficient to show s ≤c t.
We provide an example similar to one in [Man05], where, however no recursive
let is available.

Example 7.10. Let

s = λx.Y K
f z = choice z (letrec u = f z in λx.u)
t = f Ω

The function f can be given explictely using standard methods as f =
Y (λg.λz.choice Ω (letrec u = g z in λx.u))
Then for every v ∈ ans(t), we have v <c s. However, it is easy to see that s ∼c t,
since λx.Y K is the club of the ascending chain of values in ans(t).

Example 7.11. Let s, t be expressions defined as

s = repeat True
repeat = Y (λr.λx.Cons x (r x))
t = Y (λa.choice Ω (Cons True a)

Then s and t have comparable sets of answers: all approximations of the infinite
list (Cons True (Cons True . . .)).

We also require some tools for comparing answers:
The properties of the contextual preorder show that for constructor expressions,
we have

Proposition 7.12. (c s1 . . . sn) ≤c (c t1 . . . tn) is equivalent to si ≤c ti for all
i.

which together with Ω ≤c t for all t is a strong criterion for answers consisting
only of constructors, variables, and }.

55

8 Criteria for Abstractions

Besides the trivial method to compare two abstractions λx.s and λx.t by α-
equivalence, perhaps combined with other correct transformations, we give a
stronger condition for λx.s ≤c λx.t that is based on applying the abstractions
to all possible pseudo-value arguments instead of using the criterium for all
contexts.
First we have to extend the answer-method to open expressions.

Lemma 8.1. [Context lemma for Closing Reduction Contexts] Let s, t be ex-
pressions. Then s ≤c t iff for all reduction contexts R: if R[s], R[t] are closed
and R[s]↓, then also R[t]↓,

Proof. We only have to show the if-direction. Let R be a reduction context
such that R[s]↓. Let R[s] → r1 → . . . → rn be a normal-order reduction where
rn is a WHNF. It is no restriction to assume that all free variables of s and also
of t are captured by R: If not, we can add enough bindings x = y to the top
level environment of R, which is a correct transformation since (ve) and (gc) are
correct transformations. If R doesn’t have a top level letrec-environment, then
we add one consisting of these bindings. The modifications do not change the
property of being a reduction context. Then the reduction rules and the defini-
tion of normal-order imply that for any substitution σ into the free variables
of R[s], the reduction σ(R[s]) → σ(r1) → . . . → σ(rn) is also a normal-order
reduction to a WHNF. We choose σ such that all free variables are mapped
to Ω. The context σ(R′) is the desired reduction context. Since R′ captures
al variables of s, t, the expressions R′[s], R′[t] are closed and R′[s]↓, hence by
assumptions also R′[t]↓, Easy inspection shows that this can only be the case, if
also R[t]↓, since Ω can never be in a reduction context in the normal reduction
corresponding to R′[t]↓. Using the context lemma, we can conclude that s ≤c t. 2

A pseudo-value environment Env is an enviroment where every bound term is a
(closed) pseudo-value.

Proposition 8.2. 3 Let s, t be two expressions. Then s ≤c t iff for all pseudo-
value environments Env: if (letrec Env in s), (letrec Env in t) are closed
then (letrec Env in s) ≤c (letrec Env in t).

Proof. The only-if direction is obvious.
In order to show the other direction, we will use Lemma 8.1. Let R be a
reduction context such that R[s], R[t] are closed and such that R[s]↓. It is no
restriction to assume that R[·] is of the form (letrec Env1,Env2 in R′[·]),
where Env1 binds all the variables in FV (s, t), and (letrec Env1 in [·]) is
closed. Since s′ := (letrec Env1,Env2 in R′[s])↓, there is a normal-order
reduction Red of s′. In the same way as in the proof of Theorem 6.5, we
can commute reductions, and obtain a pre-evaluated environment Env ′1, such

3 Note that this Proposiiton and the next Theorem are wrong, see publications on
http://www.ki.informatik.uni-frankfurt.de/papers/schauss/

56

that also s′′ := (letrec Env ′1,Env2 in R′[s])↓. The environment Env ′1 will
be further modified into an environment Env ′′1 as follows: Every binding
x = r, where r is not an abstraction and not a cv-expression is changed
into x = }. Again we have s(3) := (letrec Env ′′1 ,Env2 in R′[s])↓, since
the }-bindings do not influence the normal-order reduction. Let n be the
length of a normal-order reduction of s(3). Then we further modify Env ′′1
into Env (3)

1 by applying the substitution σ corresponding to Env ′′1 at least
n times to the environment, and then replacing all remaining occurrences
of variables by }. Similar as in the proof of Theorem 6.5, we argue that
(letrec Env (3)

1 ,Env2 in R′[s])↓. Using the knowledge about correct transfor-
mations, it can be proved using induction that (letrec Env (3)

1 ,Env2 in R′[s]) ∼c

(letrec Env (3)
1 ,Env2 in R′[(letrec Env (3)

1 in s)]), hence
(letrec Env (3)

1 ,Env2 in R′[(letrec Env (3)
1 in s)])↓.

Now we argue the reverse way for t: by the assumption, we
have (letrec Env (3)

1 ,Env2 in R′[(letrec Env (3)
1 in s)]) ≤c

(letrec Env (3)
1 ,Env2 in R′[(letrec Env (3)

1 in t)]), hence
(letrec Env (3)

1 ,Env2 in R′[(letrec Env (3)
1 in t)])↓. The same argument

as above shows that also (letrec Env (3)
1 ,Env2 in R′[t])↓. Since } ∼c ⊥ is the

≤c-least element, and (cp) does not change the ∼c equivalence class, we also
have (letrec Env ′′1 ,Env2 in R′[t])↓. Since (letrec Env ′′1 ,Env2 in R′[t]) can be
reached from (letrec Env1,Env2 in R′[t]) by reductions that only decrease by
≤c due to results in Sections 3, we finally have (letrec Env1,Env2 in R′[t])↓.
Since the reduction context R was arbitrary, we can apply Lemma 8.1 and
obtain that s ≤c t

2

Theorem 8.3. λx.s ≤ λx.t iff for all closed pseudo-values v: (λx.s) v ≤
(λx.t) v.

Proof. Follows from Proposition 8.2, since (λx.s) v ∼c (letrec x = v in s) 2

Corollary 8.4. Let v, w be answers with v ≤c w. Then there are the following
two cases:

1. v = c s1 . . . sn, v = c t1 . . . tn, and si ≤c ti for all i.
2. v = λx.v′, w = λx.w′ and Theorem 8.3 is applicable.

9 Finite Simulation Method and Examples

As proved in the last section, we have several criteria to prove s ≤c t for closed
expressions s, t.

1. If ans(s) ⊆ ans(t), then s ≤c t.
2. If for every v ∈ ans(s), there is some w ∈ ans(t) with v ≤c w, then s ≤c t.

57

3. If for every v ∈ ans(s), there is some w ∈ ans(t) with v ≤c w or some
w ∈ sublclub(ans(t)) with v ≤c w, then s ≤c t.

4. if s = c s1 . . . sn, t = c t1 . . . tn, and si ≤c ti for all i, then s ≤c t.
5. if s = λx.s′, t = λx.t′, and for all pseudo-values v: s v ≤c t v, then s ≤c t.

The following (non-effective) procedure is a prototype of “finite simulation” for
testing two closed expressions s, t whether they are in a relation s ≤c t:

1. Compute the answer-sets ans(s) and ans(t).
2. For every value v ∈ ans(s), find a value w ∈ ans(t) such that v ≤c w.
3. For the v ≤c w-test, use the following tests, recursively:

(a) If v = (c s1 . . . sm), w = (c t1 . . . tm), make sure that vi ≤c wi for all i.
(b) If v = λx.s′, w = λx.t′, make sure that for all pseudo-values a:

(v a) ≤c (w a), again using this procedure.

Under the assumption of finiteness of answer-sets, of boundedness of computa-
tion depth and decidability of all involved tests, the procedure is effective.
Proving s ∼ t for expressions s, t can be done by checking s ≤c t and t ≤c s.

Example 9.1. As an example let

s = (letrec x = (choice Ω (Cons 1 x)) in x)
t = repeat 1

Then s can be reduced to the answers (Cons 1(Cons 1 . . . (Cons 1 Ω))), and t
can be reduced to the same answers, where we use the equivalence of } and Ω.
This implies that s ∼c t.

Example 9.2. This example shows that the finite simluation
can distinguish expressions that differ only by sharing. Let
s := (letrec x = choice True False in λy.x) and let t =
λy.(letrec x = choice True False in x). These expressions
are contextually different, using the context C[·] := (letrec z =
[·] in if (z ⊥) then (if (z ⊥) then True else ⊥) else True). The
answer-sets are as follows: ans(t) = {t}, and ans(s) = {λy.True, λy.False},
which are clearly different.

Example 9.3. Our method allows to show the algebraic laws for choice:
For all closed expressions s, r, t, we have

choice s s ∼c s
choice s t ∼c choice t s
choice (choice s t) r ∼c choice s (choice t r)

This follows from the criteria in Corollary 7.6, since the set of answers is the same
on the left and right hand side. It is also possible to show that the identities for
choice hold for all expressions, and hence the identities can be used everywhere
as program transformation:
For all expressions s, r, t, the identities above hold.

58

This can be shown as follows using Proposition 8.2: For every pseudo-value
environment Env that closes s and t, we consider (letrec Env in choice s t)
and (letrec Env in choice t s). The computation of values starts by a normal-
order reduction, and obviously, the first step in the normal-order reduction is
the choice-reduction. But then the right and left hand side have the same set of
answers, hence they are equivalent. The same can be done for the other identities.

10 Conclusion

We have shown that in a call-by-need lambda calclus with letrec, where the
proof method of Howe fail to prove correctness of co-inductive simulation, the
correctness of finite simulation can be established as a tool with almost the same
practical power. It is based on computing all possible answers that can be derived
from closed expressions and then comparing the answers. The local approach to
compare constructor expressions and abstractions is more or less the same as for
similarity.
Further research is to adapt and extend the methods to an appropriately defined
simulation, perhaps a proof of the open problem of correctness of simulation
in [SSSS04] could be solved, and to investigate an extension of the tools and
methods to a combination of may- and must-convergence.

11 Acknowledgements

We thank David Sabel for reading several versions of the paper and for helpful
comments.

References

AB02. Zena M. Ariola and Stefan Blom. Skew confluence and the lambda calculus
with letrec. Annals of Pure and Applied Logic, 117:95–168, 2002.

Abr90. Samson Abramsky. The lazy lambda calculus. In D. A. Turner, editor, Research
Topics in Functional Programming, pages 65–116. Addison-Wesley, 1990.

AK96. Z. M. Ariola and Jan Willem Klop. Equational term graph rewriting. Funda-
mentae Informaticae, 26(3,4):207–240, 1996.

AK97. Zena M. Ariola and Jan Willem Klop. Lambda calculus with explicit recursion.
Inform. and Comput., 139(2):154–233, 1997.

BN98. Franz Baader and Tobias Nipkow. Term Rewriting and All That. Cambridge
University Press, New York, NY, USA, 1998.

Gor99. Andrew D. Gordon. Bisimilarity as a theory of functional programming. The-
oret. Comput. Sci., 228(1-2):5–47, October 1999.

Han96. Michael Hanus. A unified computation model for functional and logic pro-
gramming. In POPL 97, pages 80–93. ACM, 1996.

How89. D. Howe. Equality in lazy computation systems. In 4th IEEE Symp. on Logic
in Computer Science, pages 198–203, 1989.

How96. D. Howe. Proving congruence of bisimulation in functional programming lan-
guages. Inform. and Comput., 124(2):103–112, 1996.

59

KSS98. Arne Kutzner and Manfred Schmidt-Schauß. A nondeterministic call-by-need
lambda calculus. In International Conference on Functional Programming
1998, pages 324–335. ACM Press, 1998.

Mac02. Elena Machkasova. Computational Soundness of Non-Confluent Calculi with
Applications to Modules and Linking. PhD thesis, Boston University, 2002.

Mac07. Elena Machkasova. Computational soundness of a call by name calculus of
recursively-scoped records. In 7th International Workshop on Reduction Strate-
gies in Rewriting and Programming (WRS 2007), Electron. Notes Theor. Com-
put. Sci. ENTCS, 2007.

Man04. Matthias Mann. Congruence of bisimulation in a non-deterministic call-by-
need lambda calculus. In Prel. Proc. of the Workshop on Structural Operational
Semantics, SOS ’04, (London, 2004), volume NS-04-1 of BRICS Notes Series,
pages 20–38, August 2004.

Man05. Matthias Mann. A Non-Deterministic Call-By-Need Lambda Calculus: Prov-
ing Similarity a Precongruence by an Extension of Howe’s Method to Shar-
ing. PhD thesis, Dept. of Computer Science and Mathematics, J.W.Goethe-
Universität, Frankfurt, Germany, 2005.

MSC99. Andrew K. D. Moran, David Sands, and Magnus Carlsson. Erratic fudgets: A
semantic theory for an embedded coordination language. In Coordination ’99,
volume 1594 of Lecture Notes in Comput. Sci., pages 85–102. Springer-Verlag,
1999.

MT00. Elena Machkasova and Franklyn A. Turbak. A calculus for link-time compila-
tion. In ESOP’2000, volume 1782 of LNCS, pages 260–274, 2000.

Pey03. Simon Peyton Jones. Haskell 98 language and libraries: the Revised Report.
Cambridge University Press, 2003. www.haskell.org.

PGF96. S. Peyton Jones, A. Gordon, and S. Finne. Concurrent Haskell. In Proc. 23th
Principles of Programming Languages, 1996.

Plo75. Gordon D. Plotkin. Call-by-name, call-by-value, and the lambda-calculus. The-
oret. Comput. Sci., 1:125–159, 1975.

SSM07. Manfred Schmidt-Schauß and Matthias Mann. On equivalences and standard-
ization in a non-deterministic call-by-need lambda calculus. Frank report 31,
Inst. f. Informatik, J.W.Goethe-University, Frankfurt, August 2007.

SSS06. David Sabel and Manfred Schmidt-Schauß. A call-by-need lambda-calculus
with locally bottom-avoiding choice: Context lemma and correctness of trans-
formations. Frank report 24, Inst. f. Informatik, J.W.Goethe-University, Frank-
furt, January 2006. submitted for publication.

SSS07. David Sabel and Manfred Schmidt-Schauß. A call-by-need lambda-calculus
with locally bottom-avoiding choice: Context lemma and correctness of trans-
formations. Math. Structures Comput. Sci., 2007. accepted for publication.

SSSS04. Manfred Schmidt-Schauß, Marko Schütz, and David Sabel. On the safety of
Nöcker’s strictness analysis. Frank report 19, Inst. f. Informatik, J.W.Goethe-
University, Frankfurt, 2004.

SSSS08. Manfred Schmidt-Schauß, Marko Schütz, and David Sabel. Safety of Nöcker’s
strictness analysis. J. Funct. Programming, 18(04):503–551, 2008.

WPK03. J. B. Wells, Detlef Plump, and Fairouz Kamareddine. Diagrams for meaning
preservation. In RTA, volume 2706 of LNCS, pages 88 –106, 2003.

60

http://www.brics.dk/NS/04/1/
http://www.brics.dk/NS/04/Ref/BRICS-NS-04-Ref/

	A Finite Simulation Method in a Non-Deterministic Call-by-Need Calculus with letrec, constructors and case
	Manfred Schmidt-Schauss and Elena Machkasova
	Introduction
	The Calculus L
	Syntax and Reductions of the Functional Core Language L
	Normal Order Reduction and Contextual Equivalence
	Normal Order Reduction
	Contextual Equivalence

	Contextual Equivalence of L
	Context Lemma

	Correctness of Transformations
	Extra Transformations
	Correctness of (lbeta), (lapp), (lcase), (lseq), (seq-c), (case-c)
	The Correctness Proof Method Using Diagrams.
	Correctness of (cp)
	Correctness of (lll)
	Correctness of (seq)
	Correctness of (ve)
	Correctness of (abs1)
	Correctness of a Surface Version of (case-in), (case-e)
	Correctness of (cpcx).
	Correctness of (caseD)
	Correctness of (gc), (ucp), and (abs2)
	Property of (choice)
	Property of .
	Standardization
	On Reduction Lengths

	A Simpler Calculus
	Pre-Evaluation of Expressions
	Least Upper Bounds and Sets of Answers
	On Contextual least Upper Bounds

	Criteria for Abstractions
	Finite Simulation Method and Examples
	Conclusion
	Acknowledgements

