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Abstract

At Crypto 93, Shamir [3] proposed two signature schemes based on bira-
tional permutations. Coppersmith, Stern and Vaudenay [2] presented the first
attacks on both cryptosystems. These attacks do not recover the secret key.
For one of the variants proposed by Shamir we show how to recover the secret
key.

1 Introduction and history

A low degree rational mapping whose inverse is also a low degree rational mapping
is called a birational permutation. Shamir [3] used this concept to introduce sig-
nature schemes with low computational requirements. Both the generation and the
verification of the signatures can be done with very few modular multiplications.

The second of these schemes depends on the choice of an algebraic basis. Shamir
proposed two bases: a symmetric one and an asymmetric one. The attack of Copper-
smith et al. [2] concentrates on the symmetric basis. It is possible to forge signatures,
but the secret key is not revealed. Here we show how to attack the asymmetric basis.
In this case, it is even possible to discover the secret key.

2 The signature scheme

Let n be the product of two large secret primes p and q. All computations will be
done in ZZn. Consider the set of polynomials G = {u2

1, u1u2, u2u3, . . . , uk−1uk}. As
explained in [3], the set G has the property of an algebraic basis. Therefore every
assignment of a vector x ∈ ZZk

n to the elements of G implies unique assignments to
all homogeneous polynomials of degree 2 in u1, . . . , uk. We call G the asymmetric
basis.
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Two secret linear transformations A and B are used to mix up the polynomials: the
variable transformation

ui =
k∑

j=1

aijyj, 1 ≤ i ≤ k,

and the linear combinations

vi = bi1u
2
1 +

k∑

j=2

bijuj−1uj, 1 ≤ i ≤ k.

The polynomials v1, . . . , vk in the new variables y1, . . . , yk can be written in the form

vi =
∑

j,l

(Ci)j,l yjyl, Ci symmetric, 1 ≤ i ≤ k.

The public key consists of the matrices C1, . . . , Ck−1. Ck is not published in order
to prevent unique signatures.

Each message m is represented by k− 1 hash values h1(m), . . . , hk−1(m). An assign-
ment to the basis elements y2

1, y1y2, . . . , yk−1yk is a valid signature for m if and only
if ∑

j,l

(Ci)j,l yjyl = hi(m), 1 ≤ i ≤ k − 1.

3 The attack

The general idea of the attack is to find algebraic conditions for the rank of quadratic
forms. Such statements about the rank are invariants with respect to the variable
transformation.

We first consider k = 5 and then k = 4. With regard to the security and the
computational requirements of the scheme, these seem to be the the most interesting
cases.

The description of the attack refers to a prime modulus. We will justify at the end,
why the methods also work in case of a composite modulus.

3.1 The structure of the representation matrices

We examine linear combinations of the basis elements u2
1, u1u2, . . . , u4u5. The corre-

sponding representation matrix is of the following form (a star represents an arbi-
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trary entry): 


? ? 0 0 0
? 0 ? 0 0
0 ? 0 ? 0
0 0 ? 0 ?
0 0 0 ? 0




The matrix has relatively few non-zero entries. A careful inspection of its structure
leads to the following

Lemma 3.1 The linear combinations which are quadratic forms of a rank not
greater than 2 are of the form

α1u1u2 + β1u2u3 (type 1),

α2u2u3 + β2u3u4 (type 2),

α3u3u4 + β3u4u5 (type 3),

or α4u
2
1 + β4u1u2 (type 4)

with coefficients αi, βi ∈ ZZn.

The coefficients of the basis elements form a vectorspace of dimension 5. For each
i ∈ {1, . . . , 4} the pair (αi, βi) describes a twodimensional subspace. Now we consider

v1 + δv2 + ε3v3 + ε4v4.

In the original variables u1, . . . , u5, this sum also describes a linear combination of
the basis elements u2

1, u1u2, . . . , uk−1uk. The subspace that is formed by δ, ε3 and ε4

is of dimension 3. This specifies some intersections which consist of only one element.

Lemma 3.2 For each i ∈ {1, . . . , 4} there exists exactly one pair (αi, βi) ∈ ZZ2
n and

exactly one triple (δ, ε3, ε4) ∈ ZZ3
n, such that the quadratic forms of type i can be

represented by the linear combination

v1 + δv2 + ε3v3 + ε4v4,

i.e.

∃1(α1, β1) ∃1(δ1, ε3,1, ε4,1) α1u1u2 + β1u2u3 = v1 + δ1v2 + ε3,1v3 + ε4,1v4,

∃1(α2, β2) ∃1(δ2, ε3,2, ε4,2) α2u2u3 + β2u3u4 = v1 + δ2v2 + ε3,2v3 + ε4,2v4,

∃1(α3, β3) ∃1(δ3, ε3,3, ε4,3) α3u3u4 + β3u4u5 = v1 + δ3v2 + ε3,3v3 + ε4,3v4,

∃1(α4, β4) ∃1(δ4, ε3,4, ε4,4) α4u
2
1 + β4u1u2 = v1 + δ4v2 + ε3,4v3 + ε4,4v4.

3



A symmetric k × k-matrix has

1

2

(
5

3

)(
5

3

)
+

1

2

(
5

3

)
= 55

different minors of order 3. The minors are used to express ε3 and ε4 in terms of
δ. Furthermore, we find a polynomial P (δ) with roots δ1, . . . , δ4. The representation
matrix corresponding to the quadratic form of type 4 is




? ? 0 0 0
? 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0




.

Each submatrix of order 3 consists of at least one row and one column in which
only zeros appear. Therefore δ4 is a double zero of P (δ). The polynomial P (δ) is of
degree 5. δ4 can be extracted by computing the greatest common divisor of P and
P ′.

Technical Details

Each minor of order 3 generates a polynomial equation of the form

∑

0≤i,j,l≤3, i+j+l≤3

λijl · δiεj
3ε

l
4 = 0

with coefficients λijl ∈ ZZn, 1 ≤ i, j, l ≤ 5. Using an idea of S. Vaudenay [4], each term
δiεj

3ε
l
4 can be considered as an unknown in a system of linear equations. Analogous

to the Gaussian elimination algorithm, the terms are successively removed. At the
end, we obtain an expression for ε3 in terms of ε4, δ. By applying the method once
again, we find an expression for ε4 in terms of δ. After the substitution of ε3 and ε4,
we continue and obtain a polynomial in δ of degree 5.

3.2 Characterization of the variable transformation

The representation matrix of

v1 + δv2 + ε3v3 + ε4v4

can be computed in terms of δ. Let Yi be the row domain of the representation
matrix at δi, 1 ≤ i ≤ 4. In the following, ui also denotes the coefficient vector of the
linear function that links the variable ui to the variables yj.
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For the characterization of the variable transformation, the following fact is used:
Let f , g be linear functions in y1, . . . , yk, and let C be the symmetric k×k-matrix of
the quadratic form f · g. The row domain of C is spanned by the coefficient vectors
which describe the linear functions f and g.

Lemma 3.3 It holds

Y1 = span(u2, α1u1 + β1u3),

Y2 = span(u3, α2u2 + β2u4),

Y3 = span(u4, α3u3 + β3u5),

Y4 = span(u1, α4u1 + β4u2).

The coefficient vectors u1, . . . , u5 can be characterized by the row domains Y1, . . . , Y5.

Lemma 3.4 It holds

u1 ∈ Y4 ∩ (Y1 + Y2) (dimension 2),

u2 ∈ Y1 ∩ (Y2 + Y3) ∩ Y4 (dimension 1),

u3 ∈ Y2 ∩ (Y1 + Y4) (dimension 1),

u4 ∈ Y3 ∩ (Y2 + Y1) ∩ (Y2 + Y4) (dimension 1),

u5 ∈ Y2 + Y3 (dimension 4).

3.3 Reducing the polynomials

The realization of the algebraic conditions will lead to high degree polynomials in
several variables. The following method can be used to reduce the polynomials. Let
Q(δ) be the polynomial whose zeros are δ1, δ2 and δ3. Each occurence of a variable
δi can be reduced to degree 2 by subtracting multiples of Q(δi), 1 ≤ i ≤ 3.

To assure that δ1, δ2 and δ3 are different solutions of Q(δ), we define

Q2(δ) =
Q(δ)−Q(δ1)

δ − δ1

,

Q3(δ) =
Q2(δ)−Q2(δ2)

δ − δ2

.

It holds
Q2(δ2) = 0, Q2(δ3) = 0, Q3(δ3) = 0.

Q2(δ2) is of degree 2 in δ2, Q3(δ3) is of degree 1 in δ3. Therefore each occurence of
δ2 can be reduced to degree 1. Each occurence of δ3 can be eliminated.
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3.4 Successive computation of the variable transformation

Some of the following ideas are due to D. Coppersmith [1].

The linear functions u1, . . . , u4 are uniquely determined up to a multiplicative con-
stant. The constants can be chosen arbitrarily, because they can be compensated
by the second private transformation. The condition for u5 does not characterize u5

uniquely.

Lemma 3.5 u2 is the only coefficient vector in the intersection of a subspace Yi,
1 ≤ i ≤ 3, with Y4, namely u2 ∈ Y1 ∩ Y4. This relation serves to determine δ1

uniquely. δ1 can be computed.

Proof It holds Y2 ∩ Y4 = ∅, Y3 ∩ Y4 = ∅. The intersection Y1 ∩ (Y2 + Y3) is of
dimension 1 and yields a polynomial expression for u2. The relation u2 ∈ Y4 can
be used to establish a polynomial equation. δ1 is the only element, which satisfies
both this equation and the equation Q(δ) = 0. With the aid of resultants, δ2 can be
eliminated from the system of equations. This leads to a quadratic equation in δ1.
By computing the greatest common divisor of the quadratic polynomial and Q(δ1)
in ZZn, we obtain the explicite value for δ1. 2

As δ1 is known, the polynomial Q(δ) of degree 3 can be transformed into a polynomial
R(δ) of degree 2. Define

R2(δ) =
R(δ)−R(δ2)

δ − δ2

It holds R2(δ3) = 0. R2(δ3) is of degree 1 in δ3. In arbitrary polynomial equations,
each occurence of δ2 can be reduced to degree 1. Each occurence of δ3 can be elimi-
nated.

Lemma 3.6 u3 is the only coefficient vector, which is in an intersection of a sub-
space Yi, 2 ≤ i ≤ 3, with (Y1 + Y4). It holds u3 ∈ Y2 ∩ (Y1 + Y4). With this relation
δ2 is determined uniquely, and it can be computed.

Proof The intersection Y3∩(Y1+Y4) is empty. Therefore the intersection Yi∩(Y1+Y4)
distinguishes δ2 and δ3. This yields a polynomial relation for u3 and an equation for
δ2 which is not satisfied by δ3. The equation can be reduced. We obtain a linear
equation in δ2, which can be solved. 2

As δ1, δ2 and δ4 are known, we also obtain the value for δ3. It is no longer necessary to
compute in residue class rings modulo polynomials in δi. The following computations
can be done in ZZn.
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Lemma 3.7 u4 is the only coefficient vector in the intersection Y3 ∩ (Y2 + Y1).

Proof The intersection Y3 ∩ (Y2 + Y1) is of dimension 1 and produces an equation
for u4. 2

Lemma 3.8 The relation u1 ∈ Y4∩(Y1+Y2) and the quadratic form u2·(α1u1+β1u3)
can be used to compute u1.

Proof The intersection Y4∩(Y1 +Y2) is of dimension 2. Not only u1 is an element of
this intersection, but also u2. The representation matrix of the linear combination at
δ1 corresponds to the quadratic form u2 ·(α1u1+β1u3). We divide the quadratic form
by the explicitely known linear form u2 and obtain the linear function α1u1 + β1u3.
Using the fact, that u1 satisfies the condition

u1 ∈ span(u3, α1u1 + β1u3),

u1 and u2 can be distinguished. A linear combination a · u1 + b · u2 with b 6= 0 does
not satisfy the condition. Therefore u1 is characterized uniquely. 2

Lemma 3.9 u5 is not determined uniquely, but it can be replaced by an element
u′5 in span(u3, u5). Such an element can be obtained by considering the quadratic
form u4 · (α3u3 + β3u5).

Proof The division of the known quadratic form u4 · (α3u3 + β3u5) by u4 yields

u′5 = α3u3 + β3u5.

Each linear combination of u2
1, . . . , u4u5 is a linear combination of u2

1, . . . , u3u4, u4u
′
5

and vice versa, because

a1 · u2
1 + a2 · u1u2 + a3 · u2u3 + a4 · u3u4 + a5 · u4u

′
5

= a1 · u2
1 + a2 · u1u2 + a3 · u2u3 + (a4 + α3a5) · u3u4 + β3a5 · u4u5.

2

The matrix A′ that is formed by the rows u1, . . . , u4, u′5 can replace the variable
transformation A. The missing fifth equation, can be established by computing

v′5 = u2
1 +

3∑

i=1

uiui+1 + u4u
′
5.

By inverting the matrix A′, we can express the polynomials v1, . . . , v4, v
′
5 in terms of

u1, . . . , u5. These polynomials are linear combinations of the basis elements. They
describe a representative B′ for the secret matrix B. The pair of matrices (A′, B′)
generates the same public key as the pair (A,B). Therefore we have found the secret
key.

7



3.5 Composite moduli

If n is a composite modulus of the form p·q, there are 52 = 25 zeros of the polynomial
P (δ) modulo n. Both modulo p and modulo q, δ4 is a double zero. The sequence
δ1, . . . , δ4 is unique modulo p, and it is unique modulo q. Although there are 4·4 = 16
different zeros of the polynomial modulo n, only one sequence δ1, . . . , δ4 satisfies the
uniqueness modulo p and modulo q. Therefore the chinese remaindering theorem
guarantees that all computations work in the case of a composite modulus.

3.6 Example

In order to present a reasonable example without too big numbers, we choose the
prime modulus n = 7853. The example was computed on a HP workstation 9000,
model 735/50 within 15 minutes. The implementation uses the package Mathe-
matica.

The numerical data of the example can be found in the appendix.

3.7 The case k = 4

In case of the symmetric basis {u1u2, u2u3, . . . , uku1}, k has to be odd. When using
the asymmetric basis, it is possible to choose k = 4. We will now explain the modi-
fications to the case k = 5 that are necessary to obtain an attack for k = 4. Most of
the considerations are identical. It remains to show that all the values of δ1, . . . , δ4

can be distinguished.

When k = 4, the quadratic forms of a rank not greater than 2 are of the form

α1u1u2 + β1u2u3 (type 1),

α2u2u3 + β2u3u4 (type 2),

or α3u
2
1 + β3u1u2 (type 3).

With respect to the sum
v1 + δv2 + ε3v3,

the condition of type i defines δi, 1 ≤ i ≤ 3. We obtain a polynomial P (δ) of degree
4. The double zero δ3 can be extracted by computing the greatest common divisior
of P and P ′.

Lemma 3.10 It holds

Y1 = span(u2, α1u1 + β1u3),

Y2 = span(u3, α2u2 + β2u4),

Y3 = span(u1, α3u1 + β3u2).
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Lemma 3.11 The conditions for characterizing u1, . . . , u4 are

u1 ∈ Y3 ∩ (Y1 + Y2) (dimension 2),

u2 ∈ Y1 ∩ Y3 (dimension 1),

u3 ∈ Y2 ∩ (Y1 + Y3) (dimension 1),

u4 ∈ Y2 + Y3 (dimension 4).

δ3 and therefore Y3 is known. u2 and δ1 are characterized by

u2 ∈ Y1 ∩ Y3.

When δ1 has been computed, the remaining zero of P (δ) is δ2.

u1 und u3 can be computed analogous to the case k = 5. u4 can be replaced by the
element

u′4 = α2u2 + β2u4.

We further proceed like in the case k = 5.

4 Symmetric basis versus asymmetric basis

There are some remarkable differences between the attacks on the symmetric and
the asymmetric basis. In the symmetric case, there are several equivalent sequences
for the δi. Therefore the δi and the secret key cannot be computed. The sequence of
the δi is unique in the asymmetric case. All δi can be computed, and it is possible
to discover the secret key. Considering a composite modulus in the symmetric case,
each (unknown) sequence of the δi modulo p can be combined with each (unknown)
sequence of the δi modulo q. For the asymmetric basis, the sequence of the δi is
unique even modulo n.

From a practical point of view, we can mention the following results: Due to the
ability to compute the δi, the attack on the asymmetric basis can get rid of the time-
consuming large polynomials. Therefore it takes less time to attack the asymmetric
basis than to attack the symmetric basis.

With regard to other cryptographic applications and to general polynomial equa-
tions, it seems to be quite interesting what a little symmetry can cause.
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Appendix

Example for k = 5

The modulus n is 7853. The transformation matrices are

A =




936 75 494 559 229
70 868 624 42 975
855 568 573 532 227
670 96 705 225 5
724 437 247 928 818




, B =




684 53 821 512 509
951 651 172 252 776
468 610 618 892 293
476 300 750 899 126
365 404 502 863 190




.

The vector (C1, C2, C3, C4) of the public key matrices is

(



2153 6906 5444 4821 4167
6906 2217 3423 2726 5159
5444 3423 1306 839 4933
4821 2726 839 3565 959
4167 5159 4933 959 2118




,




6787 171 3691 7801 3328
171 4748 6402 1723 7382
3691 6402 2652 1987 4808
7801 1723 1987 374 6905
3328 7382 4808 6905 6785




,




3087 6028 7727 5383 4720
6028 7747 4963 251 5766
7727 4963 655 7536 1080
5383 251 7536 1957 1933
4720 5766 1080 1933 4327




,




3974 1655 6643 1028 6987
1655 3987 5379 4330 1815
6643 5379 1466 3502 1609
1028 4330 3502 5984 7264
6987 1815 1609 7264 2898




)
.

We obtain the following relation for ε3 in terms of ε4, δ:

ε3 = 4114 + 5969δ + 1868δ2 + 4890δ3 + 2525ε4.
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The relation for ε4 in terms of δ is

ε4 = 2087 + 1257δ + 7850δ2 + 1152δ3 + 755δ4.

Using the polynomial P (δ), δ4 can be computed.

P (δ) = 6893 + 865δ + 3240δ2 + 3987δ3 + 4768δ4 + δ5,

P ′(δ) = 865 + 6480δ + 4108δ2 + 3366δ3 + 5δ4,

gcd(P, P ′) = δ − 4950.

It follows δ4 = 4950.

The remaining polynomial of degree 3 is

Q(δ) = 3719 + 6224δ + 6815δ2 + δ3.

To reduce the polynomials, we also use

Q2(δ2) = 6224 + 6815δ1 + δ2
1 + 6815δ2 + δ1δ2 + δ2

2,

Q3(δ3) = 6815 + δ1 + δ2 + δ3.

The coefficient vector for u2 can be determined.

u2 =




3545 + 5594δ1 + 7211δ2
1

2430 + 3223δ1 + 5243δ2
1

5815 + 2763δ1 + 4423δ2
1

1580 + 7062δ1 + 6221δ2
1

3024 + 5271δ1 + 1491δ2
1




T

·




y1

y2

y3

y4

y5




.

Next, we find δ1 = 5205.

The remaining polynomial of degree 2 with solutions δ2 and δ3 is

R(δ) = 5473 + 4167δ + δ2.

The diversity of the zeros leads to the polynomial

R2(δ) = 4167 + δ2 + δ3.

u3 is expressed by

u3 =




2432 + 5267δ2

4465 + 4422δ2

4285 + 3138δ2

411 + 1450δ2

4048 + 2253δ2




T

·




y1

y2

y3

y4

y5




.
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It follows δ2 = 1595, δ3 = 2091 and

u4 = (2959, 213, 828, 7616, 4183) · (y1, . . . , y5)
T ,

u1 = (3915, 6581, 103, 5283, 6168) · (y1, . . . , y5)
T ,

u′5 = (623, 1900, 1900, 747, 659) · (y1, . . . , y5)
T .

The variable transformation A′:

A′ =




3915 6581 103 5283 6168
4890 5665 3204 2934 3043
587 5561 7034 4379 909
2959 213 828 7616 4183
623 1900 1900 747 659




.

The representation matrix of the missing fifth equation:

C ′
5 =




412 4790 6093 3711 2245
4790 3156 3975 7208 2991
6093 3975 1594 7813 7386
3711 7208 7813 1858 152
2245 2991 7386 152 513




.

The matrix of the linear combinations:

B′ =




1002 2720 5454 4063 1482
4493 3035 2520 3937 408
6472 190 6315 445 6145
5106 4728 3318 777 552

1 1 1 1 1




.

The matrices A′ and B′ form the secret key.

2 2 2
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