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Abstract

Evaluating the quality of credit portfolio risk models is an important question for both
banks and regulators. Lopez and Saidenberg (2000) suggest cross-sectional
resampling techniques in order to make efficient use of available data and to produce
measures of forecast accuracy. We first show that their proposal disregards cross-
sectional dependence in simulated subportfolios, which renders standard statistical
inference invalid. We proceed by suggesting another evaluation methodology which
draws on the concept of likelihood ratio tests. Specifically, we compare the predictive
quality of alternative models by comparing the probabilities that observed data have
been generated by these models. The distribution of the test statistic can be derived
through Monte Carlo simulation. To exploit differences in cross-sectional predictions
of alternative models, the test can be based on a linear combination of subportfolio
statistics. In the construction of the test, the weight of a subportfolio depends on the
difference in the loss distributions which alternative models predict for this particular
portfolio. This makes efficient use of the data, and reduces computational burden.
Monte Carlo simulations suggest that the power of the tests is satisfactory.
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1. Introduction

In the literature on credit risk, it is commonplace to refer to the problems of evaluating

the quality of credit portfolio risk models. Several years after the first models have

been proposed, there is only one paper which empirically tests their predictive ability

(Nickell, Perraudin and Varotto, 1999). One explanation for this scarcity of research

are concerns that evaluation procedures borrowed from the literature on market risk

models have little power when applied to credit portfolios.

To make efficient use of available data, Lopez and Saidenberg (2000) propose

evaluation methods for credit portfolio risk models based on cross-sectional

simulation. In the construction of the tests they assume that prediction errors of

portfolios resampled from the loss experience of one year are independent. As we

demonstrate in this paper,  this will not be the case in a typical setting. If the economy

moves into recession, for instance, credit losses will be above average both in the

entire sample and in randomly drawn subsamples. This renders standard statistical

inference invalid.

The major part of this paper is thus devoted to the development of reliable and

powerful test procedures for the evaluation of credit risk models. We propose to

compare the predictive quality of alternative models by comparing the probabilities

that observed data have been generated by these models. The test statistic is based

on a ratio of likelihoods, even though it is not a likelihood ratio test in the traditional

sense. Its distribution can be derived using Monte Carlo simulation. To exploit

differences in cross-sectional predictions of alternative models, the likelihood ratio

criterion is applied to subportfolios, and the test statistic is formed as a linear

combination of the subportfolio ratios.

Unlike Lopez and Saidenberg (2000), we do not recommend to resample these

portfolios randomly from the entire portfolio. Rather, the weight of a subportfolio

depends on the difference in the loss distributions which alternative models predict

for this particular portfolio. This makes efficient use of the data and reduces

computational burden. To gain intuition, consider a portfolio whose obligors belong to

one of two sectors. The correct default probability is 1% for the first, and 3% for the

second sector. Now assume that a risk analyst uses the default experience of this

portfolio to evaluate a model which posits a uniform default probability of 2%. If the

test is based only on the entire portfolio or random subsets, the inadequacy of the
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model will not be revealed as the expected default rate will be 2% in either case.

We examine the power of our proposed test procedures using Monte Carlo

simulations. The power appears to be satisfactory. With 10 years of data on annual

defaults, for example, it is similar to a market risk setting where two risk models are

compared based on 60 observations. For ease of exposition, the simulations are

conducted for simple two-state credit risk models which ignore migration and

recovery risk. However, the tests can easily be applied to more complex models, and

they do not require that the models under comparison are nested.

Our test procedure follows recent papers from the market risk literature in that tests

are based on the entire portfolio distribution rather than on quantiles (e.g. Berkowitz,

1999, or Crnkovic and Drachman, 1996). Related papers include Carey and Hrycay

(2001), who discuss various resampling strategies to construct expected loss

distributions from a default history. Sobehart, Keenan and Stein (2000) proposes

techniques for assessing the quality of individual default rate estimates, an important

input to credit risk models. Löffler (2000) quantifies the effects of input parameter

uncertainty on the reliability of credit risk models. A useful summary of available

credit risk models is given in Crouhy, Galai and Mark (2000). To the best of our

knowledge, our proposed approach is novel in two ways: first, in the use of

likelihoods to evaluate credit portfolio risk models, and second, in the judicious use of

subportfolios to increase the tests’ power.

The paper is organized as follows. Section 2 describes the methodology for the

evaluation of test procedures. Section 3 discusses the tests proposed by Lopez and

Saidenberg (2000). Section 4 presents our proposal and assesses its power. Section

5 contains sensitivity analyses, and Section 6 concludes.

2. Methodology for the evaluation of test procedures

A natural way for evaluating the performance of test procedures is to employ a Monte

Carlo study. We simulate a large number (10,000) of random default histories which

are all generated by one specific credit portfolio risk model. We then state the null

hypothesis that the default history is governed by some model specification, choose a

significance level, and apply a statistical test separately for each simulated default

history. The performance of the test is judged by two criteria: If the H0-model is the
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one that has generated the history, the rejection frequency in the simulations should

be equal to the chosen significance level. If the H0-model is incorrect, the rejection

frequency,  i.e. the power of the test, should be as large as possible.

We consider credit risk models whose output is a distribution of the expected number

of defaults within a portfolio. Thus, we neglect both migration risk and recovery rate

uncertainty, which renders a discrete distribution of expected and realized outcomes.

The framework we apply is similar to a two-state version of CreditMetrics1.  Default

correlations are modeled based on the asset value model of Merton (1974). There, a

firm defaults if its asset value falls below a critical level defined by the value of

liabilities. Correlations of changes of asset values thus translate into default

correlations.

In a two-state world, the credit portfolio risk models which have been developed in

the last few years are similar in the underlying structure and produce nearly identical

outputs when parameterized appropriately.2 For this reason, we are confident that

our results are of general interest even though we examine only one class of credit

portfolio risk models. In addition, the test procedures put forward in this paper can

also be used in more complex settings, e.g. when migration risk is added.

To capture asset correlations, asset value changes iA∆ are modeled through a K-

factor model:

iki

K

k
kki

K

k
i wZwA ε2

,
1

,
1

1 ΣΣ
==

−+=∆ , (1)

with Zk denoting the systematic factors, and εi the idiosyncratic risk of obligor i.3 The

Zk and εi  are assumed to be normally distributed with zero mean and a covariance

matrix equal to the identity matrix. As a consequence, asset value changes iA∆  also

follow a standard normal distribution.

The factor sensitivities wi determine asset correlations. In the simplest form of (1), a

one-factor model (K=1) with constant factor sensitivities wi=w, the mutual asset

correlation is equal to w². Default correlations can be calculated via the bivariate

                                           
1 Cf. JP Morgan (1997) for a general description of CreditMetrics.
2 Cf. Finger (1998), Koyluoglu and Hickman (1998), Gordy (2000), and Wahrenburg and Niethen
(2000).
3 Cf. Finger (1999), Koyluoglu and Hickman (1998), and Belkin, Suchower and Forest (1998b) for
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normal distribution. A borrower defaults whenever )(1
ii pA −Φ<∆ , where pi is the

unconditional default probability and Φ denotes the cumulative standard normal

distribution function. Given the realizations of the systematic factors Zk, the

conditional default probability pi|Zk equals
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Expected loss distributions are generated through a Monte Carlo simulation involving

1,000,000 scenarios for the number of defaults in the portfolio.4 To avoid zero

probabilities we fit exponential trends to the number of defaults, separately for both

tails of these discrete distributions. For the left tail of the distribution, the regression

parameters are estimated over an interval starting at the first point on which at least

10 random scenarios fell, and ending at the first point with at least 200 scenarios. All

numbers of defaults with less than 10 scenarios are replaced by the predicted trend.

For the right tail of the distribution, we proceed in the same manner. In the

parameterizations used in this paper, the R2 of the trend regressions is always larger

than 85%.

In the base case, we assume that evaluators of credit risk models observe 10 years

of annual data on homogeneous portfolios of 10,000 borrowers. The portfolios are

homogeneous in terms of constant model parameters and portfolio composition

across time. Portfolio weights are irrelevant as the evaluators only examine the

number of defaults. Throughout the paper, we set the unconditional annual default

probability equal to 1% for each obligor. In the base case, we also assume that there

is no serial correlation of defaults across time. The justification is that a credit

portfolio risk model should eliminate any serial correlation by conditioning on current

information.

                                                                                                                                       

applications of this model.
4 If unconditional default probabilities are equal across obligors, a quick way to perform the simulations
is i) draw N(0,I)-distributed random numbers for the factor realizations, ii) calculate the conditional
default probability, and iii) draw the number of defaults from a binomial distribution given the number of
loans and the conditional default probability. For descriptive statistics of simulated expected loss
distributions see appendix.
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3. The proposal of Lopez and Saidenberg

The main problem when evaluating credit risk models is the scarcity of data in the

time dimension. Lopez and Saidenberg (2000) suggest cross-sectional resampling

techniques to increase the power of evaluation procedures. Given a credit data set

covering T years of data for N loans, a large number R of subportfolios is randomly

drawn for each year t in T. In drawing the borrowers for a particular subportfolio,

Lopez and Saidenberg suggest to draw without replacement. They also recommend

to draw ‘large’ subportfolios, but do not discuss this issue in detail. For each

subportfolio, the credit loss distribution is forecasted and compared with the

subportfolio’s observed number of defaults. In a sense, the number of observations

available for model evaluation is thus multiplied by the factor R.

Lopez and Saidenberg propose tests for the predicted expected loss, predicted

quantiles and the predicted entire credit loss distribution. In the derivation of the tests,

the authors assume that observed prediction errors are independent and that a

model’s accuracy can be examined using standard testing procedures. As it turns

out, this assumption is invalid.

The lack of independence of subportfolio defaults results from the fact that any sub-

portfolio defaults drawn from a one-year default experience mirror the realization of

the systematic factors in this specific year. In a bad year, subportfolios will have a

relatively high number of defaults on average. In a good year, there will typically be

few defaults in the resampled portfolios. One consequence of this dependence is that

there will be cases where there is no violation of the predicted value at risk across all

subportfolios pertaining to one year.5

In the following, we conduct simulations to demonstrate that the lack of

independence can severely affect the performance of the test statistics proposed by

Lopez and Saidenberg. We proceed as follows:

1. Simulate 10,000 10-year default histories based on a one-factor asset value

model with an unconditional default probability of 1% and an asset correlation of

                                           
5 In fact, cross-sectional dependence arises even when we resample from a portfolio with zero default
correlation. Consider a homogenous portfolio with 1,000 obligors, a default probability of 0.01 and a
zero default correlation. If the chosen subportfolio size is 500, the 90% quantile for subportfolio
defaults is 10. With a probability of 46%, however, the overall number of defaults in the entire portfolio
is 9 or less. That is, in 49% of all cases you would not observe a violation of the 90% quantile in any of
the random subportfolios.
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5% (i.e. 2
iw = 0.05 for all i).

2. Draw 1,000 subportfolios for each year as proposed by Lopez and Saidenberg.

We do this for three different subportfolio sizes of 2,000, 5,000 and 8,000

borowers, respectively.

3. Simulate expected credit loss distributions of several credit risk models, one of

which is equal to the one used for generating the default histories. While keeping

the unconditional default rate constant at 1%, we vary the assumed asset

correlations (1%, 2.5%, 5%, 7.5%, and 20%).

4. Implement one of the test statistics proposed by Lopez and Saidenberg and

calculate the rejection frequencies for all models in question.

We concentrate on the quantile test proposed by Lopez and Saidenberg.6 Under the

assumption that the predicted quantiles are accurate and observed violations of the

quantiles are independent, these violations are draws from a binomial distribution.

Whether or not the percentage of observed violations α̂  is equal to the chosen

confidence level α  can be tested using the likelihood ratio statistic

( ) ( )[ ]yRTyyRTyLR −•−• −−−= )1(log)ˆ1(ˆlog2)( ααααα ,     (3)

where y is the number of violations across the T*R subportfolios. In the simulations,

we examine the performance of a test using the 90% quantile, using a significance

level of 10%.

As a preliminary analysis, we compute the frequency of 90%-quantile violations

across all simulated subportfolios. As we generate 10,000 10-year default histories

and draw 1,000 subportfolios for each year, there are 100,000,000 subportfolios in

our sample. The results are summarized in Table 1.

                                           
6 Lopez / Saidenberg (2000), p. 160.
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Table 1: Simulated frequency of 90%-quantile violations (correct correlation
assumption is 5%)

Correlation Assumption Frequency of  90%-quantile violations for a subportfolio size of
2,000 5,000 8,000

1.0% 19.1% 20.5% 20.7%
2.5% 13.7% 14.6% 14.7%
5.0% 10.0% 9.8% 9.9%
7.5% 7.2% 7.3% 7.2%
20.0% 3.5% 3.2% 3.2%

Since the test is based on the 90%-quantile we expect the frequency of quantile

violations to be 10% for the correct model, which has an asset correlation of 5%. This

is indeed the case. (The small deviations from 10% are due to simulation error.)

Falsely assuming lower correlations leads to a higher frequency of violations, and

vice versa. The results demonstrate that the chosen models differ considerably from

each other. The subportfolio size does not affect the average frequency of quantile

violations.

We now calculate the likelihood ratio test statistic (3) separately for each of our

10,000 histories. The test results are summarized in Table 2. The frequency with

which the null hypothesis is rejected decreases with increasing risk (see column

three). With a subportfolio size of 20%, the rejection frequency equals 95.8% for a

credit risk model with 1% correlation. Viewed in isolation, this would indicate that the

test is powerful. For a null hypothesis of 20% correlation, the rejection frequency

equals 69.6% which still is a satisfactory result. Disturbing, however, is the rejection

frequency of 88.1% for the 5%-correlation model. As this is the model which has

generated the histories, the figure should be 10% which is the chosen size of the

test. The result suggests that the test is of little use since the probability that the true

model will be rejected is, first, much higher than the assumed size and, second,

higher than the probability of rejecting a model with a false correlation assumption.

A second problem of the quantile test is the large number of scenarios where there

are no violations at all (see column 4). In these cases the test statistic is not defined.

The number of scenarios without any violations rises as either the correlation

parameter is increased relative to the correlation of the default history or a larger

subportfolio size is used. A higher correlation implies higher risk and a wider credit

loss distribution. Thus, the probability of extreme events is higher as well. The
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second pattern arises because, for a given realized default rate, the probability of

drawing subportfolios with a high default frequency goes down when the subportfolio

size is increased. This results from the fact that the number of defaults in the

resampled subportfolios follows a hypergeometric distribution.

The last column of Table 2 will be interesting when comparing the Lopez and

Saidenberg quantile test with the test statistic which we will propose in the next

section. It displays the frequency that the likelihood ratio statistic )(αLR  of the false

model is higher than that of the true one. With a subportfolio size of 20% the

frequency is always above 50% and increases with the distance to the true model.

When the subportfolio size is increased, the values drop below 50% for some

correlation assumptions. In the next section, it will be shown that the corresponding

figures for our test statistic are better.

To sum up, as the R subportfolios are not cross-sectionally independent the standard

test statistics proposed by Lopez and Saidenberg cannot be used. This also holds if

 Table 2: Simulated performance of the Lopez and Saidenberg quantile test
(correct correlation = 5%, significance level of quantile test = 10%)

Subportfolio size H0 (Correlation) Rejection
frequency of H0

Runs with no
violation

Runs with
LR(False)>LR(True)

2,000 1.0% 95.8% 0.2% 65.8%
2.5% 91.6% 1.2% 54.9%
5.0% 88.1% 2.4%
7.5% 85.6% 4.2% 59.0%
20.0% 69.6% 23.2% 72.9%

5,000 1.0% 89.6% 2.0% 64.8%
2.5% 78.4% 6.6% 53.0%
5.0% 65.7% 15.4%
7.5% 57.6% 23.2% 43.4%
20.0% 37.7% 49.2% 60.0%

8,000 1.0% 81.2% 4.2% 60.4%
2.5% 64.0% 12.3% 45.0%
5.0% 48.5% 24.2%
7.5% 39.3% 33.7% 29.8%
20.0% 20.5% 61.5% 50.3%
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one tested the complete loss distribution instead of the 90%-quantile, or ran Mincer-

Zarnowitz regressions to examine unbiasedness of the forecasted credit losses. Each

of the tests proposed by Lopez and Saidenberg requires independent draws.

One might think of modifying the test procedure by drawing subportfolios with

replacement. This would mitigate some of the problems, but the contemporaneous

dependence of subportfolio losses would remain. Another possible solution would be

to remove the dependence by conditioning the forecasts of subportfolio losses on the

default experience of those borrowers which are not included in this specific

subportfolio. While this might be a valid and useful procedure in some cases, it would

fail to detect false models in others. For example, it would not be possible to

discriminate between models which posit that asset values are driven by one factor

with a constant factor sensitivity w, and which differ only in the assumed sensitivity w.

Another remedy would be to simulate the distribution of the test statistics in the

presence of cross-sectional dependence. This is one element of the alternative test

procedures which we will present in the next section.

4. Evaluating models based on likelihoods

4.1 Outline of the methodology

The basic idea of our approach is to examine the likelihood that a given default

history has been generated by a particular credit portfolio risk model. Consider a

history of T annual observations on the number of defaults in a portfolio. Call this

empirical distribution h(t). Credit risk model A produces an expected distribution of

the number of annual defaults. For each possible number of defaults x, it specifies

pA(x,t), the probability of the number of defaults being equal to x in year t. The

probability of observing a default history h(t) under model A is thus

∏
=

=
T

t
AA tthpL

1

)),((               (4)

This holds true if the annual losses are serially independent or any existing

dependence is reflected in the model’s prediction of losses.7

A first insight into the ability of this likelihood criterion to discriminate between

different specifications of credit portfolio risk models can be given by a simple
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simulation experiment:

1. Generate 10,000 10-year default histories based on a one-factor asset value

model with an unconditional default probability of 1% and an asset correlation of

5% (i.e. 2
iw = 0.05 for all i).

2. For each of the 10,000 histories, calculate likelihoods for different correlation

assumptions while keeping the default probability constant.

3. Compute the frequency that the likelihood of the 5%-correlation model is larger

than that of an alternative model.

Figure 1 shows this frequency for various correlation assumptions. In several of the

mutual comparisons, the figure is higher than 75%. When setting a correlation

assumption of 0% against the correct 5%, the observed likelihood of the latter is in all

simulations larger than that of the former. These results indicate that the likelihood

criterion is useful for discriminating between alternative models. Remember that we

computed similar statistics for the Lopez and Saidenberg quantile test. There, the

frequency figures for a subportfolio size of 2,000 ranged from 54.9% for the 2.5%-

correlation assumption to 72.9% for the 20%-correlation assumption. This compares

to 74% for the 2.5% correlation and 94% for the 15% correlation in Figure 1.

While there is some information in a simple comparison of likelihoods, it is not yet a

test statistic for which we can assess the power given some significance level of the

                                                                                                                                       
7 This assumption is tested in section 5.

Figure 1: Simulated frequency of observing likelihood (true model) >
likelihood (alternative model) for a one-factor model with uniform
sensitivities
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test. We therefore use the likelihood criterion as part of a test statistic for the

comparison of two competing credit portfolio risk models A and B. Specifically, we

construct the following likelihood ratio statistic:

�
��
�

�
−=

A

B

L
L

log2λ ,     (5)

where AL  is the observed likelihood of model A.

In standard statistics, maximum likelihood estimation involves setting up a likelihood

function and maximizing it for a set of parameters. The likelihood ratio test is used for

hypothesis testing in this setting. Imposing a valid restriction on the unrestricted

maximum likelihood should not lead to a large reduction in the log-likelihood function.

Since the unrestricted likelihood must always be larger than the restricted likelihood

and both likelihoods cannot be negative, the likelihood ratio will lie between 0 and 1.

Under regularity conditions, the large sample distribution of the likelihood ratio test

statistic λ  is chi-squared with degrees of freedom equal to the number of restrictions

imposed.8

In our setting, there are two sensible ways of using a likelihood ratio test:

1. We perform an optimization within a specified class of credit portfolio risk models

in order to obtain the model parameters which maximize the likelihood (4). Then

we test restrictions on this optimum using a likelihood ratio test. For example, we

might have another default correlation estimate derived from equity correlations

(as is done in CreditMetrics) and would like to test the null hypothesis that this

estimate is true given a default history.

2. We have two sets of parameters specified separately from the default history, and

would like to use the associated likelihood to discriminate between these

parameterizations. For example, it might be the case that we infer different default

correlations from equity data and, alternatively, from default rate volatilities (as is

done in CreditRisk+).9 Even if one agreed on using equity correlations to infer

                                           
8 Cf. Greene (2000), p. 152
9 Wahrenburg and Niethen (2000) compare Value-at-risk estimates of CreditMetrics and CreditRisk+ in
a two-state setting (default / no default) for the German construction industry. Default correlations are
estimated from equity correlations for CreditMetrics, while they are inferred from default volatilities for
CreditRisk+. The 5%-value-at-risk estimates differ by a factor up to 3 depending on the number of
obligors. Cf. also Crouhy, Galai and Mark (2000) and Koyluoglu,  Bangia, and Garside (1999).



13

default correlations, the use of different time periods or return frequencies could

produce conflicting parameter estimates. When conducting such mutual

comparisons, it is useful but not necessary to start with an a-priori assumption on

which of two rival models is the better one. An obvious criterion for this decision is

the observed likelihood, i.e. one would test the null hypothesis that the model with

the smaller likelihood is correct. For such a test, it is not necessary that the two

alternative models are nested in each other.

An important characteristic of many credit risk portfolio models is that the models’

parameters are not estimated using a history of the variable which is to be predicted.

Credit risk models predict the distribution of losses, while the parameters are

estimated, for example, based on equity returns (in the case of CreditMetrics), or

equity prices and volatilities (in the case of the KMV model). Thus, we believe that

evaluators of credit risk models often face a situation in which they have to choose

between alternative a-priori specifications. In addition, the models under analysis

may exhibit structural differences which complicate the standard testing procedure.

For these reasons, we focus on the second way of constructing a test, and examine

the first only in the course of the sensitivity analyses in section 5.

If we do not maximize the likelihood function in the first place, the test statistic, even

though it is a ratio of likelihoods, does not belong to the class of likelihood ratio tests

used in standard statistics. In consequence, the likelihood ratio statistic will not be

Table 3: Model specifications

Model A (taken to be the true model) Model B (representing the H0-hypothesis)

Case 1 ii vvZA ε21−+=∆ ii wwZA ε21−+=∆

Case 2 iiii vZvA ε21−+=∆ ,

   vi=v’ for i≤5000, vi=v’’ for i>5000

ii wZwA ε21−+=∆ ,

Case 3 ii vvZA ε2
1 1−+=∆ iik

k
kik

k
i wZwA ε2

3

2

3

2
1 ΣΣ

==
−+=∆

     wi1= w ⋅ Ii≤5000,    wi2= w ⋅ Ii>5000
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distributed as a chi-squared variable.10 However, we can simulate the distribution of

the test statistic under the null hypothesis and then work with this statistic as we do

with standard ones. In particular, we can freely choose a significance level, and

assess the power of the test.

In the base case setting, the construction of the test involves two steps (cf. Figure 2):

1. Set up the null hypothesis: parameters = parameter set of model B

2. Calculate the likelihood ratio statistic for 10,000 scenarios of 10-year histories

under H0 (= Model B), and compute the (1-α)-quantile of this distribution. In an

application of the test, the null hypothesis is rejected when the test statistic

exceeds this quantile. Thus, the type I error, which is the probability of rejecting

the null hypothesis when it is true, equals α.

The power of the test can be assessed as follows:

3. Calculate the likelihood ratio statistic (5) for 10,000 scenarios of 10-year histories

under model A and compute the frequency that the test statistic under model A

exceeds the (1-α)-quantile simulated in step 2. This is the power of the test if

model A is correct. The type II error, which indicates the likelihood of not rejecting

the null hypothesis when it is false, is equal to one minus the power.

Figure 2: Illustration of the likelihood ratio test statistic

                                           
10 Cf. Greene (2000), p. 153.
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4.2 Test specifications and their power

In this section, we will suggest variants of the likelihood ratio test introduced above,

and determine their power for selected specifications of factor models (see Table 3).

In each case, we will take alternative A to be the correct model, and test the

hypothesis that model B is correct.

We start by comparing two one-factor models with different sensitivities towards the

common risk factor (Case 1). We continue by allowing two different sensitivities

towards the common risk factor (Case 2). Here, cross-sectional differences between

the two rival models provide additional information. Finally, a one-factor model is

compared with a two-factor model, so that there are three different risk factors (Case

3). Again, there is information in the cross-section.11

Throughout, we do not test alternative assumptions on unconditional default rates,

but only assumptions on correlation parameters. The applicability of our results is not

affected by this restriction. In practice, there will most probably be more than one

combination of default rates and correlation assumptions which results in a default

history with an equally high probability, especially in large inhomogeneous portfolios

with many risk factors.

Case 1: The base case

We start by assuming that the observed default history is best explained by a one-

factor asset value model with an unconditional default rate of 1% and a constant

mutual asset correlation of 5% (model A). We test different null hypotheses by

changing the correlation parameter (model B). The test statistic is the likelihood ratio

given in (5).

Figure 3 shows the simulated power of our test statistic in the base case, i.e. the test

is based on a 10-year history of a portfolio with 10,000 borrowers. We choose a 10%

(one-sided) significance level for the test. If the false model posits a zero default

correlation, the null hypothesis is rejected in 100% of all cases. For models which are

close to the correct 5%, the power is lower. However, it is larger than 50% if the

assumed correlation is below 3% or above 9%.

                                           
11 For descriptive statistics of simulated expected loss distributions see appendix.
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It is instructive to compare our test statistic’s power to the power of an analogous test

in a market risk setup. Consider the situation in which we compare two market risk

models (model A and model B) whose expected loss distributions are normal with

zero mean and 90%-quantiles (10% Value at Risk) equal to those of the credit risk

models used in constructing Figure 3. Then we perform a test that Model B correctly

predicts the risk of the portfolio given that the portfolio returns are generated by

model A.  The most powerful test will be based on the sample portfolio variance, and

will use the fact that the sample variance divided by the true variance follows a chi-

squared distribution. (In the test we assume that the mean is known.) Figure 4 shows

the result of this comparison, using a one-sided test and varying the number of

observations available for the test. As can be seen, our test statistic’s power is similar

to a market risk setup in which a test is based on 60 observations. While the power

with 250 observations is far better, it is considerably lower with 10 observations -

even though our test also uses only 10 observations.12

                                           
12 This can be explained by noting that the normal distribution is the distribution with maximum
entropy. For a given number of observations, it is thus easier to discriminate between different credit
models as more distributional assumptions are imposed.

Figure 3: Power of test statistic in Case 1 (size of test=10%)
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Case 2: Exploiting unconditional cross-sectional differences

So far, we used only the aggregate annual defaults to construct a test. This will not

be efficient if there is additional information in the cross-section of the data. Consider

two models which exhibit an identical distribution of overall defaults, yet differ in the

prediction about the number of defaults in subsets of the portfolio. The likelihood

criterion would not be able to discriminate between the two models because the

likelihoods based on the total portfolio defaults would be the same.

As an illustration we analyze a portfolio whose defaults are driven by a one-factor

asset value model with an unconditional default rate of 1%. One half of the obligors

belongs to a sector with an intra-sector correlation of 2%, the other half to a sector

with an intra-sector correlation of 9%. (The inter-sector correlation is 4.2%). If we take

this setup to be model A and compare it with an alternative one-factor model B which

assumes a common factor sensitivity, the power curve, which is shown in Figure 5,

looks very similar to the one in which model A is a one-factor model with 5%

correlation (cf. Figure 3). This is due to the fact that the aggregate expected loss

distributions of these two A-models are nearly identical in their first and second

moments and do not differ much in higher moments, even though the sector portfolio

distributions differ. As a consequence, if the null hypothesis posits a uniform

Figure 4: Power of discriminating credit portfolio models in Case 1 and
comparable normally distributed portfolios (size of test = 10%)
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correlation of 5% the power is only 16%, little more than the size of the test.

One possible way of exploiting the cross-sectional information is to utilize the idea of

Lopez and Saidenberg and apply the likelihood-criterion (5) to randomly drawn

portfolio subsets. This would not make efficient use of the information, though. The

main disadvantage of drawing the subportfolios randomly is that we hardly ever get

extreme subportfolio compositions. Consider the present setting, i.e. Case 2 in which

a large portfolio consists of two sectors, each of which represents half of the portfolio.

If we draw a large number of reasonably large subportfolios (say, with 2,000

borrowers each), the probability that we obtain at least one subportfolio which

consists only of companies of one sector is extremely low.13 If the null hypothesis is a

common correlation of 5%, it is these extreme portfolio compositions which have the

greatest informational value for our purpose. The more evenly mixed a subportfolio

is, the more similar are the two models under comparison. Even if we obtain some

extreme portfolio compositions through resampling, their informational value will be

lost by averaging across all subportfolios. As a consequence, randomly drawing

subportfolios is unlikely to yield a significant increase of power.

A more efficient way of tackling the problem is to divide the portfolio into the extreme

                                           
13 Consider a portfolio of 10,000 obligors, one half of which belongs to one sector, the other half to
another. Drawing a subportfolio of 2,000 obligors without replacement, the probability that all obligors
belong to  single sector is lower than 10-314. By contrast, the probability of an even mixture of sectors is
2%.

Figure 5: Power of test statistic in Case 2 using the likelihood ratio for
aggregate defaults (size of test = 10%)
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subportfolios and calculate the test statistic for each of them. Thus, if we have a two-

sector portfolio and assume that companies of these two sectors have different

sensitivities towards a common systematic factor, we form two subportfolios

consisting of just one sector and proceed as though we were to test models on two

different portfolios. This produces an aggregation problem. We propose to calculate

the likelihood ratio test statistic for the entire portfolio ( Totalλ ) as well as for the

extreme subportfolios ( portSub−λ ), and then use numerical procedures to determine the

optimal weight for each of these figures:

)2(3)1(21 portSubportSubTotal aaa −− ++= λλλλ     (7)

We optimize the weights ia  by maximizing the frequency that the likelihood of model

A is larger than the likelihood of model B under 10,000 simulated histories of model

A. Afterwards we proceed as in the base case using the composite likelihood ratio

test statistic (7) instead of the simple statistic (5). The histories we use to assess

power are different from the ones used for optimizing the weights.

Applying this methodology to our example of a one-factor model A with two intra-

sector correlations of 2% and 9%, we are able to enhance the power of the test. The

power, depicted in Figure 6, is close to 100% for every specification of model B. The

reason for this substantial improvement is that the two correlation parameters of

model A are sufficiently different from each other. When we set a model with 1%

correlation against model A, for instance, correlation assumptions in the first

subportfolio are 1% and 2%, respectively, yielding a low power. Yet, in the second

Figure 6: Power of test statistic in Case 2 using composite likelihood ratios
for aggregate defaults and two subportolios (size of test = 10%)
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subportfolio we compare two models with 1% and 9% correlation, respectively. Here,

the power is large. After optimizing the weights of the two subportfolio statistics, we

will completely rely on the second subportfolio for the purpose of discriminating

between the two models.

Figure 7 shows the weights of the three components of the composite test statistic

which yielded the result shown in Figure 6. The optimal weights are multiplied by the

standard deviation of the respective components in order to facilitate interpretation.

The pattern of the optimal weights is plausible. For example, when the correlation

assumption of model B is equal to or less than 2%, the information value of the

subportfolio with a model A correlation of 9% is clearly dominant to the subportfolio

with a model A correlation of 2%. For this reason, the weight of the latter is equal to

zero. The opposite holds when the model B correlation is above 9%. In between, the

weight of the first subportfolio (model A correlation = 2%) is increasing. The optimal

weight of the total portfolio statistic always is close to zero, meaning that aggregate

defaults do not contain useful information in addition to the subportfolios. One might

expect the total statistic to receive a larger weight as the larger portfolio size reduces

noise in the observed defaults. In the chosen setting, however, this effect is small. As

will be shown in section 5, reducing the number of borrowers from 10,000 to 5,000

leads only to a minor decrease of power.

Figure 7: Standardized optimal weights for the composite test statistic in

Case 2 (λλλλ=a1λλλλTotal+ a2λλλλSub-portfolio 1+ a3λλλλSub-portfolio 2; size = 10%)
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Case 3: Exploiting conditional cross-sectional differences

Consider the case that model A is a one-factor model with a constant sensitivity v

across all obligors and that model B is a two-factor model with constant sensitivities

wi1= w⋅Ii≤5000 and wi2= w⋅Ii>5000. Thus, model B does not have a common factor.

If v equals w, factor sensitivities are identical for both models. As a result, the

unconditional sector portfolio distributions are also identical. If we calculated

subportfolio test statistics as before, we would compare two models with a correlation

of w², and therefore could not extract any information from the statistic. The picture

changes as soon as we condition the likelihood criterion on the other sector’s default

information. For model A, conditioning provides worthwhile information, because both

sectors depend on a common risk factor. For model B, conditioning does not change

the predicted loss distribution because the two sectors are not subject to a common

factor.

To exploit this difference, we use conditional probabilities to compute the likelihood

ratio statistic. In equation (4) we multiplied the probabilities pA(x,t), the probability of

the number of defaults being equal to x in year t under credit risk model A for t=1, ...,

T. Now we use the conditional probability pA(x1,t| x2) of observing x1 defaults in sector

1 given that x2 borrowers have defaulted in sector 2. In the framework of this paper,

this conditional probability is the binomial density of the number of defaults in sector 1

being equal to x1 in year t when the subportfolio size equals y in both sectors, and the

conditional default probability equals x2/y, That is, the conditional default probability is

equal to the observed default rate in sector 2. The conditional likelihood of observing

a default history h1(t) for subportfolio 1 under model A is:

∏
=

=
T

t
A

C
A thtthpL

1
21 ))(|),(( ,               (8)

and the test statistic for a subportfolio is ( )C
A

C
B

C LL /log2−=λ . Similar to the previous

section, we aggregate the total, unconditional likelihood ratio and the conditional

subportfolio ratios:

CC
Total portSubportSub

aaa
)2()1( 321 −−

++= λλλλ    (9)
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The weights are chosen to maximize the probability that the likelihood of model A is

larger than the likelihood of model B under the simulated history of model A.

Figure 8 shows that the use of conditional likelihoods can be very useful for

discriminating between models. We vary the factor sensitivities in model B, and hold

the correlation in model A constant at v²=5%. In each case, the power of the

aggregate test statistic (9) is 100%.

4.3 Summary of the test procedure

In general, we propose the following procedure for comparing two credit portfolio risk

models, A and B. Examine the models to determine subportfolios where differences

in the unconditional or conditional loss distribution are large. The test statistic

aggregates likelihood ratios of the two models, ( )AB LL /log2−=λ , computed

separately for the total portfolio and the chosen subportfolios, and using

unconditional or conditional likelihoods:

   C
M

C
m

C
mTotal MportSubmportSubmportSubportSubportSub

aaaaaa
)()1()()2()1(

...... 1321 −+−−−−
+++++++= + λλλλλλλ  (10)

The weights are chosen to maximize the probability that the likelihood of model A is

larger than the likelihood of model B under the simulated history of model A.  Use the

optimized weights to simulate the distribution of λ under model B, which is the null

hypothesis of the test. Choose a significance level α. For a given data set, estimate

λ. The hypothesis is rejected if the empirical λ exceeds the (1-α) quantile of the

Figure 8: Power of test statistic in Case 3 using composite likelihood ratios
for aggregate defaults and two subportolios (size of test = 10%)
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simulated distribution.

In the first step, the description of the test procedure is vague in the sense that there

is no precise recommendation on the nature and number of the chosen subportfolios.

In principle, one could choose all possible subportfolios or a random subset thereof,

and optimize their weights in the aggregate test statistic. However, the associated

computing time is likely to be prohibitive. We do not regard this as a serious limitation

of the test procedure as the choice of subportfolios will be evident in many cases. In

addition, choosing ‘wrong’ subportfolios will not decrease the power relative to the

benchmark test based solely on the aggregate portfolio distribution.

5 Additional analyses

In the previous section, we illustrated the power of likelihood ratio tests for various

credit portfolio risk models which differed in their correlation assumptions. To put

these results into perspective, we now vary the general setting of these tests, which

was held constant. Specifically, we estimate the power of the test in case 1, where

two one-factor models with different sensitivities are set against each other. The

following results should thus be compared to Figure 3, which shows the probability of

rejecting a model with correlation x% when the true model has 5% correlation.

We start by assessing the power when the portfolio under analysis contains only

1,000 or 5,000 borrowers instead of 10,000.  Figure 9 shows that the power is lower

when the portfolio size is reduced, as should be expected. However, the loss of

Figure 9: Power of test statistic in Case 1 for default histories with different
numbers of obligors (size = 10%)
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power is fairly small when the number of borrowers is 5,000 instead of 10,000. With

1,000 borrowers, the power is still above 75% in some cases.

The power also decreases when we lower the size of the test, or reduce the number

of years in the default history. Figure 10 compares the power in the base case to the

one when the chosen size of the test is 5% instead of 10%, or when the number of

years in the observed default history is 5 instead of 10.  In general, reducing the

number of years has a larger effect. Still, even with only 5 years of data the power

appears to be satisfactory.

The final two variations assess the importance of information we presupposed in the

construction of the test statistic. We assumed that the prediction errors of the various

credit risk models are independent across time. This is a valid assumption if there is

no serial dependence in defaults, or credit risk models efficiently use available

information in the prediction of defaults. If these conditions are not met, the

performance of the tests might deteriorate. We therefore modify the base case by

introducing autocorrelation into the time series of the systematic factor Z. In

simulating the default histories, we use the following autoregressive process for Zt:

Zt = 0.5 Zt-1 + 0.866 ut,   u~ N(0,1),  Z1 ~ N(0,1) (11)

The choice of 0.5 for the autocorrelation coefficient is based on the study of Belkin,

Figure 10: Power of the test statistic in case 1 varying the size of the test and
the number of years in the default history
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Suchower and Forest (1998a), who estimate such a process using annual transition

matrices and obtain a autocorrelation coefficient of 0.46. We then test the power of

the test as before, assuming that both models A and B do not use the time series

information to predict next year’s factor realization.

Another piece of information we presupposed was that the rival model A is the true

one. In a practical setting, this knowledge will not be given. We thus follow the first

way of setting up a likelihood test which we described in section 4.1. Instead of

comparing model B to model A, the true model, we estimate the parameters of the

model based on maximum likelihood, and test whether model B is a valid restriction.

Thus, we construct a standard likelihood ratio test. As before, we simulate its

distribution because we cannot rely on the test being distributed as a chi-squared

variable. Maximization is done through a simple search procedure in which we

evaluate the likelihood for each correlation assumption in the interval [0%, 1%,.....,

50%].

The power curves under these two variations are shown in Figure 11. If both the

models under analysis and the test neglects serial correlation in defaults, the power

does not change significantly relative to the base case. This suggests that

autocorrelation does not pose a major problem for the test proposed in this paper. If

the evaluator does not know the true model, the power goes down as well, but only

modestly. To sum up, the power calculations of section 4 do not appear to depend

crucially on the chosen setting.

Figure 11: Power of the test statistic in case 1 in the presence of
autocorrelation and absent knowledge of the true model (size of test=10%)
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6 Concluding remarks

We have described a procedure for evaluating rival credit risk models. In essence,

we test whether one model is more likely to have generated the data than another

alternative model. Monte Carlo simulations show that the power of the tests is

satisfactory. With ten years of annual data, for example, it is similar to a market risk

setting where two risk models are compared based on 60 observations.

A test should meet other criteria than a large power, for instance ease of

implementation and general applicability. The use of the test involves simulations, but

the associated computing time is likely to be smaller than when implementing the

proposal of Lopez and Saidenberg (2000). The simplest form of the test, which is

based only on aggregate defaults, provides a benchmark which is generally

applicable. To exploit additional information contained in the cross-section of losses,

we propose to aggregate the test statistics of judiciously chosen subportfolios. Thus,

there is no general rule for the design of the test. We do not regard this as a serious

shortcoming as the choice of the most important subportfolios will be straightforward

in many cases. Note, too, that the test procedures can easily be applied to models

which include migration and recovery risk, and that the models need not be nested.

Another possible criticism is that the test is based on the entire range of the

distribution, whereas risk managers and regulators are mainly concerned about the

probability of extreme events. There are two arguments against focusing on the right

tail of the distribution when constructing a test. First, we observe only few of these

rare events in the data, a problem even sophisticated simulation procedures cannot

overcome. Second, differences in the tails of two distributions will go along with

predictable differences in the rest of the distribution. If default correlation is

increased, for example, the probability of catastrophe losses rises, but so does the

probability of very small losses.
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Appendix

A1: Descriptive statistics for expected percentage defaults (10,000 obligors; 1%
default rate)

Factor loadings Standard deviation Quantiles
W1 W2 W3 90th 95th 99th

0% . . 0.10% 1.13% 1.16% 1.23%
1% . . 0.29% 1.38% 1.52% 1.81%
2% . . 0.40% 1.53% 1.74% 2.21%
3% . . 0.49% 1.65% 1.93% 2.57%
4% . . 0.57% 1.74% 2.09% 2.90%
5% . . 0.64% 1.83% 2.24% 3.21%
6% . . 0.72% 1.91% 2.38% 3.52%
7% . . 0.78% 1.97% 2.50% 3.83%
8% . . 0.85% 2.04% 2.63% 4.12%
9% . . 0.91% 2.10% 2.75% 4.38%
10% . . 0.97% 2.15% 2.86% 4.70%
11% . . 1.02% 2.20% 2.96% 4.98%
12% . . 1.08% 2.24% 3.06% 5.25%
13% . . 1.14% 2.29% 3.17% 5.56%
14% . . 1.20% 2.33% 3.26% 5.82%
15% . . 1.26% 2.36% 3.36% 6.11%

2% / 9%* . . 0.65% 1.81% 2.24% 3.30%
. 0% 0% 0.10% 1.13% 1.16% 1.23%
. 1% 1% 0.22% 1.28% 1.38% 1.57%
. 2% 2% 0.29% 1.39% 1.53% 1.82%
. 3% 3% 0.35% 1.47% 1.65% 2.04%
. 4% 4% 0.41% 1.54% 1.76% 2.26%
. 5% 5% 0.46% 1.61% 1.87% 2.46%
. 6% 6% 0.51% 1.67% 1.97% 2.65%
. 7% 7% 0.56% 1.72% 2.06% 2.84%
. 8% 8% 0.60% 1.78% 2.15% 3.03%
. 9% 9% 0.65% 1.83% 2.24% 3.23%
. 10% 10% 0.69% 1.87% 2.32% 3.41%
. 11% 11% 0.73% 1.92% 2.40% 3.59%
. 12% 12% 0.77% 1.96% 2.49% 3.79%
. 13% 13% 0.81% 2.00% 2.56% 3.97%
. 14% 14% 0.85% 2.04% 2.64% 4.17%
. 15% 15% 0.89% 2.08% 2.72% 4.35%

* w1i= 2% ⋅ Ii≤5000,    w1i= 9% ⋅ Ii>5000 (equals nearly w1i=5% for all i)
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A2: Descriptive statistics for expected percentage defaults (5,000 obligors; 1%
default rate)

Factor loadings Standard deviation Quantiles
W1 90th 95th 99th

0% 0.14% 1.18% 1.24% 1.32%
1% 0.30% 1.40% 1.54% 1.86%
2% 0.41% 1.54% 1.76% 2.24%
3% 0.50% 1.66% 1.94% 2.58%
4% 0.58% 1.76% 2.10% 2.92%
5% 0.65% 1.84% 2.26% 3.24%
6% 0.72% 1.92% 2.38% 3.52%
7% 0.79% 1.98% 2.52% 3.84%
8% 0.85% 2.04% 2.64% 4.14%
9% 0.91% 2.10% 2.76% 4.42%
10% 0.97% 2.16% 2.86% 4.70%
11% 1.03% 2.20% 2.98% 5.00%
12% 1.09% 2.26% 3.08% 5.28%
13% 1.15% 2.30% 3.18% 5.58%
14% 1.21% 2.34% 3.26% 5.86%
15% 1.27% 2.38% 3.36% 6.14%


