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Abstract: The predictive likelihood is of particular relevance in a Bayesian setting when the
purpose is to rank models in a forecast comparison exercise. This paper discusses how the pre-
dictive likelihood can be estimated for any subset of the observable variables in linear Gaussian
state-space models with Bayesian methods, and proposes to utilize a missing observations con-
sistent Kalman filter in the process of achieving this objective. As an empirical application,
we analyze euro area data and compare the density forecast performance of a DSGE model to
DSGE-VARs and reduced-form linear Gaussian models.
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1. Introduction

In Bayesian analysis of (discrete) time series, the predictive likelihood can be employed to

compare forecast accuracy across models. A problem occurs when the models included in the

exercise predict different observables, but where some of these variables are shared by all models.

For example, suppose there are two models to compare, where the first can predict the future

values of the observables x1, x2, and x3, while the second can predict the future values x1 and

x4. To compare the forecast performance of these two models with the predictive likelihood

requires that the likelihoods can be marginalized with respect to the non-shared variables, i.e.

that the future values of x2 and x3 are integrated out from the predictive likelihood of the first

model, while x4 is integrated out for the second model.

The same basic marginalization problem arises when a forecaster or policy maker is concerned

with a limited number of the variables that some multivariate models can predict. A special case

is the forecast comparison of a single variable, such as inflation, across a set of models where
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some may be univariate and others multivariate. Although point forecast accuracy statistics

based on, e.g., mean squared forecast errors may reveal interesting aspects of how well the

models involved can predict the shared variables, such statistics are not necessarily well suited

for model selection (or ranking) since they neglect higher moments of the predictive distribution.

The predictive likelihood, however, evaluates this distribution at the realization of the forecasted

variables and is therefore a natural tool for addressing such matters, with the log predictive score

as an extension from single-period comparisons to a multi-period setting.

The marginalization problem may be solved through textbook results when the joint predictive

likelihood of a model has a known distributional form, for instance a Student t. However, models

with a known predictive distribution are rare and in the typical case when this distribution is

unknown, we can instead make use of the fact that the predictive likelihood is equal to the

integral of the conditional likelihood times the posterior density with respect to the parameters.

Here, by conditional likelihood we refer to the predictive likelihood conditional on a value for the

parameters. If this likelihood is based on a distribution where marginalization can be handled

analytically, then the marginalization problem of the predictive likelihood can be solved at this

stage (see, e.g., Andersson and Karlsson, 2008, Karlsson, 2013, or Geweke and Amisano, 2010).

What thereafter remains to be done is to integrate out the dependence of the parameters, a

topic closely related to the estimation of the marginal likelihood; see, e.g., Geweke (2005).

In this paper we suggest a convenient and simple approach to marginalizing the conditional

likelihood in linear Gaussian discrete-time state-space models, namely, to use a missing obser-

vations consistent Kalman filter. Since this approach builds up the marginalized parts of only

the relevant arrays recursively, it is computationally simpler than first calculating the mean and

the covariance matrix of the joint conditional distribution and thereafter reducing these.

As an empirical application, we use the suggested approach to enhance the forecast compari-

son exercise in Christoffel, Coenen, and Warne (2011), henceforth CCW. They review forecasting

with dynamic stochastic general equilibrium (DSGE) models, using the New Area-Wide Model

(NAWM)—an open-economy model of the euro area—as an example; see Christoffel, Coenen,

and Warne (2008) for details about the NAWM. CCW’s pseudo out-of-sample forecast exercise

covers the period after the introduction of the euro, focusing on three nested partitions of the

12 (out of 18) observable variables that are endogenously determined in the NAWM. Following

Adolfson, Lindé, and Villani (2007b), CCW use a normal approximation of the predictive likeli-

hood and we will assess the results from this approximation to those obtained from an estimator

of the predictive likelihood based on Monte Carlo integration of the marginalized conditional

likelihood with respect to the posterior draws.

The remainder of the paper is organized as follows. Section 2 introduces notation and presents

concepts related to the predictive likelihood. Section 3 focuses on linear state-space models

with Gaussian innovations and shows how the conditional likelihood can be marginalized via
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a Kalman filter that takes missing observations into account. Section 4 presents the empirical

density forecast comparison exercise, while Section 5 summarizes the main findings of the paper.

2. The Predictive Likelihood

To establish notation, let θm ∈ Θm be a vector of unknown parameters of a model indexed by m,

while YT = {y1, y2, . . . , yT } is a real-valued time series of an n-dimensional vector of observables
yt. The observed value of this vector of random variables is denoted by yot , while the sample

of observations is similarly denoted by Yo
T . The observables’ density function of YT is given

by p(YT |θm,m), while the likelihood function is denoted by p(Yo
T |θm,m). Bayesian inference is

based on combining a likelihood function with a prior distribution, p(θm|m), in order to obtain

a posterior distribution of the model parameters, p(θm|Yo
T ,m). From Bayes theorem we know

that the posterior is equal to the posterior kernel (the product of the likelihood and the prior)

divided by the marginal likelihood, denoted by

p
(Yo

T

∣∣m)
=

∫
Θm

p
(Yo

T

∣∣θm,m)
p
(
θm

∣∣m)
dθm. (1)

The marginal likelihood is a standard measure to compare how well different models fit the data

in Bayesian analysis and for each model m it is a joint assessment of how well the prior and

likelihood agrees with the observations.

Point and density forecasts are determined from the predictive density of model m. For a

sequence of future values of the observable variables YT,h = {yT+1, . . . , yT+h}, this density can
be expressed as

p
(YT,h

∣∣Yo
T ,m

)
=

∫
Θm

p
(YT,h

∣∣Yo
T , θm,m

)
p
(
θm

∣∣Yo
T ,m

)
dθm. (2)

The joint predictive likelihood of model m is given by the predictive density in (2) evaluated at

the observed values Yo
T,h = {yoT+1, . . . , y

o
T+h}.

Suppose that we are only interested in forecasting a subset of the variables YT,h, denoted

by Ys,T,h = {ys,T+1, . . . , ys,T+h}, where ys,t = S′
tyt, St is an n × ns,t selection matrix with

ns,t ∈ {0, 1, . . . , n} for t = T + 1, . . . , T + h. Furthermore, let y−s,t denote the remaining

variables in yt, i.e. y−s,t = S
′
t,⊥yt with S

′
t,⊥St = 0, while S′

tSt = Ins,t and S′
t,⊥St,⊥ = In−ns,t.

This general case covers the possibility that we are concerned with forecasting a sequence of

future values of a particular variable, such as inflation, from period T + 1 to T + h, as well

as the marginal h-step-ahead forecast of some or all of the variables in the vector yT+h. The

marginalized predictive density can be expressed as

p
(Ys,T,h

∣∣Yo
T ,m

)
=

∫
Θm

p
(Ys,T,h

∣∣Yo
T , θm,m

)
p
(
θm

∣∣Yo
T ,m

)
dθm, (3)

where

p
(Ys,T,h

∣∣Yo
T , θm,m

)
=

∫
· · ·

∫
p
(YT,h

∣∣Yo
T , θm,m

)
dy−s,T+1 · · · dy−s,T+h. (4)
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The marginalized predictive likelihood is given by (3) when evaluated at the observed values

Yo
s,T,h, while equation (4) evaluated at Yo

s,T,h is called the marginalized conditional likelihood.

The order in which the parameters θm and the variables y−s,t are integrated out can of

course be reversed when determining the left hand side of (3). However, the precise density

function which determines the conditional likelihood is typically an integral part of the model

assumptions in a Bayesian setting, suggesting that this function may be “easier” to operate on

when attempting to integrate out the dependence on the variables y−s,t than the joint predictive

density, which will generally not be of a known type.

The marginalized predictive likelihood can alternatively be expressed as the ratio of two

marginal likelihoods:

p
(Yo

s,T,h

∣∣Yo
T ,m

)
=
p
(Yo

s,T,h,Yo
T

∣∣m)
p
(Yo

T

∣∣m) . (5)

The denominator is here given by equation (1), while the numerator is

p
(Yo

s,T,h,Yo
T

∣∣m)
=

∫
Θm

p
(Yo

s,T,h

∣∣Yo
T , θm,m

)
p
(Yo

T

∣∣θm,m)
p
(
θm

∣∣m)
dθm. (6)

Again we see that the computation of the marginalized predictive likelihood depends on being

able to compute the marginalized conditional likelihood.

In the next Section we suggest an approach to marginalize the conditional likelihood in equa-

tion (4) for Yo
s,T,h which applies to linear Gaussian state-space models and which is simple,

fast, and robust. Once this likelihood has been determined, the problem of calculating the

marginalized predictive likelihood in (3) for Yo
s,T,h generally depends on selecting an appropriate

numerical method for integrating out the dependence on the parameters. This is closely related

the problem of estimating the marginal likelihood; see, e.g., Geweke (2005).

3. Linear State-Space Models with Gaussian Innovations

3.1. Marginalizing the Conditional Likelihood

Standard linear time series models—including finite order VAR models, VARMA models, dy-

namic factor models, and other unobserved component models—may be cast in state-space form.

Structural models, such as log-linearized DSGE models and other linear rational expectations

models, also have such a representation provided that a unique and convergent solution exists

for a given value of the underlying parameter vector.1

To establish some further notation, let the observable variables yt be linked to a vector of

state variables ξt of dimension r through equation

yt = µ+H ′ξt + wt, t = 1, . . . , T. (7)

1 Sargent (1989) was among the first to recognize that linear rational expectations models can be expressed in
state-space form.
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The errors, wt, are assumed to be i.i.d. N(0, R), with R being an n × n positive semidefinite

matrix, while the state variables are determined from a VAR system:

ξt = Fξt−1 +Bηt, t = 1, . . . , T. (8)

The state shocks, ηt, are of dimension q and i.i.d. N(0, Iq), while F is an r × r matrix, and

B is r × q. The parameters of this model, (µ,H,R, F,B), are all uniquely determined by θm.

Provided that H ′ξt is stationary, the vector µ is the population mean of yt conditional on θm.

The system in (7) and (8) is a state-space model, where equation (7) gives the measurement

or observation equation and (8) the state or transition equation. Provided that the number

of measurement errors and state shocks is large enough and an assumption about the initial

conditions is added, we can calculate the likelihood function with a suitable Kalman filter; see,

e.g., Harvey (1989) and Durbin and Koopman (2012) for details.2

Suppose that we are interested in forecasting the subset of variables Ys,T,h with the state-space

system and that we have the observed values Yo
s,T,h. The log of the conditional likelihood can

now be determined via a missing observations consistent Kalman filter. We here find for h ≥ 1

log p
(Yo

s,T,h

∣∣Yo
T , θm,m

)
=

h∑
i=1

log p
(
yos,T+i

∣∣Yo
s,T,i−1,Yo

T , θm,m
)
, (9)

where Yo
s,T,0 is empty by definition. If ns,T+i ≥ 1 the log-likelihood value at T + i is

log p
(
yos,T+i

∣∣Yo
s,T,i−1,Yo

T , θm,m
)
= −ns,T+i

2
log(2π) − 1

2
log

∣∣Σys,T+i|T+i−1

∣∣
−1

2

(
yos,T+i − ys,T+i|T+i−1

)′
Σ−1
ys,T+i|T+i−1

(
yos,T+i − ys,T+i|T+i−1

)
,

(10)

while it is zero when ns,T+i = 0.

Let µs,t = S′
tµ, Hs,t = HSt, and Rs,t = S′

tRSt when ns,t ≥ 1 for t = T + 1, . . . , T + h.

The one-step-ahead forecasts of ys,t+1 and the forecast error covariance matrix conditional on

information available at time t for t = T, . . . , T + h− 1 are when ns,t+1 ≥ 1 given by

ys,t+1|t = µs,t+1 +H
′
s,t+1ξt+1|t,

Σys,t+1|t = H ′
s,t+1Pt+1|tHs,t+1 +Rs,t+1.

If ns,t = 0, the one-steap-ahead forecast of the state variables and the corresponding forecast

error covariance matrix are

ξt+1|t = Fξt|t−1 = Fξt|t,

Pt+1|t = FPt|t−1F
′ +BB′ = FPt|tF ′ +BB′,

2 It is straightforward to generalize the system in (7) and (8) to allow for, e.g., time variation of the matrices
and apply the ideas presented in this paper.
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while if ns,t ≥ 1 we instead obtain

ξt+1|t = Fξt|t−1 +Kt

(
yos,t − ys,t|t−1

)
= Fξt|t,

Pt+1|t =
(
F −KtH

′
s,t

)
Pt|t−1

(
F −KtH

′
s,t

)′
+KtRs,tK

′
t +BB

′ = FPt|tF ′ +BB′,

Kt = FPt|t−1Hs,tΣ
−1
ys,t|t−1.

The equations for ξt+1|t and Pt+1|t are initialized by ξT |T and PT |T , respectively, obtained from

the Kalman filter estimates of the state variables using Yo
T . Notice that the Kalman filter based

approach generates a bottom-up evaluation of the marginalized conditional likelihood.

An interesting special case of the above filtering equations arises when we are concerned with

the marginal h-step-ahead forecast of ys,T+h. We here have that ns,t = 0 for t = T + 1, . . . , T +

h− 1, while

ys,T+h|T = µs,T+h +H
′
s,T+hF

hξT |T ,

Σys,T+h|T = H ′
s,T+hPT+h|THs,T+h +Rs,T+h,

PT+h|T = FPT+h−1|TF ′ +BB′.

Since the joint conditional likelihood for Yo
T,h is normal, the marginalized conditional likeli-

hood is also normal with mean and covariance obtained by selecting the appropriate elements

from the mean vector and covariance matrix of the joint predictive distribution conditional on

the parameters. As an alternative, it is therefore possible to follow a procedure for comput-

ing the marginalized conditional likelihood based on a setup similar to the one suggested by

Schmitt-Grohé and Uribe (2010) for evaluating the log-likelihoood. This top-down approach

to evaluating the marginalized conditional likelihood is expected to be much slower than the

Kalman filter calculations when nh is large, especially when repeated many times.

3.2. Estimating the Marginalized Predictive Likelihood

Once the problem of evaluating the marginalized conditional likelihood has been addressed, we

proceed with the second step in the estimation of the marginalized predictive likelihood, to

integrate out the dependence on the parameters. It is assumed below that parameter draws

from the posterior density based on an ergodic posterior simulator are available.

In the empirical application in Section 4 we apply a simple Monte Carlo integration method

to estimate the predictive likelihood. Specifically, we use:

p̂MC

(Yo
s,T,h

∣∣Yo
T ,m

)
=

1

N

N∑
j=1

p
(Yo

s,T,h

∣∣Yo
T , θ

(j)
m ,m

)
, (11)

where θ(j)m is a draw from the posterior distribution p(θm|Yo
T ) for j = 1, . . . , N . Under certain

regularity conditions (Tierney, 1994), the right hand side of (11) converges almost surely to the

expected value of p(Yo
s,T,h|Yo

T , θm,m) with respect to p(θm|Yo
T ), i.e. to the predictive likelihood
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p(Yo
s,T,h|Yo

T ,m). Hence, equipped with the posterior draws, the marginalized predictive like-

lihood can be consistently estimated from the sample average of the marginalized conditional

likelihood. A further property of this estimator is that it is unbiased (see Chan and Eisenstat,

2013, Proposition 1).3

The MC estimator in (11) is expected to work well in practise when the posterior draws cover

well enough the parameter region where the marginalized conditional likelihood is large. This

is more likely to be the case when the dimension of Ys,T,h is fairly small and h is not too large,

but it is questionable when one of these properties is not met. For instance, when St = In for

all t and h is sufficiently large, the situation resembles the case when the marginal likelihood is

estimated by averaging the likelihood over the prior draws, and such an estimator is typically

expected to be poor.

One may therefore consider alternative standard methods for calculating the marginal like-

lihood, such as harmonic mean estimators; see Gelfand and Dey (1994), the truncated normal

version in Geweke (2005), or the extension to a truncated elliptical in Sims, Waggoner, and Zha

(2008). Such estimators require two sets of posterior draws to be consistent. Namely, apart from

the θ(j)m draws based on the data Yo
T , we would also need posterior draws θ

(i)
m using the data

(Yo
s,T,h,Yo

T ). In other words, harmonic mean estimators of the marginalized predictive likelihood

will be more time consuming than the MC estimator in (11). However, since the harmonic mean

estimators take the data Yo
s,T,h into account, they are less likely to be hampered by a large

dimension of the set of predicted values or a long forecast horizon. Other methods, such as

bridge sampling may also be considered; see, e.g., Meng and Wong (1996). To evaluate these

options is beyond the scope of this paper, but is an important topic for future reasearch.

4. Comparing Forecast Accuracy: An Application to Euro Area Data

In this Section we compare marginalized h-step-ahead density forecasts for three subsets of the

observables and across five linear Gaussian state-space models for euro area data using the

approach discussed in Section 3. In Section 4.1 we discuss the models, a DSGE model, two

DSGE-VAR models, a large BVAR model, as well as a multivariate random walk model. In

Section 4.2, we present the forecast sample and summarize the empirical results of the exercise.

The calculations below have been performed with the help of YADA, a Matlab program for

Bayesian estimation and evaluation of DSGE and DSGE-VAR models; see Warne (2014) for

details.

4.1. Empirical Models

4.1.1. The New Area-Wide Model of the Euro Area

Since the turn of the century, we have witnessed the development of a new generation of DSGE

models that build on explicit micro-foundations with optimizing agents. Major methodological

3 The numerical standard error of (11) can be calculated using the Newey and West (1987) estimator when the
posterior draws are correlated.
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advances allow the estimation of variants of these models that are able to compete, in terms

of data coherence, with more standard time series models, such as VARs; see, among others,

the empirical models in Christiano, Eichenbaum, and Evans (2005), Smets and Wouters (2003,

2007), and Adolfson, Laséen, Lindé, and Villani (2007a). Efforts have also been undertaken

to bring these models to the forecasting arena with promising results; see, for example, CCW,

Del Negro and Schorfheide (2013), Smets, Warne, and Wouters (2014) and references therein.

WithEt being the rational expectations operator, a log-linearized DSGEmodel can be written:

A−1ξt−1 +A0ξt +A1Etξt+1 = Dηt, t = 1, 2, . . . , T, (12)

where ηt is a q-dimensional vector with i.i.d. standard normal structural shocks (ηt ∼ N(0, Iq)),

while ξt is an r-dimensional vector of model variables. The matrices Ai (r×r), with i = −1, 0, 1,

and D (r × q) are functions of the vector of DSGE model parameters. Provided that a unique

and convergent solution of the system (12) exists at a particular value of these parameters,4 we

can express the model variables as the first order VAR system in (8).

The NAWM is a micro-founded open-economy model of the euro area designed for use in

the ECB/Eurosystem staff projections and for policy analysis; see Christoffel, Coenen, and

Warne (2008) for details. The development of this DSGE model has been guided by a principal

consideration, namely to provide a comprehensive set of core projection variables, including a

number of foreign variables, which, in the form of exogenous assumptions, play an important

role in the projections. As a consequence, the scale of the NAWM—compared with a typical

DSGE model—is rather large.

Christoffel et al. (2008) adopt the empirical approach outlined in Smets and Wouters (2003)

and An and Schorfheide (2007) and estimate the NAWM with Bayesian methods. They use

time series for 18 macroeconomic variables and the data are taken from the Area-Wide Model

database (Fagan, Henry, and Mestre, 2005) except for the time series of extra-euro area trade

data (see Dieppe and Warmedinger, 2007, for details on their construction). The estimation

sample is given by the period 1985Q1 until 2006Q4, with 1980Q2-1984Q4 serving as training

sample.

The time series are displayed in Figure 1, where real GDP, private consumption, total in-

vestment, exports, imports, the GDP deflator, the consumption deflator, the import deflator,

nominal wages, foreign demand, and foreign prices are all expressed as 100 times the first differ-

ence of their logarithm. All other variables are expressed in logarithms except for the short-term

nominal domestic and foreign interest rates. A number of further transformations are made to

ensure that variable measurement is consistent with the properties of the NAWM’s balanced-

growth path and in line with the underlying assumption that all relative prices are stationary.

First, the sample growth rates of extra-euro area exports and imports as well as foreign

demand are matched with the sample growth rate of real GDP. Second, for the logarithm of

4 See, e.g., Anderson (2010), Klein (2000), or Sims (2002) for methods of solving linear rational expectations
models.
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government consumption a linear trend consistent with the NAWM’s steady-state growth rate of

2.0% per annum is removed. This trend is assumed to have two components: labor productivity

growth of 1.2% and labor force growth of 0.8%. Third, for the logarithm of employment a

linear trend consistent with a steady-state labor force growth rate of 0.8% is removed. Fourth,

a measure of the real effective exchange rate is constructed from the nominal effective exchange

rate, the domestic GDP deflator, and foreign prices (defined as a weighted average of foreign

GDP deflators) minus its sample mean. Finally, competitors’ export prices and oil prices (both

expressed in the currency basket underlying the construction of the nominal effective exchange

rate) are deflated with foreign prices before unrestricted linear trends are removed from the

variables. See Christoffel et al. (2008) for details on the NAWM’s estimation properties.

4.1.2. DSGE-VAR Models with the NAWM as Prior

VAR models have played a central role in the development of empirical macroeconomics since

the seminal article by Sims (1980). One reason for this success is that they highlight the impor-

tance of a multivariate dynamic specification for macroeconomic analysis, letting all observable

variables be treated as endogenous. The VAR model of yt can be written as:

yt = Φ0 +

p∑
j=1

Φjyt−j + εt, t = 1, . . . , T, (13)

where εt ∼ N(0,Σε) and with Σε being an n×n positive definite matrix. The vector Φ0 is n×1,

while Φj is n×n for j = 1, . . . , p. We assume that initial values for yt exists for t = 0, . . . , 1− p.
The parameters of a VAR model are given by (Φ0,Φ1, . . . ,Φp,Σε), provided that the prior

distribution of the VAR does not include additional unknown parameters. BVAR models (see,

e.g., Del Negro and Schorfheide, 2011, or Karlsson, 2013) typically include a number of hyperpa-

rameters that are calibrated by the researcher and are therefore included in the model index m

rather than among θm. A well-known example when the model includes additional parameters

through the prior is a DSGE-VAR.

An early attempt to combine DSGE models with VARs is Ingram and Whiteman (1994),

where the VAR parameters are expressed as a function of the DSGE model parameters. A

prior for the DSGE model parameters then implies a prior for the VAR parameters through a

first-order Taylor expansion of the mapping. This idea is considerably enriched by Del Negro

and Schorfheide (2004), where the prior distribution of the VAR model parameters conditional

on the DSGE model parameters is specified such that the conditional moments are determined

through the implied first and second population moments of yt for a given value of the DSGE

model parameters. A prior distribution for all parameters is thereafter obtained by multiplying

this conditional prior by the marginal prior of the DSGE model parameters.

In addition, DSGE-VARs are indexed by the parameter λ, which determines the weight on

the prior relative to the data. The VAR approximation of the DSGE model resides at one end
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of its range (λ = ∞), an unrestricted VAR at the other end (λ = 0), and in between these two

extremes a large number of models exist.

The DSGE-VAR models with the NAWM as prior have been estimated by Warne, Coenen, and

Christoffel (2013) with the random walk Metropolis algorithm subject to a Gaussian proposal

density. They consider two approaches for selecting a DSGE-VAR model. The first chooses

the model with the largest marginal likelihood over all pairs (λ, p), while the second picks p

such that the marginal likelihood of the DSGE-VAR model with λ = ∞ (the VAR parameters

are completely determined from the DSGE model parameters) is the closest to the marginal

likelihood of the DSGE model and then selects λ optimally conditional on this p. Based on

lag orders between one and four lags, the first approach selects the DSGE-VAR model with

(λ, p) = (2.5, 2), while for the second approach favors the model with (λ, p) = (6, 4). For details

and further discussions, see Warne et al. (2013).

4.1.3. VAR and Random Walk Models

We also consider a Bayesian VAR model for the same observable variables as the NAWM. The

usefulness of BVARs of the Minnesota-type for forecasting purposes has long been recognized, as

documented early on by Litterman (1986), and such models are therefore natural benchmarks in

forecast comparisons. Below, we employ the same large BVAR as in CCW, estimated using the

methodology in Bańbura, Giannone, and Reichlin (2010). This approach relies on using dummy

observations when implementing the normal-inverted Wishart version of the Minnesota prior.

Moreover, the prior mean of the parameters on the first own lag of the endogenous variables

(diagonal of Φ1) are either unity, if the variable is measured in log-levels or levels, and zero if

it is measured in log first differences. That is, the prior mean supports random walks for all

variables in log-levels or levels. In CCW, this large BVAR is referred to as the model with a

mixed prior. A more detailed description of this BVAR is also found in the online appendix

(Appendix B).

The last model we shall consider is a random walk for the vector yt with the NAWM variables.

For this model we make use of a standard diffuse prior for the covariance matrix of the random

walk innovations. That is, the vector yt − yt−1 = εt is i.i.d. N(0,Ω), where Ω is an n × n

positive definite matrix of unknown parameters, and p(Ω) ∝ |Ω|−(n+1)/2. One advantage of this

model is that it allows for an analytical determination of the predictive density. For marginal

h-step-ahead forecasts of ys,T+h the predictive density is given by a ns-dimensional Student

t-distribution with mean yos,T , covariance matrix

h

T − n− 1

T∑
t=1

(
yos,t − yos,t−1

)(
yos,t − yos,t−1

)′
,

and T − n+ ns degrees of freedom; see the online appendix (Appendix A) for details.
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4.2. Density Forecasts

A forecast comparison exercise is naturally cast as a decision problem within a Bayesian setting

and therefore needs to be based on a particular preference ordering. Scoring rules can be used

to compare the quality of probabilistic forecasts by giving a numerical value using the predictive

distribution and an event or value that materializes. A scoring rule is said to be proper if

a forecaster who maximizes the expected score provides its true subjective distribution; see

Winkler and Murphy (1968). If the maximum is unique then the rule is said to be strictly

proper.

A widely used scoring rule that was suggested by, e.g., Good (1952) is the log predictive score.

Based on the predictive density of Ys,T,h, it can be expressed as

Sh(m) =

T+Th−1∑
t=T

log p(Ys,T,h|Yo
t ,m), h = 1, . . . , h∗, (14)

where Th is the number of time periods the h-step-ahead predictive density is evaluated. If

the scoring rule depends on the predictive density only through the realization of the variables

of interest over the prediction sample, Yo
s,T,h, then the scoring rule is said to be local. Under

the assumption that only local scoring rules are considered, Bernardo (1979) showed that every

proper scoring rule is equivalent to a positive constant times the log predictive score plus a real

valued function that only depends on the observations; see Gneiting and Raftery (2007) for a

recent survey on scoring rules.

When comparing the density forecasts of the NAWM, the two DSGE-VAR models, the large

BVAR, and the multivariate random walk model below we will evaluate the log predictive score

in (14) with realizations for different subsets of the observables Yo
s,T,h = yos,t+h. Hence, the

predictive likelihood for each model and time period is marginalized with respect to the forecast

horizon and the variables of interest in the subset. Moreover, the log predictive score is optimal

in the sense that it uniquely determines the model ranking among all local and proper scoring

rules. However, there is no guarantee that it will pick the same model as the forecast horizon

or the selected subset of variables changes.

The first pseudo out-of-sample forecasts are computed for 1999Q1—the first quarter after the

introduction of the euro—while the final period is 2006Q4. The maximum forecast horizon is

eight quarters, yielding 32 quarters with one-step-ahead forecasts and 25 quarters with eight-

step-ahead forecasts. We shall only consider forecasts of quarterly growth rates for the variables

in first differences, while CCW also study forecasts of annual growth rates for such variables.

The Kalman filter based calculations in Section 3 can be adjusted to handle such transformations

of the observables; see Warne (2014, Section 12.6.1).

Concerning the selection of variables in the subsets of the observables we follow CCW and

exclude the variables which are essentially exogenous in the NAWM. That is, we do not compare

density forecasts which include the five foreign variables (foreign demand, foreign prices, foreign
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interest rate, competitors’ export prices, and oil prices) and government consumptions. For

the remaining 12 variables we examine three nested subsets. The smallest subset is called the

small selection and is given by real GDP, the GDP deflator, and the short-term nominal interest

rate. This selection may be regarded as the minimum set of variables relevant to monetary

policy. The second case covers a medium selection with the seven variables studied in Smets and

Wouters (2003). In addition to the variables in the small selection, this selection covers private

consumption, total investment, employment, and nominal wages. Finally, the large selection has

12 variables, given by the medium selection plus exports, imports, the import price deflator, the

private consumption deflator, and the real effective exchange rate.

The log predictive scores based on the MC estimator of the marginal h-step-ahead predictive

likelihood are shown in Figure 2 for all variable selections, forecast horizons, and models. For the

NAWM and the two DSGE-VARmodels we have used 10,000 posterior draws among the available

500,000 post burn-in draws for each model and time period when calculating the log predictive

likelihood. These draws have been selected as draw number 1, 51, . . . , 499951 to combine modest

computational costs with a small correlation between the draws and a sufficiently high estimation

accuracy. This procedure yields estimates of the log predictive likelihood that are accurate up to

and including the first decimal. In the case of the NAWM, the numerical standard error of the

MC estimator based on the Newey and West (1987) approach is less than 0.04 for the shortest

historical sample and the large selection. For the same sample and the medium selection, it is

less than 0.03, and for the small selection less than 0.015. As the length of the historical sample

increases, the numerical standard errors decrease. Moreover, the numerical standard errors for

the DSGE-VAR models are even smaller.5

In the case of the random walk model, the predictive likelihood for a selection of variables

is multivariate Student t and can therefore be computed from its analytical expression. Direct

sampling is possible for the BVAR model through its normal-inverted Wishart posterior and we

have used 50,000 draws from its posterior distribution when computing the predictive likelihood

with the MC estimator.

When comparing the NAWM with the two DSGE-VAR models, it is noteworthy that the

DSGE-VAR model with two lags generally obtains higher log scores for all horizons and variable

selections, with values for the four-lag model being slightly below those for the two-lag model,

while the NAWM gets smaller values. At the longer horizons, the NAWM obtains values that are

near those of the DSGE-VAR models and, in the case of the small selection, even slightly higher.

Hence, it seems that taking misspecification of the NAWM into account through DSGE-VAR

models improves forecasting performance, especially at the shorter horizons.

It is also worth pointing out that the random walk model is competitive with the NAWM

and the DSGE-VAR models for the one-step-ahead forecasts, especially for the small selection.

5 The estimation time of the predictive likelihood for the NAWM is negligable compared with posterior sampling
using the random-walk Metropolis algorithm. Furthermore, the estimation time of the predictive likelihood for
the DSGE-VAR models is more than halved relative to the NAWM time.
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As the forecast horizon increases, however, the random walk model’s performance worsens in

comparison with these alternatives.

Compared with the BVAR model, however, the NAWM and the two DSGE-VARs are outper-

formed for all selections and forecast horizons. For example, the difference between the log score

of the BVAR and the DSGE-VAR with two lags is at least 27 log-units for the large selection

and 40 log-units for the medium selection. The only exception is found for the small selection at

the longer horizons, where the differences are about 4-5 log-units for eight-step-ahead forecasts.

Nevertheless, if the log predictive score is employed as a model-selection device it would prefer

the BVAR to the other models for all selections and forecast horizons. The interested reader is

referred to Warne et al. (2013) for additional details on the results.

It was suggested by Adolfson et al. (2007b) and CCW to approximate the predictive likelihood

with a normal density with mean and covariance matrix taken from the predictive density. While

such an approximation is not necessary when we know how to compute the conditional likelihood,

it can nevertheless serve as a tool for enhancing our understanding of the results from a forecast

comparison study. Moreover, it may be interesting to estimate the size of the errors from using a

normal approximation relative to the MC estimator, when the latter is assumed to be accurate.

The mean and covariance matrix of the predictive density in (2) can be estimated directly

from the posterior draws when the mean and covariance matrix of the predicted variables con-

ditional on the historical data and the parameters exist. Let these moments be denoted by

E[YT,h|Yo
T , θm,m] and C[YT,h|Yo

T , θm,m], respectively. The mean of the predictive density is

given by

E
[YT,h

∣∣Yo
T ,m

]
= ET

[
E

[YT,h

∣∣Yo
T , θm,m

]]
, (15)

where ET denotes the expectation with respect to the posterior p(θm|Yo
T ,m). The covariance

matrix can be expressed as

C
[YT,h

∣∣Yo
T ,m

]
= ET

[
C

[YT,h

∣∣Yo
T , θm,m

]]
+ CT

[
E

[YT,h

∣∣Yo
T , θm,m

]]
, (16)

and CT denotes the covariance with respect to the posterior. Notice that the covariance matrix

of the predictive density is decomposed into two terms, where the first term on the right hand

side reflects residual uncertainty and the second term parameter uncertainty; see Adolfson et al.

(2007b). Geweke and Amisano (2014) more generally refer to the first term as intrinsic variance

of YT,h and the second term as extrinsic variance.

The normal approximation provides a simple way of decomposing the predictive likelihood

into a term reflecting forecast errors and a term driven by forecast uncertainty. The mean and

covariance matrix of the predicted variables Ys,T,h is determined by selecting the proper elements

of (15) and (16), respectively. Next, notice that

log p̂N
(Yo

s,T,h

∣∣Yo
T ,m

)
= −d

2
log

(
2π

)
+Ds,T,h(m) +Qs,T,h(m), (17)
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where d is the dimension of the predicted variables Ys,T,h,

Ds,T,h(m) = −
log

∣∣∣C[Ys,T,h

∣∣Yo
T ,m

]∣∣∣
2

, (18)

Qs,T,h(m) = −ε
o′
s,T,h(m)C

[Ys,T,h

∣∣Yo
T ,m

]−1
εos,T,h(m)

2
, (19)

and εos,T,h(m) the the vector of prediction errors for the realizations Yo
s,T,h. The forecast uncer-

tainty term is given byDs,T,h(m), while Qs,T,h(m) gives the impact of the quadratic standardized

forecast errors on the normal approximation of the log predictive likelihood. This decomposition

may be of particular interest when the difference between the normal approximation and the

MC estimator is small, or the ranking of models is robust across these measures. For such cases,

the decomposition in (17) may reveal whether forecast uncertainty (18) or forecast errors (19)

is responsible for the ranking of models.

To address the issue of how well the normal approximation works for these linear Gaussian

models, the log predictive scores for this estimator are displayed in Figure 3. The most prominent

feature is how similar these graphs are when compared to those in Figure 2. In fact, the

MC estimator and the normal approximation suggest the same ranking of the models for each

selection and forecast horizon except for the DSGE-VAR models with the small selection and

the eight-step-ahead forecasts. For this particular case, however, the difference in log predictive

scores is so small that the models may be viewed as equally good (or bad). The numerical

differences in log predictive score between the MC estimator and the normal approximation for

all models, forecast horizons, and selections of variables are documented in Table 1.

The differences between the MC estimator and the normal approximation of the log predictive

score for the NAWM and the two DSGE-VAR models are positive for all forecast horizons and

variable selections. The results for the BVAR are mixed with a weak tendency of positive errors,

while for the random walk model the differences are always positive. In terms of log-units, the

largest errors for the DSGE related models are obtained for the DSGE-VAR with two lags but

are never greater than about 4.3 log-units. For the NAWM, the DSGE-VAR with four lags,

and the BVAR the errors are about half the size in magnitude. Furthermore, when comparing

the differences between the estimates of the log predictive likelihood for the individual forecast

periods and horizons, the aggregate errors are evenly spread out for the NAWM and the two

DSGE-VAR models, while the BVAR tends to display larger deviations between the estimates

when the log predictive likelhood values are smaller. Further details are shown in Warne et al.

(2013).

Since the normal approximation appears to provide a good approximation of the MC estimator

of the predictive likelihood for the five models and the three variable selections, it may be

of interest to utilize equations (17)–(19) to assess if the ranking of the models is driven by

forecast uncertainty or by forecast errors. The forecast uncertainty term in equation (18) of

the decomposition of the log predictive likelihood is depicted in Figure 4 for the five models,
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eight forecast periods, and each relevant period in the prediction sample for the large selection

of variables. Analogously, the quadratic standardized forecast error term in equation (19) is

displayed in Figure 5 for the same cases. Although the discussion below focuses on the large

selection of variables, the overall findings are also valid for the medium and small selections.

Turning first to the forecast uncertainty term in Figure 4 it can be seen that for all models

and forecast horizons it is weakly upward sloping over the forecast sample and that the slope is

roughly equal across the five models. This indicates that overall forecast uncertainty is slowly

decreasing as data are added to the information set. The values for the BVAR model are roughly

5 log-units higher in each period than for the second group of models, given by the two DSGE-

VARs and the NAWM. The random walk model has the lowest values for all forecast horizons

and the difference relative to the second group of models is increasing with the forecast horizon.

Since the log-determinant in the expression for Ds,T+h is equal to the sum of the log of the

eigenvalues of the forecast error covariance matrix, the value of the log-determinant term is

greater the smaller the eigenvalues of this matrix are. The eigenvalues in turn are small for

linear combinations of the variables that, according to the model, are highly predictable. The

plots in Figure 4 show that the BVAR model has better predictability in terms of the second

moments than the other models. The DSGE-VARs with two and four lags and the NAWM

follow as second, third, and fourth, while the random walk comes last.

Turning to the quadratic standardized forecast error term in Figure 5, it may be deduced that

time variation of the log predictive likelihood is primarily due to the forecast errors. This is not

surprising since the covariance matrix of the predictive distribution changes slowly and smoothly

over time while the forecast errors are more volatile. Moreover, the ranking of the models is

to some extent reversed, particularly with the BVAR having much larger standardized forecast

errors than the other models over the first half of the forecast sample. With the exception of

the random walk model, this is broadly consistent with the findings for the point forecasts; see

Warne et al. (2013). The reversal in rankings for the forecast error term can also be understood

from the behavior of second moments, where a given squared forecast error yields a larger value

for this term the smaller the uncertainty linked to the forecast is. Nevertheless, when compared

with the forecast uncertainty term in Figure 4 the differences between the models are generally

smaller for the forecast error term. This suggests that the model ranking based on the log

predictive score is primarily determined by the second moments of the predictive distribution in

this application.

5. Summary and Conclusions

This paper discusses how the predictive likelihood can be computed for any subset of the ob-

servable variables in linear Gaussian discrete-time state-space models estimated with Bayesian

methods. As pointed out by Geweke and Amisano (2010, p. 217), the predictive likelihood

function
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“. . . lies at the heart of Bayesian calculus for posterior model probabilities, re-

flecting the logical positivism of the Bayesian approach: a model is as good as

its predictions.”

While the calculation of posterior model probabilities is based on the assumption that the “true”

model exists among the set of models under consideration, model selection through the posterior

odds ratio remains valid also when all of the considered models are false.

The predictive likelihood can be applied to rank models in a forecast comparison exercise

via the log predictive score, but may also be used more generally as a model selection de-

vice, to determine weights in a model averaging exercise (Eklund and Karlsson, 2007), or when

constructing optimal prediction pools (Geweke and Amisano, 2011, 2012) under a Bayesian

approach. The paper suggests that the marginalized predictive likelihood for linear Gaussian

discrete-time state-space models is computed via a missing observations consistent Kalman fil-

ter. This approach builds up the marginalized parts of only the relevant arrays recursively and

is therefore simpler and faster than first calculating the mean and the covariance matrix of the

joint predictive likelihood conditional on the parameters (conditional likelihood), and thereafter

reducing these arrays to the entries for the set of variables of interest.

The missing observations consistent Kalman filter instead evaluates the conditional likelihood

for the variables of interest only using simple recursions. Based on such a value for each posterior

draw of the parameters, the paper considers simple Monte Carlo integration over the posterior

draws to estimate of the marginalized predictive likelihood. This MC estimator is expected to

work well in practise when the posterior draws cover well enough the parameter region where

the conditional likelihood is large.

In the empirical application with five linear Gaussian models, the MC estimator of the pre-

dictive likelihood is compared with a normal approximation, constructed from the mean vector

and the covariance matrix of the predictive distribution. The application is an extension of the

CCW study for euro area data and compares the results for the NAWM, two DSGE-VAR models

with the NAWM as prior, a large BVAR, and a multivariate random walk model. The DSGE-

VAR models were not included in CCW and are used to relax the cross-equation restrictions

of the NAWM, while the random walk model is an extension of model in CCW to a Bayesian

framework.

Over the forecast sample 1999Q1–2006Q4 we find that the normal density provides a good

approximation of the predictive likelihood when examining the density forecasts for the five

models. The “true value” of the predictive likelihood is represented by the MC estimator for

all models except the random walk, whose predictive density is multivariate Student t and

is therefore analytically determined. In terms of a model ranking, the log predictive score

(the sum of the log predictive likelihood over the forecast sample) strongly favors the BVAR

model, with the two DSGE-VAR models improving somewhat on the density forecasts of the

NAWM, especially at the shorter horizons. The random walk model, on the other hand, is only
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competitive with the NAWM at the one-step-ahead horizon, especially for the variable selection

with real GDP growth, GDP deflator inflation, and the short-term nominal interest rate only.

When the error from using a normal approximation of the predictive likelihood relative to

the MC estimator is small, then the analytical form of the normal density can be utilized to

assess which feature of the predictive likelihood drives the ranking of models. Specifically, the

normal approximation allows for a simple decomposition of the predictive likelihood into the

contributions of forecast uncertainty and forecast errors. The former term is specified via the

determinant of the forecast error covariance matrix, while the latter term is determined through

the quadratic standarized forecast errors. In our empirical application, this decomposition sug-

gests that the model ranking is primarily influenced by the forecast uncertainty term, while the

forecast errors are mainly responsible for the volatility in the predictive likelihood.

We have also discussed some alternative estimators of the marginalized predictive likelihood

which are likely to work better than the simple MC estimator when the number of predicted

variables is large. These estimator also require that the conditional likelihood can be marginal-

ized and, thus, benefit from the ideas presented in the paper. An interesting topic for future

research is to examine such methods in more detail and thereby to learn more about, e.g., the

limitations of the simple MC estimator we have used in this paper.

Although we have only discussed linear Gaussian models that can be written in state-space

form, this already covers a large number of the models frequently used in, for example, applied

macroeconomics. The basic idea that has been presented for computing the conditional likeli-

hood through a missing observations consistent Kalman filter can, in principle, be extended to

nonlinear and nonnormal models. For such models, the marginalized conditional likelihood may

be estimated with a suitable missing observations consistent particle filter (sequential Monte

Carlo); see, e.g., Giordani, Pitt, and Kohn (2011) for a survey on filtering in state-space models,

or Durbin and Koopman (2012, Chapter 12) for an introduction to particle filtering. If this

leads to a reliable approach for computing the marginalized conditional likelihood or not in such

models, however, is an open and important question for future research.
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Table 1: Difference between log predictive score using the MC estimator and the normal ap-
proximation over the evaluation period 1999Q1–2006Q4.

DSGE-VAR

horizon NAWM (2.5; 2) (6; 4) BVAR RW

Large selection (12 variables)

1 1.37 2.47 1.50 2.37 5.98

2 1.39 3.52 1.88 0.25 8.78

3 1.58 3.95 2.17 0.25 9.81

4 1.82 3.68 2.27 2.92 8.81

5 2.12 3.52 2.35 0.69 8.45

6 2.31 3.43 2.10 2.11 8.44

7 2.17 3.39 1.82 2.54 7.86

8 2.13 3.27 1.79 2.46 7.50

Medium selection (seven variables)

1 0.93 1.57 0.92 −1.62 3.24

2 1.31 2.68 1.48 −1.28 4.04

3 1.63 3.20 1.95 −1.06 4.36

4 1.81 3.47 2.19 0.06 3.97

5 2.04 3.76 2.29 −1.10 3.82

6 1.96 3.91 2.20 −0.29 3.99

7 1.90 4.13 2.23 −0.63 3.82

8 1.77 4.31 2.21 −0.38 3.72

Small selection (three variables)

1 0.70 0.68 0.40 −0.58 0.67

2 0.93 1.08 0.54 −0.50 0.84

3 1.04 1.28 0.72 0.11 1.11

4 1.03 1.31 0.76 0.38 1.00

5 1.00 1.35 0.73 0.34 0.90

6 0.86 1.36 0.64 0.42 1.02

7 0.80 1.38 0.64 0.56 0.98

8 0.75 1.46 0.68 0.76 0.98

Note: The log predictive likelihood for the random walk model is calcu-

lated with its analytical expression; see the online appendix (Appendix A)

for details. For the NAWM and the DSGE-VAR models, 10,000 poste-

rior draws have been taken from the available 500,000 post burn-in draws

for each time period. The used draws have been selected as draw number

1, 51, 101, . . . , 499951. For the BVAR direct sampling is possible and 50,000

posterior draws have been used; see the online appendix (Appendix B).
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Figure 1: The data.
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Note: This figure shows the time series of the observable variables used in the estimation of the NAWM. Details

on the variable transformations are provided in Christoffel, Coenen, and Warne (2008, Section 3.2) or Section 2.3

in CCW. Inflation and interest rates are reported in annualized percentage terms.
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Figure 2: Log predictive scores using the MC estimator.
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Note: The log predictive likelihood for the random walk model is calculated with its analytical expression.

Figure 3: Log predictive scores using the normal approximation.
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Figure 4: The evolution of the forecast uncertainty term of the normal density for the large
selection of variables.
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Figure 5: The evolution of the quadratic standardized forecast error term of the normal density
for the large selection of variables.
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