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1 Introduction

Interconnections in the banking system, as fostered by fast developments in financial innovation,

increased degree of complexity in modern financial systems and the diffusion of over the counter

derivatives, made systemic risk endemic and epidemic at crises times. Interconnections, initially

set-up to facilitate risk sharing, have created channels whereby financial distress is quickly spread

onto the entire system. Not surprisingly the rationale behind government intervention and bank

bail out programs in the aftermath of the recent financial crisis was to be found not in the too-

big-to-fail argument but in the too-interconnected-to-fail argument. The dangers associated with

highly interconnected systems come from the possibility that the financial distress, experienced

by one bank, might turn through cascading effects into full-fledged systemic risk, whose monitor,

assessment and prevention has become paramount. Indeed one of the most important legacies

of the 2007-2008 crisis has been the creation and development of a number of institutions whose

mission is that of measuring systemic risk, monitoring financial vulnerabilities and safeguarding

the financial system1.

Against this background the literature offered no concrete paradigm to account for network

externalities in combination with micro-founded decisional rules and financial (mis)-incentives, to

quantify systemic risk and to forecast the development of financial contagion. We do a step in that

direction by constructing a dynamic network model with heterogenous and micro-founded banks,

whose links emerge endogenously from the interaction of intermediaries’ optimizing decisions and

an iterative tatonnement process which determines market prices. The financial system featured

by our model consists of a network of N financial institutions which solve for an optimal portfolio

allocation taking into account liquidity and capital constraints and for given market prices. Banks

hold liquid assets, such as cash and deposits, lend to each other in the interbank market and invest

in non-liquid assets, such as bonds or collateralized debt obligations. Banks differ at time zero

for the returns on non liquid assets due to different information and administrative cost. Such

1 In the U.S. the Dodd—Frank Wall Street Reform and Consumer Protection Act (See Financial Stability Oversight
Council [13]) had created the Financial Stability Oversight Council, whose statute states in Title 1 that the primary
objective of this institute is that of monitoring systemic risk. The main mission of the European Systemic Risk Board,
established 16 December 2010, is the prevention or mitigation of systemic risks to financial stability in the Union
that arise from developments within the financial system. The Financial Stability Board (FSB) has been established
to coordinate, at the international level, the work of national financial authorities in addressing vulnerabilities and
to develop and implement strong regulatory and supervisory policies.
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differences in returns gives rise, at time zero, to heterogenous optimal portfolio allocation, hence to

excess demand or supply of bank borrowing and lending. Banks’ links are given by the cross-lending

and borrowing that takes place in the interbank market. A crucial feature of our model is that the

links in the adjacent matrix characterizing the network are not assigned randomly as in random

network models but emerge endogenously from the combination of the optimal banks’ decision and

the tatonnement processes taking place in both, the interbank market and the market for non liquid

assets. Furthermore dynamic adjustment in our model emerges as an intrinsic feature of the market

adjustment even in absence of an initial shock impulse. Network externalities thus emerge as a

manifestation of individual optimizing behavior and market adjustment. Since non-liquid assets are

marked-to-market, the model also features pecuniary externalities via the occurrence of fire-sales.

Contagion in this model occurs through the transmission of shocks to non-liquid assets. Shocks

are generated from a multivariate lognormal distribution and are randomly drawn for a certain

number of periods. Contagion manifests itself through direct and indirect effects. The direct effects

comprise common exposure to risky assets and local network externalities. First, if banks invest in

the same financial products their balance sheets are correlated due to the multinomial nature of the

shocks. Second, as banks are interlinked through counterparty exposure in the interbank market,

a defaulting bank transmits losses to creditor banks. Indirect contagion effects manifest through

fire-sales (pecuniary externalities). A negative shock in the value of non liquid assets induces several

banks to de-leverage, a credit event that produces a fall in the market price and a cascade of losses

in marked-to-market balance sheet of all other banks.

We simulate our model in response to adverse shocks to non-liquid assets, interpreted as a

credit event, and analyze the evolution of the banking network and the contribution of each bank

to systemic risk in response to changes in the prudential policy parameters. Systemic risk is

computed through the Shapley value2 and refers to the probability default for the whole system.

We also compute the contribution to systemic risk of each individual bank in the system: the

latter depends crucially on the banks’ asset position and on the inter-linkages in the network. The

prudential policies considered are changes in the liquidity requirements, changes in the capital

requirements and changes in the assets’ risk weights as outlined by the Basel III agreements.

2See Bluhm and Krahnen [18] and Borio, C., N. Tarashev and K. Tsatsaronis [8].
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Generally speaking changes in policy and regulations affect the strength of the cascade in response

to shocks and the extent of both, the network and pecuniary externalities. We find that an increase

in the capital requirement, as well as an increase in the risk weights, induce a bell shaped dynamic

of overall systemic risk. At low levels of capital requirements, for instance, banks endowed with

high return investment tend to leverage up, therefore increasing the demand for liquidity as well

as the lending rates in the interbank market. The market clusters the connections around the high

leveraged banks, which end up contributing heavily to systemic risk. As the requirement raises (say

beyond 0.1), the capital constraint becomes binding and banks start to hoard liquidity: the banking

network becomes sparse and systemic risk decreases. Increases in liquidity requirement instead tend

to decrease overall systemic risk: robustness tend to prevail on fragility and the network becomes

safer.

The rest of the paper is structured as follows. Section 2 compares our model to the recent

literature on systemic risk. Section 3 describes the model, the equilibrium formation process, the

shock transmission and the measure of systemic risk. Section 4 describes the numerical results and

comments on the ability of the model to replicate stylized facts characterizing financial contagion.

Section 5 analyzes the policy designs. Section 6 concludes. Appendices describe the optimal

portfolio problem and the algorithm used to solve the model. Tables and figures follow.

2 Relation to the Literature

This paper is related to two main strands of the literature. It is related to the literature on models

of economic networks and to an emerging literature on systemic risk, part of which also makes use

of network models.

Over the last decade network models have emerged as an alternative paradigm to analyze a

variety of economic and social problems ranging from the formation of contacts and links in labour,

financial and product markets to the formation and evolution of research networks (see Jackson

[17]). The recent financial crisis has conveyed increased attention toward models featuring pecuniary

and network externalities. The first model to exploit network externalities in banking systems is

Allen and Gale [2]. Recently Gai, Haldane and Kapadia [15] have developed a random network

model for the inter-bank market and have analyzed the effects of complexity and concentration
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onto financial fragility. In their model inter-linkages are driven by Poisson distributions and evolve

in response to shocks: in contrast to them our model allows for micro-founded optimizing decisions

of agents and for an endogenous formation of the network links. Most importantly, and contrary

to most of the models featuring random networks, dynamic adjustment arises in our model as

an intrinsic outcome of the tatonnement equilibrium process without the need to resort upon an

impulse and propagation logic. Unexpected shocks can occur in our model, but they are not

essential to induce dynamic adjustment3. Allen et al. [3] consider a banking sector featuring an

interaction between network structure and funding maturity. Caballero and Simsek [10] focus on

the role of complexity in network models: given the intricate structure of inter-linkages, banks face

ambiguity when trading in the interbank market. This might amplify fire-sale when rumors of

financial vulnerabilities are released. Krahnen and Bluhm [18] analyze the formation of systemic

risk, through Shapley values, in a model with three interconnected banks. In their model tipping

points for the diffusion of systemic risk are determined by exogenously given heuristics, hence

contrary to us they do not analyze optimizing banks decisions. Finally Anand, Gai and Marsili [6]

analyze the effects of rollover risk in a model combining features from the global game theory and

from the random networks.

A number of other papers have dealt with the analysis of systemic risk: see for instance Lagunof

and Schreft [20], Rochet and Tirole [24], Freixas, Parigi and Rochet [14], Leitner [21], Eisenberg

and Noe [12], Cifuentes, Ferucci and Shin [11], Billio, Getmansky, Lo and Pelizon [21], Geanakoplos

[16]. Allen and Babus [4] provide an excellent recent survey. Finally our paper is related to the

literature studying the design of regulations aimed at abating systemic risk (see for instance Allen

and Gale [5]).

3 The Model

The financial system is made up with a population ofN banks. We define ex-ante for this population

a network g ∈ G as a set of ex-ante heterogenous banks N ∈ {1, ...., n} . Links are defined as cross

borrowing and lending which will be endogenously determined by the banks’ optimizing decision

and the markets’ tatonnement processes. The cardinality of the set is defined by ni(g) = |Ni(g)|.

3This feature also distinguishes our model from the traditional macro models on business cycle dynamics, which
mainly appealed onto the Frisch-Slutsky impulse and propagation approach.
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The n-square adjacent matrix G(t) of the network g describes the connections which arise after (t)

iterations of the tatonnement process. Given that our model features a directed weighted network,

banks i and j are directly connected if gij �= 0. Also given the nature of the connections, which

materialize in the form of borrowing and lending it is always true that gij = −gji, thus G is a

symmetric matrix with elements in the upper triangle carrying an opposite sign with respect to

elements in the lower triangle.

Our network features optimizing banks which undertake an optimal portfolio allocation by

maximizing profits subject to liquidity and capital requirement constraints and a non zero non

liquid asset constraint. Banks decides about the optimal amount of liquid assets (cash), the optimal

amount of lending and borrowing in the interbank market, and the optimal investment in non-

liquid assets (bonds or collateralized debt obligations). Network externalities materialize through

the cross-lending and borrowing taking place in the interbank market, while pecuniary externalities

materialize since non-liquid assets are marked-to-market.

Banks differ at time zero for their allocation of non-liquid assets, which results, after opti-

mization has taken place, in heterogenous optimal portfolio allocations. The optimizing decision

together with the dynamic adjustment taking place in the various asset markets determines the

final portfolio allocations and the final cross-borrowing and lending positions: the latter represent

the entry of the adjacent matrix G characterizing the interbank network. Sequential tatonnement

processes4 take place in the interbank market and in the market for non liquid assets. The sequence

of events can be described as follows. At time zero banks’ optimization leads to heterogenous port-

folio allocations in terms of both, interbank lending and investment in non-liquid assets. In the

subsequent period banks enter the interbank market to search for the closest possible counterpart

match: if the latter is not found an aggregate excess demand (or supply) of liquidity will materi-

alize and will determine a change in the price of lending (or borrowing). At the new price banks

re-optimize, re-enter the market with a new demand for borrowing (or lending) and start the search

process once again. The described sequence of iterative steps converges to an equilibrium when

the relative excess demand (or supply) of interbank liquidity is below a certain tolerance level5. A

4See MasColell [23] and Mas Colell [22].

5The crucial condition for convergence is that the rate at which the price (vector) approaches the equilibrium
value behaves as a Liapunov function namely it is a real-valued function which takes decreasing values along the
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similar iterative process takes place in the market for non-liquid assets.

Contagion occurs when the financial system is subject to shocks to non-liquid assets. Initial

shocks to non liquid assets are distributed according to a multivariate lognormal distribution and

are transmitted through the changes in balance sheet values as triggered by changes in the market

price (fire-sale externalities) and through the direct lending inter-linkages (network externalities)

and

3.1 Banks’ Optimization

Banks’ portfolio allocations are determined through an optimization process. As banks are het-

erogenous, individual asset allocations carry an index i. Aggregate variables or market prices are

instead denoted without the index. As explained above the iterative market adjustment process is

intrinsically dynamic6. For this reason we also equip our variables with a specific time index t.

Banks in the model start at time zero with a certain amount of deposits, di0 ,and wealth, nw
i
0.

At every generic period t of the iterative process and given the prevailing market prices, banks

choose the optimal amounts of liquid assets, lending in the interbank market, blit, borrowing in the

interbank market, bbit, and investment in non liquid asset, nl
i
t. Aggregate excess demand (or supply)

in the interbank market is defined as z1t (pt) = (blt−bbt) =
∑N
i=1(bl

i
t−bb

i
t). The links in the adjacent

matrix G representing the network links will be given by the final allocation of cross-borrowing

and lending in the interbank market after optimization and the iterative market adjustment have

come to convergence.

It is assumed that cash and deposits are risk-less assets which pay no interest, so that their

prices in the market are normalized to one7. Bank lending yields an interest rate rblt , which will

adjust in the iterative process to equilibrate aggregate excess demand and supply. Bank borrowings

on the other side requires the payment of an additional premium so that the interest rate is given

by rblt + ∆
bl
t , where ∆

bl
t is the spread between borrowing and lending. Finally, non-liquid assets

yield an interest of rnlt . We assume that at time zero banks receive different interest rates on non-

dynamic trajectory and a value of zero at the stationary point.
6Time here is not meant to be the actual real time but rather to represent the intervals occurring during and trial

and error procedure that conveys the banks’ counterpart search in the interbank market to actual matches.
7Once the equilibrium is reached in the remaining markets (the interbank and the market for non liquid assets),

equilibrium in the market for liquid asset is implied by Walras’ law.
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liquid assets, reflecting different information costs and efficiency. The heterogeneity in the asset

returns, rnl,it , implies that banks will differ at time zero for their optimal allocation of non liquid

assets. The ensuing difference in the equity to liquidity ratios implies that banks will enter the

interbank market with heterogenous excess demands (or supplies) for liquidity. Since interest rates

on non-liquid assets, rnl,it , do not depend upon the equilibrium in the interbank market, they can

be set exogenously8. Finally notice that non-liquid assets are traded at a market price, pnlt : the

latter is taken as given by atomistic banks ex ante and is determined ex post as result of the market

equilibrium (see next section).

A summary of bank’s balance sheet is depicted in Table 1.

Assets Liabilities

Cash Deposits
Bank lendings Bank borrowings
Non-liquid assets Equity

Table 1: Banks’ Balance Sheets

Banks’ optimization problem is detailed as follows. Banks’ objective function is given by:

πit = r
bl
t · bl

i
t − (r

bl
t +∆

bl
t ) · bb

i
t + r

nl,i
t ·

nlit
pnlt

(1)

Banks face a liquidity constraint, of the type envisaged in Basel III agreements, due to which

they have to hold at least a percentage, α, of their deposits in cash9:

cit ≥ α · d
i
t (2)

Furthermore banks face a capital requirement constraint, as they must maintain an equity

ratio, erit, of at least τ :

erit =
cit + p

nl
t · nl

i
t + bl

i
t − d

i
t − bb

i
t

χ1 · p
nl
t · nl

i
t + χ2bl

i
t

≥ τ (3)

where χ1 and χ2 are risk weights assigned respectively to the two risky assets, namely non liquid

investment and bank lending. The risk coefficients are set exogenously as part of the regulatory

system. Realistically we assume that banks need to hold less capital for bank lending than for

8 It is also implicitly assumed that banks are atomistic so that their optimal allocation of non liquid assets cannot
influence the returns.

9For simplicity this fraction is assumed constant.

8



investments in non-liquid assets, i.e. χ1 ≻ χ2. If banks’ equity ratio, erit, is lower than the

minimum capital requirement, τ, banks begin to reduce their exposure into bank lending (or in

non-liquid assets): effectively this results in a reduction of the denominator of equation 3, relatively

to the numerator, until the required ratio is achieved. This implies for instance, as we shall see later

on, that any change in the regulatory capital requirement, τ, will result in a change of the demand

(or supply) of bank lending in the interbank market, hence in a change of the cross-exposure of the

network. Changes in the regulatory levels of the risk weights parameter χ1 and χ2 will also trigger

an adjustment in the interbank market. The higher are those weights, the larger is the extent to

which banks have to re-adjust their non-liquid asset and bank lending positions in order to satisfy

the capital requirement. We further assume that if a bank cannot fulfill the capital requirement it

defaults: this event obviously will also result in an ex post change of the structure of the adjacent

matrix, G(t).

Two further observations are worth noticing. First, note that liquid assets do not appear in

the denominator of equation 3; this is so since banks do not have to hold capital for their liquid

asset holdings. Second, note that non-liquid assets are marked to market, which gives the potential

for fire-sale spirals in the model.

At last, banks face a no-short sales constraint :

nlit ≥ 0. (4)

The latter is needed for the problem to be well-behaved: this indeed rules out the possibility

of negative prices for non-liquid assets.

In Appendix A banks’ maximization problem is reformulated in its dual form, namely as a

minimization problem subject to smaller-equal constraints. As banks differ in terms of their initial

equity allocation, the individual optimization gives rise to heterogenous portfolio allocations. The

next section shows how individual portfolio positions are allotted in the financial market giving rise

to an equilibrium price and an aggregate asset allocation.

3.2 Price Tatonnement Stability Conditions

Since the price of liquid assets has been normalized to one, a dynamic equilibrium adjustment only

takes place in the interbank market and in the market for non-liquid assets. We assume that in
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both markets the equilibrium takes place through a tatonnement process, namely a trial and error

process taking place in fictional time and run by an abstract agent bent on finding and restoring

the equilibrium after any perturbation10. A crucial assumption of tatonnement processes is that

the actual trading never takes place until the dynamic price adjustment has reached convergence.

In this section we outline some general conditions under which global and local stability, namely

the convergence of any price trajectory to the equilibrium level, is guaranteed for both markets.

Stability of equilibrium is important for two reasons, First the stability conditions implicitly define

the requirements that the numerical analysis would need to satisfy to guarantee that the system,

perturbed by a shock, can return to an equilibrium. Second, since inter-bank lending determines the

entry of the matrix describing network inter-linkages, equilibrium stability is a sufficient condition

for the existence of an ergodic adjacent matrix.

The price vector in our model is given by pt =
[
p1t , p

2
t

]
=
[
rblt , p

nl
t

]
. Furthermore the excess

demand function can be defined as follows: zt(pt) =
[
z1t (pt), z

2
t (pt)

]
= [(blt − bbt), nlt] , where

z1t (pt) = (blt − bbt) =
∑N
i=1(bl

i
t − bb

i
t) represents aggregate excess demand in the interbank market

and z2t (pt) =
∑N
i=1 nl

i
t represents aggregate excess demand in the market for non liquid asset. If

we start with an initial price vector p0 which is not an equilibrium, namely zt(p0) �= 0, the demand

and price adjustment will take place according to the following differential equation:

dp
j
t

dt
= cjzjt (pt) (5)

where j indicates the reference market and cj is a speed adjustment factor. Global stability

implies that prices, moving along the above dynamic trajectory, converge toward the equilibrium.

One possibility for this to happen is that in presence of an aggregate excess demand zt(pt) prices

in the market adjust so as to cause a proportional decrease in the magnitude of all excess demand

and supply. In vectorial notation this implies that Dzt(pt)(
dp
dt
) = −λzt(pt), where λ represents

the factor of proportionality. Rearranging the last system of differential equations one obtains the

following solution for the price trajectory:

dp

dt
= −λ [Dzt(pt)]

−1 zt(pt) (6)

10See Mas-Colell and Whinston [23], and Mas-Colell [22].
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A sufficient condition for restoring stability after small shocks is the existence of the inverse

of Dzt(pt).

3.3 Equilibrium in the Interbank Market: Iterative Procedure

Once individual asset positions are determined we obtain the equilibrium in the interbank through

an iterative trading process on bank lending and borrowing. At time zero banks start with different

optimal portfolio allocations which also imply heterogenous excess demand and supply of lending

and borrowing. Banks enter the market with their optimal demand of borrowing and lending and

search for the closest match. If a close match is not found, the price of bank lending, rblt , adjusts in

response to the aggregate excess demand and supply. Given the new prices banks will re-optimize

and start a new search. Convergence is achieved when the relative matching error is below a certain

tolerance level.

The steps in the numerical implementation of the iterative procedure can be descried as follows.

At the beginning banks set three reference points: an upper interest bound,
−

rbl0 , a lower interest

bound, rbl0
_
, and the actual lending rate, rbl0 . It is assumed that

−

rbl0 ≤ r
bl
0 ≤ r

bl
0
_
. Given those bounds

and the initial level of the returns banks optimization might result in excess demand or supply of

lending. To fix ideas let’s assume that it results in in an excess supply of bank lending. In this

case the lending rate will adjust downwards to re-equilibrate bank lending. The new lending rate is

adjusted by rbl1 =
rbl
0
−rbl

1

2 . Given this new lending rate, banks re-optimize their portfolio allocation,

which result in a new bank lending position. Gradually the excess supply of bank lending is

absorbed through a sequential adjustment of the lending rate. The opposite adjustment takes

place if demand for liquidity exceeds supply. The process converges when the relative matching

error, defined as
|z1
t
(pt)|

(blt−bbt)
is smaller than some specified tolerance value.

3.4 Equilibrium in the Market for Non-Liquid Assets: Iterative Procedure and

Shock Transmission

An additional iterative process through allotment takes place in the event in which non liquid

assets of financial intermediaries are hit by a shock11. It is assumed that shocks to the financial

11We follow Bluhm and Krahnen [18] to model the shock transmission process.
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system take the form of a loss to banks’ non-liquid assets.12 In response to the shock banks start

to sell non liquid assets in the interbank market with the aim of re-equilibrating their equity ratios.

The start of a fire-sale induces an excess supply and a fall in the price of non-liquid assets. It is

assumed even for this market that the dynamic adjustment toward equilibrium takes the form of

an iterative tatonnement process on the lines of the one described in the previous section. Figure 1

outlines the transmission routine which is taken out along equations 1 to 4, for given bank lending

and borrowing.

Analytically the market price resulting from the tatonnement process, takes the form of the

following inverse demand function:

pnlt = exp(−µ
∑

i

sit) (7)

where si are the amount of non liquid assets traded in the market. The excess demand/supply

of non-liquid assets can therefore be inferred by the inverse of equation 3 evaluated at the optimal

portfolio allocation.

Numerically the process can be detailed as follows. Prior to any shock, namely when all banks

fulfill the capital requirement and sales of the non-liquid asset are zero, the market price, pnl0 ,

equals 1. A shock chosen from a multivariate lognormal distribution hits a cluster of banks. As a

consequence the same cluster of banks begins selling non-liquid assets to fulfill capital ratios and

the supply curve shifts upwards, resulting in si0 > 0. In correspondence of the excess demand s
i
0, a

discrepancy between the offered price, which is pnl,bid1 , and the demanded price, which is equal to

one, arises. The resulting market price, which is labeled pnl,mid1 ,is the average between the prices

offered and demanded. The ensuing fall in the market price depresses further the value of non

liquid assets. Since non-liquid assets are marked to market in the banks’ balance sheet, this loss

in value triggers further sales of non-liquid assets. Notice however that sales occur at a decreasing

rate so that convergence can be reached after a limited number of iterations. In this process if

some banks are unable to full-fill the capital requirement, they are forced to default and to exit the

network.

Importantly, the changes of market prices in response to non liquid asset sales, are the driver

12Other shocks are possible, for example a sudden drop in non-liquid asset prices or the default of a bank in the
system.
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of the fire-sale effects and the indirect cascades channels. As explained earlier indeed, falls in

the market price depress the balance sheet values of other banks, potentially resulting in further

defaults.

Appendix B contains a detailed description of the algorithm used to simulate the shock trans-

mission.

3.5 Calibration

The model parameters are chosen to match values observed in the financial system and/or imposed

by supervisory policy. The parameter α, the amount of liquid assets banks have to hold as a

function of the amount of deposits, is set to 0.1, thus being equivalent to the cash reserve ratio

in the U.S. The parameter χ1, the risk weight for non liquid assets, is set to 1: this value reflects

the risk weight applied in Basel II to commercial bank loans. The parameter χ2, the weight for

interbank lending, is set to 0.2, which is also the risk weight actually applied to interbank deposits

between banks in OECD countries. The amount of equities and deposits that banks have initially

on their balance sheets is set to 40 billions and 400 billions, respectively, which is the amount

of Deutsche Bank’s respective positions in U.S. Dollars on its consolidated balance sheet from 31

March 2010. Finally, following federal reserve bank regulatory agency definitions, banks must hold

a capital ratio of at least 8%.

3.6 Systemic Risk Measure

Generally speaking systemic risk occurs in the event in which a shock to a single institution spread

to the system in a way that determines the collapse of the entire system, rather than simply the

default of individual banks or of a limited group of financial intermediaries. A prerequisite for the

emergence of systemic risk is the presence of inter-linkages and interdependencies in the market, so

that the default (or a run) on a single intermediary or on a cluster of them leads to a cascade of

failures, which could potentially undermine the functioning of the entire financial system. While

there is much agreement about the general definition of systemic risk, there is much less agreement

upon its quantitative measure. The traditional analysis for measuring systemic risk was based upon

the judgement of whether the defaulting bank or group of intermediary was too big to fail: such an

assessment is based on indicators such as the institution’s size relative to the system, market share
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concentration, based for instance on the Herfindahl-Hirschman Index, the oligopolistic structure of

the market and the presence of barriers to entries. Recently and due to the emergence of complex

financial relations, the focus of systemic risk measures has been shifted toward an assessment of

the too interconnected to fail. It is on this last concept that we focus. One measure which has been

recently proposed to determine the link between systemic risk and interconnection is the Shapley

value13, an indicator which allows us to determine the contribution of individual banks to aggregate

risk. In game theory this value is used to find the fair allocation of gains obtained by cooperation

among players. For a game consisting of N players the Shapley value is defined as:

ξi(v) =
1

n!

∑

K∋i;K⊂N

v(K)− (v(K)− {i}) (8)

where N is the set of all players, v(K) is the value obtained by coalition K, including player

i and (v(K)− {i}) is the value of coalition K without player

i. The Shapley value for player i is the average contribution to the gain of the coalition over all

permutations in which players can form a coalition. The Shapley value has the following properties:

1. Pareto efficiency. The total gain of a coalition is distributed.

2. Symmetry. Players with equivalent marginal contributions obtain the same Shapley value.

3. Additivity. If one coalition can be split into two sub-coalitions then the pay-off of each

player in the composite game is equal to the sum of the sub-coalition games.

4. Zero player. A player that has no marginal contribution to any coalition has a Shapley

value of zero.

Since the number of permutations involved in calculating the Shapley value increases strongly

with the number of banks, the analysis is subject to the curse of dimensionality. However, following

Stanojevic, Laoutaris and Rodriguez [26] and as displayed in equation (9) the Shapley value can

be approximated by the average contribution of banks to systemic risk over l randomly sampled

permutations:

φ̂i(v) =
1

l

∑

Kl∋i;Kl⊂N

v(K)− v(K − {i}), (9)

The parameter l determines the discrepancy between the real Shapley value and its estimate, that

is, the error. It can be shown that this estimator is unbiased and efficient.

13See Shapley [25]. See also Tarashev, Borio, and Tsatsaronis [8] and Bluhm and Krahnen [18]. Alternative
measures of systemic risks are proposed for instance in Adrian and Brunnermeier [1] through a CoVaR methodology.
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Generally speaking the Shapley value is affected by the degree of bank interconnections. In

our model interconnection occurs through both, direct and indirect links. Direct links are given

by the correlations of shocks to non liquid assets and the exposure to others’ banks balance sheet.

Indirect links are given by the effects that a fall in the market price of non-liquid assets has on the

balance sheet of the entire system. Generally speaking the overall degree of interconnections in our

model is affected by the parameters characterizing the optimizing decision: we will return on this

point later on. The link between interconnections and systemic risk implies that any parameter

change which affects the inter-connection in the network structure will have an impact on systemic

risk as well.

4 Adverse Shocks and Prudential Policy: Effects on Network Evo-

lution and Systemic Risk

In this section we analyze the effects of changes in the policy and regulatory parameters and in

response to a shock to non-liquid assets on the contribution of each individual bank to systemic

risk. The contribution to systemic risk will be interpreted through the lenses of the evolution in

the network structure: certain changes in the regulatory and policy parameters will determined

certain optimal portfolio allocation, which through the evolution of the network structure, will

affect the dynamic contribution to systemic risk. To fix ideas we will consider a system of N = 11

which we consider as representative of mildly concentrated banking systems. The parameter under

consideration are the fraction of investment in liquid assets, α, as determined by the liquidity

requirement according to the Basel III regulations; the regulatory capital ratio, τ, again set along

the lines of Basel III agreements; the risk weight, χ1 and χ2, which are also modeled in line with

the Basel III agreements14.

Figure 2 shows the changes in the contribution to systemic risk of each bank in response to

a shock to non-liquid assets and when the liquidity ratio, α, increases. Notice that the lines are

surrounded by confidence intervals which show the robustness of the results for different sizes of

the initial shock to non-liquid assets15. Overall systemic risk falls when α increases: see last panel

14A recent example of such a regulatory change has been discussed in face of the sovereign debt crisis in the euro
area: as default spreads on government bonds, normally part of banks’ equity investment, were spiking up regulatory
authorities have issued guidances aimed at changing the risk weight which banks attributed to government bonds.
15We obtain simulate 150 shocks and obtain the corresponding realizations of overall systemic risk and each bank’s
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in figure 2. Two effects arise in this context due to the robust yet fragile property of the network.

On the one side, increasing the liquidity requirement makes easier for banks to full-fill the capital

requirement constraint. In this case banks optimally choose to leverage more, hence to trade more

in the interbank market. This is particularly true for the banks who start with a high return on

non-liquid assets: for those banks it is indeed more profitable to invest (bank 7 for instance), hence

they tend to take up more risk by leveraging more. The increased demand for liquidity in the

interbank market raises the interest rate, rblt . The increase in banks’ leverage and in the price of

lending, rblt , makes the system more fragile as default rates increases. Moreover as inter-linkages

increase network externalities become pervasive and the cascading effect of the initial shock to

non-liquid asset becomes stronger. These mechanisms would generally increase both systemic risk

and the contribution of each bank to systemic risk, therefore making the banking system more

fragile. This effect indeed tends to prevail for levels of α between 0.2 and 0.6: for those levels the

network structure becomes more dense (see Figure 3 which shows the evolution in the topology of

the network) and the contribution to systemic risk of the most leveraged banks tend to increase

(panels 1 to 11 of Figure 2). On the other side, however, all banks become safer since they need

to hold more liquid assets on their balance: those assets indeed are not subject to the effects of

fire-sales and work as shock absorber as they provide precautionary buffer. This effect makes the

system more robust. The robust effect prevails as α increases and goes beyond 0.8. From this level

indeed liquidity in the interbank market gets scarce since banks have to hoard more, consequently

the network structure becomes more sparse and the contribution to systemic risk of each bank falls

sharply. We also observe that banks’ contribution to systemic risk abruptly goes down when they

switch from the status of heavy borrower to the one of liquidity hoarder.

Figure 4 shows the changes in the contribution to systemic risk of each bank in response

to a shock to non-liquid assets and when the capital requirement, τ, increases. As the capital

requirement increases, banks tend to lend only to banks with high returns on liquid assets: the

network then tends to cluster around a few leveraged banks (see third graph panel in figure 5,

which shows the evolution in the topology of the network). The increased demand for liquidity by

contribution to it. We then compute the mean over the 150 realizations and sort the realizations from the largest
to the smallest. The upper confidence band is taken above the 146th observation (roughly 2.5% of all observations).
From the sorted observations we take the 5th (again roughly 5% cut off) observation as lower confidence band. This
ensures that our confidence bands cover 95% of all realizations.
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the highly leveraged banks puts upward pressures on the interbank lending rate: this increases the

incentives of the low-leverage banks to invest less in non liquid assets as they can profit from the

lending activity. This mechanism raises overall systemic risk and the contribution of each bank

(particularly the more leveraged ones) to it: both network and pecuniary externalities operate in

the direction of increasing the diffusion of the cascade. As the capital requirement over-passes a

certain level (say 0.1) banks are forced to reduce their leverage to satisfy the capital constraint.

This reduces the demand for liquidity in the interbank market and the interbank lending rate,

which in turn also reduces the supply of liquidity. As a consequences the number of inter-linkages

decreases and the structure of the network becomes more sparse.

The evolution of the network in this case also features an evolving clustering structure. We can

identify indeed three groups of banks. The ones which experience high returns on non-liquid asset

investment (banks 1, 4, 7). At low levels of the capital requirement they have a high contribution

to systemic risk because by leveraging up they tend to transmit shocks to other banks. As the

capital requirement raises their demand for liquidity falls and so does their contribution to risk.

The second group of banks ( banks 3,5, and 9) namely the ones investing in non-liquid assets with

a medium range return. At higher levels of capital requirements the demand for liquidity of the fist

type of banks falls: the ensuing falls in the interbank lending rate encourages the second type of

banks to increase their demand to liquidity so as to invest in non-liquid assets. As the second group

of banks increases their leverage, their contribution to systemic risk also increases (although it falls

again when τ goes beyond 0.1). The third group comprises banks (bank 8 and 6) that invest in

non-liquid assets with low returns. For them it is more profitable to lend in the inter-bank market.

As liquidity provider they do contribute to the diffusion of the shock to non-liquid assets.

Figure 6 shows the changes in the contribution to systemic risk of each bank in response to a

shock to non-liquid assets and when the risk weight, χ1, increases. Figure 7 shows the evolution of

the network structure in this case. In the model increasing the risk weight on the non liquid asset

has an effect comparable to increasing the capital requirement ratio.

Finally figure 8 shows the changes in the contribution to systemic risk of each bank in response

to a shock to non-liquid assets and when the risk weight, χ2, increases. Figure 9 shows the evolution

of the network structure in this case. Overall, systemic risk first increases and then decreases after
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some point (see last panel in figure 8). As the risk weight increase systemic risk increases at first

since banks lose part of their lending through counterpart default, hence they have to liquidate a

higher fraction of non liquid assets to fulfill the capital requirement ratio. However, as the risk

weight gets larger a confidence crisis hit which induces banks to halt lending. Lending activity

would indeed undermine the possibility of fulfilling the capital requirement. At this stage the

overall amount of lending in the interbank market falls. The ensuing reduction in the number

of inter-connections lowers the potential for direct shock transmission (network externalities) and

reduces aggregate banks’ leverage. Overall at high levels of χ2banks become more cautious, less

inter-connected and less exposed: overall systemic risk therefore decreases.

5 Conclusions

One of the major legacies of the recent financial crisis is the quest for measuring, assessing and

monitoring systemic risk. So far, this task was made difficult by the mounting complexity of

the modern financial systems, all characterized by extensive degrees of interconnections, and the

lack of models apt to perform such tasks. We laid down a dynamic network model of banks, in

which heterogeneity, network externalities and fire-sale effects contribute to propagate financial

shocks through cascades. We have shown that certain policy and regulatory measures can reduce

contagion risks.

Several extensions are possible of our model, ranging from the introduction of maturity mis-

match to the analysis of the optimal financial regulator problem. All this is left for future research.
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6 Appendix A. Banks Optimization Problem: Dual Problem

Due to the linear nature of both the objective and the constraints in the portfolio optimization

problem and according to the Duality Theorem of Linear Programing we can reformulate the max-

imization problem as a minimization problem for the i’th bank subject to smaller equal constraints

yields:

minbli
t
,bbi

t
,nli

t

πt = −r
bl
t · bl

i
t + (r

bl
t +∆

bl
t ) · bb

i
t − r

nl,i
t ·

nlit
pnlt

s.t.

− cit ≤ −α · d
i
t

− cit − nl
i
t(1− χ1(τ)− bl

i
t(1− χ2(τ)) + bb

i
t) ≤ −d

i
t

−nlit ≤ 0

Reformulating the constraints in matrix notation AAA ·xxx ≤ bbb yields

• AAA =




−1 0 0 0
−1 −(1− χ1(τ)) −(1− χ2(τ)) 1
0 −1 0 0





• xxx =
(
cit nlit blit bbit

)′

• bbb =
(
−α · d −d 0

)′

7 Appendix B. The Algorithm

As outlined in Subsection 2.3, a shock to the financial system consists of a random percentage loss

of all banks’ non liquid assets (Step A) on Figure 1). In Step B), banks re-optimize their holdings

of cash and non-liquid assets subject to the constraints outlined in Equations (3) to (5). Note

that in this step interbank lending are given and not considered as choice variables. In Step C),

bankrupt banks are identified (that is, those that violate one of the constraints in the optimization

routine) and a shock to interbank lending is set up to those banks of which the creditor banks have

a negative net value (with the net value being the difference between a bank’s assets and liabilities).

Banks with a negative net value subtract the difference between their assets and liabilities, first
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proportionally from their interbank lending, and if there are no interbank lending left, from their

deposits (Step D)). After this shock has been assigned, banks again re-optimize their portfolio (Step

B). If there are no interbank shocks to assign and banks do not desire to change their holdings of

non liquid assets on their balance sheet, the shock has been transmitted. Systemic risk given the

shock is then calculated as the proportion of banks that default in the financial system. Expected

systemic risk is obtained via computing the average systemic risk resulting from a large number

of random shocks to the financial system, drawn from a multivariate normal distribution which is

centered at a loss of 5% and features a variance of 5, for each bank, respectively.
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Figure 2: Changes in the contribution to systemic risk for each bank in the network in response to
changes in the parameter α.
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Figure 4: Changes in the contribution to systemic risk in response to changes in the parameter τ.
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Figure 6: Changes in the contribution to systemic risk in response to changes in the parameter χ1.
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Figure 7: Changes in the network structure for changes in the value of the parameter χ1.

29



1 2 3

0

0.2

0.4

0.6

0.8
Bank 1

Chi2

C
o
n
tr

. 
to

 S
y
s
te

m
ic

 R
is

k

1 2 3

0

0.2

0.4

0.6

0.8
Bank 2

Chi2

C
o
n
tr

. 
to

 S
y
s
te

m
ic

 R
is

k

1 2 3

0

0.2

0.4

0.6

0.8
Bank 3

Chi2
C

o
n
tr

. 
to

 S
y
s
te

m
ic

 R
is

k
1 2 3

0

0.2

0.4

0.6

0.8
Bank 4

Chi2

C
o
n
tr

. 
to

 S
y
s
te

m
ic

 R
is

k
1 2 3

0

0.2

0.4

0.6

0.8
Bank 5

Chi2

C
o
n
tr

. 
to

 S
y
s
te

m
ic

 R
is

k

1 2 3

0

0.2

0.4

0.6

0.8
Bank 6

Chi2

C
o
n
tr

. 
to

 S
y
s
te

m
ic

 R
is

k

1 2 3

0

0.2

0.4

0.6

0.8
Bank 7

Chi2

C
o
n
tr

. 
to

 S
y
s
te

m
ic

 R
is

k

1 2 3

0

0.2

0.4

0.6

0.8
Bank 8

Chi2

C
o
n
tr

. 
to

 S
y
s
te

m
ic

 R
is

k

1 2 3

0

0.2

0.4

0.6

0.8
Bank 9

Chi2

C
o
n
tr

. 
to

 S
y
s
te

m
ic

 R
is

k

1 2 3

0

0.2

0.4

0.6

0.8
Bank 10

Chi2

C
o
n
tr

. 
to

 S
y
s
te

m
ic

 R
is

k

1 2 3

0

0.2

0.4

0.6

0.8
Bank 11

Chi2

C
o
n
tr

. 
to

 S
y
s
te

m
ic

 R
is

k

1 2 3

0

0.5

1

Financial System

Chi2

S
y
s
te

m
ic

 R
is

k

 Systemic Risk at Varying Degrees of 
Chi2

Figure 8: Changes in the contribution to systemic risk in response to changes in the parameter χ2.
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Figure 9: Changes in the network structure for changes in the value of the parameter χ2.
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