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The Tits alternative for non-spherical triangles of groups

Johannes Cuno and Jörg Lehnert

Abstract

Triangles of groups have been introduced by Gersten and Stallings. They are, roughly speaking,
a generalization of the amalgamated free product of two groups and occur in the framework of
Corson diagrams. First, we prove an intersection theorem for Corson diagrams. Then, we focus
on triangles of groups. It has been shown by Howie and Kopteva that the colimit of a hyperbolic
triangle of groups contains a non-abelian free subgroup. We give two natural conditions, each of
which ensures that the colimit of a non-spherical triangle of groups either contains a non-abelian
free subgroup or is virtually solvable.

1. Introduction

Given a commutative diagram of groups and injective homomorphisms, we may construct its
colimit (in the category of groups). The colimit, or, more precisely, the colimit group, can be
obtained by taking the free product of the groups and identifying the factors according to
the homomorphisms. A good example is the amalgamated free product X ∗A Y , which is the
colimit group of the diagram X ← A→ Y .

We are interested in Corson diagrams. A Corson diagram is based on a set I. For every subset
J ⊆ I with |J | � 2, there is a group GJ and for every two subsets J1 ⊂ J2 ⊆ I with |J2| � 2
there is a homomorphism ϕJ1J2 : GJ1 → GJ2 , see Figure 1. Note that both Artin groups and
Coxeter groups have a natural interpretation as colimit groups of Corson diagrams. A triangle
of groups is nothing but a Corson diagram based on a set I with |I| = 3.

Gersten and Stallings introduced the notion of curvature and proved that for non-spherical
triangles of groups the natural homomorphisms νJ from the groups GJ to the colimit group G
are injective, see [25]. A similar result holds for non-spherical Corson diagrams, see [13]. While
these two results can be proved by nice arguments based on Euler’s formula for planar graphs,
spherical Corson diagrams are much harder to investigate, see, for example, [2, 12].

In Section 2, we introduce the basic notions for this paper. Then, in Section 3, we give an
example of a spherical triangle of groups showing that, even though the natural homomorphisms
νJ : GJ → G are injective, the intersections of their images may be larger than the amalgamated
subgroups. But this can only happen in the spherical realm. For non-spherical triangles of
groups and, more generally, non-spherical Corson diagrams, there are no large intersections,
see Theorem 3.8.

At this point, it seems worth mentioning that the absence of large intersections shall not be
confused with the developability of complexes of groups, which is implied by the injectivity of
the natural homomorphisms νJ : GJ → G, see [7, Corollary III.C.2.15].
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Figure 1. A Corson diagram based on a set I with |I| = 5. For simplicity, the homomorphisms
ϕ∅J : G∅ → GJ with J ⊆ I and |J | = 2 have been omitted in this figure. Note that, if |I| = n,
then the graphical representation of the Corson diagram has exactly 1

2
· (n2 + n + 2) vertices.

Howie and Kopteva showed that, under mild assumptions, the colimit group of a hyperbolic
triangle of groups has a non-abelian free subgroup, see [16]. In Section 4, we focus on the
Euclidean case and discuss the following version of the Tits alternative: A class C of groups
satisfies the Tits alternative if each G ∈ C either has a non-abelian free subgroup or is virtually
solvable. The Tits alternative is named after Jacques Tits, who proved in 1972 that the class
of finitely generated linear groups has this property, see [26, Corollary 1]. Since then, the Tits
alternative has been proved for many other classes of groups. For a list of results and open
problems, we refer the reader to [24].

As indicated above, we are interested in Euclidean triangles of groups. In the case that
none of the Gersten–Stallings angles is 0, we may follow Bridson’s construction of a simplicial
complex X , see [6], and use billiards on a suitable triangle in the Euclidean plane to obtain
geodesics in the geometric realization |X |. These geodesics allow us to prove that, as soon
as the simplicial complex X branches, the colimit group has a non-abelian free subgroup, see
Theorems 4.18 and 4.19.

The remaining cases can be analysed with quotients and amalgamated free products. In
the end, we generalize the result by Howie and Kopteva mentioned above and prove that the
Tits alternative holds for the class of colimit groups of non-spherical triangles of groups with
the property that none of the Gersten–Stallings angles is 0 and the group G∅ either has a
non-abelian free subgroup or is virtually solvable, see Theorem 4.24, or with the property that
every group GJ with J ⊆ I and |J | � 2 either has a non-abelian free subgroup or is virtually
solvable, see Theorem 4.25.

Acknowledgements. This paper originates in a Diplomarbeit, the equivalent of a master’s
thesis, under supervision of Robert Bieri at Goethe-Universität Frankfurt am Main. In the
light of this beginning, we would like to thank Robert Bieri for his enthusiasm, advice, and
patience. Moreover, we would like to thank the referee for making many comments that helped
us to improve this paper.

2. Preliminaries

2.1. Corson diagrams and their colimits

Let I be an arbitrary set. Assume given for every subset J ⊆ I with |J | � 2 a group GJ and for
every two subsets J1 ⊂ J2 ⊆ I with |J2| � 2 an injective homomorphism ϕJ1J2 : GJ1 → GJ2 .
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Moreover, assume the resulting diagram to be commutative, that is, for every sequence of
subsets ∅ = J1 ⊂ J2 ⊂ J3 ⊆ I with |J3| = 2 the equation ϕJ1J3 = ϕJ2J3 ◦ ϕJ1J2 holds.

Since these diagrams have been introduced by Corson in [13], we refer to them as Corson
diagrams. In the case |I| = 3, Corson diagrams are known as triangles of groups. Whenever we
consider a triangle of groups, we may assume without loss of generality that I = {1, 2, 3}.

Given a Corson diagram, we will mostly be interested in its colimit group. The colimit
group can be obtained by taking the free product of the groups GJ and identifying the factors
according to the homomorphisms. Let us make this construction a little more precise. Think
of each GJ as a set, and let RJ be the set of all words over the group elements and their
formal inverses that represent the identity. Then, the colimit group G is given by the following
presentation:

G =

〈 ⊔
J⊆I
|J|�2

GJ :
⊔
J⊆I
|J|�2

RJ ,
⊔

J1⊂J2⊆I
|J2|�2

{g = ϕJ1J2(g) : g ∈ GJ1}
〉

. (∗)

This presentation, though not very economic, turns out to be suitable for our purposes. For
every subset J ⊆ I with |J | � 2, we may consider the natural homomorphism νJ : GJ → G
given by g 	→ g. The colimit group, equipped with these homomorphisms, is called the colimit.
For further reading about it, we refer the reader to [27, 1.1] and [1, Chapter III].

2.2. Curvature of Corson diagrams

The homomorphisms νJ : GJ → G do not need to be injective. An example of a triangle of
groups in which they are not has been given by Gersten and Stallings in [25, 1.4]. On the
other hand, it turned out that for non-spherical triangles of groups and, more generally, for
non-spherical Corson diagrams they are. Let us therefore introduce the notion of curvature.
For every two distinct i, j ∈ I, the homomorphisms ϕ{i}{i,j} and ϕ{j}{i,j} uniquely determine
a homomorphism α : G{i} ∗G∅

G{j} → G{i,j}. If α is not injective, then let m̂ denote the
minimal length of a non-trivial element in its kernel (in the usual length function on the
amalgamated free product). Recall that the homomorphisms ϕ{i}{i,j} and ϕ{j}{i,j} are injective,
whence the minimal length m̂ must be even. The Gersten–Stallings angle �{i,j} is now
defined by:

�{i,j} =

{
2π
m̂ if α is not injective,

0 if α is injective.

Three pairwise distinct elements i, j, k ∈ I are called a spherical triple if �{i,j} + �{i,k} + �{j,k}
is strictly larger than π. The Corson diagram is called spherical if it has a spherical triple, and
non-spherical otherwise.

Consider a non-spherical triangle of groups. Since |I| = 3, there is only one set of three
pairwise distinct elements. Depending on whether �{1,2} + �{1,3} + �{2,3} is strictly smaller
than π or equal to π, the triangle of groups is called hyperbolic or Euclidean. This distinction
is of relevance in Section 4.

2.3. Embedding theorems

We are now able to state the theorem about non-spherical triangles of groups that has been
mentioned above.

Theorem 2.1 (Gersten–Stallings). For every non-spherical triangle of groups and every
subset J ⊆ I with |J | � 2, the natural homomorphism νJ : GJ → G is injective.



96 JOHANNES CUNO AND JÖRG LEHNERT

This theorem has been proved in [25]. Later, it has been generalized to non-spherical Corson
diagrams in [13]. Even more has been shown in [13]. Not only the groups GJ but also the
colimit groups of subdiagrams naturally embed into G. Let us clarify. Given a Corson diagram
and a subset K ⊆ I, we may restrict our focus to the subdiagram spanned by the groups GJ

with J ⊆ K and |J | � 2, see the bold vertices and arrows in Figure 1 for an example. The
colimit group of such a subdiagram can be obtained by modifying (∗) as follows:

GK =

〈 ⊔
J⊆K
|J|�2

GJ :
⊔

J⊆K
|J|�2

RJ ,
⊔

J1⊂J2⊆K
|J2|�2

{g = ϕJ1J2(g) : g ∈ GJ1}
〉

.

Analogously to νJ : GJ → G introduced in Subsection 2.1, we may now consider the natural
homomorphisms ν̃K : GK → G given by g 	→ g.

Theorem 2.2 (Corson). For every non-spherical Corson diagram and every subset K ⊆ I,
the natural homomorphism ν̃K : GK → G is injective.

Remark 2.3. It is easy to verify that for every subset K ⊆ I with |K| � 2 there is an
isomorphism μK : GK → GK given by g 	→ g. Hence, the injectivity of ν̃K : GK → G implies
the injectivity of νK = ν̃K ◦ μK : GK → G and, in particular, Theorem 2.2 implies Theorem 2.1.

Remark 2.4. In order to keep the notation simple, we make the following convention:
Whenever we know that the homomorphisms ν̃K : GK → G are injective, for example, in case
of a non-spherical Corson diagram, we do not need to mention them any more and may tacitly
interpret GK as a subgroup of G. In this case, the symbol GK refers to the subgroup of G that
is generated by the elements of the groups GJ with J ⊆ K and |J | � 2. Now, we can easily
observe that K1 ⊆ K2 implies GK1 ⊆ GK2 .

2.4. Standing assumption on the Gersten–Stallings angles

We will have to make one more assumption, which has already been indicated by Gersten and
Stallings in [25, p. 493, ll. 4–6] and Corson in [13, p. 567, l. 15], even though Theorems 2.1 and
2.2 hold without it, also cf. [18, p. 58, ll. 12–16; 23, p. 210, ll. 18–21].

Standing assumption. We shall always assume, without stating explicitly, that none of
the Gersten–Stallings angles is equal to π, or, equivalently, that for every two distinct i, j ∈ I
the equation ϕ{i}{i,j}(G{i}) ∩ ϕ{j}{i,j}(G{j}) = ϕ∅{i,j}(G∅) holds.

3. Intersection theorem

Assume given a Corson diagram with the property that the homomorphisms ν̃K : GK → G are
injective. One question we are interested in is whether two subgroups GK1 and GK2 intersect
only along the obvious subgroup GK1∩K2 or along some larger subgroup of G. In Subsection 3.1,
we give an example of a spherical Corson diagram in which the homomorphisms ν̃K : GK → G
are injective but there are K1,K2 ⊆ I such that GK1 ∩GK2 �= GK1∩K2 . Then, we recall the
notion of disc pictures and use it to prove an intersection theorem showing that this can only
happen in the spherical realm.

3.1. Example

Let us consider the following Corson diagram: I = {1, 2, 3}, G∅ = {1}, G{1} = 〈a : −〉,
G{2} = 〈b : −〉, G{3} = 〈c : −〉, G{1,2} = 〈a, b : b−1ab = a2〉, G{1,3} = 〈a, c : c−1ac = a2〉, and
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Figure 2. Some elements of a disc picture (left) and an example showing that bab−1 = cac−1

holds in G = 〈a, b, c : b−1ab = a2, c−1ac = a2, bc = cb〉 (right).

G{2,3} = 〈b, c : bc = cb〉. Here, the homomorphisms ϕJ1J2 : GJ1 → GJ2 are implicitly given by
a 	→ a, b 	→ b, and c 	→ c. Since G∅ is trivial, the resulting diagram is commutative. Britton’s
Lemma [9, Principal Lemma] shows that the homomorphisms ϕJ1J2 : GJ1 → GJ2 are injective
and the Gersten–Stallings angles amount to π/2 each. So, it is a spherical Corson diagram in
the sense of Subsection 2.2.

Proposition 3.1. The natural homomorphisms ν̃K : GK → G are injective.

Proof. Since the homomorphism ν̃{1,2,3} : G{1,2,3} → G is obviously injective, it suffices to
verify the injectivity of the homomorphisms ν̃K : GK → G with K ⊆ {1, 2, 3} and |K| � 2.
But then, we already know from Remark 2.3 that there are isomorphisms μK : GK → GK with
νK = ν̃K ◦ μK . So, it suffices to verify the injectivity of the homomorphisms νK : GK → G.

Recall the presentation (∗) of the colimit group G and note that, in our situation, it can
be simplified by deleting superficial generators and relators so that we finally obtain the
presentation G = 〈a, b, c : b−1ab = a2, c−1ac = a2, bc = cb〉. If K = {1, 2} or K = {1, 3}, then
let N := 〈〈bc−1〉〉 � G and let π : G→ G/N be the canonical projection. It is easy to see
that both π ◦ ν{1,2} and π ◦ ν{1,3} are isomorphisms and, hence, both ν{1,2} and ν{1,3} are
injective. If K = {2, 3}, then let N := 〈〈a〉〉 � G instead and proceed analogously. Finally, if
|K| � 1, then K is contained in some K̃ ⊆ {1, 2, 3} with |K̃| = 2. By construction of the
colimit, we have νK = ν

K̃
◦ ϕ

KK̃
. Since both ν

K̃
and ϕ

KK̃
are injective, their composition is

injective, too.

Proposition 3.2. The equation G{1,2} ∩G{1,3} = G{1} does not hold.

Proof. Use the isomorphism μ{1,2} : G{1,2} → G{1,2} and Britton’s Lemma to show that
the word bab−1 represents an element in G{1,2} that is not in G{1}. On the other hand,
in the colimit group G, the equations bab−1 = bca2c−1b−1 = cba2b−1c−1 = cac−1 hold. So,
the words bab−1 and cac−1 represent the same element of the colimit group G, which is in
G{1,2} ∩G{1,3} but not in G{1}. This calculation is also illustrated in Figure 2, in terms of disc
pictures.
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Figure 3. A local vertex (bright) and a joining vertex (dark).

3.2. Preliminaries about disc pictures

The proof of the intersection theorem involves disc pictures. Let us therefore follow Corson’s
preliminary section, see [13], and recall some basic notions.

Consider a group G and a presentation G = 〈X : R〉. A disc picture P over this presentation
consists of the disjoint union of closed discs D1,D2, . . . , Dn in the interior of a closed disc D
and a compact 1-manifold M properly embedded into D � int(D1 ∪D2 ∪ · · · ∪Dn). The closed
discs D1,D2, . . . , Dn are called vertices, the components of M are called arcs. Moreover,
the components of int(D) � (D1 ∪D2 ∪ · · · ∪Dn ∪M) are called regions. Every arc has a
transversal orientation and is labelled by a generator, see 1 in Figure 2. Every vertex Dk

has the property that one can read off a relator along its boundary ∂Dk, that is, by starting
at some point on ∂Dk � M and going once around ∂Dk in some orientation, see 2 in Figure 2.
Every word that can be read off along the outer boundary ∂D is called a boundary word of
the disc picture, see 3 in Figure 2. It is well known, and easy to verify, that a word over the
generators and their formal inverses represents the identity of the group G if and only if it is
a boundary word of some disc picture over the presentation G = 〈X : R〉. Disc pictures are,
roughly speaking, duals of van Kampen diagrams. For further reading about them, we refer
the reader to [4]. In addition to the above, the following notions will be of relevance for us.

Definition 3.3 (‘subpicture’). Consider a closed disc DQ in D. If the parts of the disc
picture P that are contained in DQ assemble to a disc picture Q, then we call Q a subpicture
of P. Note that every boundary word of a subpicture does necessarily represent the identity of
the group G. A simple kind of subpicture is a spider. It consists of exactly one vertex Dk and
some arcs, each of which connects Dk to the outer boundary ∂DQ of the subpicture Q.

Since we are interested in Corson diagrams and their colimit groups, we will focus on disc
pictures over (∗). Here, it makes sense to distinguish between local and joining vertices.

Definition 3.4 (‘local and joining vertices’). A vertex Dk is called local if one can read
off a relator of the form g1

ε1g2
ε2 · · · gm

εm ∈ RJ along its boundary. Otherwise, it is called
joining, in which case one can read off a relator of the form g = ϕJ1J2(g) with g ∈ GJ1 and
ϕJ1J2(g) ∈ GJ2 , see Figure 3.

Definition 3.5 (‘bridge’). Let B be the union of the compact 1-manifold M and the
joining vertices. The components of B are called bridges. Every simply connected bridge has
two distinct endpoints, each of which lies either on the boundary of some local vertex or on the
outer boundary. Two local vertices, say Dk and Dl, are called neighbours if there is a bridge
that connects Dk and Dl, that is, a bridge with one endpoint on the boundary ∂Dk and the
other endpoint on the boundary ∂Dl.
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Definition 3.6 (‘inner and outer’). A bridge is called inner if it connects two local vertices.
Similarly, a region is called inner if its closure does not meet the outer boundary ∂D. A bridge
or a region that is not inner is called outer.

Let us consider a non-spherical Corson diagram. As stated in Remark 2.4, we may interpret
GK as a subgroup of G. The following lemma uses this interpretation to describe the labels of
the arcs of a bridge.

Lemma 3.7. Consider a bridge with m arcs that are labelled by generators b1 ∈ GJ1 ,
b2 ∈ GJ2 , . . . , bm ∈ GJm

. Then, all these generators represent the same element of the colimit
group G. This element, say b ∈ G, is called the value of the bridge. It is contained in the
subgroup GJ1∩J2∩···∩Jm

.

Proof. The first assertion is immediate. So, we only need to verify that the value of the
bridge is actually contained in GJ1∩J2∩···∩Jm

. Let us make two observations. First, if one of
the sets J1, J2, . . . , Jm is empty, say Jk = ∅, then the value of the bridge can be represented
by bk ∈ G∅. So, b ∈ G∅. This, of course, can be written as b ∈ GJ1∩J2∩···∩Jm

, whence we are
done. Therefore, we may assume without loss of generality that none of the sets J1, J2, . . . , Jm

is empty, in which case they must alternately have cardinality 1 and 2. Second, if m = 1, then
there is nothing to show. So, we may assume without loss of generality that m � 2. But then,
there must be at least one set of cardinality 1 among J1, J2, . . . , Jm.

(i) If all the sets of cardinality 1 are equal, say equal to {i}, then b ∈ G{i}. But, in this case,
all sets of cardinality 2 must contain i, which implies that J1 ∩ J2 ∩ · · · ∩ Jm = {i}. Therefore,
b ∈ G{i} can be written as b ∈ GJ1∩J2∩···∩Jm

.
(ii) If there are two distinct sets of cardinality 1 among J1, J2, . . . , Jm, say {i} and {j},

then b ∈ G{i} ∩G{j}. We claim that G{i} ∩G{j} = G∅. Once this has been shown, we know
that b ∈ G∅. Since J1 ∩ J2 ∩ · · · ∩ Jm = ∅, this can, again, be written as b ∈ GJ1∩J2∩···∩Jm

.
It remains to show that G{i} ∩G{j} = G∅. By our standing assumption, the equation
ϕ{i}{i,j}(G{i}) ∩ ϕ{j}{i,j}(G{j}) = ϕ∅{i,j}(G∅) holds. In order to transport this equation to
the colimit group G, we apply the injective homomorphism ν{i,j} : G{i,j} → G. This yields:

ν{i,j}(ϕ{i}{i,j}(G{i})) ∩ ν{i,j}(ϕ{j}{i,j}(G{j})) = ν{i,j}(ϕ∅{i,j}(G∅)).

Using the equations ν{i,j}(ϕK{i,j}(GK)) = νK(GK) = ν̃K(μK(GK)) = ν̃K(GK) for the subsets
K ⊂ {i, j}, we finally obtain ν̃{i}(G{i}) ∩ ν̃{j}(G{j}) = ν̃∅(G∅), which reads as G{i} ∩G{j} =
G∅ in the shorthand notation of Remark 2.4.

3.3. Statement and proof of the intersection theorem

We are now ready to discuss the intersection theorem. The proof is based on ideas and
techniques that go back to Gersten and Stallings in [25] and Corson in [13].

Theorem 3.8. For every non-spherical Corson diagram and every two subsets K1,K2 ⊆ I,
the equation GK1 ∩GK2 = GK1∩K2 holds.

Proof. The inclusion ‘⊇’ is a consequence of Remark 2.4. So, we only need to verify
the inclusion ‘⊆’. Suppose that there were a non-spherical Corson diagram and two subsets
K1,K2 ⊆ I with GK1 ∩GK2 � GK1∩K2 . Then, we can find an element g ∈ G with g ∈ GK1 ∩
GK2 but g �∈ GK1∩K2 . Being contained in GK1 , it can be represented by a word w1 over the
generators from the groups GJ with J ⊆ K1 and |J | � 2, and their formal inverses. On the
other hand, being contained in GK2 , it can also be represented by a word w2 over the generators
from the groups GJ with J ⊆ K2 and |J | � 2, and their formal inverses.
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Figure 4. The disc picture P is connected.

Since w1 and w2 represent the same element of the colimit group G, there is a disc picture P
over (∗) with boundary word w1w2

−1. By construction, g �∈ GK1∩K2 . So, it cannot be the
identity of the colimit group G. Therefore, the words w1 and w2 cannot be empty and there
are at least two arcs, or one arc twice, incident with the outer boundary ∂D.

We may assume without loss of generality that the element g, the words w1 and w2, and the
disc picture P are chosen in such a way that the complexity of the disc picture is minimal, that
is, the number of local vertices is minimal and, among all disc pictures with this minimal number
of local vertices, the number of bridges is minimal. This assumption has many consequences
on the structure of the disc picture.

(1) The disc picture P is connected. In particular, since there are arcs incident with the outer
boundary ∂D, every local vertex is incident with at least one arc. Moreover, all bridges and
regions are simply connected. We claim that if P was not connected, then we could remove at
least one component and, hence, obtain a disc picture with strictly fewer local vertices or with
the same number of local vertices but strictly fewer bridges. In other words, we could obtain a
disc picture of lower complexity.

First, note that there are two distinct points x, y ∈ ∂D � M such that one can read off the
words w1 and w2 when going from x to y along the respective side of ∂D, see 1 in Figure 4. If
there is a component of P that is incident with at most one side of ∂D, then we can remove it.
In this case, the boundary words of the disc picture may change. But the new disc picture gives
rise to new words w̃1 and w̃2. Since the removed component has been incident with at most
one side of ∂D, at least one of the words w̃i remains equal to wi. So, both w̃1 and w̃2, which
represent the same element of the colimit group G, still represent g. In the following steps, as
here, we may obtain new words w̃1 and w̃2, and sometimes even a new element g̃ ∈ G. But, in
each step, it is easy to see that these data could have been chosen right at the beginning.

By the above, we may assume without loss of generality that every component of P is
incident with both sides of ∂D. Suppose that there is more than one such component and let
C be the first one traversed when going from x to y along ∂D. For a moment, let us focus on
C and ignore all the other components. Now, one can read off new words w̃1 and w̃2 along the
respective sides of ∂D that represent a new element g̃ ∈ G, see 2 in Figure 4. By construction,
g̃ ∈ GK1 ∩GK2 . If g̃ �∈ GK1∩K2 , then the component C is already a suitable disc picture and
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Figure 5. Replace the subpictures Q by spiders.

we can remove the other components completely. On the other hand, if g̃ ∈ GK1∩K2 , then we
can keep the other components and remove C. The words that one can now read off along the
respective sides of ∂D represent the element g̃−1g ∈ G, which is the product of an element in
GK1∩K2 and an element not in GK1∩K2 . Therefore, g̃−1g �∈ GK1∩K2 and, again, we end up with
a suitable disc picture.

Definition 3.9 (‘type of a local vertex’). Since every local vertex is incident with at least
one arc, we can associate a type to every local vertex. More precisely, for every local vertex
Dk there is a unique subset J ⊆ I with |J | � 2 such that all arcs incident with Dk are labelled
by generators from GJ . (Recall that the set of generators is the disjoint union of all GJ with
J ⊆ I and |J | � 2.) In this case, we say that Dk is of type J .

(2) The disc picture P has at least one local vertex. Since w1 and w2 cannot be empty,
there is at least one arc incident with each side of ∂D. Therefore, if P had no local vertex at
all, then it would have to be a single bridge B connecting the two sides of ∂D. Depending on
the transversal orientation of its arcs, the value of B is either g or g−1. The extremal arcs of
B are labelled by generators, say b1 ∈ GJ1 and bm ∈ GJm

with J1 ⊆ K1 and Jm ⊆ K2. Using
Lemma 3.7 and Remark 2.4, we can now observe that g ∈ GJ1∩J2∩···∩Jm

⊆ GJ1∩Jm
⊆ GK1∩K2 ,

in contradiction to g �∈ GK1∩K2 .
(3) A local vertex cannot be a neighbour of itself. If there was such a local vertex Dk, say

of type J , then we could consider the subpicture Q consisting of the local vertex Dk, one of
the bridges that connect Dk with itself, everything that is enclosed by this bridge, and the
extremal parts of the remaining arcs incident with Dk, see 1 in Figure 5. Every boundary
word w of the subpicture Q is a word over generators from GJ and their formal inverses that
represents the identity of the colimit group G. Since the natural homomorphism νJ : GJ → G
is injective, the word w does not only represent the identity of the colimit group G but also the
identity of the group GJ . Therefore, we can remove the subpicture Q and replace it by a single
spider with boundary word w, see 2 in Figure 5. After this modification, we obtain a disc picture
with at most as many local vertices and strictly fewer bridges, and, hence, of lower complexity.

(4) Two local vertices of the same type cannot be neighbours. If there were two such local
vertices Dk and Dl, without loss of generality Dk �= Dl, then we could consider the subpicture
Q consisting of the local vertices Dk and Dl, one of the bridges that connect Dk and Dl, and the
extremal parts of the remaining arcs incident with Dk and Dl, see 3 in Figure 5. By the same
arguments as in (3), we can remove the subpicture Q and replace it by a single spider with the
same boundary word, see 4 in Figure 5. Again, we obtain a disc picture of lower complexity.

(5) Every bridge has at least two arcs. If there was a bridge B with only one arc, then we
could distinguish between three cases. First, if B is connecting two local vertices, say of types
J1 and J2, then J1 = J2, in contradiction to (4). Second, if B is connecting the outer boundary
∂D with itself, then, by (1), B is already the whole disc picture, in contradiction to (2). So, we
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Figure 6. Replace the subpicture Q by some arcs (left) and remove the bridge B (right).

may assume without loss of generality that B is connecting a local vertex Dk, say of type J ,
and the outer boundary ∂D, say at the side of ∂D along which one can read off the word w1.

By the former, B is labelled by some generator from GJ and, by the latter, J ⊆ K1. Now,
consider the subpicture Q consisting of the local vertex Dk, the bridge B, and the extremal
parts of the remaining arcs incident with Dk, see 1 in Figure 6. Replace it by a subpicture in
which the arcs traversing ∂DQ, which are all labelled by generators from GJ , are extended to
the outer boundary ∂D, see 2 in Figure 6. This gives a disc picture with one fewer local vertex
and, hence, of lower complexity.

(6) The two regions on either side of a bridge cannot be the same. Suppose that there
was a bridge B having the same region R on either side. Then, we can find a subpicture Q
whose boundary ∂DQ is contained in R, except for one point where it crosses B, see 3 in
Figure 6. Therefore, the value of B is the identity of the colimit group G. Since the natural
homomorphisms νJ : GJ → G are injective, the labels of the arcs of B must also be the identities
of the respective groups GJ . So, we can remove the bridge B and obtain a disc picture of lower
complexity.

(7) The value of a bridge cannot be an element of G∅. Suppose that there was a bridge B
with value b ∈ G∅. Since b ∈ G∅, there is a generator b∅ ∈ G∅ that represents it. In fact,
for every J ⊆ I with 1 � |J | � 2 there is a generator bJ ∈ GJ that represents it, namely
bJ := ϕ∅J(b∅) ∈ GJ .

By (6), the two regions on either side of B cannot be the same. Among these two distinct
regions choose the region R with the property that the arcs of B are heading away from R.
Now, remove B and relabel all the remaining arcs in the boundary ∂R as follows: If an arc is
labelled by a generator a ∈ GJ and is heading towards R, then relabel it by a · bJ ∈ GJ . If it
is heading away from R, then relabel it by bJ

−1 · a ∈ GJ . This guarantees that one can still
read off relators along the boundaries of the remaining vertices. Here, we leave the details to
the reader, see [13, Appendix] for another description and 1 – 3 in Figure 7 for some examples.
Note that, in 2 , the generator ϕJ1J2(a) · bJ2 ∈ GJ2 satisfies the following equation:

ϕJ1J2(a) · bJ2 = ϕJ1J2(a) · ϕ∅J2(b∅)

=

{
ϕJ1J2(a) · ϕJ1J2(bJ1) if J1 = ∅,

ϕJ1J2(a) · ϕJ1J2(ϕ∅J1(b∅)) otherwise

= ϕJ1J2(a) · ϕJ1J2(bJ1)

= ϕJ1J2(a · bJ1).
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Figure 7. Relabel the remaining arcs in the boundary ∂R.

Therefore, one can actually read off the relator a · bJ1 = ϕJ1J2(a · bJ1) along the boundary of
the respective joining vertex. So, we obtain a disc picture with the same number of local vertices
and strictly fewer bridges and, hence, of lower complexity.

(8) For every bridge, there is a unique element i ∈ I such that the value of the bridge
is in G{i} � G∅. Let B be a bridge with m arcs that are labelled by generators b1 ∈ GJ1 ,
b2 ∈ GJ2 , . . . , bm ∈ GJm

. By (7), none of the sets J1, J2, . . . , Jm is empty, which implies that
they must alternately have cardinality 1 and 2. By (5), every bridge has at least two arcs, that
is, m � 2. Therefore, there must be at least one set Jk of cardinality 1, say Jk = {i}. So, the
value of B is an element of G{i} and, again by (7), cannot be an element of G∅. The element
i ∈ I is unique; in the proof of Lemma 3.7, we have seen that for any two distinct i, j ∈ I
the equation G{i} ∩G{j} = G∅ holds, whence B cannot have a value that is simultaneously in
G{i} � G∅ and G{j} � G∅.

Definition 3.10 (‘type of a bridge’). In this case, we say that the bridge B is of type i.

(9) If a bridge of type i is incident with a local vertex of type J, then i ∈ J . Similarly, if it is
incident with one side of the outer boundary ∂D, then i ∈ K1 or i ∈ K2, respectively. We give a
proof of the first assertion, the proof of the second one is essentially the same. Let B be a bridge
of type i that is incident with a local vertex Dk of type J . As we have seen in (8), one of the arcs
of B is labelled by a generator from G{i}. Moreover, the extremal arc of B that is incident with
Dk is labelled by a generator from GJ . By Lemma 3.7 and Remark 2.4, we can conclude that
B has a value in G{i}∩J . By (7), this value is not in G∅. Therefore, {i} ∩ J �= ∅, whence i ∈ J .

(10) There are no local vertices of type ∅. By (1), every local vertex is incident with at least
one arc. So, if there was a local vertex of type ∅, then it would have to be incident with an
arc that is labelled by some generator a ∈ G∅. But this arc is part of a bridge with a value in
G∅, in contradiction to (7).

(11) There are no local vertices of type {i} with i ∈ I. First, observe that if there was such a
local vertex Dk, then it would have to be a neighbour of some other local vertex Dl. Suppose
it was not. Then, all bridges that are incident with Dk must either connect it to itself, which is
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Figure 8. Replace each arc by a sequence of three arcs.

not possible by (3), or to the outer boundary ∂D. But, by (1), the disc picture P is connected.
So, this is already the whole disc picture. In particular, all bridges are incident with Dk, which
is a local vertex of type {i}. Therefore, by (9), all bridges are of type i. But this means that
each letter of w1 and w2 represents an element in G{i}, whence g ∈ G{i}. On the other hand,
since both w1 and w2 are not empty, there is at least one bridge connecting Dk to either side
of ∂D. Again, by (9), this implies both i ∈ K1 and i ∈ K2. But since {i} ⊆ K1 ∩K2, we can
use Remark 2.4 to conclude that g ∈ GK1∩K2 , in contradiction to g �∈ GK1∩K2 .

So, we may assume without loss of generality that Dk is a neighbour of some other local
vertex Dl. Consider a bridge that connects Dk and Dl. Again, by (9), this bridge is of type i
and the local vertex Dl is of some type J with i ∈ J , that is, {i} ⊆ J . By (4), two local vertices
of the same type cannot be neighbours. So, we actually obtain that {i} ⊂ J . Now, replace every
arc that is incident with Dk, say labelled by some generator a ∈ G{i}, by a sequence of three
arcs with the same transversal orientation. The first and the third are labelled by a ∈ G{i},
the second by ϕ{i}J(a) ∈ GJ , see 1 in Figure 8. Then, consider the subpicture Q indicated in
2 in Figure 8. By the same arguments as in (3) and (4), we can remove the subpicture Q and
replace it by a single spider with the same boundary word. Again, we obtain a disc picture of
lower complexity.

Definition 3.11 (‘angle and swap’). By (10) and (11), we know that every local vertex
Dk is of some type {i, j} with distinct i, j ∈ I. By (9), such a local vertex is incident with
bridges each of which is either of type i or of type j. Consider the connected components of
∂Dk � M . They are called angles. An angle is called a swap if one of the two bridges enclosing
it is of type i and the other one is of type j.

(12) Every local vertex has at least one swap in its boundary. Suppose that there was a local
vertex Dk, say as above of type {i, j}, without any swap in its boundary. Then, all bridges
that are incident with Dk are of the same type, say of type i.

Since Dk is a local vertex of type {i, j}, the arcs that are incident with Dk are labelled
by generators a1, a2, . . . , am ∈ G{i,j}. The respective bridges are all of type i. So, each of
these generators represents an element in G{i} � G∅, whence we can even find genera-
tors ã1, ã2, . . . , ãm ∈ G{i} representing the same elements, that is, satisfying the equations
ν{i,j}(as) = ν{i}(ãs) = ν{i,j}(ϕ{i}{i,j}(ãs)). Now, we can use the injectivity of the homomor-
phism ν{i,j} : G{i,j} → G to conclude that as = ϕ{i}{i,j}(ãs). Similarly to the modification
described above in (11), we replace every arc that is incident with Dk by a sequence of
two arcs with the same transversal orientation. If the arc has been labelled by as ∈ G{i,j},
then the new arc that is incident with Dk is labelled by ãs ∈ G{i} whereas the other one is
labelled by as ∈ G{i,j}, see 1 in Figure 9. Now, let ε1, ε2, . . . , εm ∈ {−1, 1} such that the word
a1

ε1a2
ε2 · · · am

εm has originally been a boundary word of Dk. After this modification, one can
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Figure 9. Replace each arc by a sequence of two arcs (left) and create a local vertex (right).

read off the word ã1
ε1 ã2

ε2 · · · ãm
εm along ∂Dk. But:

ϕ{i}{i,j}(ã1
ε1 ã2

ε2 · · · ãm
εm) = a1

ε1a2
ε2 · · · am

εm = 1 in G{i,j}

The injectivity of ϕ{i}{i,j} : G{i} → G{i,j} implies that Dk has become a local vertex of type
{i} and can be removed as in (11). We obtain a disc picture of lower complexity.

Definition 3.12 (‘sufficiently many swaps’). Assume given a local vertex Dk of some
type {i, j} with distinct i, j ∈ I. Then, Dk has sufficiently many swaps in its boundary if the
Gersten–Stallings angle �{i,j} �= 0 and the number of swaps m � 2π/�{i,j}.

(13) Every local vertex has sufficiently many swaps in its boundary. Suppose that there
was a local vertex Dk without sufficiently many swaps in its boundary. By (13), there is at
least one swap. If we start at some swap and go from swap to swap once around ∂Dk, then
we can read off words v1, v2, . . . , vm, see 2 in Figure 9. Each of these words represents an
element in G, so it makes sense to write v1, v2, . . . , vm ∈ G. Their product v1 · v2 · . . . · vm is
the identity element. We may assume without loss of generality that v1, v3, . . . , vm−1 ∈ G{i}
and v2, v4, . . . , vm ∈ G{j}. In order to show that at least one of these elements is contained in
G∅, we construct their preimages under the injective homomorphisms νK : GK → G:

ν{i}−1(v1), ν{i}−1(v3), . . . , ν{i}−1(vm−1) ∈ G{i},

ν{j}−1(v2), ν{j}−1(v4), . . . , ν{j}−1(vm) ∈ G{j}.

These preimages assemble to an element x := ν{i}−1(v1) · ν{j}−1(v2) · . . . · ν{j}−1(vm) of the
amalgamated free product G{i} ∗G∅

G{j}. Now, recall the definition of the Gersten–Stallings
angle. The homomorphism α : G{i} ∗G∅

G{j} → G{i,j} introduced in Subsection 2.2 satisfies:

α(x) = ϕ{i}{i,j}(ν{i}−1(v1)) · ϕ{j}{i,j}(ν{j}−1(v2)) · . . . · ϕ{j}{i,j}(ν{j}−1(vm))

= ν{i,j}−1(v1) · ν{i,j}−1(v2) · . . . · ν{i,j}−1(vm)

= ν{i,j}−1(v1 · v2 · . . . · vm)

= ν{i,j}−1(1)

= 1.
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So, x ∈ ker(α). Since Dk does not have sufficiently many swaps in its boundary, we know that
either the Gersten–Stallings angle �{i,j} = 0 or the length of x, which is at most m, is strictly
smaller than 2π/�{i,j}, which is nothing but the minimal length of a non-trivial element in
ker(α). In either case, x must be trivial in G{i} ∗G∅

G{j}.
It is a consequence of the normal form theorem, see [20, Lemma 1], that there is an index

k ∈ {1, 2, . . . ,m} such that ν{i}−1(vk) ∈ ϕ∅{i}(G∅) or ν{j}−1(vk) ∈ ϕ∅{j}(G∅), depending on
the parity of k. But then:

vk ∈
{

ν{i}(ϕ∅{i}(G∅)) if k is odd,

ν{j}(ϕ∅{j}(G∅)) if k is even

}
= ν∅(G∅) = G∅.

In either case, vk ∈ G∅. Now, we add a new local vertex and a new bridge to the disc picture as
illustrated in 3 in Figure 9. The arcs that had been traversed when reading off the word vk end
up at the new local vertex, which is connected to Dk by a single arc labelled by ν{i,j}−1(vk).
This increases both the number of local vertices and the number of bridges by 1. But still, some
of the properties we have discussed so far, in particular (1), hold true and the bridge connecting
the new local vertex and Dk, which has a value in G∅, can be removed as in (6) or (7). Next,
we want to get rid of the new local vertex. If the removement of the bridge has made the disc
picture P disconnected, then we can remove one of the two components as in (1). Otherwise,
there is still a path from the new local vertex to Dk, which implies that the new local vertex is
a neighbour of some other local vertex. Once this is clear, we can remove it as in (13) and in the
final step of (11). In either case, in particular in the latter, we do not only remove the new local
vertex but also at least one more bridge. So, in either case, we obtain a disc picture of lower
complexity.

After all these observations, we can give an easy combinatorial argument that yields a
contradiction. The principal idea is to distribute weights over certain parts of the disc picture.
Every local vertex gets the weight 2π, every inner bridge gets the weight −2π, and every inner
region gets the weight 2π. For the notion of inner, see Definition 3.6. The weighted parts of
the disc picture correspond to vertices, edges, and bounded regions of a planar graph, which is
non-empty, finite, and connected. So, we may use Euler’s formula for planar graphs to calculate
the total weight:

2π · # local vertices− 2π · # inner bridges + 2π · # inner regions = 2π.

Let us count again. But, this time, we reallocate the weights to the regions. Every inner bridge
distributes its weight −2π equally to the two regions on either side and every local vertex
distributes its weight 2π equally to the swaps in its boundary, each of which lets it traverse
to the adjacent region. The new total weight of a region R is denoted by wt(R) and can be
estimated from above using (14)–(16):

(14) The weight traversing each swap is bounded by the Gersten–Stallings angle associated
to the type of the local vertex. In particular, it is at most π/2. Let Dk be a local vertex of type
J = {i, j}. By (13), Dk has sufficiently many swaps in its boundary. So, the Gersten–Stallings
angle �{i,j} �= 0 and the number of swaps is at least 2π/�{i,j}. Since Dk distributes its weight
2π equally to the swaps, the weight traversing each swap is at most �{i,j}.

(15) There are no inner regions of positive weight. Let R be an inner region. By (1), R is an
open disc. By (6), the boundary ∂R contains some number of inner bridges, say m, and the
same number of angles, some of which may be swaps. By (3), m � 2.

By (6), each of the m inner bridges contributes −π to wt(R) and, by (14), each of the
at most m swaps contributes at most π/2. Therefore, we can estimate wt(R) as follows:
If m � 4, then wt(R) � 1 · 2π −m · π + m · π/2 � 0. If m = 3 and there are at most two
swaps, then wt(R) � 1 · 2π − 3 · π + 2 · π/2 = 0. If m = 3 and there are exactly three swaps,
then there are three pairwise distinct i, j, k ∈ I such that the local vertices in the boundary
∂R are of types {i, j}, {i, k}, {j, k}. Since we consider a non-spherical Corson diagram,
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there are no spherical triples. In particular, �{i,j} + �{i,k} + �{j,k} is at most π, whence
wt(R) � 1 · 2π − 3 · π + �{i,j} + �{i,k} + �{j,k} � 0. What remains is the case that m = 2. But
if there were two distinct i, j ∈ I such that one of the inner bridges is of type i and the other
is of type j, then both local vertices must be of type {i, j}, in contradiction to (4). So, in this
case, there cannot be any swap, whence wt(R) = 1 · 2π − 2 · π + 0 = 0.

(16) There are at most two outer regions of positive weight, and each of them has at most
weight π/2. Let R be an outer region. By (1), R is an open disc. The boundary ∂R contains
some number of bridges, say m, and some number of angles. By (1), (2), and (6), exactly two
of the bridges are outer, which implies that m � 2. Moreover, it contains exactly m− 1 angles,
some of which may be swaps.

Again, if m � 3, then wt(R) � 0 · 2π − (m− 2) · π + (m− 1) · π/2 = (−m + 3) · π/2 � 0. If
m = 2 and there is no swap, then wt(R) = 0 · 2π − 0 · π + 0 = 0. What remains is the case that
m = 2 and there is a swap. Then, wt(R) might well be positive, but wt(R) � 0 · 2π − 0 · π +
1 · π/2 = π/2.

Next, we show that this can happen at most twice. Since there is a swap, we know that there
are two distinct i, j ∈ I such that one of the outer bridges is of type i and the other one is of
type j. If both bridges end up at the same side of ∂D, say at the side of ∂D along which one
can read off the word w1, then, by (9), both i ∈ K1 and j ∈ K1. This allows us to remove the
respective local vertex Dk of type {i, j} ⊆ K1 as in the final step of (5) and to obtain a disc
picture of lower complexity. So, we may assume without loss of generality that the two bridges
end up at different sides of ∂D. But, by (1), we know that the disc picture P is connected.
Hence, this can happen at most twice, namely when the boundary ∂R contains one of the two
points x and y that have been chosen in (1).

By (15) and (16), the total weight given to the disc picture is at most π. This is a
contradiction to the above observation that the total weight amounts to 2π, which completes the
proof.

3.4. Interpretation

In case of a non-spherical triangle of groups, the intersection theorem says that the groups
GK with K ⊆ {1, 2, 3} and |K| � 2 intersect exactly as sketched in Figure 10. One particularly
nice way of reading the intersection theorem is to start with such a setting. Let M be the
union of three groups with the property that each two of them intersect along a common
subgroup, by which we implicitly mean that the two multiplications agree on the subgroup.
The set M is equipped with a partial multiplication and the question arises whether it can be
homomorphically embedded into a group, that is, whether there exists an injective map into a
group such that the restriction to each of the three groups is a homomorphism. In order to give
a partial answer to this question, we may interpret our three groups and their intersections,
equipped with the inclusion maps, as a triangle of groups. By construction of the colimit,
the natural homomorphisms νJ : GJ → G agree on the intersections and, hence, yield a map
ν : M → G. This map is injective if and only if the natural homomorphisms νJ : GJ → G are
injective and the equations GK1 ∩GK2 = GK1∩K2 hold.

So, if the triangle of groups is non-spherical, then the answer is affirmative. On the other
hand, it is a consequence of the universal property, see [1, Chapter III], that if the map
ν : M → G is not injective, then M cannot be homomorphically embedded into any group and
the answer is negative.

4. Billiards theorem for triangles of groups

In the previous section, we used a combinatorial argument based on Euler’s formula for planar
graphs to prove the intersection theorem. This kind of argument, be it in the language
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Figure 10. The group G{1,2} intersecting the groups G{1,3} and G{2,3}.

of homotopies, see, for example, [25], in the language of van Kampen diagrams, see, for
example, [15, 16], or in the language of disc pictures, see, for example, [13], turned out to
be very powerful in our context, and we highlight the following two results from [15, 16].
In each of them, one considers a non-spherical triangle of groups and assumes that for every
a ∈ {1, 2, 3} there is an element ga ∈ G{a} � G∅.

Theorem 4.1 (Edjvet et al.). The product g1g2g3 ∈ G has infinite order.

Theorem 4.2 (Howie–Kopteva). If the triangle of groups is hyperbolic, then there is an
n ∈ N such that the elements (g1g2g3)n ∈ G and (g1g3g2)n ∈ G generate a non-abelian free
subgroup.

Remark 4.3. Both, in Theorems 4.1 and 4.2, the authors had the case G∅ = {1} in mind
and, therefore, used α : G{i} ∗G{j} → G{i,j} instead of α : G{i} ∗G∅

G{j} → G{i,j} to define
the angle �{i,j}. Note that their notion of a group-theoretic angle coincides with Pride’s
property-Wk, which has been introduced in [22] and generalized in [23]. In fact, following
their notion, the angle �{i,j} is strictly smaller than π/k if and only if the group G{i,j} has
Pride’s property-Wk. Our notion is certainly reminiscent of Pride’s property-Wk, but using the
amalgamated free product prevents us from measuring the intersection along the group G∅.
One can check that Theorems 4.1 and 4.2 do also hold in our setting with arbitrary groups G∅

and Gersten–Stallings angles as defined in Subsection 2.2, see [14] for details.

In the light of Theorem 4.2, one may wonder about the Euclidean case. Let us therefore
assume that the triangle of groups is Euclidean and ask under which conditions the colimit
group G has a non-abelian free subgroup. A first class of examples to look at are Euclidean
triangle groups:

Δ(k, l,m) = 〈a, b, c : a2, b2, c2, (ab)k, (ac)l, (bc)m〉

with (k, l,m) ∈ {(3, 3, 3), (2, 4, 4), (2, 3, 6)}.

Each of these groups happens to be the colimit group of the Euclidean triangle of groups based
on the following data:

G∅ = {1}, G{1} = 〈a : a2 = 1〉, G{2} = 〈b : b2 = 1〉, G{3} = 〈c : c2 = 1〉,

G{1,2} = 〈a, b : a2 = b2 = (ab)k = 1〉, G{1,3} = 〈a, c : a2 = c2 = (ac)l = 1〉,

G{2,3} = 〈b, c : b2 = c2 = (bc)m = 1〉.
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Figure 11. The Euclidean triangle group Δ(2, 4, 4) realized as S � isom(E2) (left) and a part of
the simplicial complex X including translates of σ by group elements g and gh with g ∈ G{1} and
h ∈ G{2} (right).

Here, as in Subsection 3.1, the homomorphisms ϕJ1J2 : GJ1 → GJ2 are implicitly given by
a 	→ a, b 	→ b, and c 	→ c. It turns out that the Gersten–Stallings angles amount to �{1,2} = π/k,
�{1,3} = π/l, and �{2,3} = π/m, whence the triangle of groups is actually Euclidean.

The algebraic structure of the colimit group G can be revealed by geometry. Consider
three lines in the Euclidean plane E2 enclosing a triangle with angles π/k, π/l, and π/m, see
Figure 11. The reflections along these lines generate a subgroup S � isom(E2) that is isomorphic
to Δ(k, l,m). Since isom(E2) is solvable, S � isom(E2) must be solvable, too. Therefore,
Δ(k, l,m) is solvable and cannot have a non-abelian free subgroup, see, for example, [14, 17]
for more detailed descriptions of the geometry.

In this section, we generalize the geometric approach. More precisely, we use a construction
introduced by Bridson in [6] to study all non-degenerate Euclidean triangles of groups, that
is, all Euclidean triangles of groups with the property that each Gersten–Stallings angle is
strictly between 0 and π. Since the strict upper bound π is our standing assumption, see
Subsection 2.4, being non-degenerate actually means that none of the Gersten–Stallings angles
is 0. (But even if there was no such standing assumption, then it is clear that a Euclidean
triangle of groups is non-degenerate if and only if none of the Gersten–Stallings angles is 0.)
Given such a triangle of groups, we will construct a simplicial complex X . The action of G on X
will give us new insight into the structure of G. Actually, it turns out that if X branches, that
is, if |X | is not a topological manifold any more, then the colimit group G has a non-abelian
free subgroup, see Theorem 4.19. This allows us to give an answer to a problem mentioned
by Kopteva and Williams in [18, p. 58, l. 24], who wondered if the class of colimit groups of
non-spherical triangles of groups satisfies the Tits alternative.

As already mentioned, the construction and the basic properties of X have been introduced
by Bridson in [6]. In Subsection 4.1, we summarize what is relevant for our work, and apply
it from Subsection 4.2 onwards. Our proofs are based on ideas and techniques that go back to
two Diplomarbeiten under supervision of Bieri, namely by Lorenz in [19] and Brendel in [5].
Both Lorenz and Brendel use altitudes in triangles to detect non-abelian free subgroups, but
under additional assumptions on the Gersten–Stallings angles. We use the language of billiards
instead, which gives us the flexibility we need.

4.1. Bridson’s simplicial complex

Given a non-degenerate Euclidean triangle of groups, we define an abstract simplicial
complex X as follows (the same definition can be given for any triangle of groups, but we
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Figure 12. Labelling the triangle Δ and constructing h : |X | → Δ.

need it only in the non-degenerate Euclidean case):

0-simplices := {{gG{1,2}} : g ∈ G}
� {{gG{1,3}} : g ∈ G}
� {{gG{2,3}} : g ∈ G},

1-simplices := {{gG{1,2}, gG{1,3}} : g ∈ G}
� {{gG{1,2}, gG{2,3}} : g ∈ G}
� {{gG{1,3}, gG{2,3}} : g ∈ G},

2-simplices := {{gG{1,2}, gG{1,3}, gG{2,3}} : g ∈ G}.

4.1.1. Group action and stabilizers. We will use the letter σ to denote the 2-simplex that
is represented by the identity, that is, σ := {G{1,2},G{1,3},G{2,3}}. There is a natural action
of G on X given by left-multiplication of each coset. A fundamental domain for this action
consists of the 2-simplex σ and its faces, see Figure 11.

Bridson mentioned in [6, p. 431, ll. 8–9] that ‘the pattern of stabiliser in this fundamental
domain is precisely the original triangle of groups’. Since we distinguish between the diagram
and its image in the colimit group, we would replace ‘original triangle of groups’ by ‘pattern
of subgroups GK with K ⊆ {1, 2, 3} and |K| � 2’. Anyway, note that there is a very easy way
to prove this observation using the intersection theorem because we can observe that for all
pairwise distinct elements a, b, c ∈ {1, 2, 3}:

(1)
stabG({G{a,b}}) = {g ∈ G : gG{a,b} = G{a,b}} = G{a,b};

(2)

stabG({G{a,b},G{a,c}}) = {g ∈ G : gG{a,b} = G{a,b}, gG{a,c} = G{a,c}}
= G{a,b} ∩G{a,c} = G{a};

(3)

stabG({G{a,b},G{a,c},G{b,c}})
= {g ∈ G : gG{a,b} = G{a,b}, gG{a,c} = G{a,c}, gG{b,c} = G{b,c}}
= G{a,b} ∩G{a,c} ∩G{b,c} = G∅.

Hence, by (1)–(3), the stabilizers of the 0-simplices are the groups GK with K ⊆ {1, 2, 3}
and |K| = 2. The stabilizers of the 1-simplices and the 2-simplex are their pairwise and triple
intersections, which are precisely the groups GK with K ⊆ {1, 2, 3} and |K| = 1 and |K| = 0.
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4.1.2. Simple connectedness. Let us now consider the geometric realization |X |. As usual,
it is equipped with the weak topology. For details about abstract simplicial complexes and
their geometric realizations, we refer the reader to [21, Sections 1.1–1.3].

Lemma 4.4 (Behr). The geometric realization |X | is simply connected.

Behr has proved a slightly more general version of this lemma in 1975, see [3, Satz 1.2].
Roughly speaking, he translates edge paths in |X | to products h1h2 · · ·hn of elements hi ∈ GKi

with Ki ⊆ {1, 2, 3} and |Ki| = 2, and vice versa.

Remark 4.5. In order to keep the notation simple, we use the same symbols to refer to
simplices in X and to their geometric realizations in |X |. Moreover, whenever we talk about a
simplex in |X | without further specification, we mean the closed simplex.

4.1.3. Metric structure. The geometric realization |X | can be equipped with a piecewise
Euclidean metric structure. The triangle of groups is non-degenerate and Euclidean. We may
therefore pick a closed triangle Δ in the Euclidean plane E2 with the property that its angles
agree with the Gersten–Stallings angles. For every subset K ⊆ {1, 2, 3} with |K| = 2 we label
the corresponding vertex of Δ with the angle �K by K. For later purposes, let us label the
edges of Δ, too. The edge between the two vertices that are labelled by K1 and K2 is labelled
by their intersection K1 ∩K2, see Figure 12.

Next, we construct a continuous map h : |X | → Δ. Every 0-simplex is of the form {gGK} for
some K ⊆ {1, 2, 3} with |K| = 2. Map it to the vertex that is labelled by K. In order to continue
this map to the higher dimensional simplices, map the 1-simplices homeomorphically to the
corresponding edges, that is, if a 1-simplex is of the form {gG{a,b}, gG{a,c}}, then map it to the
edge that is labelled by {a, b} ∩ {a, c} = {a}. For every 2-simplex τ , use Schoenflies’ Theorem
to continue the homeomorphism h|∂τ : ∂τ → ∂Δ to h|τ : τ → Δ. The latter ones assemble to
the desired continuous map h : |X | → Δ. Given two points x, y ∈ τ, we can now measure their
local distance:

dτ (x, y) := ‖h|τ (x)− h|τ (y)‖.
The local distance dτ : τ × τ → R is a metric on the single 2-simplex τ . The geometric realiza-
tion |X | equipped with the local distances is called an E-simplicial complex. For a formal
definition, see [6, Section 1.1]. In order to extend the local distances to a metric on |X |, we
follow Bridson’s work.

Definition 4.6 (‘m-chain’). Let x, y ∈ |X |. An m-chain from x to y is a finite sequence
C = (x0, x1, . . . , xm) of points in |X | with the property that x0 = x and xm = y, and that for
every 1 � i � m both xi−1 and xi are contained in some common 2-simplex τi.

Let C be an m-chain as above. Then, the length of C is defined by:

length(C) :=
m∑

i=1

dτi
(xi−1, xi).

For every 1 � i � m, there is a unique geodesic from xi−1 to xi in τi. We call it the segment
from xi−1 to xi. The concatenation of all segments is called the path induced by C. It is denoted
by [[C]]. Note that neither length(C) nor [[C]] depends on the choice of τi, that is, if there are
two 2-simplices τi and τ̃i such that xi−1, xi ∈ τi ∩ τ̃i, then the local distances dτi

(xi−1, xi) and
dτ̃i

(xi−1, xi) agree and the segment [[xi−1, xi]] is well defined.
Let x, y ∈ |X |. Since |X | is path connected, there is a path from x to y. By the construction

given in Behr’s proof or by a direct argument, we can even find a path from x to y that is
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induced by some m-chain C. Hence, there is a function d : |X | × |X | → R given by:

d(x, y) := inf {length(C) : ∃m such that C is an m-chain from x to y} .

It is straightforward to see that d : |X | × |X | → R is a pseudometric. On the other hand, distin-
guishability, that is, d(x, y) = 0 implies x = y, is an issue. Here, a lemma from [6, Section 1.2]
comes into play. It uses that |X | is an E-simplicial complex with a finite set of shapes, that
is, with a finite set of isometry classes of simplices.

Lemma 4.7 (Bridson). For every x ∈ |X |, there is an ε(x) > 0 with the following property:
For every y ∈ |X | with d(x, y) < ε(x), there is a common 2-simplex τ containing both x and y
such that the distances dτ (x, y) and d(x, y) agree.

This lemma implies distinguishability, whence the pseudometric d : |X | × |X | → R is actually
a metric. Even more, it makes |X | a complete geodesic metric space, see [6, Theorem 1.1].
As mentioned in [6, p. 381, ll. 25–31], the topology induced by the metric d : |X | × |X | → R
is coarser, and may even be strictly coarser, than the weak topology. However, |X | remains
simply connected as a metric space.

Remark 4.8. Another important application of Lemma 4.7 concerns the arc length of
paths. Given an m-chain C = (x0, x1, . . . , xm), the metric d : |X | × |X | → R allows us to
determine the arc length of the path [[C]], see, for example, [7, Definition I.1.18]. In the light of
Lemma 4.7, it is easy to verify that the arc length of the path [[C]] agrees with length(C).

4.1.4. CAT(0) property. From now on, we will consider |X | as a metric space. A crucial
observation is that |X | has the CAT(0) property. In order to prove this, we will verify the link
condition.

Definition 4.9 (‘geometric link’). Let x ∈ |X |. The (geometric) closed star St(x) is the
union of the geometric realizations of all simplices that contain x. If y ∈ St(x) � {x}, then
there is at least one 2-simplex that contains both x and y. So, we may consider the segment
[[x, y]]. Two such segments [[x, y]] and [[x, y′]] are called equivalent if one of them is contained
in the other. We call the set of equivalence classes the geometric link of x. It is denoted by
Lk(x, |X |).

The geometric link Lk(x, |X |) can be equipped with a metric structure. First, we consider
certain subsets of Lk(x, |X |). For every 2-simplex τ in St(x), let Lk(x, τ) be the subset of
all elements of Lk(x, |X |) that are represented by segments in τ . Note that, as soon as one
representative has this property, all representatives do. The subset Lk(x, τ) ⊆ Lk(x, |X |) has a
natural metric dLk(x,τ) : Lk(x, τ)× Lk(x, τ)→ R given by the Euclidean angle:

dLk(x,τ) ([[x, y]]∼, [[x, y′]]∼) := ∠h|τ (x) (h|τ (y), h|τ (y′)) ∈ [0, π].

If x is in the 1-skeleton of |X |, then every (Lk(x, τ), dLk(x,τ)) is isometrically isomorphic to a
closed interval of length �{1,2}, �{1,3}, �{2,3}, or π, see 1 and 2 in Figure 13. In particular, we
may interpret the subsets Lk(x, τ) ⊆ Lk(x, |X |) as 1-simplices and, at least after a barycentric
subdivision of each simplex, the whole geometric link Lk(x, |X |) as a simplicial complex.

Even more, it is an E-simplicial complex with a finite set of shapes. As in Paragraph 4.1.3, the
connected components of Lk(x, |X |) can be equipped with a pseudometric. This pseudometric
turns out to be a metric which makes every connected component a complete geodesic metric
space. If we set the distance of elements from distinct connected components to ∞, then we
obtain an extended metric dLk(x,|X |) : Lk(x, |X |)× Lk(x, |X |)→ R ∪ {∞}.
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Figure 13. The sets Lk(x, τ) for different points x ∈ τ .

If x is not in the 1-skeleton of |X |, then it must be in the interior of some 2-simplex τ . In
this case, (Lk(x, τ), dLk(x,τ)) is isometrically isomorphic to the standard 1-sphere S1, see 3 in
Figure 13. Since Lk(x, τ) = Lk(x, |X |), the metric dLk(x,τ) : Lk(x, τ)× Lk(x, τ)→ R is already
a metric dLk(x,|X |) : Lk(x, |X |)× Lk(x, |X |)→ R on the geometric link. For more details, in
particular for a remark about equivalent definitions, we refer the reader to [7, Sections 1.7.14–
1.7.15]. Note that Bridson and Haefliger consider the open star instead of the closed one. But,
in the end, this does not make a difference.

Definition 4.10 (‘link condition’). The geometric realization |X | satisfies the link condi-
tion if for every x ∈ |X | and every pair of points a, b ∈ Lk(x, |X |) with dLk(x,|X |)(a, b) < π there
is a unique geodesic from a to b, or, equivalently, if every injective loop λ : S1 → Lk(x, |X |) has
arc length at least 2π.

The equivalence relies on the fact that |X | is a two-dimensional E-simplicial complex with
a finite set of shapes. One can either prove it directly or apply [7, Theorem I.7.55, (3)⇔ (1),
Theorem II.5.5, (3)⇔ (2), Lemma II.5.6].

Lemma 4.11 (Bridson and Gersten–Stallings). The geometric realization |X | satisfies the
link condition.

A proof of this lemma has been given by Bridson in [6, p. 431, ll. 19–25] and by Gersten
and Stallings in [25, p. 499, ll. 19–28]. The argument is both simple and important, so let
us outline the main ideas. The most interesting case occurs when x is a 0-simplex, without
loss of generality x ∈ {{gG{1,2}} : g ∈ G}. Recall the definition of σ from Paragraph 4.1.1, it
allows us to describe the set of 2-simplices of |X | as the orbit {gσ : g ∈ G}. Every injective
loop λ : S1 → Lk(x, |X |) traverses some finite number of 1-simplices, say m. If the first
one is Lk(x, gσ), then the next ones are Lk(x, gh1h2 · · ·hiσ) with elements hi alternately
in G{1} � G∅ and G{2} � G∅. At the end, λ traverses Lk(x, gh1h2 · · ·hm−1σ). Since λ is
a loop, we know that there is an hm such that Lk(x, gh1h2 · · ·hmσ) = Lk(x, gσ), which is
equivalent to h1h2 · · ·hm ∈ G∅. Let us write h := h1h2 · · ·hm. We may assume without loss of
generality that h1, h3, . . . , hm−1 ∈ G{1} � G∅ and h2, h4, . . . , hm ∈ G{2} � G∅. Since h ∈ G∅,
also hmh−1 ∈ G{2} � G∅. Now, we proceed similarly to (13) in the proof of the intersection
theorem. We construct the preimages under the injective homomorphisms νK : GK → G:

ν{1}−1(h1), ν{1}−1(h3), . . . , ν{1}−1(hm−1) ∈ G{1} � ϕ∅{1}(G∅),

ν{2}−1(h2), ν{2}−1(h4), . . . , ν{2}−1(hmh−1) ∈ G{2} � ϕ∅{2}(G∅).

Again, these preimages assemble to an element ν{1}−1(h1) · ν{2}−1(h2) · . . . · ν{2}−1(hmh−1)
of the amalgamated free product G{1} ∗G∅

G{2} that is contained in the kernel of the
homomorphism α : G{1} ∗G∅

G{2} → G{1,2} introduced in Subsection 2.2. But, by the normal
form theorem, see [20, Lemma 1], this element is non-trivial. Therefore, m � 2π/�{1,2}. Now,
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Remark 4.8, which does also hold for m-chains in Lk(x, |X |), implies that the arc length of λ
is equal to m · �{1,2}, which can be estimated from below by 2π/�{1,2} · �{1,2} = 2π, whence
we are done. The link condition for the other cases, that is, if x is in the interior of a 1-simplex
or in the interior of a 2-simplex, is almost immediate.

Once we have convinced ourselves that the geometric realization |X | satisfies the link
condition, we may apply Bridson’s main theorem [6, Section 2, Main Theorem, (11)⇒ (2)].

Theorem 4.12 (Bridson). Since |X | is a simply connected E-simplicial complex with a
finite set of shapes that satisfies the link condition, it has the CAT(0) property.

4.1.5. Geodesics. Let [[C]] be the path induced by an m-chain C = (x0, x1, . . . , xm). There
is a necessary and, as we will see in Lemma 4.15, sufficient condition for [[C]] to be a
geodesic, namely that C is straight, that is, that there are no obvious shortcuts at the points
x1, x2, . . . , xm−1. Let us make the notion of straightness a little more precise.

Definition 4.13 (‘straight m-chain’). An m-chain C = (x0, x1, . . . , xm) is called straight
if for every 1 � i � m− 1 the distance between [[xi, xi−1]]∼ and [[xi, xi+1]]∼ in Lk(xi, |X |) is at
least π.

Remark 4.14. In general, it is not easy to determine the distance between [[xi, xi−1]]∼ and
[[xi, xi+1]]∼ in Lk(xi, |X |). But the link condition ensures that, once we are able to connect
them by an injective path of arc length π, the distance between them is actually equal to π.

Now, the CAT(0) property comes into play. It allows us to conclude from the local property
‘straight m-chain’ to the global property ‘geodesic’.

Lemma 4.15 (Bridson). If C is a straight m-chain, then [[C]] is a geodesic.

This lemma can be proved by showing that every straight m-chain induces a local geodesic,
which is an easy consequence of [6, Section 2, Main Theorem, (2)⇒ (5)]. And once we know
this, [7, Proposition II.1.4(2)] tells us that every local geodesic is a geodesic.

Remark 4.16. By Lemma 4.15, we are now able to construct geodesics easily; and these
geodesics are unique, see [6, Section 2, Main Theorem, (2)⇒ (1)], which will be of relevance
in the proof of the billiards theorem.

4.2. Billiards theorem

In this section, we still assume given a non-degenerate Euclidean triangle of groups and consider
billiard shots and billiard sequences on the triangle Δ.

4.2.1. Billiard shots and billiard sequences. We choose some point y0 in the interior of Δ
and some direction. Then, we consider the path that starts at y0 and goes in a straight line
into the chosen direction. Eventually, this path leaves Δ. Let y1 ∈ ∂Δ be its last point in Δ.
If this point is a vertex (‘the ball is in the pocket’), then we withdraw the path. Otherwise,
it is in the interior of an edge (‘the ball hits the cushion’), which allows us to reflect the path
according to the rule that the angle of incidence is equal to the angle of reflection. Now, we
can go on. Whenever the path leaves Δ at some point in the interior of an edge, we reflect it
again. After some finite number of reflections, say at the points y1, y2, . . . , ym−1 ∈ ∂Δ, we stop
at some point ym in the interior of Δ. The sequence B = (y0, y1, . . . , ym) is called a billiard
sequence, the induced path [[B]] = [[y0, y1, . . . , ym]] is called a billiard shot.
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4.2.2. Statement and proof of the billiards theorem. The notion of billiard shots and
billiard sequences allows us to prove that certain elements of the colimit group G are non-trivial.

Definition 4.17 (‘adapted’). Given a billiard sequence B = (y0, y1, . . . , ym), we call an
element g ∈ G adapted to B, if it is a product g1g2 · · · gm−1 such that each gi ∈ G{ai} � G∅,
where {ai} is the label of the edge whose interior contains yi.

Theorem 4.18. Assume given a non-degenerate Euclidean triangle of groups and a closed
triangle Δ in the Euclidean plane E2 as constructed in Paragraph 4.1.3. If an element g ∈ G
is adapted to a billiard sequence B = (y0, y1, . . . , ym) on Δ with at least one reflection, that
is, with m � 2, then g is non-trivial.

Proof. The idea is to lift the billiard shot [[B]] to the geometric realization |X |. For every
1 � i � m, we use h|g1g2···gi−1σ : g1g2 · · · gi−1σ → Δ to lift the segment [[yi−1, yi]]. Let us make
some observations.

(1) These lifts assemble to a path in |X |. For every 1 � i � m− 1, the first segment [[yi−1, yi]]
is lifted by h|g1g2···gi−1σ, the second segment [[yi, yi+1]] is lifted by h|g1g2···giσ. To show that these
two lifts actually fit together, we convince ourselves that in either case yi is lifted to the same
point. If the edge whose interior contains yi is labelled by {a}, then the two adjacent vertices
are labelled by {a, b} and {a, c}, where b and c are the remaining two elements of {1, 2, 3}. We
can therefore observe:(

h|g1g2···gi−1σ

)−1 (yi) ∈
{
g1g2 · · · gi−1G{a,b}, g1g2 · · · gi−1G{a,c}

}
,

(h|g1g2···giσ)−1 (yi) ∈
{
g1g2 · · · giG{a,b}, g1g2 · · · giG{a,c}

}
.

Since gi ∈ G{a}, the two 1-simplices agree. Call them τ and observe:(
h|g1g2···gi−1σ

)−1 (yi) = (h|τ )−1(yi) = (h|g1g2···giσ)−1 (yi).

So, the lift of yi is well defined. Let us denote it by xi. For the lifts of the extremal points y0 and
ym, we define analogously x0 := (h|σ)−1(y0) and xm := (h|gσ)−1(ym), whence the lifts of each
two segments [[yi−1, yi]] and [[yi, yi+1]] assemble to the path [[xi−1, xi, xi+1]] and, more general,
the lifts of all segments [[y0, y1]], [[y1, y2]], . . . , [[ym−1, ym]] assemble to the path [[C]] induced by
the m-chain C := (x0, x1, . . . , xm).

(2) The m-chain C is straight. Let 1 � i � m− 1. We construct a 2-chain L from
[[xi, xi−1]]∼ to [[xi, xi+1]]∼ in Lk(xi, |X |) such that length(L) = π and the path [[L]] is injec-
tive. Then, by Remark 4.8, the path [[L]] is of arc length π and, by Remark 4.14, the
distance between [[xi, xi−1]]∼ and [[xi, xi+1]]∼ in Lk(xi, |X |) is equal to π. First, consider the
edge whose interior contains yi and choose another point ỹi in the interior of this edge.
Let x̃i := (h|g1g2···gi−1σ)−1(ỹi) = (h|g1g2···giσ)−1(ỹi) be its lift. Then, move to the geometric link
Lk(xi, |X |) and construct the 2-chain L := ([[xi, xi−1]]∼, [[xi, x̃i]]∼, [[xi, xi+1]]∼), see Figure 14.

Observe that the path [[L]] traverses the interval Lk(xi, g1g2 · · · gi−1σ) until it reaches its
endpoint [[xi, x̃i]]∼. Then, it traverses the interval Lk(xi, g1g2 · · · giσ). Therefore:

length(L) = dLk(xi,g1g2···gi−1σ) ([[xi, xi−1]]∼, [[xi, x̃i]]∼)

+ dLk(xi,g1g2···giσ) ([[xi, x̃i]]∼, [[xi, xi+1]]∼)

= ∠yi
(yi−1, ỹi) + ∠yi

(ỹi, yi+1) = π.

Since gi �∈ G∅, the two intervals traversed by [[L]] are actually not the same. So, [[L]] must be
injective.
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Figure 14. Lift the billiard shot to g1g2 · · · gi−1σ and g1g2 · · · giσ.

Figure 15. A first billiard shot.

With these two observations in mind, the final conclusion that g is non-trivial in G is almost
immediate. By Lemma 4.15, [[C]] is a geodesic from x0 ∈ σ to xm ∈ gσ. Before going on,
observe that any two points in σ can be connected by a 1-chain, which is, of course, straight
and therefore induces a geodesic. But, as mentioned in Remark 4.16, geodesics are unique.
Hence, the unique geodesic between any two points in σ is completely contained in σ. Let
us now go back to our situation. We assume that m � 2. So, the geodesic [[C]] leaves σ
eventually and, therefore, does not end in σ, that is, xm �∈ σ, which implies that gσ �= σ and,
finally, g �= 1.

4.2.3. A first example. We conclude Subsection 4.2 with an example that illustrates
the application of the billiards theorem. Assume given a triangle of groups with Gersten–
Stallings angles �{1,2} = �{1,3} = �{2,3} = π/3. Since none of them is equal to 0, it is
easy to see that for every a ∈ {1, 2, 3} there is an element ga ∈ G{a} � G∅. Indeed, if
there was no element ga ∈ G{a} � G∅, then G{a} = G∅, which means ν̃{a}(G{a}) = ν̃∅(G∅).
Now, observe that ν{a}(G{a}) = ν̃{a}(μ{a}(G{a})) = ν̃{a}(G{a}) = ν̃∅(G∅) = ν̃∅(μ∅(G∅)) =
ν∅(G∅) = ν{a}(ϕ∅{a}(G∅)). Since the homomorphism ν{a} : G{a} → G is injective, we obtain
G{a} = ϕ∅{a}(G∅), whence G{a} ∗G∅

G{b} is generated by G{b}. So, the homomorphism
α : G{a} ∗G∅

G{b} → G{a,b} is injective and the Gersten–Stallings angle �{a,b} = 0. The
product g := g1g2g3 ∈ G, which has been considered in Theorem 4.1, is adapted to the
billiard sequence B = (y0, y1, y2, y3, y4) drawn in Figure 15 and is therefore non-trivial.
Even more, we may continue the billiard shot. This yields billiard sequences of the form
(y0, y1, y2, y3, y1, y2, y3, . . . , y1, y2, y3, y4). Every power of g, that is, every element gn ∈ G with
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n ∈ N, is adapted to such a billiard sequence and is therefore non-trivial. Hence, g has infinite
order.

4.3. Constructing non-abelian free subgroups

Again, assume given a non-degenerate Euclidean triangle of groups. So, for every a ∈ {1, 2, 3}
there is an element ga ∈ G{a} � G∅. Let us recall the notion of branching. We say that the
simplicial complex X branches if the geometric realization |X | is not a topological manifold
any more. It is easy to see that X branches if and only if there is an a ∈ {1, 2, 3} such that the
index of G∅ in G{a} is at least 3 or there are two distinct a, b ∈ {1, 2, 3} such that G{a,b} is
not generated by G{a} and G{b}. The following theorem says that branching already implies
the existence of non-abelian free subgroups in G.

Theorem 4.19. Assume given a non-degenerate Euclidean triangle of groups. If the
simplicial complex X branches, then the colimit group G has a non-abelian free subgroup.

Remark 4.20. Note that Theorem 4.19 is the two-dimensional analogue of a well-known
fact. Consider an amalgamated free product X ∗A Y with the property that the image of A in
X and the image of A in Y have index at least 2. The associated Bass–Serre tree T branches if
and only if one of the indices is at least 3. In this case, the amalgamated free product X ∗A Y
has a non-abelian free subgroup.

Proof of Theorem 4.19. We may assume without loss of generality that �{1,2} � �{1,3} �
�{2,3}. So, there are exactly three possibilities for the Gersten–Stallings angles, each of which
is considered in a separate column in Figure 16.

First, if there is an a ∈ {1, 2, 3} such that the index of G∅ in G{a} is at least 3, consider the
element h ∈ G that is given in the respective entry in Figure 16. It is constructed in such a way
that both h and h−1 are adapted to a billiard sequence B1 with the following property: The
billiard shot [[B1]] starts at some point in the interior of Δ and goes orthogonally away from
the edge labelled by {a}. After a couple of reflections, it comes back to the starting point, but
in the opposite direction, see 1 in Figure 16.

Note that, given an element g ∈ G with a decomposition into factors that are alternately
from {h, h−1} and G{a} � G∅, we may concatenate the billiard shot [[B1]] and the orthogonal
reflection at the edge labelled by {a}, see 2 in Figure 16, accordingly. This yields a billiard
sequence B2, which g is adapted to. Hence, we know: If there is at least one factor in the
decomposition of g, then there is at least one reflection in the billiard sequence B2 and, by the
billiards theorem, g is non-trivial.

Since the index of G∅ in G{a} is at least 3, we can find an element g̃a ∈ G{a} that is neither
in G∅ nor in gaG∅. In particular, neither g̃a

−1ga nor ga
−1g̃a is in G∅. Define x := gahg̃a

−1 ∈ G
and y := hgahg̃a

−1h−1 ∈ G. We claim that x and y generate a non-abelian free subgroup of G.
Consider a non-empty freely reduced word over the letters x and y and their formal inverses.
The element g ∈ G that is represented by this word has a natural decomposition into factors
from {h±1, ga

±1, g̃a
±1}. Cancel each h−1h and subsume each g̃a

−1ga and each ga
−1g̃a to a single

element in G{a} � G∅. This yields a new decomposition of g into factors that are alternately
from {h, h−1} and G{a} � G∅. It is easy to see that, despite of the cancellation of each h−1h,
there is at least one factor left in the new decomposition of g. So, by our preliminary discussion,
g is non-trivial, which completes the proof that x and y generate a non-abelian free subgroup
of G.

Second, consider the case that there are two distinct a, b ∈ {1, 2, 3} such that G{a,b} is not
generated by G{a} and G{b}. In this case, let X := G{a,b}, A := 〈G{a},G{b}〉 � G, and Y :=
〈G{a,c},G{b,c}〉 � G, where c is the remaining element of {1, 2, 3}.
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Figure 16. The first column refers to Gersten–Stallings angles �{1,2} = �{1,3} = �{2,3} = π/3,
the second to �{1,2} = π/2, �{1,3} = �{2,3} = π/4, the third to �{1,2} = π/2, �{1,3} = π/3,
�{2,3} = π/6.

Using the presentation (∗), one can show that G ∼= X ∗A Y . Here, the homomorphisms are
the ones induced by the inclusions. By assumption, |X : A| � 2. On the other hand, we know
that there is an element gc ∈ G{c} � G∅. By the intersection theorem, G{c} ∩G{a,b} = G∅. So,
gc ∈ G{c} � G{a,b} ⊆ Y � A and |Y : A| � 2. If |Y : A| = 2, then A is a normal subgroup of Y .
Again, by the intersection theorem:

gc
−1gagc ∈ A ∩G{a,c} ⊆ G{a,b} ∩G{a,c} = G{a},

gc
−1gbgc ∈ A ∩G{b,c} ⊆ G{a,b} ∩G{a,b} = G{b}.

This implies that �{a,c} = �{b,c} = π/2. Hence �{a,b} = 0, which is not possible since we
assume the triangle of groups to be non-degenerate. So, |Y : A| � 3 and, by Remark 4.20,
G ∼= X ∗A Y has a non-abelian free subgroup.

Remark 4.21. The idea of Theorems 4.18 and 4.19 is certainly ping-pong-ish. In the above
proof, we construct products g = g1g2 · · · gm whose factors gi are alternately from {h, h−1} and
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G{a} � G∅. Therefore, the sequence σ 	→ gmσ 	→ gm−1gmσ 	→ · · · 	→ g1 · · · gm−1gmσ moves the
fundamental domain σ back and forth through |X |. But, instead of defining ping-pong sets, we
construct geodesics to ensure that the final position of σ is actually different from the initial
one. The language of billiards helps us to see these geodesics without getting unnecessarily
confused by the surrounding complex.

4.4. Tits alternative

In this section, we ask about the cases that are not covered by Theorems 4.2 and 4.19, and
discuss the following version of the Tits alternative.

Definition 4.22 (‘Tits alternative’). A class C of groups satisfies the Tits alternative if
each G ∈ C either has a non-abelian free subgroup or is virtually solvable.

Remark 4.23. There are groups that neither have a non-abelian free subgroup nor are
virtually solvable. For example, take Thompson’s group F . It has been shown by Brin and
Squier in [8] that F � PLF(R) does not have a non-abelian free subgroup. And if F was
virtually solvable, then [F, F ] would have to be virtually solvable, too. But [F, F ] is infinite
and simple, see [11, Section 4], which implies that [F, F ] cannot be virtually solvable.

We may use Thompson’s group F to prove that the Tits alternative does not hold for
the class of colimit groups of non-spherical triangles of groups. For example, let Γ1 be the
triangle of groups with the property that the groups GJ are all equal to F and the injective
homomorphisms ϕJ1J2 : GJ1 → GJ2 are all identities. The Gersten–Stallings angles amount to
�{1,2} = �{1,3} = �{2,3} = 0, whence Γ1 is a degenerate hyperbolic triangle of groups. But the
colimit group is isomorphic to F and, therefore, neither has a non-abelian free subgroup nor
is virtually solvable.

Note that there are non-degenerate examples, too. Pick one of the three triangles of
groups given in the introduction to Section 4 and replace every group GJ by F ×GJ and
every injective homomorphism ϕJ1J2 : GJ1 → GJ2 by idF × ϕJ1J2 : F ×GJ1 → F ×GJ2 . The
Gersten–Stallings angles remain the same, whence the new triangle of groups, call it Γ2, is
non-degenerate and Euclidean. But the colimit group is isomorphic to F ×Δ(k, l,m) and,
therefore, neither has a non-abelian free subgroup nor is virtually solvable. The latter is
a consequence of the following two results: Let G be a group and let N � G be a normal
subgroup. The group G has a non-abelian free subgroup if and only if N or G/N does. So,
F ×Δ(k, l,m) does not have a non-abelian free subgroup. On the other hand, if G is virtually
solvable, then every subgroup of G is virtually solvable, too. So, F ×Δ(k, l,m) is not virtually
solvable.

Let us now assume that G∅ either has a non-abelian free subgroup or is virtually solvable,
for example, G∅ = {1} as in Remark 4.3. In the non-degenerate case, this assumption already
implies the Tits alternative.

Theorem 4.24. The Tits alternative holds for the class of colimit groups of non-degenerate
non-spherical triangles of groups with the property that the group G∅ either has a non-abelian
free subgroup or is virtually solvable.
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Interestingly, in the degenerate case, it does not. Just consider the triangle of groups Γ3

given by the following data:

G∅ = {1}, G{1} = F, G{2} =
〈
a : a2 = 1

〉
, G{3} =

〈
b : b2 = 1

〉
,

G{1,2} = F ×
〈
a : a2 = 1

〉
, G{1,3} = F ×

〈
b : b2 = 1

〉
,

G{2,3} =
〈
a, b : a2 = b2 = 1

〉
.

Here, the homomorphisms ϕJ1J2 : GJ1 → GJ2 are given by ∀ f ∈ F : f 	→ (f, 1), by a 	→ (1, a)
and a 	→ a, and by b 	→ (1, b) and b 	→ b. The Gersten–Stallings angles amount to �{1,2} = π/2,
�{1,3} = π/2, and �{2,3} = 0, whence Γ3 is a degenerate Euclidean triangle of groups. Its colimit
group is isomorphic to F × (Z2 ∗ Z2) and, therefore, neither has a non-abelian free subgroup
nor is virtually solvable. The following theorem is an analogue of Theorem 4.24. It includes the
degenerate case.

Theorem 4.25. The Tits alternative holds for the class of colimit groups of non-spherical
triangles of groups with the property that every group GJ with J ⊆ {1, 2, 3} and |J | � 2 either
has a non-abelian free subgroup or is virtually solvable.

Given Theorem 4.19, the proofs of Theorems 4.24 and 4.25 are elementary. But we need
an auxiliary result. It had been asked by Button and was answered independently by several
authors thereafter, see [10, Problem 3] for details.

Lemma 4.26 (Linnell, Minasyan, Klyachko, . . . ). Let G be a group and let N � G be a
normal subgroup. If both N and G/N are virtually solvable, then G is virtually solvable, too.

Proof of Theorem 4.24. Consider a non-degenerate non-spherical triangle of groups with
the property that the group G∅ either has a non-abelian free subgroup or is virtually solvable.
If G∅, and hence G∅, has a non-abelian free subgroup, then the colimit group G has so,
too. So, we may assume without loss of generality that G∅, and hence G∅, are virtually
solvable. The triangle of groups is non-degenerate. So, for every a ∈ {1, 2, 3} there is an element
ga ∈ G{a} � G∅. If the triangle of groups is hyperbolic, then, by Theorem 4.2, the colimit
group G has a non-abelian free subgroup. So, we may assume without loss of generality that
the triangle of groups is Euclidean. Now, let a ∈ {1, 2, 3}. Since ga ∈ G{a} � G∅, the index of
G∅ in G{a} is at least 2. If it is strictly larger than 2, then the simplicial complex X branches
and, by Theorem 4.19, G has a non-abelian free subgroup. So, we may assume without loss of
generality that it is equal to 2. In particular, G∅ is normal in G{a}. By the same argument,
we may assume without loss of generality that for every two distinct a, b ∈ {1, 2, 3} the group
G{a,b} is generated by G{a} and G{b}. Therefore, G∅ is normal in G{1}, G{2}, G{3}, G{1,2},
G{1,3}, G{2,3}, and, finally, in G.

Note that this property also holds in the triangle of groups itself, that is, for every J ⊆
{1, 2, 3} with 1 � |J | � 2 the image ϕ∅J(G∅) is normal in GJ . For a formal proof, apply the
natural homomorphism νJ : GJ → G, which is injective, and observe:

νJ ◦ ϕ∅J (G∅) = ν∅(G∅) = ν̃∅ ◦ μ∅(G∅) = ν̃∅(G∅)
� ν̃J(GJ ) = ν̃J ◦ μJ(GJ ) = νJ(GJ ).

We may therefore construct the quotient triangle of groups, which is obtained by replacing
the group G∅ by G∅/G∅

∼= {1} and for every J ⊆ {1, 2, 3} with 1 � |J | � 2 the group GJ by
GJ/ϕ∅J (G∅). Here, one needs to verify that every injective homomorphism ϕJ1J2 : GJ1 → GJ2

induces an injective homomorphism between the quotients and that the Gersten–Stallings
angles remain the same. We leave this work to the reader. However, the resulting diagram is
a non-degenerate Euclidean triangle of groups. Moreover, using the presentation (∗) one can
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show that its colimit group is isomorphic to G/G∅. We will now study the quotient triangle
of groups in some more detail. For every a ∈ {1, 2, 3}, the index of ϕ∅{a}(G∅) in G{a} is equal
to 2, that is, the quotient G{a}/ϕ∅{a}(G∅) has two elements. Therefore, the quotient triangle
of groups must be isomorphic to one of the three triangles of groups given in the introduction
to Section 4 and, in particular, its colimit group G/G∅ is (virtually) solvable. Moreover, by
assumption, G∅, and hence G∅, is virtually solvable, too. So, by Lemma 4.26, we may conclude
that G is virtually solvable.

Proof of Theorem 4.25. Consider a non-spherical triangle of groups with the property
that every group GJ with J ⊆ {1, 2, 3} and |J | � 2 either has a non-abelian free subgroup
or is virtually solvable. Again, we may assume without loss of generality that the groups GJ ,
and hence their images GJ , are virtually solvable. Moreover, if the triangle of groups is non-
degenerate, then we know by Theorem 4.24 that G either has a non-abelian free subgroup or
is virtually solvable. So, we may assume without loss of generality that the Gersten–Stallings
angle �{2,3} = 0, which means that the homomorphism α : G{2} ∗G∅

G{3} → G{2,3} induced by
ϕ{2}{2,3} and ϕ{3}{2,3} is injective. As mentioned in the proof of Theorem 4.19, one can always
show that G ∼= X ∗A Y with X := G{2,3}, A := 〈G{2},G{3}〉 � G, Y := 〈G{1,2},G{1,3}〉 � G.
Depending on |X : A| and |Y : A|, we distinguish between four cases.

(1) If |X : A| = 1, then G{2,3} is generated by G{2} and G{3} or, equivalently, G{2,3} is
generated by ϕ{2}{2,3}(G{2}) and ϕ{3}{2,3}(G{3}). So, α is not only injective but also surjective,
whence G{2} ∗G∅

G{3} ∼= G{2,3}. This allows us to simplify the original presentation (∗) of the
colimit group G by deleting superficial generators and relators:

G = 〈G{1}, G{1,2}, G{1,3} : R{1}, R{1,2}, R{1,3},{
g = ϕ{1}{1,2}(g) : g ∈ G{1}

}
,{

g = ϕ{1}{1,3}(g) : g ∈ G{1}
}
〉.

So, G ∼= G{1,2} ∗G{1} G{1,3} or, equivalently, G ∼= G{1,2} ∗G{1} G{1,3}. Now, we may, again,
distinguish between four cases. (a) If |G{1,2} : G{1}| = 1, then G ∼= G{1,3}, which is virtually
solvable. (b) If |G{1,3} : G{1}| = 1, then G ∼= G{1,2}, which is virtually solvable. (c) If |G{1,2} :
G{1}| = |G{1,3} : G{1}| = 2, then G{1} is normal in G{1,2}, G{1,3}, and G. The quotient
G/G{1} ∼= Z2 ∗ Z2, which is (virtually) solvable. On the other hand, G{1} itself is virtually
solvable. So, by Lemma 4.26, the colimit group G is virtually solvable. (d) Otherwise,
|G{1,2} : G{1}| � 2 and |G{1,3} : G{1}| � 2 and not both equal to 2. But then, by Remark 4.20,
G ∼= G{1,2} ∗G{1} G{1,3} has a non-abelian free subgroup.

(2) If |Y : A| = 1, then G ∼= X = G{2,3}, which is virtually solvable.
(3) If |X : A| = |Y : A| = 2, then A is normal in X, Y , and G. The quotient G/A ∼=

Z2 ∗ Z2, which is (virtually) solvable. Let us now study the normal subgroup A in some
more detail. Since the homomorphism α : G{2} ∗G∅

G{3} → G{2,3} is injective, its image
〈ϕ{2}{2,3}(G2), ϕ{3}{2,3}(G3)〉 � G{2,3}, and hence A = 〈G{2},G{3}〉 � G{2,3} � G, is isomor-
phic to G{2} ∗G∅

G{3}. By a case analysis analogue to the one in (1), we can see that A is
either virtually solvable, namely in cases (a)–(c), or has a non-abelian free subgroup, namely
in case (d). In the former cases, by Lemma 4.26, the colimit group G is virtually solvable. In
the latter case, the colimit group G, which contains A as a subgroup, has a non-abelian free
subgroup.

(4) Otherwise, |X : A| � 2 and |Y : A| � 2 and not both equal to 2. But then, by
Remark 4.20, G ∼= X ∗A Y has a non-abelian free subgroup.

Remark 4.27. Kopteva and Williams have proved that the Tits alternative holds for the
class of non-spherical Pride groups that are based on graphs with at least four vertices, see [18,
Theorem 1]. One way to read Theorem 4.24 is the following: The Tits alternative does not hold



122 JOHANNES CUNO AND JÖRG LEHNERT

for the class of non-spherical Pride groups that are based on graphs with three vertices. But
once we assume that each edge is genuine, that is, that none of the Gersten–Stallings angles is
equal to 0, it does.

Appendix. Further applications

In Subsections 4.1 and 4.2, we have been working with non-degenerate Euclidean triangles of
groups. But the construction can be extended to all non-degenerate non-spherical triangles of
groups. In the hyperbolic case, one can either pick a triangle Δ in the hyperbolic plane H2,
as suggested by Bridson in [6, p. 431, ll. 13–16], or a triangle Δ in the Euclidean plane E2

‘whose angles are perhaps a little bit larger than the group-theoretic angles’, as suggested by
Gersten and Stallings in [25, p. 499, ll. 7–9]. Let us sketch an application for each of the two
alternatives.

A.1. Normal forms

In the billiards theorem, we assume given an element g ∈ G that is adapted to a billiard
sequence, that is, equipped with a suitable decomposition into factors from G{1} � G∅, G{2} �
G∅, G{3} � G∅. But we could also go the other way and use the simplicial complex X to
construct decompositions. More precisely, given a non-degenerate non-spherical triangle of
groups, pick a triangle Δ either in the Euclidean plane E2 or in the hyperbolic plane H2

whose angles agree with the Gersten–Stallings angles and construct the simplicial complex
X . Note that all the results from Subsections 4.1 and 4.2 still hold true. Given an arbitrary
element g ∈ G, consider the unique geodesic in |X |, see Remark 4.16, from the barycentre of σ
to the barycentre of gσ. As soon as g �∈ G∅, the geodesic traverses several 2-simplices. First,
it traverses σ. Then, depending on whether it leaves σ crossing a 0-simplex or the interior
of a 1-simplex, there is an element g1 ∈ GK with K ⊆ {1, 2, 3} and |K| = 2 or |K| = 1 such
that the next 2-simplex it traverses is g1σ. This procedure goes on. At the end, it traverses
g1g2 · · · gmσ = gσ, which yields a decomposition of g into factors from the groups GK with
K ⊆ {1, 2, 3} and 1 � |K| � 2 and one final factor from G∅.

Note that this decomposition is not well defined, even in the case G∅ = {1}. Just imagine
the geodesic running along some 1-simplex. Then, there are many possibilities to choose the
respective 2-simplex g1g2 · · · giσ. On the other hand, if we fix a set of coset representatives
for each pair of subgroups GK1 � GK2 with K1 ⊂ K2 ⊆ {1, 2, 3} and |K2| � 2, then there is
a well-defined decomposition in terms of these coset representatives and one final factor from
G∅. Even though it seems to be inconvenient to work with, we may call it a normal form.

A.2. Euclidean domination

The second alternative has the advantage that there are only three different triangles Δ.
More precisely, given a non-degenerate non-spherical triangle of groups, the Gersten–Stallings
angles are always of the form 2π/m̂, where m̂ is even. Let us think of them as π/k, π/l, π/m
with k, l,m ∈ N and k � l � m. It is easy to see that either (π/3, π/3, π/3) or (π/2, π/4, π/4)
or (π/2, π/3, π/6) dominates (π/k, π/l, π/m), that is, coordinatewise at least as large as
(π/k, π/l, π/m). So, if we take the dominating triple instead of the original Gersten–Stallings
angles, then, again, all the results from Subsections 4.1 and 4.2, in particular the link condition
and the billiards theorem, hold true. Therefore, the proof of Theorem 4.19 extends to all
non-degenerate non-spherical triangles of groups.

Remark A.1. Our methods almost yield an alternative proof of Theorem 4.2; we cannot
say anything about the generators (g1g2g3)n and (g1g3g2)n but we can prove the existence
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of another non-abelian free subgroup. If the hyperbolic triangle of groups is non-degenerate
and the simplicial complex X branches, then Theorem 4.19 does the job. The remaining cases
are elementary. If it is non-degenerate and the simplicial complex X does not branch, then
the quotient G/G∅ is a hyperbolic triangle group, has a non-abelian free subgroup, and so
has G. Finally, if it is degenerate, say with �{2,3} = 0, then G contains G{1,2} ∗G{1} G{1,3}
as a subgroup. Since there are elements g2 ∈ G{2} � G∅ and g3 ∈ G{3} � G∅, the indices
|G{1,2} : G{1}| and |G{1,3} : G{1}| are both at least 2. If one of these indices is equal to
2, then the respective Gersten–Stallings angle must be equal to π/2. But the triangle of
groups is hyperbolic, so either �{1,2} or �{1,3} is smaller than π/2, which implies that either
|G{1,2} : G{1}| or |G{1,3} : G{1}| is larger than 2. So, by Remark 4.20, G has a non-abelian free
subgroup.
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