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Introduction

Random constraint satisfaction problems have been on the agenda of various sciences such as discrete

mathematics, computer science, statistical physics and a whole series of additional areas of application

since the 1990s at least. The objective is to find a state of a system, for instance an assignment of a

set of variables, satisfying a bunch of constraints. To understand the computational hardness as well

as the underlying random discrete structures of these pr oblems analytically and to develop efficient

algorithms that find optimal solutions has triggered a huge amount of work on random constraint

satisfaction problems up to this day.

Referring to this context in this thesis we present three results for two random constraint satisfac-

tion problems. Concerning probabilistic combinatorics, we provide a result on random regular graph

colouring. Both, an improved upper and lower bound on the conjectured k-colourability threshold,

imply an almost complete solution for the chromatic number problem on the random regular graph

obtained by Coja-Oghlan, Efthymiou and the author of this thesis. It was published 2016 in the Jour-

nal of Combinatorial Theory, Series B [39]. Regarding algorithms we present negative results for

two algorithms on random k-SAT instances. This thesis includes an analysis of Walksat, a local

search algorithm, by Coja-Oghlan, Haqshenas and the author of this thesis, that was submitted to the

SIAM Journal on Discrete Mathematics [38]. Moreover, we present the first appropriate and rigorous

analysis of Survey Propagation Guided Decimation (SPdec) which is based on highly sophisticated

statistical physicists insights into random constraint satisfaction problems. It was established by the

author of this thesis, published in the Proccedings of the 43rd International Colloquium ICALP in

Rom 2016 and awarded as Best Student Paper - Track A [73] 1.

Determining the chromatic number of random graphs is one of the longest-standing challenges in

probabilistic combinatorics. The chromatic number of a graph is the smallest integer k such that

there exists a colouring of the vertex set with k colours avoiding monochromatic edges (both incident

vertices obtain the same color). For the Erdős-Rényi model (GER(n,m)), the single most intensely

studied model in the random graphs literature, the question dates back to the seminal 1960 paper that

started the theory of random graphs [60].

Apart from GER(n,m), the model that has received the most attention certainly is the random regular

graph G(n, d) [23, 77] which is a graph chosen uniformly at random among all d-regular trees on

1Main parts of this thesis are to a large extend word-by-word adoptions from [39, 73, 38] and a preprint of [73] that is
available online (arXiv:1602.08519) - in particular parts of this introduction.
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Introduction

n vertices. In this thesis we provide an almost complete solution for the chromatic number problem

on G(n, d), at least in the case that d remains fixed as n → ∞. The result is obtained by reversing

the roles of the game. For a fixed k we check if G(n, d) is k-colourable for various values of d. In

particular we prove thatG(n, d) is k-colourable with high probability2 if d ≤ (2k−1) ln k−2 ln 2−εk
and fails to be k-colourable w.h.p. if d ≥ (2k − 1) ln k − 1 + εk where εk is an error term tending to

0 with k tending to infinity. Since these lower and upper bound on the k-colourability property differ

only by a small constant ≈ 0.386 + εk there is a set D ⊂ Z≥0 of asymptotic density 1 and an explicit

function F : D ⊂ Z≥0 such that for all d ∈ D the chromatic number of G(n, d) is F(d) w.h.p.

For decades random k-SAT instances have been known as challenging benchmarks [30, 102, 119].

The simplest and most intensely studied model goes as follows. Let k ≥ 3 be an integer, fix a clause-

to-variables density parameter r > 0, let n be a (large) integer and letm = drne. Then Φ = Φk(n,m)

signifies a k-CNF chosen uniformly at random among all (2n)km possible formulas.

Since the very beginning research on random k-SAT has been driven by two hypotheses. First, that

for any k ≥ 3 there is a certain critical density rk−SAT > 0, which was called k-SAT threshold, where

the probability that the random formula is satisfiable drops from almost 1 to nearly 0. Second, that

random formulas with a density close to but below rk−SAT are “computationally difficult” in some

intuitive sense [26, 30, 102].

The best current algorithms are known to find satisfying assignments in polynomial time merely up to

ralg ∼ 2k ln k/k [34]. Carrying out a vanilla second moment argument together with a sharp threshold

result by Friedgut [63] shows that there exist solutions with high probability for densities smaller than

rsecond ∼ 2k ln k − k [11]. Whilst the case for small k = 3, 4 may be the most accessible from a

practical (or experimental) viewpoint, the picture becomes both clearer and more dramatic for larger

values of k. In fact, standard heuristics such as Unit Clause Propagation shipwreck for even smaller

densities, namely r = c2k/k for a certain absolute constant c > 0 [65]. The same goes (provably) for

various DPLL-based solvers [2, 107]. Hence, there is a factor of about k/ ln k between the algorithmic

barrier ralg and rsecond. Although the experimental evidence for such an algorithmic barrier is more

than striking, there has been little progress in proving this in generality or at least establishing upper

bounds on the performance of particular algorithms.

During the past years, random constraint satisfaction problems have been in the focus of an enormous

scientific development. It was mainly triggered by an emerging interaction between researchers from

different scientific disciplines. In the early 2000s physicists put forward a sophisticated but non-

rigorous approach called the cavity method to cope with random constraint satisfaction problems both

analytically and algorithmically. In particular, the cavity method yields a precise prediction as to the

2We say that a random object enjoys a property with high probability (w.h.p.) if the probability that the property holds
tends to 1 as n tends to infinity.
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value of rk−SAT for any k ≥ 3 [96, 98], which was recently verified rigorously for sufficiently large

values of k [56]. The result on the chromatic number of random regular graphs presented in this

thesis is in line with this development. It is obtained by implementing insights preserved by the cavity

method on random graph colouring [28, 89, 110, 106, 137] into standard techniques of probabilistic

combinatorics.

Additionally, the non-rigorous cavity method provided a heuristic explanation for the demise of sim-

ple combinatorial or DPLL-based algorithms well below rk−SAT. Specifically, the density 2k ln k/k

marks the point where the geometry of the set of satisfying assignments undergoes a dramatic change.

From (essentially) a single connected component it breaks up into a collection of tiny well-separated

clusters w.h.p. [88]. In fact, a typical satisfying assignment belongs to a “frozen” cluster, i.e., there

are extensive long-range correlations between the variables. In particular, there are many “frozen vari-

ables”, which take the same truth value in all the satisfying assignments in that cluster. Thus, the set

of satisfying assignments broadly resembles an error-correcting code, except that there is no simple

underlying algebraic structure known. In effect, if, say a local search algorithm attempts to find a sat-

isfying assignment, it would apparently have to have the foresight to steer into one cluster and get all

its frozen variables right almost in one go. This appears impossible without a survey of the “global”

dependencies amongst the variables.

The cluster decomposition as well as the freezing prediction have largely been verified rigorously [13,

104, 4] and we begin to understand the impact of this picture on the performance of algorithms [3].

In fact, the density, where clustering and freezing occur, matches the density up to which algorithms

are rigorously known to find satisfying assignments, at least asymptotically for large enough clause

lengths k. To be precise, the k-SAT threshold is asymptotically equal to rk−SAT = 2k ln 2 − (1 +

ln 2)/2+ok(1), where ok(1) hides a term that tends to 0 in the limit of large k [8, 43, 56]. Furthermore,

for rcluster > (1 + ok(1))2k ln k/k it is rigorously proven that clustering and freezing occur [3, 13, 4,

103, 104]. Recall that the algorithmic barrier also reads as ralg ∼ 2k ln k/k. Thus, in contrast to the

initial hypotheses one might expect that random formulas turn “computationally difficult” for densities

almost a factor of k below the k-SAT threshold. Yet, despite the structural results and the compelling

intuitive picture drafted by the physics work, it has emerged to be remarkably difficult to actually

prove that these structural properties pose a barrier even for fairly simple satisfiability algorithms.

We provide a first attempt in proving such a result for Walksat, one of the simplest non-trivial

satisfiability algorithms. Walksat is a local search algorithm, known to outperform exhaustive search

by an exponential factor in the worst case and the procedure has been an ingredient for some of the

best algorithms for the k-SAT problem [57, 71, 72, 74, 75, 118, 125]. We prove that on Φ, if r ≥
c2k ln2 k/k for some constant c > 0, it is exponentially unlikely that Walksat spits out a satisfying

assignment even running it an exponential number of iterations w.h.p. This density is still a ∼ ln k

factor above the observed algorithmic barrier ralg and the coinciding rigorously proven clustering

IX
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rr4−SAT ∼ 9.93

SP 9.73

"biased" BP 9.24

vanilla BP 9.05

SC 5.54

zChaff 5.35

Figure 0.1.: Experimental performance of various aglorithms on random 4-SAT.

threshold rcluster. However, our proof exploits the clustering picture and marks one of the first rigorous

analysis of algorithms taking benefit from the insights gained by the physicists work [66, 67].

What seems to be most remarkable is the fact, that the physics work has led to the development

of a new efficient “message passing algorithm” called Survey Propagation Guided Decimation to

overcome this algorithmic barrier ralg [27, 87, 101, 108]. More precisely, the algorithm is based on

a heuristic that is designed to find whole frozen clusters, not only single satisfying assignments, by

identifying each cluster by the “frozen” variables determined by long-range correlations and locally

“free” variables. Thus, by its very design Survey Propagation Guided Decimation is built to work at

densities where frozen clusters exist.

In Figure 0.1 we present a comparison of the experimental performance of various algorithms on

random 4-SAT from [35]. The conjectured satisfiability threshold in this case reads as r4−SAT ∼ 9.93

[96]. Survey Propagation Guided Decimations finds satisfying assignments efficiently for densities

up to r = 9.73 according to experiments in [87]. A different message passing algorithm, also put

forward by statistical physicist to be performed on random constraint satisfaction problems, is Belief

Propagation. Following experiments in [122] a vanilla version of a decimation algorithm based on

Belief Propagation succeds up to r = 9.05 and a slightly enhanced “biased” version (using a different

decimation rule) in [87] up to r = 9.24. In contrast, the best “classical” algorithm using a shortest

clause heuristic (SC) from [65] succeds merely up to r = 5.54 and an industrial SAT solver (zChaff)

solves instances efficiently up to r = 5.35 after which it starts to backtrack frequently [87]. Although

the experimental performance for small k is outstanding this yields no evidence of a relation between

the occurrence of frozen clusters and the success of the algorithm. Yet, not even the physics methods

lead to a precise explanation of these empirical results or to a prediction as to the density up to which

we might expect Survey Propagation Guided Decimation to succeed for general values of k. In effect,

analysing Survey Propagation has become one of the most important challenges in the context of

random constraint satisfaction problems.

In the present thesis we provide a proof that the basic version of Survey Propagation Guided Decima-

X



tion w.h.p. fails to solve random k-SAT formulas efficiently already for r = 2k(1 + εk) ln(k)/k with

limk→∞ εk = 0 almost a factor k below rk-SAT.

After a bit of preliminaries and notation in Chapter 1 we will give a further and more general back-

ground on the interdisciplinary work on the field of random constraint satisfaction problems in Chap-

ter 2. We will state the results in more details, relate them to further work and give an outline of the

proofs in Chapter 3. In Chapter 4 we prove the result on the chromatic number of random regular

graphs. Chapter 5 contains the proofs of the analysis of SPdec the basic version of Survey propa-

gation Guided Decimation on random k-SAT. Finally, Chapter 6 provides the detailed proofs of the

analysis of Walksat.
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1 Preliminaries and notation

In this section we collect a few elementary definitions and facts that will be referred to repeatedly

throughout the thesis. This chapter contains to a large extend a word-by-word adoption from the papers

“On the chromatic number of random regular graphs” [39], “Analysing Survey Propagation Guided

Decimation on Random Formulas” [73] and “Walksat stalls well below the stisfiability threshold”

[38].

Random graphs and formulas Let G(n, d) be the random d-regular graph on the vertex set V =

{1, . . . , n}. As our goal is to study random d-regular graphs on n vertices, we will always assume that

dn is even. Unless specified otherwise, we let d and k ≥ 3 be n-independent integers. In addition, we

let GER(n,m) denote the uniformly random graph on V with precisely m edges (the “Erdős-Rényi

model”).

For integers k ≥ 3 and n,m > 0 let Φ = Φk(n,m) = Φ1 ∧ . . . ∧ Φm be a random Boolean

formula in conjunctive normal form with clauses Φi = Φi1 ∨ . . . ∨ Φik of length k over the Boolean

variables x1, . . . , xn chosen uniformly at random from the set of all (2n)km possible such formulas.

Additionally, we define the clauses/variables ratio, or density as r = m/n.

For a k-CNF Φ on the variables V = {x1, . . . , xn} we generally represent truth assignments as maps

σ : V → {−1, 1}, with −1 representing “false” and 1 representing “true”. Let Σ = Σn
∼= {−1, 1}n

be the set of all 2n assignments. Let S(Φ) be the set of all satisfying assignments of Φ.

First of all, we note for later reference a well-known estimate of the expected number of satisfying

assignments (see e.g [11] for a derivation).

Lemma 1.0.1. We have E [S(Φ)] = Θ(2n(1− 2−k)m) ≤ 2n exp
(
−rn/2k

)
.

If l is a literal, then we write |l| for the underlying variable. Thus, |l| = xi if l = xi or l = ¬xi.
In the factor graph notation we let sign(xi, a) = 1 if xi appears in clause a and sign(xi, a) = −1 if

¬xi appears in clause a. Moreover, the Hamming distance of two truth assignments σ, τ is denoted by

dist(σ, τ). Additionally, for two truth assignments σ, τ : V → {0, 1} we let

∆(σ, τ) = {x ∈ V : σ1(x) 6= τ(x)} (1.1)

1



1. Preliminaries and notation

be the set of variables where σ, τ differ; hence, |∆(σ, τ)| = dist(σ, τ). Set κ = ln k/k. Further, for

σ ∈ Σ and r1, r2 ≥ 0 define

Dσ(r1, r2) = {τ ∈ Σ : br1κnc ≤ dist(σ, τ) ≤ br2κnc}. (1.2)

Hence, Dσ(r1, r2) is a ring around σ with inner radius r1κn and outer radius r2κn. Additionally, let

Dσ(r) = Dσ(r, r) be the set of assignments at distance exactly rκn.

Asymptotics We say that a property E holds with high probability (‘w.h.p.’) if limn→∞ P [E ] = 1.

Many of the results contained in this thesis are “with high probability” statements, so we are generally

going to assume that the number n of vertices is sufficiently large.

We are going to use asymptotic notation with respect to both n and k. More precisely, we use

O(·),Ω(·), etc. to denote asymptotics with respect to n. For instance, f(n) = O(g(n)) means that

there exists a number C > 0 such that for n > C we have |f(n)| ≤ C|g(n)|. This number C may

or may not depend on k, the number of colors. By contrast, we denote asymptotics with respect to

k by the symbols Ok(·),Ωk(·), etc.; these asymptotics are understood to hold uniformly in n. Thus,

f(k) = Ok(g(k)) means that there is a number C > 0 that is independent of both n and k such that

for k > C we have |f(k)| ≤ C|g(k)|. Furthermore, we use the notation f(k) = Õk(g(k)) to indicate

that for some C > 0 independent of n and k and for k > C we have

|f(k)| ≤ |g(k)| · lnC k.

Norms If ξ = (ξ1, . . . , ξl) is a vector and 1 ≤ p ≤ ∞, then ‖ξ‖p denotes the p-norm of ξ. For a

matrix A = (aij)i∈[M ],j∈[N ] we let ‖A‖p signify the p-norm of A viewed as the N ·M -dimensional

vector (a11, . . . , aMN ).

For a real b× a matrix Λ let

‖Λ‖� = max
ζ∈Ra\{0}

‖Λζ‖1
‖ζ‖∞

.

Thus, ‖Λ‖� is the norm of Λ viewed as an operator from Ra equipped with the L∞-norm to Rb

endowed with the L1-norm. For a set A ⊂ [a] = {1, . . . , a} we let 1A ∈ {0, 1} denote the indicator

vector of A. the following well-known fact about the norm ‖ · ‖� of matrices with diagonal entries

equal to zero is going to come in handy.
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Fact 1.0.2. For a real b× a matrix Λ with zeros on the diagonal we have

‖Λ‖� ≤ 24 max
A⊂[a],B⊂[b]:A∩B=∅

|〈Λ1A,1B〉|.

Throughout the thesis we let Sn denote the set of permutations of [n].

Large deviations We also need some basic facts from the theory of large deviations. Let X be a

finite set and let µ, ν : X → [0, 1] be two maps such that
∑

x∈X µ(x),
∑

x∈X ν(x) ≤ 1 and such that

µ(x) = 0 if ν(x) = 0 for all x ∈ X . Let

H(µ) = −
∑
x∈X

µ(x) lnµ(x)

denote the entropy of µ. In addition, we denote the Kullback-Leibler divergence of µ, ν by

DKL (µ, ν) =
∑
x∈X

µ(x) ln
µ(x)

ν(x)
.

Throughout the thesis, we use the convention that 0 ln 0 = 0, 0 ln(0/0) = 0. It is easy to compute the

first two differentials of the function µ 7→ DKL (µ, ν):

∂DKL (µ, ν)

∂µ(x)
= 1 + ln

µ(x)

ν(x)
, (1.3)

∂2DKL (µ, ν)

∂µ(x)2
= 1/µ(x),

∂2DKL (µ, ν)

∂µ(x)∂µ(x′)
= 0. (1.4)

Furthermore, we need the following well-known

Fact 1.0.3. Assume that µ, ν are probability distributions on X such that that µ(x) = 0 if ν(x) = 0.

1. We always have DKL (µ, ν) ≥ 0 while DKL (µ, ν) = 0 iff µ = ν.

2. The function µ 7→ DKL (µ, ν) is convex.

3. There is a number ξ = ξ(ν) = minx∈X :µ(x)>0 µ(x) > 0 such that for every µ we have

DKL (µ, ν) ≥ ξ
∑

x∈X (µ(x)− ν(x))2.

In the case thatX = {0, 1} has only two elements, a probability distribution µ onX can be encoded by

a single number, say, µ(1). With this convention, the following well-known lemma “Chernoff bound”

states that the Kullback-Leibler divergence provides the rate function of the binomially distribution

(e.g., [77, p. 21]).
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1. Preliminaries and notation

Lemma 1.0.4. Let p, q ∈ (0, 1) be distinct and let Xn = Bin(n, p). Then

1

n
ln P [X ≤ qn] = −DKL (q, p) +O

(
lnn

n

)
if q < p,

1

n
ln P [X ≥ qn] = −DKL (q, p) +O

(
lnn

n

)
if q > p.

Recall that the Kullback-Leibler divergence of p, q ∈ (0, 1) reads as

DKL (q, p) = q ln
q

p
+ (1− q) ln

1− q
1− p

.

We are going to need the following “random walk” version of Lemma 1.0.4.

Corollary 1.0.5. Suppose that (Wn)n≥1 is a sequence of independent random variables such that

0 < P[Wn = 1] = 1− P[Wn = −1] = p < 1/2. Let q > 0. Then

lim
n→∞

1

n
ln P

[
n∑
t=1

Wn ≥ qn

]
= −DKL ((1 + q)/2, p) .

Proof. Let Xt = (1 + Wt)/2 for all t ≥ 1. Then Sn =
∑n

t=1Xt is a binomial random variable

with parameters n and p and
∑n

t=1Wt = 2(
∑n

t=1Xt) − n. Hence,
∑n

t=1Wt ≥ qn iff
∑n

t=1Xt ≥
n(1 + q)/2 and the assertion follows from Lemma 1.0.4.

Additionally, we have the following Chernoff boundon the tails of a binomially distributed random

variable or, more generally, a sum of independent Bernoulli trials [77, p. 21].

Lemma 1.0.6. Let ϕ(x) = (1 + x) ln(1 + x) − x. Let X be a binomial random variable with mean

µ > 0. Then for any t > 0 we have

P [X > µ+ t] ≤ exp(−µ · ϕ(t/µ)), P [X < µ− t] ≤ exp(−µ · ϕ(−t/µ)).

In particular, for any t > 1 we have P [X > tµ] ≤ exp [−tµ ln(t/e)] .

For a real a and an integer j ≥ 0 let us denote by

(a)j =

j∏
i=1

(a− i+ 1)

the jth falling factorial of a. We need the following well-known result on convergence to the Poisson
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distribution (e.g., [23, p. 26]).

Theorem 1.0.7. Let λ1, . . . , λl > 0. Suppose that X1(n), . . . , Xl(n) ≥ 0 are sequences of integer-

valued random variables such that for any family q1, . . . , ql of non-negative integers it is true that

E

 l∏
j=1

(Xj(n))qj

 ∼ l∏
j=1

λ
qj
j as n→∞.

Then for any q1, . . . , ql we have

P [X1(n) = q1, . . . , Xl(n) = ql] ∼
l∏

j=1

P [Po(λj) = qj ] . (1.5)

If (1.5) holds for any q1, . . . , ql, then X1(n), . . . , Xl(n) are asymptotically independent Po(λj) vari-

ables.

In many places throughout the thesis we are going to encounter the hypergeometric distribution. The

following well-known relationship between the hypergeometric distribution and the binomial distri-

bution will simplify many estimates.

Lemma 1.0.8. For every integer d > 1 there exists a number C = C(d) > 0 such that the following

is true. Let U be a set of size u > 1. Choose a set S ⊂ U × [d] of size |S| = s ≥ 1 uniformly at

random and let ev = |S∩({v}×[d])|. Furthermore, let (bv)v∈U be a family of independent Bin(d, s
du)

variables. Then for any sequence (tv)v∈U of non-negative integers such that
∑

v∈U tv = s we have

P [∀v ∈ U : ev = tv] = P

[
∀v ∈ U : bv = tv

∣∣∣∣∑
v∈U

bv = s

]
≤ C
√
u · P [∀v ∈ U : bv = tv] .

A bit of calculus Finally, the following version of the chain rule will come in handy.

Lemma 1.0.9. Suppose that g : Ra → Rb and f : Rb → R are functions with two continuous

second derivatives. Then for any x0 ∈ Ra and with y0 = g(x0) we have for any i, j ∈ [a]

∂2f ◦ g
∂xi∂xj

∣∣∣∣
x0

=

b∑
k=1

∂f

∂yk

∣∣∣∣
y0

∂2gk
∂xi∂xj

∣∣∣∣
x0

+

b∑
k,l=1

∂2f

∂yk∂yl

∣∣∣∣
y0

∂gk
∂xi

∣∣∣∣
x0

∂gl
∂xj

∣∣∣∣
x0

.
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1. Preliminaries and notation

For real numbers 0 ≤ x, y ≤ 1 such that max{x, y} > 0 we define

ψζ(x, y) =


xy ·Ψ(x, y) if ζ = 0

(1− x)y ·Ψ(x, y) if ζ = 1

(1− y)x ·Ψ(x, y) if ζ = −1

, Ψ(x, y) = (x+ y − xy)−1 (1.6)

If x = y = 0 set ψ0(0) = 0 and ψ±1(0) = 1
2 .

By definition (1.6) we have

1 = 2ψ1(x1) + ψ0(x1) = 2ψ−1(x1) + ψ0(x1) (1.7)

and we compute the following bound on the derivative of ψ.

Lemma 1.0.10. Let 0 < x1, x2, p1, p2, ε1, ε2 ≤ 1. Assume that |x1 − p1| ≤ ε1 and |x2 − p2| ≤ ε2.

Then

|ψ0(x1, x2)− ψ0(p1, p2)| ≤ ε1 + ε2.

Suppose ε1 ≤ p1/2 and ε2 ≤ p2/2. Then for ζ ∈ {−1, 1} we have

|ψζ(x1, x2)− ψζ(p1, p2)| ≤ 2 ·
(
ε1

p1
+
ε2

p2

)
.

Proof. By the mean value theorem there exist 0 < ξζi ≤ 1 such that for i = 1, 2 we have∣∣∣p− ξζi ∣∣∣ ≤ εi and (1.8)

ψζ(x1, x2) = ψζ(p1, p2) +

2∑
i=1

(pi − ξζi ) ·
∂ψζ
∂xi

(ξζ1 , ξ
ζ
2). (1.9)

Thus, we have to bound the first derivatives of the functions ψζ which are given by

∂ψ0

∂x1
= x2

2 ·Ψ(x1, x2)−2 ∂ψ0

∂x2
= x2

1 ·Ψ(x1, x2)−2

∂ψ1

∂x1
= −x2 ·Ψ(x1, x2)−2 ∂ψ1

∂x2
= x1(1− x1) ·Ψ(x1, x2)−2

∂ψ−1

∂x1
= x2(1− x2) ·Ψ(x1, x2)−2 ∂ψ−1

∂x2
= −x1 ·Ψ(x1, x2)−2.

For all 0 < ξ1, ξ2 ≤ 1 we have Ψ(ξ1, ξ2) = ξ1 +ξ2−ξ1ξ2 ≥ ξ1, ξ2 and thus ∂ψ0

∂xi
(ξ1, ξ2) ≤ 1. Together
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with (1.8) and (1.9) the first assertion follows.

For all 0 < ξ1, ξ2 ≤ 1 such that |ξ1 − p1| ≤ ε1 ≤ p1/2 and |ξ2 − p2| ≤ ε2 ≤ p2/2 we have

ξ1

(ξ1 + ξ2 − ξ1ξ2)2 ≤ ξ1

(max{ξ1, ξ2})2 ≤
1

max{ξ1, ξ2}
≤ ξ−1

2 ≤ 2/p2 and

ξ2

(ξ1 + ξ2 − ξ1ξ2)2 ≤ ξ2

(max{ξ1, ξ2})2 ≤
1

max{ξ1, ξ2}
≤ ξ−1

1 ≤ 2/p1.

Thus,
∣∣∣∂ψζ∂x1

(ξ1, ξ2)
∣∣∣ ≤ 2/p1 and

∣∣∣∂ψζ∂x2
(ξ1, ξ2)

∣∣∣ ≤ 2/p2. Together with (1.8) and (1.9) the second

assertion follows.
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2 Background

2.1. Probabilistic Combinatorics

The work of Erdős and Rényi starting in the 1950s and reaching its climax with their profound series

of papers in the 1960s established the research of random discrete structures constituting a whole new

branch of discrete mathematics. Erdős introduced the notion of a random graph to obtain a lower

bound on Ramsey numbers as early as 1947 [59]. His approach is known as The Probabilistic Method

[16].

Given a finite vertex set of n vertices a random graph is a graph constructed by a random procedure

resulting in a distribution on the set of all 2(n2) possible graphs on n vertices. The distribution ob-

tained depends entirely on the specific random procedure performed. The procedure first described by

Erdős is as simple as just flipping a fair coin for each possible edge deciding on its presence in the

random graph. Of course this random procedure can be changed very easily in two directions: one

could either use a biased coin or discard the result every once in a while. For instance one could dis-

card the result if the constructed graph lacks a specified property resulting in a distribution on a subset

of all possible graphs on n vertices. Furthermore, an additional random decision after constructing

the random graph could be performed leading to a distorted distribution. Using a biased coin with

success probability p the random graph model is referred to as the binomial random graph model. A

prominent example where the probability space is restricted is the so called uniform random graph

model, that is the uniform distribution on all graphs on n vertices with exactly m edges for a fixed

parameter 0 ≤ m ≤
(
n
2

)
to which we refer to as the “Erdős-Rényi model”. It turns out be equivalent to

the binomial model ifm = p(n−1) for monotone graph properties in the large n limit [77, Chapter 1].

The whole concept is easily generalized to directed graphs and hypergraphs as well, where edges con-

sist only of tuples of vertices of size larger than two. Although random graphs have originally been

introduced as a tool to prove results for instance in extremal combinatorics, random graph models are

widely studied for their own purpose. Let us mention for the sake of completeness that Gilbert already

introduced and studied connectivity of the binomial random graph in 1959 [68].

Already in their seminal 1961 paper [60] Erdős and Rényi outlined the main goals of the theory

of random graphs. They observed that all the results they had achieved so far entailed threshold

characteristics or phase transition phenomena. Proving and reaching for a better understanding of

these thresholds and phase transitions has been on the scope of probabilistic combinatorics to this day.
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2. Background

The set of problems appearing in the work of Erdős and Rényi are manifold: connectivity, match-

ings, Hamilton cycles, connected components, degree distributions, the k-core, the chromatic number,

cliques, independent sets and the number of graph automorphisms. For a comprehensive overview on

the origins of the theory of random graphs see [80]. Since the seminal work of Erdős and Rényi a

huge amount of work has been devoted to random graphs and many additional problems arose. A di-

verse set of powerful tools and techniques has been developed to deal with them. Almost all problems

originally stated in the initial work have been solved to a large extent of satisfaction to this day. The

result concerning the chromatic number problem for sparse random regular graphs in the present thesis

contributes to the completion of the program dictated by the seminal work of Erdős and Rényi. For a

comprehensive overview on random graphs and important achievements on this topic see [23, 77].

2.2. Combinatorial optimization and random instances

In probabilistic combinatorics as well as in theoretical computer science similar discrete combinatorial

structures always played an important role. Starting with the substantive work of Cook and Karp in

the 70s computer scientist have developed a theory to answer the question which tasks computers

are able to perform efficiently. To state this question with scientific accuracy, precise definitions and

coherent models of computation and efficiency had to be developed. Aspects such as running time,

memory, difference in performance of various solution schemes and methods have been considered

and formalized.

The spectrum of computational problems is very diverse. A large family consists of combinatorial

optimization problems and actually constraint satisfaction problems are part of that family. Combi-

natorial optimization problems are summarized under the following scheme: the task of finding an

element of a finite set which maximizes an easy to evaluate function. These kind of problems oc-

cur naturally in many real world scenarios as well as in science. One distinguishes three types of

optimization problems

• Optimization: Find an optimal configuration,

• Evaluation: Give the cost of an optimal configuration,

• Decision: Is there a configuration with a cost less than a given value.

Inevitably, the question arises if some of these problems are intrinsically harder to solve than others. To

approach the question of distinguishing problems with respect to their hardness, it appears reasonable

to compare the running times of the best (known) algorithms for each problem. To do so a precise

model of computation is required which is given by concepts as Turing machines. For many algorithms

it turns out to be equivalent to determine the running time by just counting elementary operations such

as summing, multiplying, comparing. In many problems there is a canonical measure of the size of an
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2.2. Combinatorial optimization and random instances

instance n (e.g. the number vertices/edges in a graph or the number of variables) and the size of the

configuration space often scales exponentially in n. The complexity of an algorithm is then measured

by the number of elementary operations required to solve an instance taking the large n limit.

In general, an algorithm may have different running times for two instances of the same problem

although they are of the same size. This leads to the problem of defining the running time of an

algorithm for a fixed problem in terms of the instance size n in a clear way. A crucial way to get over

this problem is to introduce the concept of worst-case analysis. In this model, the running time of an

algorithm for a computational problem of instance size n is simply the maximal running time over all

instances of size n.

With a concept of computational complexity in hand it is possible to classify the range of problems.

A first and simple classification claims that a problem for which an algorithm is known to solve the

worst case instance in a running time that is a polynomial in the instance size n is efficiently solvable

(or solvable in polynomial time). Therefore, we obtain a first class in the set of all problems denoted

P for which polynomial time algorithms are known. A superset of this class is the class of algorithms

denoted by NP containing all problems for which a short (efficiently to check) certificate of verification

exists.

The definition of computational complexity builds strongly on the knowledge of algorithms. A prob-

lem that belongs to the class NP but not to P, so far may be solved efficiently by an algorithm that is not

found yet, but possibly exists. Therefore, an algorithm independent way of comparing computational

hardness of two problems is given by the concept of reduction. We say: problemA reduces to problem

B if there is an efficient way to solve an instance of A by efficiently solving instances of problem B.

This is a rule of efficiently constructing an instance of problem B depending on a given instance of

problem A such that the solution of this particular instance of problem B can be used to construct a

solution of the given instance of problem A efficiently. This implies, in terms of polynomial running

time, that there exists a polynomial time algorithm for problem A if there exists one for problem B.

Returning to the question of classifying computational problems, a third class contained in NP is then

defined. The class NP-complete contains all problems in NP with the property that all other problems

in NP can be reduced to them. In a intuitive sense, these problems are the hardest ones in NP. Solving

one of these NP-complete problems efficiently would lead to a collapse of the distinction of P and NP.

Indeed, this is still an open problem, the famous so called P unequal NP problem, which is one of the

Millennium problems of the Clay mathematics institutes. The problem may be phrased as answering

the question of existence of an efficient algorithm that solves a NP-complete problem i.e. showing

that all problems in NP are actually in P. Since the set of computational problems is manifold, there

exists a vast set of other complexity classes. Considering them all would lead us too far. For a more

comprehensice overview on complexity theory see [113].
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2. Background

A priori the existence of NP-complete problems is not obvious. Cook proved in 1971 the following

famous

Theorem 2.2.1 ([48]). The satisfiability problem is NP-complete.

It is a basic question, whether the concept of worst-case analysis leads to a reasonable classification of

computational problems with respect to hardness of computation. Theoretically, a problem could be

classified as difficult only because of the existence of a very small number of (for at least all known

algorithms) difficult to solve instances that are of no practical relevance. But for instances in real world

problems efficient algorithms are known. Interestingly, the canonical NP-complete problem SAT is

solved in practice frequently with highly sophisticated and efficient industrial SAT-solvers [21].

The hypotheses that random instances of computational optimization problems in particular the ran-

dom k-SAT problem are closer to realistic distributions has not been confirmed. Computer scientists

put enormous effort in studying random instances, starting alreay in the early and taking off in the

late 80s [69, 62, 126]. Unlike as hoped, these random instances in effect appeared to be hard to solve,

which is strongly contradicting real world scenarios. Actually, no way of creating hard instances deter-

ministicaly is known to this day. However, with these random instances computer scientest obtained a

tool to construct far from beeing realistic (for each real world instances there is arguably some under-

lying deterministic structure) but hard to solve instances. Thus, randomly generated instances became

benchmark problems for algorithms [32, 31, 33, 102, 83, 127]. For a more in depth introduction on

the computer science work on random k-SAT instances see [21, Chapter 8].

2.3. Statistical physics and disordered systems

Irrespective of the developments regarding random discrete structures in discrete mathematics and

complexity theory in computer science, a branch in statistical physics arose in the early 2000s studying

the same objects but using a different language to state them.

Generally speaking, statistical physics investigates the collective behaviour of many interacting com-

ponents. In their tradition statistical physicists have been studying ordered materials such as crystals,

where the atoms lay on periodic lattices, or liquids and gases with a uniform particle density. Only in

the 1970s they started to investigate strongly disordered systems. From the start spin glasses, structural

glasses and polymer networks have been studied. The fascination has been stimulated by the incred-

ible diversity of behaviour and phenomenology of these materials. Additionally, proving difficult to

fathom these phenomena conceptional goaded on the scientific curiosity even more.

In other words, the main goal of statistical physics may be summarized as describing and explaining
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2.3. Statistical physics and disordered systems

the complex behaviour resulting from the interaction of a huge number of elementary particles. To give

a simple example consider water. Depending on the temperature the interaction of H2O molecules

results in completely different macroscopic states which mark three phases: solid, liquid and gaseous.

A very striking observation is the strictness of the transitions of these three phases. At temperature

only slightly below 0 degree Celsius the equilibrium state of water is solid, at temperature only slightly

above 0 degree Celsius, the equilibrium state of water is liquid. Developing a theory explaining the

main macroscopic properties of these different phases and the phenomena of these macroscopic strict

phase transitions despite non changing microscopic interaction has been at the top of the agenda ever

since statistical physicists started looking at disordered systems.

The basic ingredients to frame physical systems in terms of probability theory are the following. For

the sake of representation we now restrict ourselves to systems with n particles.

The first ingredient is the configuration space Ω containing all possible states of the system as its

microscopic determination. For the sake of clear presentation it is convenient to restrict ourselves to

Ω being a finite set. The elements in Ω are usually referred to as spins. For a system on n particles

V = {x1, . . . , xn} the configuration or state of a system is a map σ : V → Ω, where σ(xi) indicates

the current state (spin) of one particle at site i.

The second ingredient is a set of observables. Each observable is a function from the configuration

space into the reals. The real world counterparts are physical quantities that are measurable in an

experiment.

The third ingredient is actually an observable playing an important role by setting up the probabilistic

description of the model which is the energy function E(σ) establishing an energy for each configura-

tion. Let P([n]) be the power set of the first n integers and for any S ∈ P([n]) let σS be the restriction

of σ to S. Then let

E(σ) =
∑

S∈P([n])

ES(σS)

where ES(σS) is a map from the set of all maps τ : S → Ω into the reals.

Finally, we define the Boltzmann distribution which supposedly gives the equilibrium probability that

the system is found in configuration σ by

µβ(σ) =
1

Z(β)
exp (−βE(σ)) , Z(β) =

∑
σ:V→Ω

exp (−βE(σ))

which is simply a Gibbs measure. The parameter β is called the inverse temperature and the nor-

malization constant Z(β) the partition function. Observe that in the so called high-temperature limit
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2. Background

when β tends to 0 the uniform distribution is recovered. In the low-temperature limit where β → ∞
the Boltzmann distribution concentrates on the set of global minimiser of the energy function, which

is called the set of ground states.

The energy function plays an important role in translating the microscopic interactions of the parti-

cles into a macroscopic measurable observable. There is a great number of possible models since

each possible energy function may define a different model. It is a rather fundamental and contra-

dictory question if a certain model may be considered as a good description of real material or if the

understanding of certain properties of a model has any practical value.

According to statistical physicist the main task consists in finding the thermodynamic potentials of

a system such as the internal energy, the canonical entropy and most importantly the free entropy,

sometimes denoted as pressure,

Φ(β) = ln(Z(β)).

These potentials incorporate the most important properties of the Boltzmann distribution.

Since statistical physics studies the macroscopic behaviour of systems with an enormous number of

particles, the with n normalized large n limit of the termodynamic potentials is studied. As a weak

justification take a glass of water for instance in which a large number of≈ 1024 manyH2O molecules

are contained.

The free entropy is an analytic function of β. Assuming the existence of the thermodynamic limit

the question if analyticity is preserved arises. In statistical physics terminology a phase transition

occurs at some real β if the thermodynamic limit of the free entropy is non-analytic in β. A priori,

it is of course just a claim that besides the mathematical interest of the concept of phase transition,

there is in fact a qualitative change in the corresponding physical system at the point where a phase

transition occurs that obtained further justification ever since statistical physicist studied these models.

It is not an exaggeration to say that it has always been one of the main tasks of statistical physics to

describe and separate certain phases by introducing the right quantities, features and characteristics of

the system.

2.3.1. From the Ising spin model to Spin glasses

Towards explaining the statistical physics work on constraint satisfaction models we are going to

introduce a few models on which the methods first have been applied, namely several kinds of spin

models. The results presented in this section are not rigorous and are to a large extend lacking a

reliable mathematical justification.
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Not until the 1920s the Ising model was introduced to study magnetic materials that contain molecules

with a magnetic moment. It assumes that a colloquial of elementary magnets or magnetic moments

sit on a grid interacting with one another. In general, assume a d-dimensional lattice with magnetic

moments on the vertices. To keep the configuration space finite we consider the d-dimensional cube

L of side length ` such that L = [`]d. On each site i ∈ L sits an Ising spin xi taking values in {±1}.
A configuration of the system is given by fixing the value of each spin at each lattice point. Finally,

the energy function in the so called ferromagnetic case is defined as

E(σ) = −
∑

(i,j)∈L2: dist(i,j)=1

σ(xi)σ(xj)−B
∑
i∈L

σ(xi)

where the real value B measures an external magnetic field. In this ferromagnetic case the energy

function gets smaller as more neighbouring sites agree on their spin and point in the direction of the

external field. In the anti-ferromagnetic case the minus in front of the first summand is omitted. To

determine the thermodynamic limit of the free entropy is a non-trivial problem that was solved for the

1-dimensional case by Ernst Ising in 1924 showing that no phase transition takes place [76]. Over two

decades later Lars Onsager solved the 2-dimensional case showing the existence of a phase transition

[112]. Nothing further is known for higher dimensions.

As one of the simplest solvable cases with a finite-temperature phase transition, the Curie-Weiss model

introduced by Curie and then by Weiss [111] has to be mentioned. The only difference to the ferro-

magnetic Ising model is the non-geometric interaction of all pairs of sites and an appropriate scaling

of the first sum in the energy function

E(σ) = − 1

n

∑
(i,j)∈V 2

σ(xi)σ(xj)−B
∑
i∈[n]

σ(xi).

One of the important features of the Curie-Weiss model is the interaction of all sites. Systems with this

interaction scheme are called mean-field models, which describe a family of widely studied models.

Both, the Ising Spin model as well as the Curie-Weiss model, do not belong to the class of disordered

systems as the interaction between pairs of particles is well ordered. To move into the direction of

disordered systems let us mention the Edwards-Anderson model as a generalization of the Ising spin

model, which was the first universally accepted model of spin glasses introduced by Edwards and

Anderson in 1975 [58]. Generally speaking, Spin glasses are disordered systems whose magnetic

properties are determined fundamentally by randomly placed impurities. In this model for each inter-

acting pair of sites (ij) ∈ [n]2 an additional real parameter Jij , the so called coupling, is introduced.

The interaction between two sites (ij) is ferromagnetic if Jij > 0 and antiferromagnetic if Jij < 0.
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The energy function reads as

E(σ) = −
∑

(i,j)∈L2: dist(i,j)=1

Jijσ(xi)σ(xj)−B
∑
i∈L

σ(xi).

The Edwards-Anderson model is far from being as well understood as the two previously mentioned

models. A reason for this, is the possibility of insolvable conflicts of local constraints named frustra-

tions in statistical physics terminology.

As a next step of escalation and to finally speak about disordered systems in statistical physics let

us introduce the following two models. First, the p-spin glass model on n Ising spins, where each

p-tuple interacts with a coupling chosen respectively to a given distribution. It was introduced in

1975 and 1978 by Sherrington and Kirkpatrik [130, 84]. The energy function in this model is not

a deterministic one but the result of a random process. The special case p = 2 is known as the

Sherrington-Kirkpatrick model. Second, the random energy model (REM), where the energy function

is also not a deterministic function but itself a random object, was introduced as a large p limit of p-

spin glasses by Derrida [53]. In this model, for each of the |Ω|n configurations, the energy is a random

variable drawn from a specific distribution. Each realization of the |Ω|n-dimensional energy vector

is then an instance of the REM. For the REM as well as the p-spin glasses two levels of randomness

are involved. First, in generating a random instance by generating the coupling and interaction of the

particles i.e. the energy function. Second, the randomness associated with the Boltzmann distribution.

Therefore, the main objective of these models, the free entropy, becomes a random variable.

In 1978 Sherrington and Kirkpatrik found a replica symmetric solution for the p-spin glass model

that was not satifactory on a heuristic level by exhibiting “unphysical behavior” even for the case

p = 2 for small temperatures [84]. A similar, in the same sense not exhaustive solution, was found by

Derrida for the REM [54]. It was Parisi who extended the replica theory in 1979 introducing replica

symmetry breaking as a tool to tackle these low temperature regimes and giving a precise formula

to compute the free entropy in models with this property [115]. The Approach is now called Parisi

ansatz and the formula is known as the Parisi formula [79]. It turned out that the low temperature

regime of the Sherrington Kirkpatrik model and the REM lacks the replica symmetry property. In

fact, there appears to be a phase transition, where replica symmetry breaking sets in. This transition is

called condensation transition that was first observed by Parisi in this kind of models [116]. Later on

Mézard, Parisi and Virasoro developed a rather general formulation of replica symmetry breaking to be

applied to various spin glass models [100]. This method has been widely applied, but still, a rigorous

mathematical foundation is lacking. For a comprehensive overview see [117]. The correctness of

the Parisi formula for the Sherrington Krikpatrik model was finally rigorously proven by Talagrand

[131, 132].

Only in the beginning of the 2000s, Mézard, Parisi and Zecchina introduced the cavity method, a
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2.3. Statistical physics and disordered systems

reformulation of the replica theory for sparse random constraint satisfaction problems [99, 101]. In

particular they applied the cavity method to a broader class of disordered systems, the so called diluted

mean field models. In this models, potentially, every variable may interact with any other referring to

the term mean-field but the size of the interactions is bounded by a constant and the number of all

interactions is of the same order as the number of variables, which is reflected in the term diluted.

Moreover, the term disordered system indicates that the underlying structure in the model involves

randomness.

To phrase it carefully, diluted mean-field models are considered by some phycisits to be a better

approximation to “real” disordered systems (such as glasses) than models where the underlying graph

is complete, such as the Sherrington-Kirkpatrick model [85]. An in-depth introduction to the cavity

method and its impact on combinatorics, information theory and computer science can be found in [97,

98].

2.3.2. Combinatorial optimization in the guise of statistical physics

Let us now explain how constraint satisfaction problems are formulated in the statistical physics lan-

guage. Each optimization problem comes with an energy function that is simply the cost function. If

we consider constraint satisfaction problems the cost function is actually the number of violated con-

straints. For example in graph colouring, the cost function corresponds to the number of monochro-

matic edges, in k-SAT to the number of unsatisfied clauses.

For the k-SAT problem and a given k-CNF formula Φ we obtain the energy function

Ek-SAT(σ) =
∑
j∈[m]

1{Φj is unsat. by σ}.

Considering the Boltzmann distribution we obtain

µβ(σ) =
1

Z(β)
exp

−β ∑
j∈[m]

1{Φj is unsat. by σ}

 , (2.1)

Z(β) =
∑
σ∈Σ

exp

−β ∑
j∈[m]

1{Φj is unsat. by σ}

 .

Since the satisfying assignments have vanishing energy in the Boltzmann distribution for β tending

to infinity all the mass is uniformly concentrated on the set of all satisfying assignments. In this limit

the partition function simply counts the overall number of satisfying assignments. Determining the

partition function or the free entropy in this case revisits the original optimization problem. Introduc-

ing the inverse temperature in the statistical physics approach may be considered as a generalization
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of optimization problems. Answering the question whether Z is strictly positive in the infinite β case

with a certain probability is equivalent to the decision version of the constraint satisfaction problem.

2.3.3. Factor graphs and graphical models

Systems of an immense number of variables interacting (by constraints or conditions) leading to mu-

tual dependencies appear in many fields of science. In real-life problems often only a small number

of variables are interacting with one another. For example in physics, heuristically, in a proper model

for three-dimensional materials, only neighboured or nearby particles are interacting. In a sense this

dominant kind of local interaction usually leads to the possibility of “factorizing” the dependencies.

Over time, different concepts of representing these dependencies graphically have been developed, for

instance graphical models or Bayesian networks. In statistical physics it is common to use the concept

of factor graphs.

Given a set of n variables x1, . . . , xn taking values in a finite alphabet ξ let us define their joint

probability distribution

P (σ) =
1

Z

m∏
a=1

ψa(σN(a)), Z =
∑

σ:V→Ωn

m∏
a=1

ψa(σN(a)) (2.2)

where we let N(a) ⊂ [n], ψa be a non-negative map from Ω|N(a)| into the reals called compatibility

function for each a ∈ [m] and Z be a normalization constant. Specifying the sets N(a), the parameter

m and the compatibility function will determine the probabilistic model. These models are often

referred to as undirected graphical models.

A factor graph is a graphical representation of distributions of the form (2.2). It contains two types of

vertices.

• For each of the n variables x1, . . . , xn there exists a corresponding variable node labelled with

the corresponding index i ∈ [n].

• For each of them compatibility functions ψ1, . . . , ψm there exits a corresponding function node

labelled with the corresponding index a ∈ [m].

There exists an edge between a variable node and a function node if the underlying variable is an

argument of the underlying compatibility function. The sets N(i) and N(a) for i ∈ [m] and a ∈ [m]

are defined in the sense of the common neighbourhood definition in graphs. If one considers the

Boltzmann distribution for the k-SAT problem (2.1) one easily verifies that they are indeed of the

form (2.2).
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2.3. Statistical physics and disordered systems

2.3.4. On Belief Propagation and the Cavity Method

Given a graphical model on n variables taking values in a finite alphabet Ω, a simple question arises

naturally: is it possible to efficiently compute the marginal distribution for each of the n variables?

Furthermore, there exists an efficient way to compute the normalizing constant Z of (2.2) given the

marginal distribution. Moreover, the Boltzmann distribution of random constraint satisfaction prob-

lems is of the form (2.2) and actually this is the case for diluted mean field models in general. There-

fore, computingZ is eqivalent to computing the partition function i.e. the free entropy of these models.

For optimization problems, determining Z exactly is also an interesting task since it counts the number

of optimal solutions for instance colorings, matchings and stable sets in random graphs or solutions to

random formulas [113].

A naive approach, summing over all of the |Ω|n assignments is of course highly inefficient. For a

few cases where the underlying factor graph entails certain structures much more efficient algorithms

are known. In the tree-case there exists an algorithm that computes marginals in linear running time,

reducing the complexity dramatically in that case. This algorithm has been discovered in various

sciences and is known as the Bethe-Peierls approximation in statistical physics, the sum-product algo-

rithm in coding theory and Belief Propagation in artificial intelligence, the notion we adhere to [90].

The procedure may be described as a recursive computation to find a fixed point solution of certain

graph dependent equations, the so called Belief Propagation equations. In the tree case it reduces to

carrying out in parallel a number of computations associated to the vertices of the tree beginning at

the leaves of the tree working all the way up to the root and back down again. Thus, the number of

computations is of order twice the height of the tree.

Before we state the Belief Propagation equations in general, let us emphasize that this sketched itera-

tive computation scheme to find the fixed point of the Belief Propagation equations can be formulated

as a rather general dynamical programming procedure. As we will see the Belief Propagation equa-

tions are formulated by the use of variables assigned to the edges of the factor graph. Therefore, the

Belief Propagation equations are highly suitable to run as a message passing algorithm on the factor

graph to find fixed points. A message passing algorithm recursively updates variables i.e. messages

that are associated with edges of the factor graph. To do so, it performs only local computations up-

dating the messages. The term “local computation” refers to the fact that only messages of incident

edges are taken into account by updating messages. These recursive computations denoted as update

rules determine the message-passing algorithm.

Let us now state the Belief Propagation equations for a graphical model with factor graph G. For each

variable node i ∈ [n] and function node a ∈ N(x) we will denote the ordered pair (i, a) by i → a.
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For µ ∈M(G) we define for all ζ ∈ Ω

µi→a(ζ) = Z−1
i→a

∏
b∈N(i)\{a}

µ̂b→i(ζ),

where Zi→a =
∑
ζ′∈Ω

∏
b∈N(i)\{a}

µ̂b→i(ζ
′)

and µ̂a→i(ζ) = Z−1
a→i

∑
σ:N(a)\{i}→Ω

ψa(σ)
∏

j∈N(a)\{i}

µj→a(σ(xj)),

where Za→i =
∑
ζ∈Ω

∑
σ:N(a)\{i}→Ω

ψa(σ)
∏

j∈N(a)\{i}

µj→a(σ(xj))

If N(i) \ {a} is empty or Zi→a = 0, we let µi→a(ζ) = |Ω|−1 for all ζ ∈ Ω which is be the uniform
distribution over the values in Ω. If N(a) \ {i} is empty or Za→i = 0 we set µ̂a→i(ζ) = ψa(ζ).

Figure 2.1.: The Belief Propagation equations for a graphical model with factor graph G.

Similarly, a→ i stands for the pair (a, i). The message spaceM(G) is the set of tuple

(µi→a(ζ))i∈[n],a∈N(x),ζ∈Ω

such that µi→a(ζ) ∈ [0, 1] for all ζ ∈ Ω and
∑

ζ∈Ω µi→a(ζ) = 1 for all i ∈ [n] and a ∈ [m]. In Figure

2.1 the general Belief Propagation equations for a graphical model with factor graph G are given.

Starting with a set of messages µ ∈ M(G) one can iteratively update the messages by first applying

the right-hand side of equation (2.3) and then the right hand side of (2.3) to the results obtained in the

first step. In a sense at each update step each variable node sends a distribution over its possible values

from the finite alphabet Ω to each incident factor node. Each factor node takes this incoming messages

and computes for each incident variable node an individual message which is again a distribution over

all values from the finite alphabet Ω. Finally, each variable node updates its message for the next

iteration step by using these incoming messages from each incident factor node.

Parsing the update rules one might observe that the underlying heuristic in these update computation

goes as follows. At each factor node a a belief of the marginal distribution for each incident vertex

i ∈ N(a) is computed under the assumption that the incoming marginals of the others incident variable

nodes inN(a)\{i} are the right ones in a graph where factor node a is not present. A similar heuristic

explains the update rules at the variable nodes. One might expect that a fixed point exists if at each

vertex all incoming messages decorrelate. It is easily verified, that for trees this in fact is the case.

A more detailed explanation and discussion of the Belief Propagation heuristic can be found in [29,

p. 519].
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2.3. Statistical physics and disordered systems

The success of the Belief Propagation computations consists not only in the possibility of computing

marginals but also in being able to compute the partition function by means of the so called Bethe Free

Entropy formula, which is provably right on trees [135, 136].

Inherently, the Belief Propagation equations can be formulated for any factor graph even for those

containing cycles. Of course, in general, it is not clear if the Belief Propagation equations of such

graphs entail one fixed point, or many and if they do, whether there is any reasonable interpretation. If

the compatible functionsψ of the underlying distribution (2.2) are strictly positive there provably exists

at least one fixed point [98]. If no fixed point exists there may exist “approximated-fixed-points” with

a right notion of approximation allowing a small error for each single Belief Propagation equation.

Additionally, it is far from being clear if the message passing procedure finds these approximated-

fixed-points and if several exist, to which one it converges [61, 98]

The factor graph of random sparse constraint satisfaction problems is locally tree-like with high prob-

ability. Thus, for almost all vertices the neighbourhood is a tree up to a large depth, say Θ(lnn).

Therefore, one might expect analysing the Belief Propagation equations of these models being rea-

sonable. There may exist messages that are approximately satisfying the Belief Propagation equations

associated with the vertices whose neighbourhood resembles a tree.

In fact, a good portion of the work studying random constraint satisfaction problems has been dedi-

cated to evolve a theory connecting these approximated-fixed-points, a representation of the underly-

ing Boltzmann distribution as a sum of Bethe measures and stationary points of the Bethe Free Entropy

operator. As mentioned above, the set of solution shatters into many clusters at a certain model de-

pending density. In these clusters many frozen variables exist. Since these frozen variables are forced

to take a certain value, by long-range correlations, the messages of these frozen variables ought to put

all the mass on exactley one value (to which the variable is frozen). Therefore, there may be some

correspondance between approximated-fixed-points of the Belief Propagation equations and clusters.

For a more in depth introduction on Belief Propagation in the context of disordered systems we refer

to [98].

Let us now finally sketch the cavity approach. To get a handle on these approximated-fixed-points

of the Belief Propagation equations we take one step back and introduce distributions over messages.

Since the factor graph is a random object by itself, one might expect to understand the whole factor

graph by studying the “typical” neighbourhood of a uniformly at random chosen vertex. In many

models the neighbourhood distribution converges in a sense of local weak convergence to a random

tree process [20]. Analysing the Belief Propagation equation on this random tree might be in cor-

respondence with the Belief Propagation equations of the whole random factor graph, which is the

basic hypothesis when applying Belief Propagation to graphs with a small number of short cycles.

Therefore, within the cavity method a distribution over the messages sent to the root of such a random
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neighbourhood tree is computed. This is done by finding a certain distributional fixed point. Finally,

with this fixed point in hand a distributional version of the Bethe Free Entropy is used to estimate the

free entropy.

Due to long-range dependencies, the decorrelation assumption may not be true any more when the con-

straint density increases. If this happens, in statistical physics terminology replica symmetry breaking

takes place. Broadly speaking, the answer on the random neighbourhood tree does not coincide with

the answer on the whole factor graph anymore, due to long-range correlations. To overcome this is-

sue distributions on the distributions of the messages on the tree are introduced. This procedure may

be reiterated several times if necessary. If one of these steps is sufficient, one-step-replica symme-

try breaking is said to take place. If an infinite iteration of this procedure is necessary full-replica

symmetry breaking is said to occur. For a more in depth introduction to the cavity method see [98].

Finally, carrying out these cavity computations led to a whole lot of predictions on phase transitions

and diagrams for random sparse constraint satisfaction problems [88]. Many rigorous results obtained

using these insights like phase transitions and structural properties of the solution space geometry

are to a large extent due to combinatorial implementations of the picture drawn by this approach.

To simply apply the cavity method as a sophisticated tool i.e. developing a rigorous mathematical

foundation of the theory of Bethe measures, has not been achieved to this day. However, first steps in

this direction have been taken [46, 45, 50, 51, 52].
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3 Results, Discussion and Outline

This chapter contains to a large extend a word-by-word adoption from the papers “On the chromatic

number of random regular graphs” [39], “Analysing Survey Propagation Guided Decimation on Ran-

dom Formulas” [73] and “Walksat stalls well below the stisfiability threshold” [38].

3.1. The chromatic number of random regular graphs

The main result on the chromatic number of random regular graphs is obtained by improved bounds

on the conjectured k-colourability threshold in random regular graphs stated in Theorem 3.1.1. Then,

Corollary 3.1.3 gives the almost complete solution on the chromatic number problem on random

regular graphs.

The strongest previous result on the chromatic number of G(n, d) is due to Kemkes, Pérez-Giménez

and Wormald [82]. They proved that w.h.p. for k ≥ 3

χ(G(n, d)) = k if d ∈ ((2k − 3) ln(k − 1), (2k − 2) ln(k − 1)), and (3.1)

χ(G(n, d)) ∈ {k, k + 1} if d ∈ [(2k − 2) ln(k − 1), (2k − 1) ln k]. (3.2)

These bounds imply that G(n, d) is k-colourable w.h.p. if d < (2k− 2) ln(k− 1), while G(n, d) fails

to be k-colourable w.h.p. if d > (2k − 1) ln k. Our main result is

Theorem 3.1.1. There is a sequence (εk)k≥3 with limk→∞ εk = 0 such that the following is true.

1. If d ≤ (2k − 1) ln k − 2 ln 2− εk, then G(n, d) is k-colourable w.h.p.

2. If d ≥ (2k − 1) ln k − 1 + εk, then G(n, d) fails to be k-colourable w.h.p.

We have not attempted to explicitly extract or even optimize the error term εk.

Theorem 3.1.1 implies the following “threshold result”.

Corollary 3.1.2. There is a constant k0 > 0 such that for any integer k ≥ k0 there exists a number

dk−col with the following two properties.

• If d < dk−col, then G(n, d) is k-colourable w.h.p.
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• If d > dk−col, then G(n, d) fails to be k-colourable w.h.p.

To obtain Corollary 3.1.2, let εk as in Theorem 3.1.1 and consider the interval

Ik = ((2k − 1) ln k − 2 ln 2− εk, (2k − 1) ln k − 1 + εk).

Then Ik has length 2 ln 2− 1 + 2εk ≈ 0.386 + 2εk. Since εk → 0, for sufficiently large k the interval

Ik contains at most one integer. If it does, let dk−col be equal to this integer. Otherwise, pick any

dk−col in Ik.

For infinitely many values of k, dk−col is not an integer, in which case Corollary 3.1.2 solves the

k-colourability problem on G(n, d) completely. In fact, we can make the following more precise

quantitative statement. Let x mod 1 = x − bxc for x > 0. Moreover, recall that a sequence

(ak)k of numbers in [0, 1] is asymptotically uniform on [0, 1] if the sequence of empirical distributions

(K−1
∑

k≤K δak)K converges weakly to the uniform distribution distribution on [0, 1]. Further, a set

A ⊂ Z≥0 has asymptotic density α if limN→∞N
−1|A∩{1, . . . , N}| = α. Since the sequence ((2k−

1) ln k mod 1)k is asymptotically uniform on [0, 1] by Weyl’s criterion [91], the set {k : dk−col 6∈ Z}
has asymptotic density 2(1− ln 2) ≈ 0.614.

Another consequence of Theorem 3.1.1 is that it allows us to pin down the chromatic number χ(G(n, d))

exactly for “almost all” d.

Corollary 3.1.3. There exist a set D ⊂ Z≥0 of asymptotic density 1 and a function F : D → Z≥0

such that for all d ∈ D we have χ(G(n, d)) = F(d) w.h.p.

To obtain Corollary 3.1.3, let k0, (dk−col)k≥k0 be as in Corollary 3.1.2, let

D = Z≥0 \ ([0, dk0−col] ∪ {dk−col : k ≥ k0})

and defineF(d) to be the smallest integer k ≥ k0 such that d < dk−col. Because d(k+1)−col−dk−col ≥
ln k for large enough k, D has asymptotic density one.

To compare Corollary 3.1.3 with the best prior bounds (3.1)–(3.2), observe that (3.1) yields the typical

value of the chromatic number of G(n, d) on the set

D′ = Z≥0 ∩
⋃
k≥3

((2k − 3) ln(k − 1), (2k − 2) ln(k − 1)),

whose asymptotic density is 1
2 . On the complement D′′ = Z≥0 \ D′, (3.2) determines the chromatic

number up to an additive error of one.
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3.1.1. Colouring random graphs: techniques and outline

The best current results on colouring GER(n,m) as well as the best prior result on χ(G(n, d)) are

obtained via the second moment method [10, 47, 82]. So are the present results. Generally, suppose

that Z ≥ 0 is a random variable such that Z(G) > 0 only if G is k-colourable. If there is a number

C = C(k, d) > 0 such that

0 < E
[
Z2
]
≤ C · E [Z]2 , (3.3)

then the Paley-Zygmund inequality

P [Z > 0] ≥ E [Z]2

E [Z2]
(3.4)

implies that there exists a k-colouring with probability at least 1/C > 0.

What random variable Z might be suitable? The obvious choice seems to be the total number Zk−col

of k-colourings. However, the calculations simplify substantially by working with the number Zk,bal

of balanced k-colourings, in which all of the k color classes are the same size (let us assume for now

that k divides n). Indeed, the core of the paper by Achlioptas and Naor [10] is to establish the second

moment bound (3.3) for the number Zk,bal(GER(n,m)) of balanced k-colorings of GER(n,m) under

the assumption that

d = 2m/n ≤ (2k − 2) ln k − 2 + ok(1),

with ok(1) a term that tends to 0 as k gets large. Achlioptas and Naor rephrase this problem as a non-

convex optimization problem over the Birkhoff polytope, i.e., the set of doubly-stochastic k×k matri-

ces, and establish (3.3) by solving a relaxation of this problem. Thus, (3.4) implies that GER(n,m) is

k-colourable with a non-vanishing probability if d ≤ (2k−2) ln k−2+ok(1). This probability can be

boosted to 1− o(1) by means of the sharp threshold result of Achlioptas and Friedgut [5]. In addition,

a simple first moment argument shows thatGER(n,m) is non-k-colourable w.h.p. if d > (2k−1) ln k.

Achlioptas and Moore [9] suggested to use the same random variable Zk,bal onG(n, d). They realized

that the solution to the (relaxed) optimization problem over the Birkhoff polytope from [10] can be

used as a “black box” to show that Zk,bal(G(n, d)) satisfies (3.3) for some constant C > 0. Hence,

(3.4) implies that G(n, d) is k-colourable with a non-vanishing probability if d ≤ (2k− 2) ln k− 2 +

ok(1). But unfortunately, in the case of random regular graphs there is no sharp threshold result to

boost this probability to 1−o(1). To get around this issue, Achlioptas and Moore instead adapt concen-

tration arguments from [93, 129] to the random regular graph G(n, d). However, these arguments in-

evitably require one extra “joker” color. Hence, Achlioptas and Moore obtain that χ(G(n, d)) ≤ k+1

w.h.p. for d ≤ (2k − 2) ln k − 2 + ok(1).

The contribution of Kemkes, Pérez-Giménez and Wormald [82] is to remove the need for this addi-

tional color. This enables them to establish (3.1)–(3.2), thus matching the result established in [10]
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for the Erdős-Rényi model. Instead of employing “abstract” concentration arguments, Kemkes, Pérez-

Giménez and Wormald use the small subgraph conditioning technique from Robinson and Wormald

[124]. Roughly speaking, they observe that the constant C that creeps into the second moment

bound (3.3) results from the presence of short cycles in the random regular graph. More precisely,

in G(n, d) any bounded-depth neighbourhood of a fixed vertex v is just a d-regular tree w.h.p. How-

ever, in the entire graph G(n, d) there will likely be a few cycles of bounded length. In fact, it is

well-known that for any length j the number of short cycles is asymptotically a Poisson variable with

mean (d − 1)j/(2j). As shown in [82], accounting carefully for the impact of short cycles allows to

boost the probability of k-colourability to 1− o(1) without spending an extra color.

Recently, Coja-Oghlan and Vilenchik [47] improved the result from [10] on the chromatic number of

GER(n,m). More precisely, they proved that GER(n,m) is k-colorable w.h.p. if

d = 2m/n ≤ (2k − 1) ln k − 2 ln 2− ok(1), (3.5)

gaining about an additive ln k. This improvement is obtained by considering a different random vari-

able, namely the number Zk,good of “good” k-colourings. The definition of this random variable

draws on intuition from non-rigorous statistical mechanics work on random graph coloring [88, 137].

Crucially, the concept of good colourings facilitates the computation of the second moment. The

result is that the bound (3.3) holds for Zk,good(GER(n,m)) for d as in (3.5). Hence, (3.4) shows

that GER(n,m) is k-colourable with a non-vanishing probability for such d, and the sharp threshold

result [5] boosts this probability to 1− o(1).

Theorem 3.1.1 provides a result matching [47] for G(n, d). Following [82], we combine the second

moment bound from [47] (which we can use largely as a “black box”) with small subgraph condi-

tioning. Indeed, for the small subgraph conditioning argument we can use some of the computations

performed in [82] directly. In the course of this, we observe a fairly simple, abstract link between par-

titioning problems on G(n, d) and on GER(n,m) that seems to have gone unnoticed in previous work

(see Section 4.1.2). Due to this observation, relatively little new work is required to put the second

moment argument together. In effect, the main work in establishing the first part of Theorem 3.1.1

consists in computing the first moment of the number of good k-colourings in G(n, d), a task that

turns out to be technically quite non-trivial.

The previous lower bound on the chromatic number ofG(n, d) is based on a simple first moment argu-

ment over the number of k-colorings. The bound that can be obtained in this way, attributed to Molloy

and Reed [105], is thatG(n, d) is non-k-colourable w.h.p. if d > (2k−1) ln k. By contrast, the second

assertion in Theorem 3.1.1 marks a strict improvement. The proof is via an adaptation of techniques

developed in [42] for the random k-NAESAT problem. Extending this argument to the chromatic

number problem on G(n, d) requires substantial technical work. A matching improved lower bound
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on the chromatic number of GER(n,m) was recently obtained via a different argument [37].

3.1.2. Further related work

The four coloring problem which was introduced by De Morgan 1852 has to be mentioned inevitably

speaking about graph coloring. It was solved by Appel and Haken in 1976 [18] provoking a lot of doubt

and objection and later resolved by Robertson, Sanders, Seymour and Thomas [123]. Accordingly,

the graph colouring problem has been on the agenda of mathematicians for more than one century.

Unsurprisingly, the chromatic number problem on GER(n,m) has attracted a big deal of attention

since it was posed by Erdős and Rényi.

A straight first moment argument yields a lower bound on χ(GER(n,m)) that is within a factor two

of the number of colors that a simple greedy coloring algorithm needs [6, 70]. Closing this gap was a

long-standing challenge. Shamir and Spencer used martingale bounds to prove concentration bounds

for the chromatic number of GER(n,m) [129]. This was enhanced by Łuczak [93] and by Alon and

Krivelechich later one [17] using the Lovász Local Lemma to prove that the chromatic number is

concentrated on two consecutive integers for m� n1/2.

Finally, Bollobás [22] managed to determine the asymptotic value of the chromatic number in the

“dense” case d = 2m/n � n2/3. His work improved Matula’s result [95] published only shortly

before. Subsequently, Łuczak [92] built upon Matula’s argument the so called “merge-and-exposure”

technique [95] to determine χ(GER(n,m)) within a factor of 1 + o(1) in the entire regime d� 1.

In the case that d remains bounded as n → ∞, Łuczak’s result [92] only yields χ(GER(n,m)) up to

a multiplicative 1 ± εd, where εd → 0 slowly in the limit of large d. The aforementioned result of

Achlioptas and Naor [10] marked a significant improvement by computing χ(GER(n,m)) for d fixed

as n → ∞ up to an additive error of 1 for all d, and precisely for “about half” of all d. Coja-Oghlan,

Panagiotou and Steger [44] combined the techniques from [10] with concentration arguments from

Alon and Krivelevich [17] to obtain improved bounds on χ(GER(n,m)) in the case d� n1/4.

With respect to random regular graphs G(n, d), Frieze and Łuczak [64] proved a result akin to

Łuczak’s [92] for d � n1/3. In fact, Cooper, Frieze, Reed and Riordan [49] extended this result

to the regime d ≤ n1−ε for any fixed ε > 0, and Krivelevich, Sudakov, Vu and Wormald [86] further

still to d ≤ 0.9n. For d fixed as n→∞, the bounds from [64] were improved by the aforementioned

contributions [9, 82]. For an extensive literature overview see [23, 77].

In addition, several papers deal with the k-colorability of random regular graphs for k = 3, 4. This

problem is not solved completely by [82] (nor by the present work). Achlioptas and Moore [7] and

Shi and Wormald [133] proved that χ(G(n, 4)) = 3 w.h.p., while Shi and Wormald [134] showed that
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χ(G(n, 6)) = 4 w.h.p. Moreover, Diaz, Kaporis, Kemkes, Kirousis, Pérez and Wormald [55] proved

that if a certain four-dimensional optimization problem (which mirrors a second moment calculation)

attains its maximum at a particular point, then χ(G(n, 5)) = 3 w.h.p. Thus, determining χ(G(n, 5))

remains an open problem.

Precise conjectures as to the chromatic number of bothGER(n,m) andG(n, d) have been put forward

on the basis of sophisticated but non-rigorous physics considerations [28, 89, 110, 106, 137]. Namely,

following [137], let a(d, k) ∈ [0, 1/k] be the solution to the equation

ad,k =

∑k−1
r=0(−1)r

(
k−1
r

)
(1− (r + 1)ad,k)

d−1∑k−1
r=0(−1)r

(
k
r+1

)
(1− (r + 1)ad,k)d−1

and let

Σ(d, k) = ln

[
k−1∑
r=0

(−1)r
(

k

r + 1

)
(1− (r + 1)ad,k)

d

]
− d

2
ln(1− da2

d,k).

Moreover, let dk be the smallest positive zero of Σ(d, k). Then the conjecture is that G(n, d) is k-

colorable w.h.p. if d < dk and non-k-colorable w.h.p. if d > dk. An asymptotic expansion yields

dk = (2k − 1) ln k − 1 + εk with limk→∞ εk = 0.

This conjecture results from the application of generic (non-rigorous) methods, namely the replica

method and the cavity method, see Section 2.3. Theorem 3.1.1 largely confirms the physics conjecture

on χ(G(n, d)) in the case of sufficiently large d. Indeed, the lower bound on the chromatic number in

Theorem 3.1.1 matches the asymptotic formula for dk (up to the εk error term). The upper bound is

off by an additive error of 2 ln 2−1 + ε′k with ε′k → 0. In fact, the upper bound that we prove matches

the so-called “condensation phase transition” predicted by the physics methods. In other words, the

point (2k− 1) ln k− 2 ln 2 + ε′k is expected to mark another phase transition, which is conjectured to

render a second moment method as pursued in the proof of the present result powerless. For a more

detailed discussion of condensation we refer to [19, 88].

3.2. Survey Propagation Guided Decimation fails on random k-SAT
formulas

The result presented in this section furnishes the first rigorous analysis of SPdec (the basic version

of) Survey Propagation Guided Decimation for random k-SAT. We give a precise definition and de-

tailed explanation below. Before we state the result let us point out that two levels of randomness

are involved: the choice of the random formula Φ, and the “coin tosses” of the randomized algorithm

SPdec. For a (fixed, non-random) k-CNF Φ let success(Φ) denote the probability that SPdec(Φ)
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3.2. Survey Propagation Guided Decimation fails on random k-SAT formulas

outputs a satisfying assignment. Here, of course, “probability” refers to the coin tosses of the algo-

rithm only. Then, if we apply SPdec to the random k-CNF Φ, the success probability success(Φ)

becomes a random variable. Recall that Φ is unsatisfiable for r > 2k ln 2 w.h.p.

Theorem 3.2.1. There is a sequence (εk)k≥3 with limk→∞ εk = 0 such that for any k, r satisfying

2k(1 + εk) ln(k)/k ≤ r ≤ 2k ln 2 we have success(Φ) ≤ exp(−Ω(n)) w.h.p.

If the success probability is exponential small in n sequentially running SPdec a sub-exponential

number of times will not find a satisfying assignment w.h.p. rejecting the hypotheses that SPdec

solves random k-SAT formulas efficiently for considered densities. Thus, Theorem 3.2.1 shows that

SPdec does not outclass far simpler combinatorial algorithms for general values of k. Even worse, in

spite of being designed for this very purpose, the SP algorithm does not overcome the barrier where

the set of satisfying assignments decomposes into tiny clusters asymptotically. This is even more

astonishing since it is possible to prove the existence of satisfying assignments up to the satisfiability

threshold rigorously based on the cavity method but algorithms designed by insights of this approach

fail far below that threshold. Nevertheless, let us note that the insights gained from Theorem 3.2.1 is

actually in line with some non-rigorous physics work on the Belief Propagation algorithm that might

extend to Survey Propagation as well [121] although this was explicitly conjectured to be not the case

in that paper. Also there is some rigorous justification of this work its implications on algorithms is

not clear [41]. Still, there is some arguing if there is any connection between the failure of algorithms

and either the clustering or the so called freezing phenomenon in the statistical physics and computer

science community. Both, neither the connection to clustering nor to freezing have been rigorously

proven yet.

We are going to describe the Survey Propagation algorithm in the following section. Let us stress

that Theorem 3.2.1 pertains to the “vanilla” version of the Survey Propagation Guided Decimation

algorithm. Unsurprisingly, more sophisticated variants with better empirical performance have been

suggested, even ones that involve backtracking [94]. Also the first version introduced by Mézard,

Parisi and Zecchina [101] contained a bias towards “frozen” variables for the choice of the variable at

each decimation step. However, the basic version of the Survey Propagation Guided Decimation algo-

rithm analysed here arguably (regarding the physicists picture of freezing, correlation decay, replica

symmetry assumption [98]) encompasses all the conceptually important features of the Survey Prop-

agation algorithm.

3.2.1. Related work

The only prior rigorous result on the Survey Propagation algorithm is the work of Gamarnik and

Sudan [67] on the k-NAESAT problem (where the goal is to find a satisfying assignment whose com-
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plement is satisfying as well). However, Gamarnik and Sudan study a “truncated” variant of the

algorithm where only a bounded number of message passing iterations is performed. The main result

of [67] shows that this version of Survey Propagation fails for densities about a factor of k/ ln2 k

below the NAE-satisfiability threshold and about a factor of ln k above the density where the set of

NAE-satisfying assignments shatters into tiny clusters. Though, experimental data and the concep-

tional design of the Survey Propagation algorithm suggest that it exploits its strength in particular by

iterating the message passing iterations a unbounded number of times that depends on n. In particular,

to gather information from the set of messages they have to converge to a fixed point which turns out

to happen only after a number of iterations of order ln(n).

3.2.2. The SPdec algorithm

The proof of Theorem 3.2.1 is by extension of the prior analysis [35] of the much simpler Belief

Propagation Guided Decimation algorithm. To outline the proof strategy and to explain the key dif-

ferences, we need to discuss the Survey Propagation algorithm in detail. Survey Propagation is an

efficient message passing heuristic on the factor graph G(Φ). The factor graph of Φ is a bipartite

graph representation of Φ where each clause and each variable is represented by a vertex. Two ver-

tices are incident if the corresponding variable is contained in the corresponding clause, see Section

2.3.3.

Before explaining the Survey Propagation heuristic, we explain the simpler Belief Propagation heuris-

tic and emphasize the main extensions later on. To define the messages involved we denote the ordered

pair (x, a) with x → a and similarly (a, x) with a → x for each x ∈ V and a ∈ N(x), where N(x)

denotes the neighbourhood in the factor graph G(Φ). The messages are iteratively sent probability

distributions (µx→a(ζ))x∈Vt,a∈N(x),ζ∈{−1,1} over {−1, 1}. In each iteration messages are sent from

variables to adjacent clauses and back. After setting initial messages due to some initialization rule

the messages sent are obtained by applying a function to the set of incoming messages at each vertex.

Both the initialization and the particular update rules at the vertices are specifying the message passing

algorithm. The messages are updated ω(n) times which may or may not depend on n.

It is well known that the Belief Propagation messages on a tree converge after updating the messages

two times the depth of the tree to a fixed point. Moreover, in this case for each variable the marginal

distribution of the uniform distribution on the set of all satisfying assignments can be computed by the

set of the fixed point messages. Since G(Φ) for constant clauses/variables ratio contains only a small

number of short cycles one may expect that on the base of the Belief Propagation messages a good

estimate of the marginal distribution of the uniform distribution on the set of all satisfying assignments

of Φ could be obtained. Of course it is not even clear that the messages converge to a fixed point on

arbitrary graph. The fact that only a small number of short cycles are containd in the factor graph
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Define for all x ∈ Vt, a, b ∈ N(x), ζ ∈ {−1, 0, 1} and ` ≥ 0

µ[0]
x→a(±1) =

1

2
, µ[0]

x→a(0) = 0, µ
[`]
b→x(0) = 1−

∏
y∈N(b)\{x}

µ
[`]
y→b(−sign(y, b)) (3.6)

π[`+1]
x→a (±1) =

∏
b∈N(x,±1)\{a}

µ
[`]
b→x(0) (3.7)

µ[`+1]
x→a (ζ) = (SP (µ[`]))x→a(ζ) = ψζ(π

[`]
x→a(1), π[`]

x→a(−1)). (3.8)

Let ω = ω(k, r, n) ≥ 0 be any integer-valued function. Define

π[ω+1]
x (Φt,±1) =

∏
b∈N(x,±1)

µ
[ω]
b→x(0)

µ[ω]
x (Φt, ζ) = ψζ(π

[ω+1]
x (Φt, 1) · π[ω+1]

x (Φt,−1)) (3.9)

µ[ω]
x (Φt) =

µ
[ω]
x (Φt, 1)

µ
[ω]
x (Φt, 1) + µ

[ω]
x (Φt,−1)

= µ[ω]
x (Φt, 1) +

1

2
µ[ω]
x (Φt, 0). (3.10)

Figure 3.1.: The Survey Propagation equations that are the Belief Propagation equations on covers.

with high probability seems not to be sufficient for Belief Propagation to compute the right marginals

as shown in [35]. However, at each decimation step using the Belief Propagation heuristic the Belief

Propagation guided decimation algorithm assigns one variable due to the estimated marginal distribu-

tion to −1 or 1. Simplifying the formula and running Belief Propagation on the simplified formula

and repeating this procedure would lead to a satisfying assignment chosen uniformly at random for

sure if the marginals were correct at each decimation step. For an overview see Section 2.3.4.

Let us now introduce the Survey Propagation heuristic. As mentioned above the geometry of the set of

satisfying assignments comes as a collection of tiny well-separated clusters above density 2k ln(k)/k.

In that regime a typical solution belongs to a “frozen” cluster. That is all satisfying assignments in

such a frozen cluster agree on a linear number of frozen variables. Thus, identifying these frozen

variables gives a characterization of the whole cluster. Flipping one of these variables leads to a set

of unsatisfied clauses only containing additional frozen variables. Satisfying one of these clauses

leads to further unsatisfied clauses of this kind ending up in an avalanche of necessary flippings to

obtain a satisfying assignment. This ends only after a linear number of flippings. Given a satisfying

assignment with identified frozen variables each satisfying assignment that disagrees on one of these

frozen variables has linear distance therefore belonging to a different cluster.

This picture inspires the definition of covers as generalized assignments σ : V → {−1, 0, 1}n such

that
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Algorithm 3.2.2. SPdec(Φ)
Input: A k-CNF Φ on V = {x1, . . . , xn}.
Output: An assignment σ : V → {−1, 1}.
0. Let Φ0 = Φ.
1. For t = 0, . . . , n− 1 do
2. Use Survey Propagation to compute µ[ω]

xt+1(Φt).
3. Assign

σ(xt+1) =

{
1 with probability µ[ω]

xt+1(Φt)

−1 with probability 1− µ[ω]
xt+1(Φt).

(3.11)

4. Obtain a formula Φt+1 from Φt by substituting the value σ(xt+1) for xt+1 and simplifying.
5. Return the assignment σ.

Figure 3.2.: The SPdec algorithm.

• each clause either contains a true literal or two 0 literals and

• for each variable x ∈ V that is assigned −1 or 1 exists a clause a ∈ N(x) such that for all

y ∈ N(a) \ {x} we have sign(y, a) · σ(y) = −1.

These two properties mirrors the situation in frozen clusters where assigning a variable to the value

0 indicates that these variable supposes to be free in the corresponding cluster which is obtained by

only flipping 0 variables to one of the values −1 or 1. However, implementing the concept of covers,

Survey Propagation is a heuristic of computing the marginals over the set of covers by using the Belief

Propagation update rules on covers. This leads to the equations given by Figure 3.1. For a more

detailed explanation of the freezing phenomenon we point the reader to [104]. For a deeper discussion

on covers we refer to [36].

We are now ready to state the SPdec algorithm by giving the pseudocode in Figure 3.2. Let us

emphasize that the value µ[ω]
xt+1(Φt) in Step 2 of SPdec is the estimated marginal probability over the

set of covers of variable xt+1 in the simplified formula to take the value 1 plus one half the estimated

marginal probability over the set of covers in the simplified formula to take the value 0. This makes

sense since by the heuristic explanation a variable assigned to the value 0 is “free” to take either value

1 or −1. Thus, our task is to study the Survey Propagation operator on the decimated formula Φt.

3.2.3. Outline of proof

The probabilistic framework used in our analysis of SPdec was introduced in [35] for analysing the

Belief Propagation Guided Decimation algorithm. The most important technique in analysing algo-

rithms on the random formula Φ is the ”method of deferred decisions”, which traces the dynamics of

an algorithm by differential equations, martingales, or Markov chains. It actually applies to algorithms

that decide upon the value of a variable x on the basis of the clauses or variables at small bounded dis-
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3.3. Walksat stalls well below the satisfiability threshold

tance from x in the factor graph [1, 12, 8, 81]. Unfortunately, the SPdec algorithm at step t explores

clauses at distance 2ω from xt where ω = ω(n) may tend to infinity with n. Therefore, the “deferred

decisions” method does not apply and to prove Theorem 3.2.1 a fundamentally different approach is

needed.

We will basically reduce the analysis of SPdec to the problem of analysing the Survey Propagation

operator on the random formula Φt that is obtained from Φ by substituting “true” for the first t vari-

ables x1, . . . , xt and simplifying (see Theorem 5.1.5 below). In Chapter 5 we will prove that this

decimated formula has a number of simple to verify quasirandom properties with very high probabil-

ity. Finally, we will show that it is possible to trace the Survey Propagation algorithm on a formula Φ

enjoying this properties.

Applied to a fixed, non-random formula Φ on V = {x1, . . . , xn}, SPdec yields an assignment σ ∈ Σ

that may or may not be satisfying. This assignment is random, because SPdec itself is randomized.

Hence, for any fixed Φ running SPdec(Φ) induces a probability distribution βΦ on Σ. With S(Φ) the

set of all satisfying assignments of Φ, the “success probability” of SPdec on Φ is just

success(Φ) = βΦ(S(Φ)).

Thus, to establish Theorem 3.2.1 we need to show that in the random formula

success(Φ) = βΦ(s(Φ)) = exp (−Ω(n))

is exponentially small w.h.p.

To this end, we are going to prove that the measure βΦ is “rather close” to the uniform distribution on

Σ w.h.p., of which S(Φ) constitutes only an exponentially small fraction. However, to prove Theorem

3.2.1 we prove that the entropy of the distribution βΦ is large. Let us stress that this is not by Moser’s

entropy compression argument which only works up to far smaller densities [109].

3.3. Walksat stalls well below the satisfiability threshold

Walksat is a local search algorithm. It starts with a uniformly random assignment. So long as the

current assignment fails to be satisfying, the algorithm chooses a random unsatisfied clause and flips

the value assigned to a random variable in that clause. That clause will thereby get satisfied, but other,

previously satisfied clauses may become unsatisfied. If after a certain given number ω of iterations

no satisfying assignment is found, Walksat gives up. Thus, the algorithm is one-sided: it may find

a satisfying assignment but it cannot produce a certificate that a given formula is unsatisfiable. The

pseudocode is shown in Figure 3.3; for a formula Φ with m clauses and σ ∈ Σ we write UΦ(σ) for the
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Algorithm 3.3.1. Walksat(Φ, ω)
Input: A k-CNF Φ on V and an integer ω > 0.
Output: A truth assignment.
1. Choose an initial assignment σ[0] uniformly at random.
2. For i = 0, . . . , ω do
3. If σ[i] is a satisfying assignment output σ[i] and halt.
4. Choose Φi ∈ UΦ(σ[i]) and an integer from 1 ≤ j ≤ k uniformly at random.
5. Obtain σ[i+1] from σ[i] by flipping the value of the variable of the literal Φij .
7. If σ[ω] is a satisfying assignment output σ[ω]. Otherwise output ‘failure’.

Figure 3.3.: The Walksat algorithm.

set of all indices i ∈ [m] such that clause Φi is unsatisfied under σ and we let UΦ(σ) = |UΦ(σ)| be the

number of unsatisfied clauses. Recall from the introduction that Walksat is known to outperform

exhaustive search by an exponential factor in the worst case and the procedure has been an ingredient

for some of the best algorithms for the k-SAT problem [57, 71, 72, 74, 75, 118, 125].

For a given formula Φ and ω > 0 similar as for SPdec we let success(Φ, ω) be the probability (over

the random decisions of the algorithm only) that Walksat(Φ, ω) will find a satisfying assignment.

Thus, success(Φ, ω) is a random variable that depends on the random formula Φ.

Theorem 3.3.2. There is exists a constant c > 0 such that for all k and all r ≥ c2k ln2 k/k w.h.p.

success(Φ, dexp(n/k2)e) ≤ exp(−n/k2).

The random formula Φ is well-known to be unsatisfiable w.h.p. if r > 2k ln 2. Therefore, the condition

r > c2k ln2 k/k in Theorem 3.3.2 implies a lower bound on the clause length k for which the statement

is non-vacuous. We have not tried to optimise the constant c.

The density required by Theorem 3.3.2 exceeds the clustering/freezing threshold by a factor of c ln k,

but still the k-SAT threshold is almost a factor of k away. Moreover, the theorem shows that Walksat

fails in a dramatic way: on typical random formula Φ the success probability of Walksat is expo-

nentially small, even if we run Walksat for an exponential number of rounds. In particular, even

if we restart Walksat any polynomial number of times from a new starting point the cumulative

success probability of all trials will remain exponentially small.

Why is it difficult to prove a result such as Theorem 3.3.2 given what we know about freezing and

clustering? At the densities well below the k-SAT threshold like in Theorem 3.3.2 we know that a

uniformly random satisfying truth assignment of the random formula Φ will lie in a “frozen cluster”

w.h.p. But there may very well exist unfrozen clusters; in fact, recent physics work suggests that
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there are exponentially many [25]. Hence, because Walksat just aims to find a single satisfying

assignment rather than to sample one uniformly at random, the algorithm just needs to be lucky enough

to find one weak, unfrozen spot, as it were. In other words, we have to rule out the possibility that the

algorithm somehow manages to home in on those spots where the “barriers” of the set S(Φ) are easily

overcome.

But establishing such a statement is well beyond the standard arguments for analysing algorithms on

random structures. The main techniques such as the “method of differential equations” are suitable

merely to trace algorithms for a small linear number of steps and run into severe difficulties if the algo-

rithm ever backtracks. By construction, Walksat backtracks constantly (very likely many variables

will likely be flipped more than once) and we actually need to follow the algorithm for an exponential

number of steps. Hence, a different approach is needed. Section 3.3.2 provides a detailed outline of

the proof of Theorem 3.3.2.

3.3.1. Related work

On the positive side, Walksat is known to find satisfying assignments for densities r < 2k/(25k)

for large enough k in linear time [40]. Thus, the present result matches the positive result up to

a Ok(ln2 k)-factor. Physics arguments suggest that Walksat should actually be effective up to

r = (1 + ok(1))2k/k [128], but not beyond. Positive results for Walksat for small k were ob-

tained by Alekhnovich and Ben-Sasson [14]. Additionally, they obtained exponential lower bounds

for Walksat in the planted 3-SAT problem for densities far above the satisfiabilty threshold, where

in the planted model a random 3-SAT formula is chosen conditioned on the existence of one solu-

tion [15].

Gamarnik and Sudan [67] obtained negative results for a class of algorithms that they call “sequential

local algorithms” for the random k-NAESAT problem, a cousin of random k-SAT. Sequential local

algorithms set the variables x1, . . . , xn of the random formula one by one in the natural order. They

do not backtrack. The algorithm determines the value of variable xi based on the depth-t neighbour-

hood of xi in the hypergraph representing the formula. To this end the algorithm takes into account

the values assigned to those variables amongst x1, . . . , xi−1 that occur in that part of the hypergraph.

The class of sequential local algorithms encompasses truncated version of message passing algorithms

such as Belief Propagation Guided Decimation and Survey Propagation Guided Decimation. ‘Trun-

cated’ means that only a bounded number of parallel message updates are allowed; however, to reach

an asymptotic fixed point of the messages it may be necessary to update for Θ(lnn) rounds. The main

result of [67] is that sequential local algorithms fail to find NAE-satisfying assignments for densities

above C2k ln2 k/k for a certain constant C > 0.

While Walksat is not a sequential local algorithm, we critically use one idea of the analysis from [67],
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called “overlap structures” in that paper. Specifically, Gamarnik and Sudan prove that for an appro-

priate integer l no l-tuple of NAE-satsifying assignments exist with pairwise distance about n ln(k)/k

if the clause/variable densities is above C2k ln2 k/k. However, a coupling argument shows that if

a local sequential algorithm were likely to succeed, then there would have to be such an l-tuple of

NAE-satisfying assignments with a non-vanishing probability. Actually the idea of overlap structures

originates from the work of Rahman and Virag [120], who improved the density of an earlier negative

result of Gamarnik and Sudan [66] for a more specialised class of algorithms for the independent set

problem. The definition of “mists” defined in Chapter 6 and used in our proofs is directly inspired by

overlap structures.

Amin Coja-Oghlan obtained a negative result for the message passing algorithm Belief Propagation

Guided Decimation for random k-SAT that does not require bounds on the number of iterations [35].

The same holds true for the message passing algorithm Survey Propagation Guided Decimation for

random k-SAT presented in this thesis [73]. Specifically, [35] shows that a basic version of Belief

Propagation Guided Decimation fails to find satisfying assignments for densities r > C2k/k for a

certain constant C > 0. Moreover, Theorem 3.2.1 shows that a basic version of the conceptually more

powerful Survey Propagation Guided Decimation algorithm fails if r > (1 + ok(1))2k ln k/k.

Further negative results deal with DPLL-type algorithms. In particular, Achlioptas, Beame and Mol-

loy [2] proved that certain types of DPLL-algorithms fail for densities r > C2k/k. By comparison,

unit clause propagation-type algorithms succeeds on random k-SAT formulas for r < C ′2k/k [31, 33].

Finally, the best current algorithm for random k-SAT succeeds for r ≤ (1+ok(1))2k ln k/k but seems

to fail beyond [34].

3.3.2. Outline

The classical worst-case analysis of Walksat goes as follows. Suppose that Φ is a satisfiable k-SAT

formula on n variables and fix a satisfying assignment τ . At any step the algorithm flips a randomly

chosen variable in an unsatisfied clause. Because τ must satisfy that clause, there is at least a 1/k

chance that the algorithm moves toward τ . Hence, in the case k = 2 the distance evolves at least as

good as in an unbiased random walk, and thus we expect to reach τ or another satisfying assignment

in O(n2) steps [114]. By contrast, for k ≥ 3 the corresponding random walk has a drift away from

τ and the probability of reaching τ in polynomial time from a random starting point is exponentially

small. Yet calculating the probability of starting at distance a bit less than n/2 from τ and then dashing

towards it reveals that Walksat beats the naive 2n exhaustive search algorithm [125].

Of course, on a random formula this analysis is far from tight. For example, for r below the satisfi-

ability threshold the number |S(Φ)| of satisfying assignments is typically exponential in n. In fact,

w.h.p. we have ln |S(Φ)| = n ln 2+r ln(1− (1+ok(1))2−k) [4]. Hence, if r = Ok(2
k ln2 k/k), then
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w.h.p. the number of satisfying assignments is as large as

|S(Φ)| = 2n(1−Ok(ln2 k/k)).

This observation obliterates some obvious proof ideas, such as combining the random walk argument

from the previous paragraph with some sort of a union bound on the number of satisfying assignments;

there is just too many of them.

Another type of approach that seems doomed is meticilously tracing every step of the Walksat algo-

rithm. This is basically what the proof of the positive Walksat result from [40] does. Such analyses

typically depend on the principle of deferred decisions, i.e., the idea that the parts of the formula that

the algorithm has not inspected yet are “random”, subject to some relatively weak conditioning. This

kind of approach can follow an algorithm for a small linear number of steps. But here we are trying

to prove a statement about an exponential number of iterations. By that time the algorithm will likely

have visited every clause of the formula several times over and thus there is “no randomness left”.

Hence, we need a different approach.

Our strategy is to split the analysis in two parts. First, we are going to formulate a few quasirandom

properties. We will show that Walksat is exponential on any given formula that has these prop-

erties. Second, we will prove that the random formula has these quasirandom properties w.h.p. As

seen in Section 3.2.3 a similar type of argument was used, e.g., in prior work on message passing

algorithms [35, 73].

The key is to come up with the right quasirandom properties. To this end, we need to develop an

intuition as to what Walksat actually does on a random input Φ. Because Walksat starts from

a random assignment, initially there will be about 2−km = ρn unsatisfied clauses. In fact, we can

establish a stronger, more geometric statement. Let T (Φ) be the set of all truth assignments τ ∈ Σ

such that UΦ(τ) ≤ nρ/10 (i.e., the number of violated clauses is a tenth of what we expect in a

random assignment). Recall, that κ = ln k/k. Then a union bound shows that the initial assignment

σ[0] will most likely be at distance at least 10κn from all τ ∈ T (Φ) ⊃ S(Φ).

The second observation is that Walksat will likely have a hard time entering the set T (Φ). Intu-

itively, for r > (1 + ok(1))2k ln k/k it is not just the set S(Φ) that shatters into tiny well-separated

clusters, but even the set T (Φ) has this property. Moreover, the no man’s land between different clus-

ters provides no clues that nudge Walksat towards any one of them. In fact, there is a repulsion

effect. To be precise, consider a “target assignment” τ ∈ T (Φ) and suppose that σ ∈ Σ \ T (Φ) has

distance at most 100κn from τ . Because σ 6∈ T (Φ), the assignment leaves at least nρ/10 clauses

unsatisfied. Let us pretend that these unsatisfied clauses are random. Then if we pick a variable in an

unsatisfied clause randomly, the probability of hitting a variable in ∆(σ, τ) is as small as 100κ < 0.1

(for large enough k). Hence, there is a 90% chance that Walksat will move away from τ , deeper into
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no man’s land. Thus, to reach a satisfying assignment or, in fact any assignment in T (Φ) Walksat

would have to beat the odds and overcome a substantial negative drift, which is exponentially unlikely.

However, there is one point that we missed. Although the probability of walking towards one satisfying

assignment at distance at most 100κn from the present assignment may be small, the total number of

satisfying assignments is enormous and Walksat just has to find any one of them. In other words,

at any step Walksat may be taking part in an exponential number of “lotteries”. While any one of

them may be rigged against the algorithm, the sheer number of simultaneous lotteries may yet give

the algorithm a chance to succeed in polynomial time.

To rule this possibility out we introduce the concept of a mist, which is an adaptation of the “overlap

structures” from [67]. More precisely, we will argue that we do not need to track the distance between

Walksat’s current assignment and the entire set T (Φ) but merely the distance to a much smaller set

M of assignments. This subset is “sparse” in the sense that for any truth assignment σ the number of

assignments inM at distance at most 10κn from σ is bounded by k rather than exponential in n. We

will use this fact to argue that at any time the algorithm only takes part in at most k lotteries rather

than an exponential number. This will enable us to prove that reaching T (Φ) will most likely take an

exponential amount of time.

38



4 On the chromatic number of random regular graphs

Before we dig into the proof of the improved upper and then lower bound on the chromatic number we

are going to introduce the configuration model, present the promised abstract link between partitioning

problems on G(n, d) and GER(n,m) and introduce the small subgraph conditioning technique in

Section 4.1. Then we adapt the concept of good k-colourings from [47] to G(n, d) in Section 4.2. In

Section 4.3 we compute the first moment of the number of good colourings, thus accomplishing the

main technical task in proving the first part of Theorem 3.1.1. Then, in Section 4.4 we compute the

second moment. Finally, in Sections 4.5 and 4.6 we prove the second part of Theorem 3.1.1, i.e., the

lower bound on χ(G(n, d)).

The representation in this chapter is to a large extend a word-by-word adoption of the paper “On the

chromatic number of random regular graphs” [39]. The author of the thesis contributed in particular

Section 4.3, Sections 4.5 and 4.6 and extensive revision work throughout the whole chapter.

4.1. A bit of tools and techniques

Since Theorem 3.1.1 is a “with high probability” statement, we are generally going to assume that the

number n of vertices is sufficiently large. Furthermore, Theorem 3.1.1 is an asymptotic statement in

terms of k due to the presence of the εk “error term”. Therefore, we are going to assume implicitly

throughout that k ≥ k0 for a sufficiently large constant k0 > 0.

4.1.1. The configuration model

To get a handle on the random regular graph G(n, d), we work with the configuration model [24].

More precisely, an (n, d)-configuration is a map Γ : V × [d] → V × [d] such that Γ(v, j) 6= (v, j)

but Γ(Γ(v, j)) = (v, j) for all (v, j) ∈ V × [d]. In other words, an (n, d)-configuration is a perfect

matching of the complete graph on V × [d]. Thus, the total number of (n, d)-configurations is equal

to

(dn− 1)!! =
(dn)!

2dn/2(dn/2)!
= Θ(

√
(dn)!/(dn)

1
4 ). (4.1)

We call the pairs (v, j), j ∈ [d] the clones of v.

Any (n, d)-configuration Γ induces a multi-graph with vertex set V by contracting the d clones of

each v ∈ V into a single vertex. Throughout, we are going to denote a uniformly random (n, d)-
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4. On the chromatic number of random regular graphs

configuration by Γ. Furthermore, G(n, d) denotes the multi-graph obtained from Γ. The relationship

between G(n, d) and the simple random d-regular graph G(n, d) is as follows.

Lemma 4.1.1 ([24]). Let S(n, d) denote the event that G(n, d) is a simple graph. Then for any event B
we have P [G(n, d) ∈ B] = P [G(n, d) ∈ B|S(n, d)] . Furthermore, there is an n-independent number

εd > 0 such that P [S(n, d)] ≥ εd.

Thus, if we want to show that some “bad” event B does not occur in G(n, d) w.h.p., then it suffices to

prove that this event does not occur in the random multi-graph G(n, d) w.h.p.

For two sets A,B ⊂ V of vertices we let

eG(n,d)(A,B) = |{(v, i) ∈ A× [d] : Γ(v, i) ∈ B × [d]}| = |{(w, j) ∈ B × [d] : Γ(w, j) ∈ A× [d]}|

denote the number of A-B-edges in G(n, d). If A = {v}, we use the shorthand eG(n,d)(v,B), which

is nothing but the number v-B edges. (Of course, as G(n, d) is a multi-graph, this is not necessarily

the same as the number of neighbours of v in B.) If A = B, we let

eG(n,d)(A) = eG(n,d)(A,A).

4.1.2. Partitions of random regular graphs

The graph colouring problem is just a particular kind of graph partitioning problem. Therefore, the

following (as we believe, elegant) estimate of the probability that the random regular graph admits a

particular partition will be quite useful; it seems to have gone unnoticed so far.

Let K ≥ 2 be an integer and let ρ = (ρi)i∈[K] be a probability distribution on [K]. Moreover, let

µ = (µij)i,j∈[K] be a probability distribution on [K]× [K] such that µij = µji for all i, j ∈ [K]. We

say that (ρ, µ) is (d, n)-admissible if ρin, µijdn are integers for all i, j ∈ [K] and if∑
j∈[K]

µij =
∑
j∈[K]

µji = ρi for all i ∈ [K].

In other words, ρ is the marginal distribution of µ (in both dimensions). Let ρ⊗ ρ denote the product

distribution (ρiρj)i,j∈[K] on [K]× [K].

Lemma 4.1.2. Let (ρ, µ) be (d, n)-admissible. Moreover, let V1, . . . , VK be a partition of the vertex
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set V such that |Vi| = ρin for all i ∈ [K]. Then

1

n
ln P

[
∀i, j ∈ [K] : eG(n,d)(Vi, Vj) = µijdn

]
= −d

2
DKL (µ, ρ⊗ ρ) +O(lnn/n). (4.2)

Before we prove Lemma 4.1.2, let us try to elucidate the statement a little. If we fix the partition

V1, . . . , VK and generate a random multi-graph G(n, d), then the expected number of edges between

any two classes is just

E
[
eG(n,d)(Vi, Vj)

]
= ρiρjdn.

Thus, the “expected edge density” of the partition V1, . . . , VK is given by the product distribution

ρ⊗ ρ. Lemma 4.1.2 provides an estimate of the probability that the fraction of edges that run between

any two partition classes Vi, Vj (or within one class if i = j) follows some other distribution µ. Unless

µ is very close to ρ ⊗ ρ, the probability of this event is exponentially small, and Lemma 4.1.2 yields

an accurate estimate in terms of the Kullback-Leibler divergence of µ and the “expected” distribution

ρ⊗ ρ.

Interestingly, a simple calculation shows that (4.2) holds true if we replace G(n, d) by the Erdős-Rényi

random graph GER(n,m) (with m = dn/2). In other words, on a logarithmic scale the probability

of observing a particular edge distribution µ is the same in both models. This observation will be

crucial for us to extend the second moment calculation that was performed in [47] for GER(n,m) to

the random regular graph G(n, d).

Proof of Lemma 4.1.2. Let E be the event that eG(n,d)(Vi, Vj) = µijdn for all i, j ∈ [K]. Let us call a

map σ : V × [d]→ [K] a µ-shading if for all i, j ∈ [K] we have

|{(v, l) ∈ Vi × [d] : σ(v, l) = j}| = µijdn.

Clearly, the total number of µ-shadings is just

Nµ =
K∏
i=1

(
ρidn

µi1dn, . . . , µiKdn

)
.

Any configuration Γ that induces a multi-graph G such that eG(Vi, Vj) = µijdn for all i, j ∈ [K]

induces a µ-shading σΓ. Indeed, the shade of a clone (v, l) is just the index j ∈ [K] such that

Γ(v, l) ∈ Vj × [d].

Conversely, for a given µ-shading σ, how many configurations Γ are there such that σ = σΓ? To

obtain such a configuration, we need to match the clones (v, l) ∈ Vi × [d] with σ(v, l) = j to the

clones (v′, l′) ∈ Vj × [d] such that σ(v′, l′) = i for all 1 ≤ i ≤ j ≤ K. Clearly, the total number of
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4. On the chromatic number of random regular graphs

such matchings is

Mµ =
∏

1≤i<j≤K
(µijdn)! ·

K∏
i=1

(µiidn− 1)!!.

Hence,

P [E ] =
NµMµ

(dn− 1)!!
. (4.3)

Using Stirling’s formula and (4.1), we find that

lnNµ = dn
K∑

i,j=1

µij ln(ρi/µij) +O(lnn),

ln
Mµ

(dn− 1)!!
=

1

2
ln

∏K
i,j=1(µijdn)!

(dn)!
+O(lnn) = −1

2
ln

(
dn

(µijdn)i,j∈[K]

)
+O(lnn)

=
dn

2

K∑
i,j=1

µij lnµij +O(lnn).

Plugging these estimates into (4.3), we obtain

ln P [E ] =
dn

2

K∑
i,j=1

µij

(
2 ln

ρi
µij

+ lnµij

)
+O(lnn) =

dn

2

K∑
i,j=1

µij ln
ρ2
i

µij
+O(lnn)

=
dn

2

K∑
i,j=1

µij ln
ρiρj
µij

+O(lnn) [as µij = µji for all i, j ∈ [K]]

= −dn
2
DKL (µ, ρ⊗ ρ) +O(lnn),

as claimed.

Corollary 4.1.3. Let (ρ, µ) be (d, n)-admissible and letZµ denote the number of partitions V1, . . . , VK

of V such that

|Vi| = ρin for all i ∈ [K], and (4.4)

eG(n,d)(Vi, Vj) = µijdn for all i, j ∈ [K] . (4.5)

Then
1

n
ln E [Zµ] = H(ρ)− d

2
DKL (µ, ρ⊗ ρ) +O(lnn/n). (4.6)
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Proof. Lemma 4.1.2 provides the probability that for any fixed partition V1, . . . , VK we have

eG(n,d)(Vi, Vj) = µijdn for all i, j ∈ [K]. Furthermore, by Stirling’s formula the total number of

partitions V1, . . . , VK with |Vi| = ρin for all i ∈ [K] is(
n

ρ1n, . . . , ρkn

)
= exp [H(ρ)n+O(lnn)] . (4.7)

Thus, the assertion follows from (4.2), (4.7) and the linearity of expectation.

Finally, the expression (4.6) can be restated in a slightly more handy form if we assume that µii = 0

for all i ∈ [K]. More precisely, we have

Corollary 4.1.4. Let (ρ, µ) be (d, n)-admissible such that µii = 0 for all i ∈ [K]. Let Zµ denote

the number of partitions V1, . . . , VK that satisfy (4.4) and (4.5). Moreover, let ρ̂ = (ρ̂ij)i,j∈[K] be the

probability distribution defined by

ρ̂ij =
1i 6=j · ρiρj
1− ‖ρ‖22

.

Then

1

n
ln E [Zµ] = H(ρ) +

d

2
ln(1− ‖ρ‖22)− d

2
DKL (µ, ρ̂) +O(lnn/n).

Proof. Corollary 4.1.3 yields

1

n
ln E[Zµ] = H(ρ)− d

2

K∑
i,j=1

µij ln
µij
ρiρj

+O

(
lnn

n

)
.

Setting y = ‖ρ‖22 =
∑k

i=1 ρ
2
i , we get

1

n
ln E[Z] = H(ρ) +

d

2
ln(1− y)− d

2

K∑
i,j=1

µij ln
(1− y)µij
ρiρj

+O

(
lnn

n

)
[as
∑K

i,j=1 µij = 1]

= H(ρ) +
d

2
ln(1− y)− d

2
DKL(µ, ρ̂) +O

(
lnn

n

)
, [as µii = 0 for all i ∈ [K]]

as claimed.

For a given collection ρ of class sizes, Corollary 4.1.4 identifies the edge distribution µ for which

E [Zµ] is maximized subject to the condition that µii = 0 for all i. Indeed, the maximizer is just

µ = ρ̂. This is because DKL (µ, ρ̂) ≥ 0 for all µ, and DKL (µ, ρ̂) = 0 iff µ = ρ̂ (by Fact 1.0.3).

Furthermore, the term DKL (µ, ρ̂) captures precisely just how “unlikely” it is to see some other edge

distribution µ 6= ρ̂.
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4.1.3. Small subgraph conditioning

To show that G(n, d) is k-colourable w.h.p. we are going to use the second moment method. This is

facilitated by the following statement, which is an immediate consequence of [78, Theorem 1] (which,

in turn, generalizes [124]).

Theorem 4.1.5. Let d, k ≥ 3 and assume that k divides n and that dn is even. Let

λj =
(d− 1)j

2j
and δj = −(1− k)1−j (4.8)

and let Ξl be the number of cycles of length l in G(n, d) for l ≥ 1 (with 1-cycles being self-loops and

2-cycles being multiple edges). Suppose that Y = Y (G(n, d)) ≥ 0 is a random variable with the

following properties.

i. E [Y ] = exp(Ω(n)).

ii. For every sequence q1, . . . , ql of non-negative integers (that remains fixed as n→∞) we have

E

Y · l∏
j=1

(Ξj)qj

 ∼ E [Y ] ·
l∏

j=1

(λj(1 + δj))
qj .

iii. E
[
Y 2
]
≤ (1 + o(1))E [Y ]2 · exp

[∑∞
j=1 λjδ

2
j

]
.

Then P [Y > 0|Ξ1 = 0] = 1− o(1).

The very same statement is also the basis of the second moment argument in [82]. Theorem 4.1.5 is

referred to as small subgraph conditioning because verifying the assumptions of the theorem amounts

to studying the random variable Y given the number of short cycles in G(n, d).

4.2. Upper-bounding the chromatic number: outline

Throughout this section, we assume that k divides n and that

(2k − 2) ln(k − 1) ≤ d ≤ (2k − 1) ln k − 2 ln 2− εk (4.9)

for a sequence εk that tends to 0 sufficiently slowly in the limit of large k.

In this section we introduce the random variable upon which the proof of the first part of Theorem 3.1.1

is based. The first random variable that springs to mind certainly is the total number Zk−col of k-
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colourings. However, the corresponding formulas for the first and the second moment turn out to be

somewhat unwieldy. Therefore, following [10, 82], we confine ourselves to colourings that have the

following property.

Definition 4.2.1. A map σ : V → [k] is balanced if |σ−1(i)| = n/k for all i ∈ [k].

The number Zk,bal = Zk,bal(G(n, d)) of balanced k-colourings is the random variable used in [82].

Unfortunately, it is not possible to base the proof of Theorem 3.1.1 on Zk,bal. Indeed, there exist

infinitely many k such that for d = b(2k − 1) ln k − 2 ln 2c we have

E
[
Z2
k,bal

]
≥ exp(Ω(n))E [Zk,bal]

2 .

Thus, Zk,bal does not satisfy the second moment condition (3.3)

To cope with this issue, we use a different random variable from [47]. Its definition is inspired by

statistical mechanics predictions on the geometry of the set of k-colourings of the random graph.

According to these, for d > (1 + ok(1))k ln k the set of k-colourings, viewed as a subset of [k]V ,

decomposes into an exponential number of well-separated ‘clusters’.

To formalize this notion, let σ, τ : V → [k] be two balanced maps. Their overlap matrix is the k × k
matrix ρ(σ, τ) with entries

ρij(σ, τ) =
k

n
· |σ−1(i) ∩ τ−1(j)| (cf. [10]). (4.10)

This matrix ρ(σ, τ) is doubly-stochastic. Following [47], we define the cluster of a k-colouring σ of a

graph G to be the set

C(σ) = CG(σ) = {τ ∈ [k]n : τ is a balanced k-colouring of G and ρii(σ, τ) > 0.51 for all i ∈ [k]} .
(4.11)

Thus, C(σ) consists of all balanced k-colourings τ that leave the colour of at least 51% of the vertices

in each colour class of σ unchanged. In addition, also following [47], we have

Definition 4.2.2. A balanced k-colouring σ is separable in G if for any other balanced k-colouring

τ of G and any i, j ∈ [k] such that ρij(σ, τ) > 0.51 we indeed have ρij(σ, τ) ≥ 1 − κ, where

κ = ln500 k/k = ok(1).

These definitions ensure that the clusters of two separable k-colourings σ, τ are either disjoint or

identical. In addition, we would like to formalize the notion that there are many disjoint clusters. To

this end, we simply put an explicit upper bound on the size of each cluster; this is going to entail that
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4. On the chromatic number of random regular graphs

many clusters are necessary to exhaust the entire set of k-colourings. We thus arrive at

Definition 4.2.3 ([47]). A balanced k-colouring σ of G(n, d) is good if it is separable and |C(σ)| ≤
1
nE [Zk,bal] .

Let Zk,good = Zk,good(G(n, d)) be the number of good k-colourings. Working with Zk,good instead

of Zk,bal is vital for our proof of Theorem 3.1.1. More specifically, the second moment argument

comes down to proving that if we choose a pair (σ, τ) of good k-colourings of G(n, d) uniformly at

random, then w.h.p. their overlap ρ(σ, τ) is “close” to the “flat” overlap matrix ρ̄ all of whose entries

are 1/k (cf. [10, 47]). This argument is facilitated by the notion of “good”, which puts an a priori

bound the contribution of a wide range of overlaps by hard-wiring the “clustered geometry” of the

set of k-colourings into the random variable Zk,good. In fact, this measure is not merely helpful but

necessary. For instance, without an explicit bound on the cluster size the contribution to the second

moment would come from pairs (σ, τ) with overlap ρ(σ, τ) = αid + (1 − α)k−11 for a certain

α = 1 − (1 + ok(1))/k would exceed the contribution of pairs with overlap approximately equal to

ρ̄; here id is the identity matrix and 1 is the matrix with all entries equal to one. The reason for this

blow-up of the second moment is the existence of a very small number of random graphs that have

extremely large clusters of k-colourings. By confining ourselves to the number of good k-colourings,

we dismiss such pathological cases a priori. Technically, the separability condition and the bound on

the cluster size will be used in Section 4.4.

Hence, we need to estimate E [Zk,good]. The first step is to compute the expected number of balanced

k-colourings. Fortunately, we do not need to perform this computation from scratch since it has

already been carried out in [82].

Proposition 4.2.4 ([82]). We have

E [Zk,bal] = Θ(n−(k−1)/2) · kn(1− 1/k)dn/2.

Moreover, Zk,bal satisfies condition ii. in Theorem 4.1.5.

In addition to the size of the colour classes, we also need to control the edge densities between them.

Let us call a balanced k-colouring σ of G(n, d) skewed if

max
1≤i<j≤k

∣∣∣∣eG(n,d)(σ
−1(i), σ−1(j))− dn

k(k − 1)

∣∣∣∣ > √n lnn.
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Corollary 4.2.5. Let Z ′k,bal be the number of skewed balanced k-colourings of G(n, d). Then

E
[
Z ′k,bal

]
≤ exp(−Ω(ln2 n)) · E [Zk,bal] .

Proof. The proof is based on Corollary 4.1.4. Let ρ = k−11 be the uniform distribution on [k].

Moreover, let µ = (µij)i,j∈[k] be a probability distribution such that (ρ, µ) is an admissible pair, and

such that µii = 0 for all i ∈ [k]. As in Corollary 4.1.4, let Zµ be the number of balanced k-colourings

σ such that the edge densities between the colour classes are given by µ, i.e.,

eG(n,d)(σ
−1(i), σ−1(j)) = µijdn for all i, j ∈ [k] .

Furthermore, let ρ̂ = (ρij)i,j∈[k] be the probability distribution on [k] × [k] defined by ρij =
1i 6=j
k(k−1) .

Then Corollary 4.1.4 and Proposition 4.2.4 yield

1

n
ln E [Zµ] = ln k +

d

2
ln(1− 1/k)− d

2
DKL (µ, ρ̂) +O(lnn/n)

=
1

n
ln E [Zk,bal]−

d

2
DKL (µ, ρ̂) +O(lnn/n). (4.12)

Furthermore, by Fact 1.0.3 there is an n-independent number ξ = ξ(k) > 0 such that

DKL (µ, ρ̂) ≥ ξ
k∑

i,j=1

(µij − ρ̂ij)2.

Hence, if µ is such that |dnµij −dnρij | >
√
n lnn for some pair (i, j) ∈ [k]× [k], then DKL (µ, ρ̂) =

Ω(ln2 n/n). Therefore, (4.12) implies that

E [Zµ] ≤ exp(−Ω(ln2 n)) · E [Zk,bal] . (4.13)

To complete the proof, letM be the set of all µ such that (ρ, µ) is an admissible pair and such that

|dnµij − dnρij | >
√
n lnn for some (i, j) ∈ [k] × [k]. Because dnµij has to be an integer for all

i, j ∈ [k], we can estimate |M| ≤ (dn)k
2

(with room to spare), i.e., |M| is bounded by a polynomial

in n. Hence, (4.13) yields

E
[
Z ′k,bal

]
≤
∑
µ∈M

E [Zµ] ≤ |M| exp(−Ω(ln2 n)) · E [Zk,bal] ≤ exp(−Ω(ln2 n)) · E [Zk,bal] ,

as desired.

In Section 4.3 we use Corollary 4.2.5 to compare Zk,good and Zk,bal; the result is

Proposition 4.2.6. We have E [Zk,good] ∼ E [Zk,bal].
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4. On the chromatic number of random regular graphs

Combining Proposition 4.2.4 and 4.2.6, we obtain the following.

Corollary 4.2.7. The random variable Zk,good satisfies conditions i. and ii. in Theorem 4.1.5.

Proof. Condition i. follows directly from Propositions 4.2.4 and 4.2.6. Indeed, using the expansion

ln(1− x) = −x− x2/2 +O(x3), we find that

1

n
ln E[Zk,good] ∼ 1

n
ln E[Zk,bal] [by Proposition 4.2.6]

∼ ln k +
d

2
ln(1− 1/k) [by Proposition 4.2.4]

= ln k − d

2k
− d

4k2
+O(d/k3).

It is easily verified that the last expression is strictly positive if d ≤ (2k − 1) ln k − 2 ln 2 and for

sufficiently large k > k0.

To establish condition ii., fix a sequence q1, . . . , ql of non-negative integers. Recall from Theo-

rem 4.1.5 that Ξj denotes the number of cycles of length j in G(n, d), with 1-cycles being self-loops

and 2-cycles being multiple edges. With δj , λj as in (4.8), we aim to show that

E

Zk,good ·
l∏

j=1

(Ξj)qj

 ∼ E [Zk,good] ·
l∏

j=1

(λj(1 + δj))
qj , (4.14)

There are two cases to consider.

Case 1 q1 > 0. If Ξ1 = q1 > 0, then Zk,good = 0 with certainty (because a self-loop is a monochro-

matic edge under any colouring). Moreover, as δ1 = −1 we also have
∏l
j=1(λj(1 + δj))

qj = 0.

Thus, (4.14) is trivially satisfied in this case.

Case 2 q1 = 0. By Proposition 4.2.4, for every non-negative integers p2, . . . , pl we have

E

Zk,bal ·
l∏

j=2

(Ξj)pj

 ∼ E [Zk,bal] ·
l∏

j=2

(λj(1 + δj))
pj . (4.15)

For a balanced map σ : V → [k] and let Eσ be the event that σ is a k-colouring of G(n, d).

Summing over all balanced σ and using the linearity of expectation, we obtain

E

Zk,bal

l∏
j=2

(Ξj)pj

 =
∑
σ

E

 l∏
j=2

(Ξj)pj

∣∣∣∣Eσ
 · P [Eσ] . (4.16)

Pick and fix one balanced map σ0 : V → [k] and let E = Eσ0 for the sake of brevity. For
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4.2. Upper-bounding the chromatic number: outline

symmetry reasons (namely, because
∏
j(Ξj)pj is invariant under permutations of the vertices),

we have

E

 l∏
j=2

(Ξj)pj

∣∣∣∣Eσ
 = E

 l∏
j=2

(Ξj)pj

∣∣∣∣E
 for every σ.

Thus, (4.16) gives

E

Zk,bal

l∏
j=2

(Ξj)pj

 = E

 l∏
j=2

(Ξj)pj

∣∣∣∣E
 · E[Zk,bal].

Hence, (4.15) yields

E

 l∏
j=2

(Ξj)pj

∣∣∣∣E
 ∼ l∏

j=2

(λj(1 + δj))
pj .

Therefore, Theorem 1.0.7 implies that given E , (Ξ2, . . . ,Ξl) are asymptotically independent

Po(λj(1 + δj)) variables. Consequently, because we keep q2, . . . , ql fixed as n→∞, we get

E

 l∏
j=2

Ξ
2qj
j

∣∣∣∣E
 ∼ l∏

j=2

E
[
Po(λj(1 + δj))

2qj
]

= O(1).

Thus, again by symmetry and the linearity of expectation,

E

Zk,bal

l∏
j=2

Ξ
2qj
j

 = E [Zk,bal] · E

 l∏
j=2

Ξ
2qj
j

∣∣∣∣E
 = O(E [Zk,bal]). (4.17)
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4. On the chromatic number of random regular graphs

Now, by Cauchy-Schwarz

E

(Zk,bal − Zk,good)
l∏

j=2

(Ξj)qj

 ≤ E [Zk,bal − Zk,good]
1
2

·E

(Zk,bal − Zk,good)
l∏

j=2

(Ξj)
2
qj

 1
2

≤ E [Zk,bal − Zk,good]
1
2 · E

Zk,bal

l∏
j=2

(Ξj)
2
qj

 1
2

≤ E [Zk,bal − Zk,good]
1
2 · E

Zk,bal

l∏
j=2

Ξ
2qj
j

 1
2

(4.17)
≤ E [Zk,bal − Zk,good]

1
2 ·O(E [Zk,bal])

1
2

= o(E [Zk,bal]) [by Proposition 4.2.6]. (4.18)

Finally, combining (4.15) and (4.18), we find

E

Zk,good

l∏
j=2

(Ξj)qj

 = E

Zk,bal

l∏
j=2

(Ξj)qj

+ o(E [Zk,bal])

∼ E [Zk,bal] ·
l∏

j=2

(λj(1 + δj))
qj

∼ E [Zk,good] ·
l∏

j=2

(λj(1 + δj))
qj [by Proposition 4.2.6].

Thus, (4.14) holds in either case.

After proving Proposition 4.2.6 in Section 4.3, we are going to carry out the second moment argument

in Section 4.4. This implies that the random variable Zk,good also satisfies condition iii. in Theo-

rem 4.1.5. Finally, in Section 4.4.4, we are going to apply Theorem 4.1.5 to complete the proof of the

upper bound on χ(G(n, d)) claimed in Theorem 3.1.1.
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4.3. The expected number of good colourings

Throughout this section we assume that k ≥ k0 and n ≥ n0 are sufficiently big. We also continue to

assume that d satisfies (4.9) and that k divides n.

4.3.1. Outline

The aim in this section is to prove Proposition 4.2.6. The proof is guided by the corresponding anal-

ysis for the GER(n,m) model performed in [47]. Indeed, several of the formulas that we arrive at

ultimately are quite similar to the ones in [47]. However, arguing that these ideas/formulas carry over

to the random regular graph turns out to be a technically rather non-trivial task.

The proof is by way of a d-regular version of the “planted colouring” model. To define this model, fix

a balanced map σ : V → [k] and let Vi = σ−1(i). Moreover, let µ = (µij)i,j=1,...,k be a probability

distribution on [k]× [k] such that µijdn is integral for all i, j satisfying

µii = 0 and
∑k

i=1 µij =
∑k

j=1 µij = 1
k for all i, j ∈ [k] and

µij = µji = 1
k(k−1) + f(n) for all 1 ≤ i < j ≤ k,

(4.19)

where f(n) = O(n−1/3).

We let Γσ,µ denote a configuration chosen uniformly at random subject to the condition that

|{(v, l) ∈ Vi × [d] : Γ(v, l) ∈ Vj × [d]}| = dnµij for all i, j ∈ [k] . (4.20)

In addition, we denote by G(σ, µ) the multi-graph obtained from Γσ,µ by contracting the clones.

Then by construction, σ is a “planted” k-colouring of G(σ, µ), and eG(σ,µ)(Vi, Vj) = µijdn for all

1 ≤ i < j ≤ k.

We prove Proposition 4.2.6 in two steps: the first step is

Proposition 4.3.1. Let σ : V → [k] be balanced and assume that µ satisfies (4.19). Then

P[σ is separable in G(σ, µ)] ≥ 1−O(1/n).

We defer the proof of Proposition 4.3.1 to Section 4.3.2. Furthermore, in Section 4.3.3 we are going

to prove

Proposition 4.3.2. Let σ : V → [k] be balanced and assume that µ satisfies (4.19). With probability
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4. On the chromatic number of random regular graphs

1−O(1/n) the random multi-graph G(σ, µ) is such that

1

n
ln |C(σ)| < 1

n
ln E[Zk,bal].

Proof of Proposition 4.2.6 (assuming Propositions 4.3.1 and 4.3.2). Let σ : V → [k] be balanced

and let Mσ be the set of all probability distributions µ that satisfy (4.19) such that dnµij is integral

for all i, j. For any balanced σ and for any µ we let Λσ,µ be the set of all (n, d)-configurations Γ that

satisfy (4.20). In addition, let Λg,σ,µ be the set of all (n, d)-configurations Γ ∈ Λσ,µ such that σ is a

good k-colouring of the multi-graph induced by Γ. By Propositions 4.3.1 and 4.3.2, for any balanced

σ and for any µ ∈Mσ we have

P

[
σ is separable in G(σ, µ) and

1

n
ln |C(σ)| ≤ (1/k + Õk(k

−2)) ln 2

]
∼ 1. (4.21)

Because the “planted” configuration Γσ,µ is nothing but a uniformly random element of Λσ,µ, (4.21)

implies that

|Λg,σ,µ| ∼ |Λσ,µ| (4.22)

for any balanced σ and any µ ∈Mσ. Now, let

Λσ =
⋃

µ∈Mσ

Λσ,µ, Λg,σ =
⋃

µ∈Mσ

Λg,σ,µ.

Then (4.22) yields

|Λg,σ| ∼ |Λσ| . (4.23)

Summing over all balanced σ, we obtain from (4.23) and the linearity of expectation

E[Zk,good] ≥
∑
σ

|Λg,σ|
(dn− 1)!!

∼
∑
σ

|Λσ|
(dn− 1)!!

. (4.24)

To relate (4.24) to E[Zk,bal], let Λ′σ be the set of all configurations Γ such that σ is a skewed k-

colouring of the multi-graph induced by Γ. Then

E[Zk,bal] =
∑
σ

|Λσ ∪ Λ′σ|
(dn− 1)!!

≤
∑
σ

|Λσ|
(dn− 1)!!

+
∑
σ

|Λ′σ|
(dn− 1)!!

. (4.25)

Letting Z ′k,bal denote the number of skewed balanced k-colourings of G(n, d), we obtain from Corol-

lary 4.2.5

E[Z ′k,bal] =
∑
σ

|Λ′σ|
(dn− 1)!!

= o(E[Zk,bal]). (4.26)
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Finally, combining (4.24)–(4.26), we see that E[Zk,good] ∼ E[Zk,bal], as desired.

4.3.2. Separability: proof of Proposition 4.3.1

Throughout this section, we let σ : V → [k] denote a balanced map. We let Vi = σ−1(i). Moreover,

µ denotes a probability distribution that satisfies (4.19) such that dnµij is integral for all i, j.

The proof of Proposition 4.3.1 proceeds in several steps, all of which depend on the binomial approx-

imation to the hypergeometric distribution from Lemma 1.0.8. We start by proving that w.h.p. in the

multi-graph G(σ, µ) with planted colouring σ there is no other colouring τ such that the overlap matrix

has an entry ρii(σ, τ) ∈ (0.509, 1− k−0.499) w.h.p.

Lemma 4.3.3. In G(σ, µ) the following is true with probability 1− exp(−Ω(n)).

Let 0.509 ≤ α ≤ 1 − k−0.499. For all i ∈ [k] and for any set S ⊂ Vi of size |S| =

αn/k the number of vertices v ∈ V \ Vi that do not have a neighbour in S is less than

(1− α)n/k − n2/3.

(4.27)

Proof. Without loss of generality we may assume i = 1. Thus, let S ⊂ V1 be a set of size |S| = αn/k

for some 0.509 ≤ α ≤ 1− k−0.499. Let

ej,S = |{(v, l) ∈ S × [d] : Γσ,µ(v, l) ∈ Vj × [d]}|

be the number of edges from S to Vj in G(σ, µ) for j = 2, . . . , k. Since we are fixing the numbers

(µ1jdn)j=2,...,k of edges between V1 and the other colour classes, we can think of ej,S as follows:

choose a subset of V1 × [d] of size dnµ1j uniformly at random; then ej,S is the number of chosen

elements that belong to S × [d]. Thus, we are in the situation of Lemma 1.0.8, which we are going

to use to estimate ej,S . Hence, let pj = kµ1j ; then pj ∼ (k − 1)−1 by our assumption (4.19) on

µ. Further, let êj,S be a random variable with distribution Bin(|S|d, pj). Let δ = ln−1/3 k. Then

Lemma 1.0.8 yields

P

[
ej,S <

(1− δ)d|S|
k − 1

]
≤ O(

√
n) · P

[
êj,S <

(1− δ)d|S|
k − 1

]
. (4.28)

Further, by Lemma 1.0.6 (to which we are going to refer as “the Chernoff bound” from now on),

P

[
êj,S <

(1− δ)d|S|
k − 1

]
≤ exp

[
− δ2d|S|

2(k − 1)

]
≤ exp(−n/k). (4.29)
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4. On the chromatic number of random regular graphs

Since the total number of possible sets S is bounded by 2n/k, (4.28) and (4.29) yield

P

[
∃S, j : ej,S <

(1− δ)d|S|
k − 1

]
≤ (k − 1)2n/k exp(−n/k) = exp(−Ω(n)). (4.30)

Thus, let ES be the event that ej,S ≥ (1−δ)d|S|
k−1 for all j = 2, . . . , k. Due to (4.30), we may condition

on the event ES from now on.

Given the numbers ej,S , the actual clones in Vj×[d] that Γσ,µ joins to S×[d] are uniformly distributed.

Thus, we can use Lemma 1.0.8 to estimate the number Xj,S of vertices in v ∈ Vj that Γ fails to join

to S. To this end, let (bv)v∈Vj be a family of independent Bin(d,
ej,S
dn/k ) random variables. Let

qj = P [bv = 0] for any v ∈ Vj , and X̂j,S = Bin(n/k, qj).

Then Lemma 1.0.8 yields

P [Xj,S ≥ t|ES ] ≤ O(
√
n) P

[
X̂j,S ≥ t

]
for any t > 0. (4.31)

Furthermore, since we are assuming that ej,S ≥ (1− δ)d|S|/(k − 1), we find

qj =

(
1−

ej,S
dn/k

)d
≤ exp

[
−
ej,S
n/k

]
≤ exp

[
−(1− δ)αd

k − 1

]
≤ k−2α(1−2δ). (4.32)

Set q = k−2α(1−2δ), let X̂S = Bin((1− 1/k)n, q), and let XS =
∑k

j=2Xj,S . Then (4.31) and (4.32)

imply

P [XS ≥ t|ES ] ≤ O(
√
n) P

[
X̂S ≥ t

]
for any t > 0. (4.33)

Thus, we are left to estimate the binomial random variable X̂S with mean E[X̂S ] = |V \ V1|q ≤ qn.

By the Chernoff bound,

P
[
X̂S ≥ (1− α)n/k − n2/3

]
≤ exp

[
−(1− α+ o(1))

n

k
· ln
(

(1− α)n/k

eqn

)]

≤ exp

[
−(1− α+ o(1))

n

k
· ln
(

1− α
ekq

)]
. (4.34)

Combining (4.33) and (4.34), we see that

P

[
XS ≥ (1− α)n/k − n2/3

∣∣∣∣ES] ≤ exp

[
−(1− α+ o(1))

n

k
· ln
(

1− α
ekq

)]
. (4.35)
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Furthermore, the number of ways to choose a S ⊂ V1 of size αn/k is(
n/k

(1− α)n/k

)
≤
(

e

1− α

)(1−α)n
k

= exp
[n
k

(1− α)(1− ln(1− α))
]
. (4.36)

Using (4.35), (4.36) and the union bound, we obtain

P
[
∃S : XS ≥ (1− α)n/k − n2/3 ∩ ES

]
≤ exp

[
(1− α)n

k
·
(

1− ln(1− α)− ln

(
1− α
ekq

))
+ o(n)

]
. (4.37)

We need to verify that the last term is exp(−Ω(n)). Thus, we need to estimate

1− ln(1− α)− ln

(
1− α
ekq

)
= ln

(
e2

(1− α)2
k1−2α+4αδ

)
. (4.38)

This is negative iff

exp

[(
1

2
− α+ 2αδ

)
ln k

]
<

1− α
e

. (4.39)

By the convexity of the exponential function, the l.h.s. and the linear function on the r.h.s. intersect

on at most two values of α. Between these intersections the linear function is greater. Moreover, it is

easily verified that the r.h.s. of (4.39) is larger than the l.h.s. at both α = 0.509 and α = 1− k−0.499.

Thus, (4.39) is true in the entire range 0.509 < α < 1 − k−0.499. Consequently, for such α the

term (4.38) is strictly negative, whence the r.h.s. of (4.37) is exp(−Ω(n)). Thus, the assertion follows

from (4.30).

To complete the proof of Proposition 4.3.1, we also need to rule out the possibility that G(σ, µ) has

a colouring τ such that ρii(σ, τ) ∈ (1 − k−0.499, 1 − κ), where κ = ln500 k/k = ok(1) as defined

in (4.2.2). To this end, we are going to use an expansion argument. This argument is based on

establishing that in G(σ, µ) “most” vertices outside colour class Vi have a good number of neighbours

in Vi w.h.p. More precisely, we have

Lemma 4.3.4. With probability 1−exp(−Ω(n)) the random graph G(σ, µ) has the following property.

Let i ∈ [k]. No more than nk−2 ln17 k vertices v /∈ Vi have less than 15 neighbours in Vi. (4.40)

Proof. Assume without loss of generality that i = 1. We are going to use Lemma 1.0.8 once more.

Our assumption (4.19) ensures that for each j ∈ {2, . . . , k} the number of V1-Vj edges in G(σ, µ)

is µ1jdn ∼ k−1(k − 1)−1dn. Thus, let (bv)v∈Vj be a family of independent random variables with

distribution Bin(d, pj), with pj = kµ1j ∼ (k − 1)−1. Furthermore, let Xj be the number of v ∈ Vj
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with fewer than 15 neighbours in V1, and let X̂j = |{v ∈ Vj : bv < 15}|. Then by Lemma 1.0.8 we

have

P [Xj ≥ t] ≤ O(
√
n) P

[
X̂j ≥ t

]
for any t > 0. (4.41)

Furthermore, because the random variables bv, v ∈ Vj , are independent, X̂j has a distribution

Bin(n/k, qj), with qj = P [Bin(d, pj) < 15].

Now, let X =
∑k

j=2Xj and let X̂ be a random variable with distribution Bin((1 − 1/k)n, q), with

q = maxj≥2 qj . Then (4.41) implies

P [X ≥ t] ≤ O(
√
n) P

[
X̂ ≥ t

]
for any t > 0. (4.42)

Furthermore, our assumption (4.9) on d ensures that

E
[
X̂
]
≤ nq = nP

[
Bin

(
d,

1 + o(1)

k − 1

)
< 15

]
≤ Ok(k−2+o(1) ln15 k)n.

Hence, P[X̂ ≥ nk−2 ln17 k] ≤ exp(−Ω(n)) by the Chernoff bound. Thus, the assertion follows

from (4.42).

Given Lemma 4.3.4, how do we argue that w.h.p. there is no τ such that ρii(σ, τ) ∈ (1−k−0.499, 1−κ)?

Such a colouring τ would have to give colour i to a good number of vertices from V \ Vi with at least

15 neighbours in Vi (because there is no sufficient supply of vertices that have less than 15 neighbours

in Vi). However, we are going to show that assigning colour i to many such vertices “displaces” a very

large number of vertices from Vi due to expansion properties, and that it is therefore not possible that

ρij(σ, τ) ∈ (1−k−0.499, 1−κ) w.h.p. To put this expansion argument together, we need the following

upper bound on the probability that a specific set of edges occurs in the random configuration Γσ,µ.

Lemma 4.3.5. Let E be a set of edges of the complete graph on V × [d] of size |E| ≤ n
2k . Let

eij = |{e ∈ E : e ∩ (Vi × [d]) 6= ∅ 6= e ∩ (Vj × [d]})| (i, j ∈ [k])

be the number of edges e ∈ E that join a Vi-clone with a Vj-clone and assume that eii = 0 for all i.

Then

P [E ⊂ Γσ,µ] ≤
(

5

dn

)|E|
.

Proof. Let ei =
∑k

j=1 eij and set e =
∑k

i=1 ei = 2|E|. Let mij = dnµij for all i, j ∈ [k]. We claim

that

P[E ⊂ Γσ,µ] =

[∏k
i=1

( dn/k−ei
(mij−eij)j∈[k]

)] [∏
1≤i<j≤k(mij − eij)!

]
[∏k

i=1

( dn/k
(mij)j∈[k]

)] [∏
1≤i<j≤kmij !

] . (4.43)
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Indeed, the numerator is obtained by (fixing the edges inE and) counting the number of ways to match

the remaining clones, given µ. More precisely, for every fixed i ∈ [k] the corresponding factor in the

first product counts the number of ways to choose the mij − eij clones that are going to be matched

with clones from colour class j. Moreover, for fixed i, j the corresponding factor in the second product

counts the number of matchings between the clones thus designated. The denominator simply is the

number of configurations respecting σ, µ.

Because mij = mji by assumption and eij = eji by definition, (4.43) yields

P[E ⊂ Γσ,µ] =

[∏k
i=1

( dn/k−ei
(mij−eij)j∈[k]

)] [∏k
i,j=1(mij − eij)!

]1/2

[∏k
i=1

( dn/k
(mij)j∈[k]

)] [∏k
i,j=1mij !

]1/2

=

[
k∏
i=1

1

(dn/k)ei

] k∏
i,j=1

(mij)eij

1/2

.

Furthermore, because of the assumptions |E| ≤ n
2k and (4.9) on d we have

(dn/k)ei ≥
(
dn/k

2

)ei
=

(
dn

2k

)ei
.

Finally, recalling from (4.19) that |µij − k−1(k − 1)−1| ≤ 0.01k−2 for all i, j ∈ [k], we get

P[E ⊂ Γσ,µ] ≤

[
k∏
i=1

2ei ·
(
k

dn

)ei] k∏
i,j=1

(
1.01dn

k(k − 1)

)eij/2

=

[
k∏
i=1

(
4k

k − 1

)ei/2( 1

dn

)ei] k∏
i,j=1

(1.01dn)eij/2

 ≤ ( 5

dn

)e/2
,

as claimed.

Remark 4.3.6. Even though in this section we are assuming that µij ∼ k−1(k− 1)−1 for all 1 ≤ i <
j ≤ k, the proof of Lemma 4.3.5 only requires that, say, |µij − k−1(k − 1)−1| ≤ 0.01k−2. Moreover,

the same proof also goes through if we merely assume that, say, |σ−1(i) − n/k| ≤ 0.01n/k for all

i ∈ [k] rather than that σ is balanced. This observation will be needed in Section 4.6.

Using Lemma 4.3.5, we can now prove that w.h.p. the random graph G(σ, µ) does not feature a “small

dense set” of vertices (i.e., a small set of vertices that spans a much larger number of edges than

expected). This will be the key ingredient to our expansion argument.
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Corollary 4.3.7. With probability 1−O(1/n) the random graph G(σ, µ) has the following property:

For any set S ⊂ V of size |S| ≤ k−4/3n the number of edges spanned by S in

G(σ, µ) is at most 5|S|.
(4.44)

Proof. Fix a set S of size s = |S| with 1 ≤ s ≤ k−4/3n. Furthermore, let Y (S) be the number of

edges in Γσ,µ that join two clones in S × [d].

We are going to use the union bound to estimate Y (S). Let E be a set of |E| = 5s unordered pairs

of clones in S × [d]. Let eij = |{{x, y} ∈ E : σ(x) = i, σ(y) = j}|. Clearly, if eii > 0 for some

i ∈ [k], then E 6⊂ Γσ,µ (because Γσ,µ respects σ). Thus, assume that eii = 0 for all i ∈ [k]. Then

Lemma 4.3.5 implies

P [E ⊂ Γσ,µ] ≤
(

5

dn

)5s

. (4.45)

By the union bound and (4.45),

P [Y (S) ≥ 5s] ≤ P [∃E as above : E ⊂ Γσ,µ] ≤
((ds

2

)
5s

)(
5

dn

)5s

≤ (eds/n)5s . (4.46)

Using the union bound and (4.46), we find

P [∃S ⊂ V, |S| = s : Y (S) > 5s] ≤
(
n

s

)
(esd/n)5s ≤

[en

s
· (esd/n)5

]s
≤

[
exp(6)(s/n)4d5

]s
. (4.47)

Finally, summing (4.47) up, we find

P
[
∃S ⊂ V, |S| ≤ k−4/3n : Y (S) > 5s

]
≤

∑
1≤s≤k−4/3n

[
exp(6)(s/n)4d5

]s
= O(1/n),

as desired.

Proof of Proposition 4.3.1. We need to show that the following holds w.h.p.

Let τ be a balanced k-colouring of G(σ) and let i ∈ [k] be such that τ(v) = i for at least

0.51n/k vertices v ∈ Vi. Then | {v ∈ Vi : τ(v) = i} | ≥ n
k (1− κ).

By Lemmas 4.3.3, 4.3.4 and 4.3.7, we may assume that (4.27), (4.40) and (4.44) hold. Moreover,

without loss of generality we may assume that i = 1.
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4.3. The expected number of good colourings

Let τ be a balanced k-colouring and let S = τ−1(1) ∩ V1. Assume that

0.51n/k ≤ |S| ≤ (1− k−0.49)n/k. (4.48)

Let T = τ−1(1)\V1. Then S∪T = τ−1(1) is an independent set. In particular, none of the vertices in

T has a neighbour in S. Moreover, |T | ≥ n/k−|S| because τ is a balanced colouring. But then (4.48)

contradicts (4.27). Thus, we know that |S| > (1− k−0.49)n/k.

Let Q be the set of all vertices v ∈ τ−1(1) \ V1 with at least 15 neighbours in V1. Moreover, let

R = V1 \ τ−1(1). Because both σ and τ are balanced, we have

|R ∪Q| ≤ 2
[n
k
− |S|

]
≤ 2nk−1.49 < k−4/3n. (4.49)

The set R contains all the neighbours that the vertices in Q have in V1 (because τ−1(1) is an indepen-

dent set). Hence, by the definition of Q, the number E of edges spanned by R ∪ Q in G(σ, µ) is at

least E ≥ 15|Q|. Consequently, (4.44) and (4.49) yield

15|Q| ≤ E ≤ 5|R ∪Q|, whence |Q| ≤ |R|/2. (4.50)

Let W = τ−1(1) \ (Q ∪ V1) be the set of all vertices with colour 1 under τ and another colour under

σ that have fewer than 15 neighbours in V1. Once more because σ and τ are balanced, we get

|S|+ |R| = n/k = |S|+ |Q|+ |W |

Thus, (4.50) yields

|R| = |Q|+ |W | ≤ |R|/2 + |W |.

Hence, (4.40) implies that |R| ≤ 2|W | ≤ 2nk−2 ln17 k ≤ nκ/k. Finally, because τ is balanced this

entails that |τ−1(1) ∩ V1| = n
k − |R| ≥

n
k (1− κ), as desired.

4.3.3. Upper-bounding the cluster size: proof of Proposition 4.3.2

The goal in this section is to establish the bound on the cluster size |C(σ)| in the random graph G(σ, µ),

where we continue to assume that σ is balanced and that µ satisfies (4.19). The following definition

provides the key concepts.

Definition 4.3.8. Let ` > 0 be an integer.

1. The (σ, `)-core of G(σ, µ) is the largest induced subgraph (V ′, E′) such that for all v ∈ V ′ and

all i 6= σ(v) we have
∣∣eG(σ,µ)(v, V

′ ∩ σ−1(i))
∣∣ ≥ `.
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4. On the chromatic number of random regular graphs

2. Let V ′ be the (σ, `)-core and let a ≥ 0 be an integer. A vertex u ∈ V is a-free if

∣∣{i ∈ [k] : eG(σ,µ)(u, V
′ ∩ σ−1(i)) = 0}

∣∣ ≥ a+ 1.

3. A vertex that fails to be 1-free is complete.

In words, the (σ, `)-core of G(σ, µ) is the largest subgraph V ′ such that every vertex v ∈ V ′ has at

least ` edges into every other colour class except its own. Furthermore, a vertex v is a-free if there are

a colour classes in addition to its own such that v fails to have a neighbour in that colour class that

belongs to the (σ, `)-core. Finally, a vertex is complete if in every other colour class but its own it has

a neighbour that belongs to the core. For the sake of concreteness, we let ` = 100 in the following.

The proof strategy is as follows. As a first step, we show that w.h.p. the random multi-graph G(σ, µ)

has a huge (σ, `)-core. More precisely, in Section 4.3.4 we will establish

Proposition 4.3.9. With probability 1 − O(1/n), G(σ, µ) has a (σ, 100)-core containing all but

Õk(k
−1)n vertices.

Based on this estimate, we can bound the number of 1-free and 2-free vertices. Indeed, in Section 4.3.5

we are going to prove

Proposition 4.3.10. With probability 1 − O(1/n) the random graph G(σ, µ) has the following prop-

erties.

1. At most nk (1 + Õk(1/k)) vertices are 1-free.

2. At most Õk(k−2)n vertices are 2-free.

While, of course, Proposition 4.3.10 merits a proof, the two estimates are unsurprising. Indeed, for

the value of d we are concerned with, the average number of neighbours of a vertex v that have

colour i 6= σ(v) is about d/(k − 1) = 2 ln k + ok(1). If we pretend that this number has a binomial

distribution Bin(d, 1/(k−1)), then the probability that v fails to have a neighbour of colour i is about

exp(−d/(k − 1)) = (1 + ok(1))k−2 for every i 6= σ(v). Since there are k − 1 colours i 6= σ(v),

the probability that v is 1-free should be approximately (1 + ok(1))(k − 1)k−2 = (1 + ok(1))k−1. A

similar reasoning applies to the number of 2-free vertices.

As a next step, we observe that, due to the expansion properties of G(σ, µ), the colours of all the

complete vertices are “frozen” in C(σ). More specifically, w.h.p. there does not exist a colouring τ in

the cluster C(σ) that assigns a complete vertex a different colour than σ does.
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4.3. The expected number of good colourings

Lemma 4.3.11. With probability 1−O(1/n) the random graph G(σ, µ) has the following property.

For all complete v and all τ ∈ C(σ) we have σ(v) = τ(v). (4.51)

Proof. By Proposition 4.3.1 we may assume that σ is separable in G(σ, µ) and by Corollary 4.3.7 we

may assume that G(σ, µ) has the property (4.44). Let V ′ be the (σ, `)-core. Moreover, let τ ∈ C(σ)

and let

∆+
i =

{
v ∈ V ′ : τ(v) = i 6= σ(v)

}
, ∆−i =

{
v ∈ V ′ : τ(v) 6= i = σ(v)

}
.

In words, ∆+
i are the vertices that take colour i under τ and a different colour under σ, and ∆−i are

the vertices that receive colour i under σ and a different colour under τ . Clearly,

k∑
i=1

|∆+
i | = |

{
v ∈ V ′ : σ(v) 6= τ(v)

}
| =

k∑
i=1

|∆−i |. (4.52)

Moreover, because σ is separable and as both σ, τ are balanced, we have

max
i∈[k]
|∆+

i | ≤
κ · n
k

and max
i∈[k]
|∆−i | ≤

κ · n
k

. (4.53)

We are going to show that {
v ∈ V ′ : σ(v) 6= τ(v)

}
= ∅. (4.54)

This implies that indeed σ(v) = τ(v) for all complete vertices v, because in order to change the colour

of a complete vertex it is necessary to change the colour of a vertex in the core V ′ as well.

To establish (4.54) let Si = ∆+
i ∪ ∆−i for i ∈ [k]. Then (4.53) implies that |Si| ≤ k−3/2n for all

i. Furthermore, (4.44) implies that none of the set Si spans more than 5|Si| edges. Because τ is a

k-colouring, all the neighbours of v ∈ ∆+
i in V ′ that take colour i under σ must belong to ∆−i . Since

any v ∈ ∆+
i ⊂ V ′ has at least 100 neighbours in V ′ ∩ σ−1(i), we thus obtain

100|∆+
i | ≤ 5|Si| ≤ 5(|∆+

i |+ |∆
−
i |).

Consequently, |∆−i | ≥ 2|∆+
i | for all i. Therefore, (4.52) yields ∆+

i = ∆−i = 0 for all i, whence (4.54)

follows.

Proof of Proposition 4.3.2 (assuming Propositions 4.3.9 and 4.3.10). By Lemma 4.3.11 we may

assume that (4.51) holds. Let Fa be the set of all a-free vertices. If a vertex v is 1-free but not 2-free,

then (4.51) implies that there is a set Cv ⊂ [k] of size two such that

τ(v) ∈ Cv for all τ ∈ C(σ).
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4. On the chromatic number of random regular graphs

Hence,

|C(σ)| ≤ 2|F1\F2| · k|F2|. (4.55)

Thus, the assertion follows by comparing the bounds on |F1|, |F2| provided by Proposition 4.3.10 with

the estimate of E [Zk,bal] from Proposition 4.2.4. Indeed, Proposition 4.3.10 and (4.55) imply that with

probability 1−O(1/n) we have

1

n
ln |C(σ)| ≤ |F1 \ F2|

n
ln 2 +

|F2|
n

ln k =
ln 2

k
+ Õk(k

−2). (4.56)

By comparison, Proposition 4.2.4 yields

1

n
ln E [Zk,bal] = ln k +

d

2
ln(1− 1/k)

= ln k − d

2

(
1

k
+

1

2k

)
+ Õk(k

−2)

[as ln(1 + z) = z + z2/2 +O(z3), d ≤ 2k ln k]

=
c

2k
+ Õk(k

−2) [as d = (2k − 1) ln k − c]. (4.57)

Comparing (4.56) and (4.57), we see that indeed 1
n ln E [Zk,bal] is strictly greater than 1

n ln |C(σ)| if

c ≥ 2 ln 2− εk with, say, εk = Θk(k
−0.9).

4.3.4. Proof of Proposition 4.3.9

The “canonical” way of constructing the core is by iteratively evicting vertices that violate the core

condition from Definition 4.3.8, i.e., that have too small a number of neighbours in some colour class

other than their own inside the core. In principle, this process could be studied accurately via, e.g., the

differential equations method. However, there is a technically far simpler way to obtain the estimate

promised in Proposition 4.3.9. Roughly speaking, the simpler argument is based on the observation

that, due to the expansion properties of G(σ, µ), the core “almost” contains the set of vertices that have

at least 3` neighbours in each colour class other than their own in the entire graph G(σ, µ). The size

of this set of vertices can be estimated fairly easily.

More precisely, to estimate the size of the core we introduce a few vertex sets. Ultimately, the idea

is to define a big subset of the core whose size can be estimated (relatively) easily. Recall that we set

` = 100 and let Vi = σ−1(i). First, we consider the sets

Wij =
{
v ∈ Vi : eG(σ,µ)(v, Vj) < 3` and eG(σ,µ)(v, Vh) < 2` ln k for all h ∈ [k]

}
(i, j ∈ [k] , i 6= j).

In words,Wij contains all vertices v of colour i that have “only” 3` edges towards colour class j, while
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there is no colour class hwhere v has more than 2` ln k neighbours. This definition is motivated by the

observation that, because σ is balanced and d = (2+ok(1))k ln k, the expected number of neighbours

that a vertex v ∈ Vi has in some other colour class Vj is about 2 ln k. Hence, we expect that for k

sufficiently large only very few vertices either satisfy eG(σ,µ)(v, Vj) < 3` or eG(σ,µ)(v, Vh) ≥ 2` ln k

for i 6= j, h. Thus, we expect Wij to be “small”. In addition, we let

Wii = ∅,Wi =
k⋃
j=1

Wij for all i ∈ [k], and W =
k⋃
i=1

Wi. (4.58)

Furthermore, for i, j ∈ [k], i 6= j we let

Uij =
{
v ∈ Vi \W : eG(σ,µ)(v,Wj) > `

}
and U =

⋃
ij

Uij ,

U ′ij =
{
v ∈ Vi \W : eG(σ,µ)(v, Vj) > 2` ln k

}
and U ′ =

⋃
ij

U ′ij .

Thus, Uij contains those vertices v ∈ Vi that have “a lot” of neighbours in the “bad” set Wj . Because

the sets Wj are small, the expansion properties of G(σ, µ) will imply that the set U is tiny. Moreover,

U ′ consists of vertices that have much more neighbours than the expected 2 ln k in one of the colour

classes. The set U ′ will turn out to be tiny as well, because the numbers eG(σ,µ)(v, Vj) will emerge to

be somewhat concentrated about their expectations.

Finally, we define a sequence of sets Y (t), t ≥ 0. We let Y (0) = U ∪ U ′. For t ≥ 1, we define Y (t) as

follows:

If there exists a vertex v ∈ V \ Y (t−1) that has more than ` neighbours in Y (t−1), then let

vt be the smallest such vertex and let Y (t) = Y (t−1) ∪ {vt}. If there is no such vertex v,

then let Y (t) = Y (t−1).

Let

Y =
⋃
t≥0

Y (t). (4.59)

With this construction in place, we have

Proposition 4.3.12. The set V \ (W ∪ Y ) is contained in the `-core of G(σ, µ).

Proof. Let V ′′ = V \ (W ∪ Y ). To show that V ′′ is contained in the `-core of G(σ, µ), it suffices

to verify that every vertex v ∈ V ′′ has at least ` edges into V ′′ ∩ Vj for every j 6= σ(v). Indeed,

because v 6∈ W∩U ′ we know that eG(σ,µ)(v, Vj) ≥ 3`. Furthermore, as v 6∈ U ⊂ Y , we have
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eG(σ,µ)(v,W ) ≤ `. Finally, the construction of Y ensures that eG(σ,µ)(v, Y ) ≤ `. Hence,

eG(σ,µ)(v, V
′′ ∩ Vj) ≥ eG(σ,µ)(v, Vj)− eG(σ,µ)(v,W )− eG(σ,µ)(v, Y ) ≥ `,

as desired.

Thus, to complete the proof of Proposition 4.3.9, we are left to estimate the sizes of the sets W ,

U , U ′, Y . These estimates are based on the approximation to the hypergeometric distribution from

Lemma 1.0.8.

Lemma 4.3.13. With probability 1− exp(−Ω(n)), we have

|Wij | ≤ nÕk(k−3) for all i, j ∈ [k].

Hence, |Wi| ≤ n · Õk(k−2) for all i ∈ [k] and |W | ≤ n · Õk(k−1). Furthermore, with probability

1− exp(−Ω(n)) we have |U ′| ≤ k−100n.

Proof. Fix two indices i, j ∈ [k], i 6= j, and let

W ′ij =
{
v ∈ Vi : eG(σ,µ)(v, Vj) < 3`

}
.

Since we are fixing the number dnµij of Vi-Vj edges, the set of clones in Vi × [d] that Γσ,µ matches

to the set Vj × [d] is a uniformly random set of size dnµij . Hence, Lemma 1.0.8 applies. Thus, let

(bv)v∈Vi be a family of independent Bin(d, p) variables, with p = kµij ∼ (k − 1)−1. Let Ŵij =

|{v ∈ Vi : bv < 3`}|. Then Lemma 1.0.8 yields

P
[
|W ′ij | ≥ t

]
≤ O(

√
n) · P

[
Ŵij ≥ t

]
for any t ≥ 0. (4.60)

Furthermore, because the random variables bv are mutually independent, Ŵij has distribution

Bin(n/k, q), with q = P [Bin(d, p) < 3`]. Since p ∼ (k − 1)−1, our assumption (4.9) on d implies

that q ≤ k−2 ln3` k. Therefore, by the Chernoff bound

P
[
Ŵij ≥ nk−3 ln3`+1 k = nÕ(k−3)

]
≤ exp(−Ω(n)). (4.61)

Further, let W ′′ij =
∣∣{v ∈ Vi : eG(σ,µ)(v, Vj) > 2` ln k

}∣∣. To estimate the size of this set, we consider

W̃ij = |{v ∈ Vi : bv > 2` ln k}|. Applying Lemma 1.0.8 once more, we see that

P
[
W ′′ij ≥ t

]
≤ O(

√
n) · P

[
W̃ij ≥ t

]
for any t ≥ 0. (4.62)

Due to the independence of the bv, W̃ij has distribution Bin(ni, q̃), where q̃ = P [Bin(d, p) > 2` ln k].
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Since p ∼ (k − 1)−1, we have dp ≤ 3 ln k. Hence, by the Chernoff bound

q̃ ≤ exp(−2` ln k) ≤ k−200.

Consequently, invoking the Chernoff bound once more, we find

P
[
W̃ij ≥ nk−199

]
≤ exp(−Ω(n)). (4.63)

Finally,

Wi ⊂
k⋃
j=1

W ′ij .

Hence, combining (4.60)–(4.61), we see that with probability 1 − exp(−Ω(n)) we have |Wi| ≤
Õk(k

−2)n. Furthermore,

U ′ ⊂
k⋃

i,j=1

W ′′ij .

Hence, (4.62)–(4.63) show that |U ′| ≤ k−100n (with room to spare) with probability 1−exp(−Ω(n)).

Lemma 4.3.14. With probability at least 1− exp(−Ω(n)) we have |U | ≤ nk−30.

Proof. For i, j ∈ [k], i 6= j let

U∗ij =

{
v ∈ Vi : eG(σ,µ)(v,Wj) ≥

`

2

}
⊃ Uij . (4.64)

We are going to bound |U∗ij |. By construction, for all v ∈ Wj we have eG(σ,µ)(v, Vi) ≤ 2` ln k.

Moreover, by Lemma 4.3.13 we may assume that |Wj | = Õk(k
−2)n. Hence, the number ηji of

Vi × [d]-Wj × [d] edges in Γσ,µ satisfies ηji = Õk(k
−2)n. Given ηji, the actual set of clones in

Vi × [d] that Γσ,µ connects with Wj × [d] is a uniformly random set. This is because the definition

of the set Wj is just in terms of the numbers e(v, Vh) of edges from v ∈ Vj to Vh for h 6= j in the

contracted multi-graph G(σ, µ).

Thus, we are in the situation described in Lemma 1.0.8. Hence, consider a family (bv)v∈Vi of mutually

independent random variables with distribution Bin(d, p) with p =
ηji
dn/k . Let Ûij be the number of

vertices v ∈ Vi such that bv ≥ l/2. Then Lemma 1.0.8 yields

P [|Uij | ≥ t] ≤ P
[
|U∗ij | ≥ t

]
≤ O(

√
n) · P

[
Ûij ≥ t

]
for all t ≥ 0. (4.65)
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Furthermore, Ûij has distribution Bin(ni, q) with q = P [Bin(d, p) ≥ `/2] . Since ηji = Õk(k
−2)n,

we have p = Õk(k
−2) and thus dp = E [bv] = Õk(k

−1). Consequently, the Chernoff bound yields

q = P [Bin(d, p) ≥ `/2] ≤ Õk(k−`/2).

Hence, using the Chernoff bound once more, we find that

P
[
Ûij ≤ Õk(k−`/2)n

]
≥ 1− exp(−Ω(n)). (4.66)

Thus, the assertion follows from (4.65), (4.66) and our choice of `.

Lemma 4.3.15. With probability at least 1−O(1/n) the set Y satisfies |Y | ≤ 4nk−30.

Proof. By Lemmas 4.3.13 and 4.3.14 we may assume that |U ∪U ′| ≤ 2nk−30. Now, let t0 = 2nk−30.

If Y = Y (t) for some t < t0, then clearly |Y | = |Y (t)| ≤ 4nk−30, because only one vertex is added

at a time. Thus, we need to show that the probability that Y 6= Y (t) is O(1/n).

Indeed, after completing step t0, the subgraph of G(σ) induced on Y (t0) spans at least ` · t0 edges,

while the number of vertices is |Y (t0)| ≤ |U ∪U ′|+ t0 ≤ 2t0 ≤ 4nk−30. Hence, G(σ) violates (4.44).

Lemma 4.3.7 shows that the probability of this event is O(1/n).

Finally, Proposition 4.3.9 follows immediately from Proposition 4.3.12 and Lemmas 4.3.13–4.3.15.

4.3.5. Proof of Proposition 4.3.10

Let Vi = σ−1(i) for i ∈ [k]. In order to estimate the number of complete vertices, we need to get a

handle on two events. First, the event that a vertex v ∈ Vi fails to have a neighbour in some colour

class Vj with j 6= i. Second, the event that, given that v has at least one neighbour in colour class

Vj , it indeed has a neighbour inside the core. More precisely, with W,Y the sets defined in (4.58)

and (4.59), it suffices to bound the probability that all neighbours of v in Vj lie in W ∪ Y . This is

because V \ (W ∪ Y ) is contained in the core by Proposition 4.3.12.

Thus, let S0 be the set of vertices that fail to have a neighbour in at least one colour class other than

their own in G(σ, µ). Moreover, let S1 be the set of vertices v 6∈ S0 such that for some colour i 6= σ(v)

all neighbours of v in Vi belong to Wi.

Proposition 4.3.16. If v is a 1-free vertex, then one of the following three statements is true.

P1 v ∈ S0.
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P2 v ∈ S1.

P3 v has a neighbour in Y .

Proof. Let v be a vertex that satisfies none of (P1)–(P3). Let j ∈ [k] \ {σ(v)}. Since v 6∈ S0, v has at

least one neighbour in Vj . In fact, as v 6∈ S1, v has a neighbour w ∈ Vj \W . Furthermore, because v

does not have a neighbour in Y , we have w ∈ V \ (W ∪Y ). Proposition 4.3.12 implies that w belongs

to the (σ, `)-core, which means that v is not 1-free.

Thus, in order to prove Proposition 4.3.10 it suffices to estimate |S0|, |S1| and the number of ver-

tices that satisfy (P3). These estimates employ the binomial approximation to the hypergeometric

distribution provided by Lemma 1.0.8.

Lemma 4.3.17. With probability at least 1−O(1/n) we have |S0| ≤ n
k (1 + Õk(1/k)).

Proof. Let us fix i, j ∈ [k], i 6= j, and v ∈ Vj . Let S0ij be the set of all v ∈ Vi that do not have a

neighbour in Vj in G(σ, µ). Given the number dnµij of Vi-Vj-edges, the actual set of clones in Vi× [d]

that Γσ,µ joins to a clone in Vj×[d] is uniformly distributed. Hence, Lemma 1.0.8 applies: let (bv)v∈Vi
be a family of independent Bin(d, pij) random variables with pij = kµij ∼ (k − 1)−1. Moreover, let

qij = P [Bin(d, pij) = 0] ∼ (1− 1/(k − 1))d.

Then with Ŝ0ij a random variable with distribution Bin(n/k, qij) we have

P [|S0ij | ≥ t] ≤ O(
√
n) · P

[
Ŝ0ij ≥ t

]
for all t ≥ 0. (4.67)

Since by our assumption (4.9) on d we have

qij ∼ (1− 1/(k − 1))d ≤ exp(−d/(k − 1)) ≤ k−2 + Õk(k
−3),

we see that E[Ŝ0ij ] ≤ n(k−3 + Õk(k
−4)) for all i 6= j. Hence, by the Chernoff bound we have

P
[
Ŝ0ij ≥ n(k−3 + Õk(k

−4))
]

= o(n−2).

Summing over all i 6= j and using (4.67), we thus obtain P[|S0| ≤ n(k−1 + Õk(k
−2))] ≥ 1 −

O(1/n).

To bound the size of S1, consider first for every vertex v ∈ Vi and every set of colours J ⊂ [k] \ {i}
the event Bv,J = {e(v,

⋃
j∈J Vj) ≤ 5}. Let Bi,J be the number of vertices v ∈ Vi for which the event

Bv,J occurs.
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4. On the chromatic number of random regular graphs

Lemma 4.3.18. For any set J of size |J | ≤ 2 we have

P
[
Bi,J ≤

n

k
· Õk(k−2|J |)

]
≥ 1− exp(−Ω(n)). (4.68)

Proof. Let j ∈ J . Given µij , the set of clones in Vi × [d] that Γσ,µ links to Vj × [d] is uniformly

distributed and therefore the the set of clones in Vi × [d] that Γσ,µ links to
⋃
j∈J Vj × [d] is. Thus,

Lemma 1.0.8 applies: let (bv,J)v∈Vi be a family of independent random variables with distribution

Bin(d, piJ), where piJ =
∑

j∈J kµij ∼ |J |(k − 1)−1. Let B̂i,J be the number of vertices v such that

bv,J ≤ 5. Therefore, Lemma 1.0.8 yields

P [Bi,J ≥ t] ≤ O(n1/2) · P
[
B̂i,J ≥ t

]
for any t ≥ 0. (4.69)

Furthermore, because the random variables (bv,J) are independent and E [bv,j ] = dpiJ ≥ 2 ln k, the

Chernoff bound yields

P
[
B̂i,J ≤

n

k
· Õk(k−2|J |)

]
≥ 1− exp(−Ω(n)). (4.70)

Thus, (4.68) follows from (4.69) and (4.70).

Corollary 4.3.19. With probability at least 1− o(n−1) we have |S1| ≤ n · Õk(k−2).

Proof. Let i, j ∈ [k], i 6= j. By Lemma 4.3.13 we may assume that |Wj | ≤ Õk(k−2)n. Hence,

eG(σ,µ)(Vi,Wj) ≤ Õk(k−2)n,

because eG(σ,µ)(w, Vi) = Ok(ln k) for all w ∈Wj by the definition of Wj . By comparison,

eG(σ,µ)(Vi, Vj) = dnµij ∼ dn/ (k(k − 1)) .

Now, condition on the event that eG(σ,µ)(Vi,Wj) = wij for some specific number wij = Õk(k
−2)n.

In addition, let (evj)v∈Vi be a sequence of non-negative integers such that
∑

v∈Vi evj = dnµij , and

condition on the event that eG(σ,µ)(v, Vj) = evj for all v ∈ Vi. Given this event F = F(wij , {evj}),

we are interested in the random variables fv = eG(σ,µ)(v,Wj), v ∈ Vi. Let (gv)v∈Vi be a family of

independent random variables such that gv has distribution Bin(evj , wij/(dnµij)). Given F , the set

of clones among Vi × [d] that Γσ,µ matches to Wj × [d] is simply a random subset of size wij of the

set of clones that get matched to Vj × [d]. Therefore, by Lemma 1.0.8, for any sequence (tv)v∈Vi of
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integers we have

P [∀v ∈ Vi : fv = tv|F ] = P

∀v ∈ Vi : gv = tv

∣∣∣∣ ∑
v∈Vi

gv = wij


≤ O(

√
n) P [∀v ∈ Vi : gv = tv] . (4.71)

Now, let S′1ij be the number of all vertices v ∈ Vi such that all neighbours of v in Vj belong to Wj

and such that eG(σ,µ)(v, Vj) ≥ 5. Moreover, let Ŝ′1ij be the number of v ∈ Vi such that gv = evj ≥ 5.

Because wij/(dnµij) = Õk(k
−1), we find that

E
[
Ŝ′1ij

]
≤ n

k
· Õk(k−5).

Furthermore, Ŝ′1ij is a binomial random variable. Therefore, the Chernoff bound yields

P
[
Ŝ′1ij ≤

n

k
· Õk(k−5)

]
≥ 1− exp(−Ω(n)). (4.72)

Combining (4.71) and (4.72), we obtain

P
[
S′1ij ≤

n

k
· Õk(k−5)|F

]
≥ 1− exp(−Ω(n)). (4.73)

Further, because (4.73) holds for all wij , {evj}, we obtain the unconditional bound

P
[
S′1ij ≤

n

k
· Õk(k−5)

]
≥ 1− exp(−Ω(n)). (4.74)

In addition, let S′′1ij be the number of vertices v ∈ Vi such that all neighbours of v in Vj belong to Wj

and 1 ≤ e(v, Vj) < 5. Because we are conditioning on the numbers evj , the event F determines the

number Bi,{j} of vertices v ∈ Vi with evj = e(v, Vj) < 5. Now, consider the number Ŝ′′1ij of vertices

v ∈ Vi with 1 ≤ evj < 5 such that gv = evj . Then Ŝ′′1ij is a binomial random variable with

E
[
Ŝ′′1ij

]
≤ Bi,{j} · Õk(k−1).

Hence, by the Chernoff bound

P
[
Ŝ′′1ij ≤ Bi,{j} · Õk(k−1) + n2/3|F

]
≥ 1− o(n−2). (4.75)

Combining (4.71) and (4.75), we find

P
[
S′′1ij ≤ Bi,{j} · Õk(k−1) + n2/3|F

]
≥ 1− o(n−1).
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Thus, Lemma 4.3.18 yields the unconditional bound

P
[
S′′1ij ≤ n · Õk(k−4)

]
≥ 1− o(n−1). (4.76)

Combining (4.74) and (4.76) and using the union bound, we obtain

P

|S1| ≤
∑

i,j∈[k]:i 6=j

S′1ij + S′′1ij ≤ n · Õk(k−2)

 ≥ 1− o(n−1),

as claimed.

Lemma 4.3.20. With probability at least 1− exp(−Ω(n)) there are no more than nk−26 vertices that

have a neighbour in Y .

Proof. Lemma 4.3.15 shows that with probability 1 − exp(−Ω(n)) we have |Y | ≤ nk−29. In this

case, the number of neighbours of vertices in Y is bounded by d|Y | ≤ nk−27, because all vertices

have degree d ≤ 2k ln k. Thus, P
[
|Y ∪N(Y )| ≤ nk−26

]
≥ 1− exp(−Ω(n)).

Proof of Proposition 4.3.10. Since Proposition 4.3.16 shows that any 1-free vertex satisfies one of the

conditions (P1)–(P3), Lemmas 4.3.17–4.3.20 imply that with probability 1 − O(1/n) the number of

1-free vertices is bounded by n(k−1 + Õk(k
−2)). This establishes the first assertion.

Let v be a vertex that satisfies none of (P2) and (P3) and has no neighbour in at most one colour class

other than its own in G(σ, µ). In a similar argument as in the proof of Proposition 4.3.16 we conclude

that v is not 2-free. To bound the number of 2-free vertices we let i ∈ [k], let J ⊂ [k] \ {i} be a set

of size |J | = 2 and let Ti,J be the number of vertices v ∈ Vi that fail to have a neighbour in
⋃
j∈J Vj .

Then Ti,J ≤ Bi,J . Therefore, Lemma 4.3.18 implies that

P
[
Ti,J ≤

n

k
· Õk(k−4)

]
≥ 1− exp(−Ω(n)). (4.77)

Furthermore, by Corollary 4.3.19 and Lemma 4.3.20 with probability 1 − O(1/n) the number of

vertices that satisfy either (P2) or (P3) is bounded by nÕk(k−2) and thus the total number T of 2-free

vertices satisfies

T ≤ nÕk(k−2) +

k∑
i=1

∑
J⊂[k]\{i}:|J |=2

Ti,J . (4.78)

Combining (4.77) and (4.78) and using the union bound, we thus obtain the desired bound.

Let v be a vertex that satisfies none of (P1)–(P3). Let j ∈ [k] \ {σ(v)}. Since v 6∈ S0, v has at least

one neighbour in Vj . In fact, as v 6∈ S1, v has a neighbour w ∈ Vj \W . Furthermore, because v does
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not have a neighbour in Y , we have w ∈ V \ (W ∪ Y ). Proposition 4.3.12 implies that w belongs to

the (σ, `)-core, which means that v is not 1-free.

4.4. The second moment

Throughout this section, we assume that k divides n and that d satisfies (4.9).

4.4.1. Outline

In this section we complete the proof of the first part of Theorem 3.1.1 (the upper bound on the

chromatic number ofG(n, d)). The key step is to carry out a second moment argument for the number

Zk,good of good k-colourings. Let B be the set of all balanced maps σ : V → [k] and let R =

{ρ(σ, τ) : σ, τ ∈ B} be the set of all possible overlap matrices (as defined in (4.10)). For each ρ ∈ R
we consider

Zρ,good = |{(σ, τ) : σ, τ are good k-colourings ρ(σ, τ) = ρ}| and

Zρ,bal = |{(σ, τ) : σ, τ are balanced k-colourings with ρ(σ, τ) = ρ}| ≥ Zρ,good.

Because the second moment E[Z2
k,good] of the number of good k-colourings of G(n, d) is nothing but

the expected number of pairs of good k-colourings, we have the expansion

E
[
Z2
k,good

]
=

∑
ρ∈R

E [Zρ,good] . (4.79)

The second moment argument for the number Zρ,bal of balanced k-colourings of G(n, d) carried out

in [82] does not work for the (entire) range of d in Theorem 3.1.1. However, an important part of

that argument does carry over to this entire range of d. More precisely, we can salvage the following

estimate of the contribution of ρ “close” to the flat matrix ρ̄ = 1
k1 with all entries equal to 1/k.

Proposition 4.4.1 ([82, eq. (3.14)]). Let

R̄ =
{
ρ ∈ R : ‖ρ− ρ̄‖∞ ≤ n

−1/2 ln2/3 n
}
. (4.80)

Then with δj , λj as in (4.8) we have

∑
ρ∈R̄

E [Zρ,bal] ≤ (1 + o(1))E [Zk,bal]
2 · exp

 ∞∑
j=1

λjδ
2
j

 .
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4. On the chromatic number of random regular graphs

Of course, to estimate the right-hand side of (4.79), we also need to estimate the contribution of

overlaps ρ 6∈ R̄. To this end, we are going to establish an explicit connection between (4.79) and the

second moment argument for GER(n,m) performed in [47]. As in [10, 47], we define for a doubly-

stochastic k × k matrix ρ = (ρij)i,j∈[k] the functions

f(ρ) = H(ρ/k) + E(ρ), where

H(ρ/k) = ln k −
k∑

i,j=1

ρij
k

ln ρij is the entropy of the distribution ρ/k = (ρij/k)i,j∈[k], and

E(ρ) =
d

2
ln

1− 2

k
+

1

k2

k∑
i,j=1

ρ2
ij

 .
In Section 4.4.2 we are going to establish the following bound.

Proposition 4.4.2. For any ρ ∈ R we have E [Zρ,good] ≤ E [Zρ,bal] ≤ nO(1) exp [nf(ρ)].

Similar bounds as Proposition 4.4.2 were derived, somewhat implicitly, in [9, 82]. We include the

proof here because the present argument is substantially simpler than those in [9, 82] and because we

are going to need some details of the calculation later to finish the proof of Theorem 3.1.1.

Thus, we need to bound f(ρ) for ρ ∈ R\R̄. This is precisely the task that was solved in [47] and that

does, indeed, form the technical core of that paper. Hence, let us recap some of the notation from [47].

We start by observing that the definition of “good” entails that a priori Zρ,good = 0 for quite a few

ρ ∈ R\ R̄. More precisely, call a doubly-stochastic matrix ρ separable if for every i, j ∈ [k] such that

ρij > 0.51 we have ρij ≥ 1− κ (with κ as in Definition 4.2.2).

The definition of “good k-colouring” ensures that Zρ,good = 0 unless ρ is separable. Indeed, assume

that there exist balanced k-colourings σ, τ such that ρ(σ, τ) fails to be separable. Then there is a

permutation π of the colours [k] such that 0.51 < ρ11(σ, π ◦ τ) < 1 − κ. Hence, σ is not separable,

and thus not good.

The set of separable matrices can be split canonically into subsets determined by the number of entries

that are greater than 0.51. Let us say that ρ is s-stable if there are precisely s pairs (i, j) ∈ [k] × [k]

such that ρij ≥ 1− κ. Let

Rs,good = {ρ ∈ R : ρ is separable and s-stable for some 0 ≤ s ≤ k − 1} and

Rgood =

k−1⋃
s=0

Rs,good.
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Let us turn the problem of estimating f(ρ) over ρ in the discrete setRgood into a continuous optimiza-

tion problem. As n→∞ the setR of overlap matrices lies dense in the set D of all doubly-stochastic

k × k matrices, the Birkhoff polytope. Furthermore, the setsRs,good andRgood are dense in

Ds,good = {ρ ∈ D : ρ is separable and s-stable for some 0 ≤ s ≤ k − 1} ,

Dgood =
k−1⋃
s=0

Ds,good.

Proposition 4.4.3. For any fixed η > 0 we have

max {f(ρ) : ρ ∈ Dgood such that ‖ρ− ρ̄‖∞ ≥ η} < f(ρ̄).

Proof. This follows from Propositions 4.4–4.6 and Corollary 4.8 in [47]. (In [47] the term “tame” is

used instead of “good”. Thus, the setsDs,good correspond to the setsDs,tame in [47]. Propositions 4.4–

4.6 cover the case that 1 ≤ s < k and Corollary 4.8 deals with k = 0.)

Based on this estimate, we will prove the following bound in Section 4.4.3.

Proposition 4.4.4. We have ∑
ρ∈R0,good\R̄

E [Zρ,bal] = o(E [Zk,bal]
2).

Corollary 4.4.5. The random variable Zk,good has the properties i.–iii. in Theorem 4.1.5. Further-

more, we have ∑
ρ∈R\R̄

E [Zρ,good] = o(E [Zk,good]2). (4.81)

Proof. Corollary 4.2.7 already establishes conditions i.–ii. Recall that condition iii. reads

E
[
Z2
k,good

]
≤ (1 + o(1))E [Zk,good]2 · exp

 ∞∑
j=1

λjδ
2
j

 . (4.82)

Propositions 4.4.1 readily yields

∑
ρ∈R̄

E [Zρ,good] ≤
∑
ρ∈R̄

E [Zρ,bal] ≤ (1 + o(1))E [Zk,bal]
2 · exp

 ∞∑
j=1

λjδ
2
j

 . (4.83)

Additionally, we need to bound the contribution of ρ ∈ R \ R̄.
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4. On the chromatic number of random regular graphs

We start with ρ ∈ Rgood \ R0,good. Any such ρ has an entry ρij ≥ 0.51, whence ‖ρ− ρ̄‖∞ ≥
1
2 .

Therefore, Proposition 4.4.3 implies that there is an n-independent number δ > 0 such that f(ρ) <

f(ρ̄) − δ. (This δ exists because Proposition 4.4.3 is not an asymptotic statement but just a result

concerning the maximum of the n-independent function f over the equally n-independent compact

set Dgood.) Consequently, by Proposition 4.4.2

E [Zρ,good] ≤ exp [f(ρ̄)n− Ω(n)] . (4.84)

Moreover, a direct calculation yields

f(ρ̄) = 2 ln k + d ln(1− 1/k) ∼ 2

n
ln E [Zk,bal] [by Proposition 4.2.4]. (4.85)

Combining (4.84) and (4.85), we obtain

E [Zρ,good] ≤ E [Zk,bal]
2 · exp [−Ω(n)] .

Because the entire setR of overlap matrices has size |R| ≤ nk2
(with room to spare), we thus obtain∑

ρ∈Rgood\R0,good

E [Zρ,good] ≤ nk
2
E [Zk,bal]

2 · exp [−Ω(n)] = o(E [Zk,bal]
2). (4.86)

Further, if Zρ,good > 0 for some ρ 6∈ Rgood, then ρ must be k-stable (because Rgood contains all

separable overlap matrices that are s-stable for some s < k). Thus, let Rk be the set of all k-stable

ρ ∈ R. If σ, τ are balanced k-colourings such that ρ(σ, τ) is k-stable, then there is a permutation λ of

[k] such that λ ◦ τ ∈ C(σ). Therefore, letting σ range over good k-colourings of G(n, d), we obtain

from the upper bound on |C(σ)| imposed in Definition 4.2.3

E

∑
ρ∈Rk

Zρ,good

 ≤ E

[∑
σ

k!|C(σ)|

]
≤ k!

n
· E [Zk,bal] E [Zk,good] = o(E [Zk,bal]

2).(4.87)

Finally, combining (4.83), (4.86), (4.87) and Proposition 4.4.4, we see that

E
[
Z2
k,good

]
≤ (1 + o(1))E [Zk,bal]

2 · exp

 ∞∑
j=1

λjδ
2
j

+ o(E [Zk,bal]
2) (4.88)

Furthermore, as E[Zk,bal] ∼ E[Zk,good] by Proposition 4.2.6, (4.88) yields

E
[
Z2
k,good

]
≤ (1 + o(1))E [Zk,good]2 · exp

 ∞∑
j=1

λjδ
2
j

+ o(E [Zk,good]2). (4.89)
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Recalling the values of λj , δj from (4.8), we see that the sum
∑∞

j=1 λjδ
2
j converges. Therefore, (4.89)

implies (4.82).

Together with Theorem 4.1.5, Corollary 4.4.5 implies that G(n, d) is k-colourable w.h.p. in the case

that k divides n. In Section 4.4.4 we are going to provide a supplementary argument that allows us to

extend this result also to the case that the number of vertices is not divisible by k, thereby completing

the proof of the first part of Theorem 3.1.1. But before we come to that, let us prove Propositions 4.4.2

and 4.4.4 (under the assumption that k divides n).

4.4.2. Proof of Proposition 4.4.2

Let ρ be a doubly-stochastic k×k matrix. Moreover, let µ = (µijst)i,j,s,t∈[k] have entries in [0, 1]. We

call (ρ, µ) a compatible pair if the following conditions are satisfied.

• n
kρij is an integer for all i, j ∈ [k].

• dnµijst is an integer for all i, j, s, t ∈ [k].

• We have

µijst = µstij , µijit = 0, µijsj = 0 ∀i, j, s, t ∈ [k] , (4.90)

k∑
s,t=1

µijst = ρij/k ∀i, j ∈ [k] . (4.91)

If (ρ, µ) is a compatible pair, then (4.91) ensures that ( 1
kρ, µ) is (d, n)-admissible (cf. Section 4.1.2), if

we view 1
kρ as a probability distribution on [k]×[k] and µ as a probability distribution on ([k]×[k])2 =

[k]4.

Let us also say that a pair (σ, τ) of k-colourings of a multi-graph G has type (ρ, µ) if ρ(σ, τ) = ρ and

eG(σ−1(i) ∩ τ−1(j), σ−1(s) ∩ τ−1(t)) = µijstdn for all i, j, s, t ∈ [k] .

Let Zρ,µ be the number of pairs of k-colourings of G(n, d) of type (ρ, µ). Recall that H (·) denotes

the entropy. Applied to the notion of compatible pairs, Corollary 4.1.3 directly yields

Fact 4.4.6. Let (ρ, µ) be a compatible pair. Then

1

n
ln E [Zρ,µ] = H

(ρ
k

)
− d

2
DKL

(
µ,
ρ

k
⊗ ρ

k

)
+O(lnn/n).

To proceed, we need to rephrase the bound provided by Fact 4.4.6 in terms of the function f(ρ).
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Corollary 4.4.7. Let (ρ, µ) be a compatible pair. Let F = {(i, j, s, t) ∈ [k]4 : i = s ∨ j = t} and

define

ρ̂ =

(
ρijρst1(i,j,s,t)6∈F

k2 − 2k + ‖ρ‖22

)
i,j,s,t∈[k]

. (4.92)

Then ρ̂ is a probability distribution on [k]4 and

1

n
ln E [Zρ,µ] = f(ρ)− d

2
DKL (µ, ρ̂) +O(lnn/n).

Proof. Because ρ is doubly-stochastic, we have∑
(i,j,s,t) 6∈F

ρijρst =
∑

i,j,s,t∈[k]

ρijρst −
∑

(i,j,s,t)∈F

ρijρst

= k2 −
∑

i,j,t∈[k]

ρijρit −
∑

i,j,s∈[k]

ρijρsj +
k∑

i,j=1

ρ2
ij = k2 − 2k + ‖ρ‖22 .

Thus, ρ̂ is a probability distribution. Moreover,

DKL

(
µ,
ρ

k
⊗ ρ

k

)
+ ln(1− 2/k + k−2 ‖ρ‖22)

=
∑

i,j,s,t∈[k]

µijst

[
ln

(
k2µijst
ρijρst

)
+ ln(1− 2/k + k−2 ‖ρ‖22)

]
[as
∑

i,j,s,t∈[k] µijst = 1]

=
∑

(i,j,s,t) 6∈F

µijst ln

(
µijst ·

k2 − 2k + ‖ρ‖22
ρijρst

)
[due to (4.90)]

= DKL (µ, ρ̂) .

The assertion thus follows from Fact 4.4.6.

Proof of Proposition 4.4.2. Let ρ ∈ R and letM(ρ) be the set of all probability distributions µ on

[k]4 such that (ρ, µ) is a compatible pair. Then

Zρ,bal =
∑

µ∈M(ρ)

Zρ,µ. (4.93)
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Furthermore, |M(ρ)| ≤ (dn)k
4

because of the requirement that µijstdn be integral for all i, j, s, t ∈
[k]. Hence,

1

n
ln E [Zρ,bal] ≤

1

n
ln |M(ρ)|+ 1

n
max

µ∈M(ρ)
ln E [Zρ,µ] = O(lnn/n) +

1

n
max

µ∈M(ρ)
ln E [Zρ,µ] . (4.94)

Since DKL (µ, ρ̂) ≥ 0 for any µ, Corollary 4.4.7 yields

1

n
max

µ∈M(ρ)
ln E [Zρ,µ] ≤ f(ρ) +O(lnn/n). (4.95)

The assertion is immediate from (4.94) and (4.95).

4.4.3. Proof of Proposition 4.4.4

We begin by estimating f(ρ) for ρ close to ρ̄. The proof of the following lemma is based on consider-

ing the first two differentials of f at the point ρ̄; a very similar calculation appears in [47].

Lemma 4.4.8. There is a number η > 0 (independent of n) such that for all

ρ ∈ R̃0 = {ρ ∈ R0 : ‖ρ− ρ̄‖∞ < η}

we have f(ρ) ≤ f(ρ̄)− 1
4 ‖ρ− ρ̄‖

2
2 .

Proof. By construction, we have
∑k

i,j=1 ρij = k for all ρ ∈ R. Therefore, we can parametrize the set

R as follows. Let

L : [0, 1]k
2−1 → [0, 1]k

2

, ρ̂ = (ρ̂ij)(i,j)∈[k]2\{(k,k)} 7→ L(ρ̂) = (Lij(ρ̂))i,j∈[k]

where

Lij(ρ̂) =

{
ρ̂ij if (i, j) 6= (k, k)

k −
∑

(s,t) 6=(k,k) ρ̂st if i = j = k.

Let R̂0 = L−1(R̃0). Then L induces a bijection R̂0 → R̃0.

It is straightforward to compute the first two differentials of f ◦ L = H ◦
(

1
kL
)

+E ◦ L. The result is

that the first differential D(f ◦ L) equals zero at ρ̄. Furthermore, for ρ̂ ∈ R̂0 the second differential is
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given by

∂2f ◦ L
∂ρ̂2

ij

(ρ̂) = −1

k

[
1

Lij(ρ̂)
+

1

Lkk(ρ̂)

]
+Ok(ln k/k) (i, j ∈ [k − 1])

∂2f ◦ L
∂ρ̂ij∂ρ̂ab

(ρ̂) = − 1

kLkk(ρ̂)
+ Õk(ln k/k) (a, b, i, j ∈ [k − 1] , (a, b) 6= (i, j)).

Evaluated at ρ̄ we find

∂2f ◦ L
∂ρ̂2

ij

(ρ̄) = − 2

k2
(i, j ∈ [k − 1])

∂2f ◦ L
∂ρ̂ij∂ρ̂ab

(ρ̄) = − 1

k2
(a, b, i, j ∈ [k − 1] , (a, b) 6= (i, j))

which is the sum of a negative multiple of the identity matrix and a negative multiple of the all-ones

matrix which is negative-definite with all eigenvalues smaller than −1/2. Thus, for η > 0 sufficiently

small the Hessian D2(f ◦ L) is also negative-definite with all eigenvalues smaller than −1/2. Hence,

the assertion follows from Taylor’s theorem.

Proof of Proposition 4.4.4. Assume that ρ ∈ R0,good \ R̄. We claim that

f(ρ) ≤ f(ρ̄)− Ω(n−1 ln4/3 n). (4.96)

To see this, let η > 0 be the (n-independent) number promised by Lemma 4.4.8. We consider two

cases.

Case 1 ‖ρ̄− ρ‖∞ < η. By the definition (4.80) of R̄ and as ρ 6∈ R̄, we have

‖ρ− ρ̄‖∞ ≥ n
− 1

2 ln
2
3 n.

Moreover, because ‖ρ̄− ρ‖∞ < η, Lemma 4.4.8 applies and yields

f(ρ)− f(ρ̄) ≤ −1

4
‖ρ̄− ρ‖22 ≤ −

1

4
‖ρ̄− ρ‖2∞ ≤ −n

−1/4 ln4/3 n,

as desired.

Case 2 ‖ρ̄− ρ‖∞ ≥ η. Since η > 0 remains fixed as n → ∞, Proposition 4.4.3 yields an n-

independent number ξ = ξ(η) > 0 such that f(ρ) ≤ f(ρ̄) − ξ. Hence, (4.96) is satisfied

with room to spare.
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Finally, plugging (4.96) into Proposition 4.4.2, we obtain∑
ρ∈R0,good\R̄

E [Zρ,bal] ≤ |R0,good| · max
ρ∈R0,good\R̄

E [Zρ,bal]

≤ nO(1) · max
ρ∈R0,good

exp(f(ρ)n) [asR0,good ≤ |R| ≤ nk
2
]

≤ exp(f(ρ̄)n− Ω(ln4/3)) = o(E [Zk,bal]
2),

as claimed.

4.4.4. Proof of Theorem 3.1.1 (part 1)

Corollary 4.4.5 shows that Zk,good(G(n, d)) satisfies the assumptions of Theorem 4.1.5, which there-

fore implies that G(n, d) is k-colourable w.h.p. for n divisible by k. To also deal with the case that

the number of vertices is not divisible by k, we need a few definitions. Recall from Section 4.2 that a

balanced k-colouring σ of G(n, d) is skewed if

max
1≤i<j≤k

∣∣∣∣eG(n,d)(σ
−1(i), σ−1(j))− dn

k(k − 1)

∣∣∣∣ > √n lnn.

In addition, a skewed pair is a pair (σ, τ) of good k-colourings such that either

‖ρ(σ, τ)− ρ̄‖∞ > n−
1
2 ln2/3 n or

max
i,j,s,t∈[k]:i 6=s,j 6=t

∣∣∣∣eG(n,d)(σ
−1(i) ∩ τ−1(j), σ−1(s) ∩ τ−1(t))− dn

k2(k − 1)2

∣∣∣∣ >
√
n lnn.

The following lemma paraphrases the argument from [82, Section 4].

Lemma 4.4.9. Assume that for n divisible by k the following is true.

1. The random variable Zk,good satisfies the conditions i.—iii. of Theorem 4.1.5.

2. The expected number of skewed k-colourings is o(E [Zk,good]).

3. The expected number of skewed pairs is o(E [Zk,good]2).

Then G(n+ z, d) is k-colourable w.h.p. for any 0 ≤ z < k such that d(n+ z) is even.

Proof of Theorem 3.1.1, part 1. Due to Lemma 4.1.1 we just need to verify the assumptions of

Lemma 4.4.9. Corollary 4.4.5 readily implies the first assumption. Furthermore, the second assertion

follows from Corollary 4.2.5 and Proposition 4.2.6.

79



4. On the chromatic number of random regular graphs

With respect to the third assertion, we call from (4.81) that∑
ρ:‖ρ−ρ̄‖∞>n−1/2 ln2/3 n

E [Zρ,good] = o(E [Zk,good]2). (4.97)

Now, assume that ρ satisfies ‖ρ− ρ̄‖∞ ≤ n−1/2 ln2/3 n. Let µ = (µijst)i,j,s,t∈[k] be such that (ρ, µ)

is a compatible pair. Let Zρ,µ be as in Section 4.4.2 and let ρ̂ be as in (4.92). Then (4.93) and

Corollary 4.4.7 yield

1

n
ln E [Zρ,bal] =

1

n
ln

∑
µ∈M(ρ)

Zρ,µ ≥
1

n
lnZρ,ρ̂ = f(ρ) +O(lnn/n). (4.98)

Thus, by Proposition 4.4.2 and again Corollary 4.4.7 equation (4.98) yields

E [Zρ,µ] = nO(1)E [Zρ,bal] exp

[
−dn

2
DKL (µ, ρ̂)

]
. (4.99)

Suppose that i, j, s, t ∈ [k], i 6= s, j 6= t are indices such that |µijst − k−2(k − 1)−2| > n−1/2

d lnn.

Since ‖ρ− ρ̄‖∞ ≤ n−1/2 ln2/3 n, we have

|µijst − ρ̂ijst| = Ω
(
n−1/2 lnn

)
.

Therefore, Fact 1.0.3 implies that DKL (µ, ρ̂) = Ω(ln2 n/n) since the hidden constant

ξ = min
x∈X :µ(x)>0

µ(x)

is uniform for all ρ̂. Hence, (4.99) yields

E [Zρ,µ] = nO(1)E [Zρ,bal] exp
[
−Ω(ln2 n)

]
= E [Zρ,bal] exp

[
−Ω(ln2 n)

]
. (4.100)

Since the number of possible matrices µ is bounded by nk
4
, (4.100) entails that the number Z ′ρ of

skewed pairs (σ, τ) with overlap ρ satisfies

E
[
Z ′ρ
]
≤ nk

4 · E [Zρ,bal] exp
[
−Ω(ln2 n)

]
= E [Zρ,bal] exp

[
−Ω(ln2 n)

]
. (4.101)

Since
∑

ρ∈R̄ E [Zρ,bal] = O(E [Zk,bal]
2) by Proposition 4.4.1, (4.97), (4.101) and Proposition 4.2.6

imply that the total expected number of skewed pairs is o(E [Zk,good]2), as desired.
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4.5. The Lower Bound on the Chromatic Number

4.5.1. Outline

The goal in this section is to establish the second part of Theorem 3.1.1, i.e., the lower bound on the

chromatic number of χ(G(n, d)). More precisely, we are going to show that with

d+ = (2k − 1) ln k − 1 + 3 ln−1/4 k,

the random multi-graph G(n, d) fails to be k-colourable w.h.p. for d > d+. Then Lemma 4.1.1 implies

that the same is true of G(n, d). To get started, we recall the upper bound on the expected number of

k-colourings of G(n, d). This bound has been attributed to Molloy and Reed [105]. We include the

simple calculation here for the sake of completeness. For a probability distribution ρ = (ρ1, . . . , ρk)

on [k] let Zρ denote the number of k-colourings σ of G(n, d) such that |σ−1(i)| = ρin for all i ∈ [k].

From here on we exclude the cases where ρi = 1 for some i ∈ [k] since there exists no such
k-colouring in G(n, d).

Lemma 4.5.1. We have

1

n
ln E[Zρ] = H(ρ) +

d

2
ln(1− ‖ρ‖22) +O(lnn/n). (4.102)

Proof. Let M be the set of all probability distributions µ on [k] × [k] such that (ρ, µ) is (d, n)-

admissible (as defined in Section 4.1.2). Moreover, for any µ ∈ M let Zρ,µ be the number of k-

colourings of G(n, d) such that
∣∣σ−1(i)

∣∣ = ρin for all i ∈ [k] and such that eG(n,d)(σ
−1(i), σ−1(j)) =

dnµij for all i, j ∈ [k]. Then Fact 1.0.3 and Corollary 4.1.4 yield

1

n
ln E [Zρ,µ] = H(ρ) +

d

2
ln(1− ‖ρ‖22)− d

2
DKL (µ, ρ̂) +O(lnn/n) for any µ ∈M. (4.103)

Since |M | ≤ (dn)k
2

(as dnµij must be an integer for all i, j), (4.103) implies together with Fact 1.0.3

that
1

n
ln E[Zρ] =

1

n
ln
∑
µ∈M

E [Zρ,µ] = H(ρ) +
d

2
ln(1− ‖ρ‖22) +O(lnn/n),

as claimed.

Corollary 4.5.2. We have

1

n
ln E [Zk−col] = ln k +

d

2
ln(1− 1/k) +O(lnn/n).
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Furthermore, if d ≥ (2k − 1) ln k, then E[Zk−col] ≤ exp(−Ω(n)).

Proof. Let ρ be a probability distribution on [k] and let Zρ be as in Lemma 4.5.1. Clearly, the entropy

H(ρ) is maximized if ρ = 1
k1 is the uniform distribution. The uniform distribution ρ = 1

k1 also

happens to minimize ‖ρ‖22. Therefore, (4.102) implies that for any probability distribution ρ we have

1

n
ln E [Zρ] ≤ ln k +

d

2
ln(1− 1/k) +O(lnn/n), (4.104)

with equality in the case that
∥∥ρ− 1

k1
∥∥
∞ = O(n−1/2). Since the number of possible distributions ρ

such that ρin is an integer for all i ∈ [k] is bounded by nk, (4.104) implies that

1

n
ln E [Zk−col] = ln k +

d

2
ln(1− 1/k) +O(lnn/n).

Furthermore, for d ≥ (2k − 1) ln k the elementary inequality ln(1− z) ≤ −z − z2/2− z3/3 yields

1

n
ln E [Zk−col] ≤ ln k − d

2

(
1

k
+

1

2k2
+

1

3k3

)
+O(lnn/n)

≤ −
(

1

12k2
− 1

6k3

)
ln k +O(lnn/n) < 0,

as desired.

Due to Corollary 4.5.2, we may assume in the following that d is the unique integer satisfying

d+ ≤ d < (2k − 1) ln k.

Corollary 4.5.2 shows that for this d the first moment is

1

n
ln E[Zk−col] = ln k +

d

2
ln(1− 1/k) + o(1) ≤ ln k − d

2

(
1

k
+

1

2k2

)
+ Õk(k

−2)

≤ 1

2k
− 3

2k ln1/4 k
+ Õk(k

−2). (4.105)

The fact that the right-hand side is positive is not an “accident”: indeed the first moment E[Zk−col] is

generally exponentially large in n for this d. Therefore, the standard first moment argument does not

suffice to prove that χ(G(n, d)) > k w.h.p.

Instead, we develop an argument that takes the geometry of the set of k-colourings into account; this

argument is similar in spirit to the one used in [42, Appendix B]. We already saw that the k-colourings

of G(n, d) come in clusters of exponential size. Roughly speaking, the volume of these clusters is

what drives up the first moment, even though G(n, d) does not have a single k-colouring w.h.p. To
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overcome this issue, we are going to perform a first moment argument that takes the cluster volumes

into account. To implement this idea, we need the following

Definition 4.5.3. Let σ be a k-colouring of a multi-graph G and let p ∈ [0, 1].

1. A vertex v is rainbow if for every colour i ∈ [k] \ {σ(v)} there is a neighbour w of v with

σ(w) = i.

2. We call σ p-rainbow if precisely pn vertices are rainbow.

For two (not necessarily balanced) k-colourings σ, τ of G(n, d) we define the overlap ρ(σ, τ) just as

in (4.10). Similarly, we define the cluster

C∗(σ) = {τ : τ is a k-colouring with ρii(σ, τ) > 0.51 for all i ∈ [k]} .

(The difference between C(σ) as defined in (4.11) and C∗(σ) is that the former only contains balanced

k-colourings.)

A priori, the definition of C∗(σ) does not ensure that the clusters of two colourings σ, τ are either

disjoint or identical. In order to enforce that this is indeed the case, we are going to show that we may

confine ourselves to “nice” k-colourings with certain additional properties.

Definition 4.5.4. Let σ be a k-colouring of G(n, d). We call σ nice if the following three conditions

are satisfied.

1. Let ρ = (ρi)i∈[k] be the vector with entries ρi = |σ−1(i)|/n. Then

∥∥ρ− k−11
∥∥

2
< k−1 ln−

1
3 k. (4.106)

2. Let µ = (µij)i,j∈[k] be the matrix with entries µij = eG(n,d)(σ
−1(i), σ−1(j))/dn. Moreover, let

µ̄ = (µ̄ij)i,j∈[k] be the matrix with entries µ̄ij = 1i 6=jk
−1(k − 1)−1. Then

‖µ− µ̄‖2 < 8k−1(k − 1)−1 ln−
1
3 k. (4.107)

3. If τ ∈ C∗(σ) is a k-colouring such that∣∣∣|τ−1(i)| − n

k

∣∣∣ < 2n

k(ln k)1/3
for all i ∈ [k]

then the overlap matrix satisfies ρii(σ, τ) ≥ 0.9 for all i ∈ [k].

Hence, in a nice colouring all the colour classes have size about n/k and the edge densities between
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different colour classes are approximately uniform. Let Z ′ be the number of k-colourings of G(n, d)

that fail to be nice. In Section 4.5.2 we are going to derive the following bound.

Proposition 4.5.5. We have 1
n ln E[Z ′] ≤ −1

4k
−1 ln

1
3 k.

Furthermore, in Section 4.6 we are going to establish the following proposition, which yields the

expected number of nice p-rainbow k-colourings and effectively puts a lower bound on the cluster

size of a nice p-rainbow k-colouring. Let Zp denote the number of nice p-rainbow k-colourings of

G(n, d). Let us call a k-colouring σ of G(n, d) p-heavy if it is nice, p-rainbow and if

|C∗(σ)| ≥ 2nyp , where we let yp = (1− p)(1− ln−1/3 k). (4.108)

Let Z ′′p be the number of nice p-rainbow k-colourings that fail to be p-heavy. Further, let Z ′′ =∑
p∈[0,1] Z

′′
p , where it is understood that the sum runs over those p ∈ [0, 1] such that pn is an integer.

Thus, Z ′′ is the number of nice k-colourings that are p-rainbow for some p ∈ [0, 1] whose cluster is

to small with respect to p. The following proposition shows that this number is actually small. Set

∆ = [1− 20
k , 1−

1
20k ].

Proposition 4.5.6. Let p ∈ [0, 1] be such that np is an integer.

1. We have 1
n ln E [Z ′′] ≤ − 1

4k .

2. If p ∈ ∆, then 1
n ln E [Zp] ≤ ln k + d

2 ln(1− k−1)−DKL(p, 1− 1/k) +Ok(k
−1 ln−7/8 k).

3. If p 6∈ ∆, then 1
n ln E [Zp] ≤ − 1

4k .

Proof of Theorem 3.1.1, part 2 (assuming Propositions 4.5.5 and 4.5.6). We are going to show that

the probability that there exists a k-colouring tends to zero. To this end, let Z ′′′ be the number of

k-colourings that are p-heavy for some p /∈ ∆. By Propositions 4.5.5 and 4.5.6 we have

P[Z ′ + Z ′′ + Z ′′′ > 0] ≤ E[Z ′] + E[Z ′′] + E[Z ′′′] ≤ 3 exp(−n/(4k)) = o(1). (4.109)

Due to (4.109), we are left to bound the number of p-heavy k-colourings for p ∈ ∆. The basic idea

is as follows. By the very definition (4.108) of “p-heavy”, each such k-colouring belongs to a cluster

of size at least 2nyp . If all k-colourings in this cluster were p-rainbow, then by Markov’s inequality

the probability that G(n, d) has a p-heavy k-colouring would be bounded by 2−nypE[Zp]. One could

verify easily that 2−nypE[Zp] = exp(−Ω(n)). Therefore, summing over all O(n) possible values

of p, we obtain that w.h.p. G(n, d) does not feature a p-heavy k-colouring whose cluster consists of

p-rainbow k-colourings only. However, this argument does not rule out the existence of p-heavy k-

colourings whose clusters contain colourings that are p̃-rainbow for some p̃ ∈ ∆ \ {p}. To eliminate
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this possibility as well, we are going to partition the interval ∆ into successive sub-intervals and argue

inductively about the values of p in the sub-intervals.

The first sub-interval is [1 − 20/k, p̄], where we let p̄ = 1 − 3
4k . Thus, let Z(0) be the number of

k-colourings of G(n, d) that are p-heavy for some p ∈ [1 − 20/k, p̄]. If p ∈ [1 − 20/k, p̄], then a

p-heavy k-colouring σ comes with a cluster of size at least |C∗(σ)| ≥ 2nyp ≥ 2nyp̄ . In particular, if

Z(0) > 0, then Zk−col ≥ 2nyp̄ . Therefore, by Markov’s inequality

P[Z(0) > 0] ≤ P[Zk−col ≥ 2nyp̄ ] ≤ E[Zk−col]2
−nyp̄ .

Hence, by the first moment bound (4.105) and the choice of p̄,

P[Z(0) > 0] ≤ exp
[
n
(
(2k)−1 − yp̄ ln 2

)]
≤ exp

[
n

k

(
1

2
− 3 ln 2

4
+ ok(1)

)]
= exp(−Ω(n)).

(4.110)

To define the other sub-intervals, fix a strictly increasing sequence (p0, . . . , ps) with s ≤ 8k such that

p0 = p̄, ps = 1− 1/(20k) and |pj − pj+1| ≤ 8−k for all 0 ≤ j < s. (4.111)

For j ≥ 1 let Z(j) be the number of k-colourings that are p-heavy for some p ∈ (pj−1, pj ]. We are

going to show that Z(j) = 0 w.h.p. for all j ≤ s. In fact, since the total number of intervals is bounded

as n→∞, it suffices to prove that

P[Z(j) > 0] = o(1) for each 0 ≤ j ≤ s. (4.112)

Since the construction of the random variables ensures that

Zk−col ≤ Z ′ + Z ′′ + Z ′′′ +
∑

0≤j≤s
Z(j), (4.113)

the assertion will follow from (4.109) and (4.112).

The proof of (4.112) is by induction on j. Since (4.110) deals with j = 0, we may assume that j ≥ 1.

Set Z(j) =
∑s

i=j Z
(i). If Z(j) > 0, then there is a p-heavy k-colouring σ for some p ∈ (pj−1, pj ]. By

(4.111) its cluster size satisfies n−1 ln |C∗(σ)| ≥ ypj ln 2 + Ok(8
−k). Unless Z ′ + Z ′′ + Z ′′′ > 0 or

Z(g) > 0 for some g < j, we thus obtain n−1 lnZ(j) ≥ ypj ln 2 + Ok(8
−k). Hence, by (4.109) and
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the induction hypothesis,

P
[
Z(j) > 0

]
≤ P

[
Z ′ + Z ′′ + Z ′′′ > 0

]
+ P

[
∃0 ≤ g < j : Z(g) > 0

]
+ P

[
1

n
lnZ(j) ≥ ypj ln 2 +Ok(8

−k)

]
≤ o(1) + E[Z(j)]2−n(ypj+Ok(8−k)). (4.114)

Further, by Proposition 4.5.6 and (4.105) we have

1

n
ln E[Z(j)] ≤ 1

n
ln

∑
p∈(pj ,ps]

Zp = ln k +
d

2
ln(1− 1/k)

− min
p∈[pj−1,ps]

DKL(p, 1− 1/k) +Ok(k
−1 ln−7/8 k)

≤ 1

2k
− min
p∈[pj−1,ps]

DKL(p, 1− 1/k)− Ωk(k
−1 ln−1/4 k). (4.115)

Because pj−1 ≥ p0 = p̄ > 1−1/k and by Fact 1.0.3, the convexity of the Kullback-Leibler divergence

and expanding the function DKL(p, 1− 1/k) around pj entails that

min
p∈[pj−1,ps]

DKL(p, 1− 1/k) = DKL (pj−1, 1− 1/k) = DKL (pj , 1− 1/k) +Ok(7.9
−k).

Hence, (4.114) and (4.115) yield

P
[
Z(j) > 0

]
≤ o(1) + exp

[
n

(
1

2k
−DKL

(
pj , 1− k−1

)
− ypj ln(2)− Ωk(k

−1 ln−1/4 k)

)]
.

(4.116)

To bound the r.h.s. of (4.116), consider the function ξ : p ∈ ∆ 7→ DKL (p, 1− 1/k) + (1 − p) ln 2.

Because the Kullback-Leibler divergence is convex, so is ξ. Moreover, its derivative works out to

be ξ′(p) = ln(p/(1 − p)) − ln(2k − 2). Consequently, ξ attains its unique minimum at the point

pmin = 1− 1
2k−1 Plugging this value in, we obtain ξ(pj) ≥ ξ(pmin) = (2k)−1 +Ok(k

−2). Combining

this bound with (4.116) and recalling the definition (4.108) of yp, we get

P
[
Z(j) > 0

]
≤ o(1) + exp

[
−nΩk(k

−1 ln−1/4 k)
]

= o(1),

thereby completing the proof of (4.112). Finally, the assertion follows from (4.109), (4.112) and

(4.113).
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4.5.2. Proof of Proposition 4.5.5

Lemma 4.5.7. Let εk = k−1 ln−1/3 k and let ρ be such that
∥∥ρ− 1

k1
∥∥

2
> εk. Then 1

n ln E[Zρ] ≤
− ln1/3 k

3k .

Proof. Let ρ̄ be a probability distribution such that
∥∥ρ̄− 1

k1
∥∥
∞ = O(n−1) and such that ρ̄in is an

integer for all i ∈ [k]. Because the entropy function attains its global maximum at 1
k1, Lemma 4.5.1

yields

1

n
ln E [Zρ]− 1

n
ln E

[
Z ρ̄
]

= H(ρ)−H(ρ̄) +
d

2

[
ln(1− ‖ρ‖22)− ln(1− 1/k)

]
+O(lnn/n)

≤ d

2

[
ln(1− ‖ρ‖22)− ln(1− 1/k)

]
+O(lnn/n). (4.117)

To bound this expression, we compute the first two derivatives of the function g(ρ) 7→ d
2 ln(1−‖ρ‖22):

for i, j ∈ [k], i 6= j we find

∂

∂ρi
ln(1− ‖ρ‖22) = − 2ρi

1− ‖ρ‖22
,

∂2

∂2ρi
ln(1− ‖ρ‖22) = − 2

1− ‖ρ‖22
− 4ρ2

i

(1− ‖ρ‖22)2
,

∂2

∂ρi∂ρj
ln(1− ‖ρ‖22) = − 4ρiρj

(1− ‖ρ‖22)2
.

Because the rank one matrix (4ρiρj/(1 − ‖ρ‖22))i,j∈[k] is positive semidefinite for all ρ ∈ [0, 1]k, all

eigenvalues of the Hessian ( ∂2

∂ρi∂ρj
ln(1−‖ρ‖22))i,j∈[k] are bounded by−2/(1−‖ρ‖22) < −2. Taylor’s

formula yields

g(ρ) = g(ρ̄) +Dg(ρ̄)(ρ− ρ̄) +
1

2

〈
D2g(ρ̃)(ρ− ρ̄), (ρ− ρ̄)

〉
(4.118)

for some ρ̃ = αρ̄+ (1− α)ρ with α ∈ [0, 1]. Therefore, (4.117) entails

1

n
ln E [Zρ] ≤ 1

n
ln E

[
Z ρ̄
]
− d

2
‖ρ− ρ̄‖22 +O(lnn/n)

≤ 1

n
ln E [Zk−col]−

d

2
‖ρ− ρ̄‖22 +O(lnn/n)

≤ 1

2k
− d

2
‖ρ− ρ̄‖22 +O(lnn/n) [due to (4.105)],

whence the assertion is immediate.
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Let ρ be a probability distribution on [k] and let µ be a probability distribution on [k] × [k] such that

(ρ, µ) is (d, n)-admissible. Let Zρ,µ be the number of k-colourings σ of G(n, d) such that |σ−1(i)| =
ρin and

eG(n,d)(σ
−1(i), σ−1(j)) = dnµij for all i, j ∈ [k].

In addition, let µ̄ = (µ̄ij)i,j∈[k] be the probability distribution defined by µ̄ij = 1i 6=jk
−1(k − 1)−1.

Lemma 4.5.8. With εk = 8/(k(k − 1) ln
1
3 k) assume that

∥∥ρ− 1
k1
∥∥

2
≤ k−1 ln−

1
3 k but ‖µ− µ̄‖2 >

εk. Then
1

n
ln E[Zρ,µ] ≤ −1

4
k−1 ln1/3 k.

Proof. Let ρ̂ = (ρ̂ij)i,j∈[k] be the probability distribution with ρ̂ij =
1i6=j ·ρiρj
1−‖ρ‖22

. Then by Corollar-

ies 4.1.4 and 4.5.2 we have

1

n
ln E[Zρ,µ] = H(ρ) +

d

2
ln(1− ‖ρ‖22)− d

2
DKL (µ, ρ̂) +O(lnn/n)

≤ 1

n
ln E[Zk−col]−

d

2
DKL (µ, ρ̂) +O(lnn/n)

≤ 1

2k
− d

2
DKL (µ, ρ̂) +O(lnn/n). (4.119)

By Fact 1.0.3 the function µ 7→ DKL (µ, ρ̂) takes its minimum value (namely, zero) at µ = ρ̂. Recall-

ing its differentials from (1.3), (1.4), we see that the Hessian ( ∂2

∂µij∂µst
DKL (µ, ρ̂))i,j,s,t∈[k]:i 6=j,s6=t is a

positive-definite diagonal matrix with diagonal entries 1/µij (i 6= j).

Because
∥∥ρ− 1

k1
∥∥

2
≤ k−1(ln k)−1/3 we have ‖ρ̂− µ̄‖2 ≤ εk/2. Consequently, our assumption

‖µ− µ̄‖2 > εk implies that ‖µ− ρ̂‖2 > εk/2. In fact, let a ∈ [0, 1] be such that µ̂ = aµ+ (1− a)ρ̂

is at `2-distance exactly εk/2 from ρ̂. Then due to the convexity of the Kullback-Leibler divergence

(Fact 1.0.3), we have DKL (µ, ρ̂) ≥ DKL (µ̂, ρ̂). Furthermore, because ‖µ̂− ρ̂‖2 = εk/2, we have

µ̂ij ≤ 2/k2 for all i, j ∈ [k], i 6= j. Therefore, applying Taylor’s formula as in (4.118) together with

the above analysis of the Hessian of DKL (·, ρ̂), we find

DKL (µ, ρ̂) ≥ DKL (µ̂, ρ̂) ≥ k2

4
‖µ̂− ρ̂‖22 =

k2ε2
k

16
. (4.120)

Plugging (4.120) into (4.119), we see that for any µ such that ‖µ− ρ̂‖2 > εk,

1

n
ln E[Zρ,µ] ≤ 1

2k
−
dk2ε2

k

32
+O(lnn/n) ≤ − ln1/3 k

k
[as d ≥ 1.9k ln k],

thereby completing the proof.
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Lemmas 4.5.7 and 4.5.8 put a bound on the expected number of k-colourings of G(n, d) that violate

the first two conditions in Definition 4.5.4. To estimate the number of colourings for which the third

condition is violated, we need to establish a similar statement as Lemma 4.3.3, albeit under signifi-

cantly weaker assumptions. In particular, we need to work with the “planted colouring model” G(σ, µ)

from Section 4.3. The following statement is reminiscent of Lemma 4.3.3; the difference is that here

we make weaker assumptions as to the “balancedness” of the colouring, while also aiming at a weaker

conclusion.

Lemma 4.5.9. Let (ρ, µ) be (d, n)-admissible and assume that for all i, j ∈ [k], i 6= j we have

|ρi − 1/k| ≤ k−1 ln−1/3 k, |µij − k−1(k − 1)−1| ≤ 8/(k(k − 1) ln1/3 k). (4.121)

Let i ∈ [k] and let 0.509 ≤ α ≤ 0.99. Then in G(σ, µ) with probability 1 − exp(−nΩk(ln k/k)) the

following is true.

For any set S ⊂ Vi of size |S| = αn/k the number of vertices v ∈ V \ Vi that

do not have a neighbour in S is less than n
k (1− α− 2 ln−1/4 k).

(4.122)

Proof. As in the proof of Lemma 4.3.3, we assume i = 1, fix a set S ⊂ V1 of size |S| = αn/k, and

let

ej,S = |{(v, l) ∈ S × [d] : Γσ,µ(v, l) ∈ Vj × [d]}| .

Let pj = µ1j/ρj . Then (4.121) ensures that pj = (1− ok(1))/k. Let êj,S be a Bin(|S|d, pj) random

variable. Setting δ = 10−4, we obtain from Lemma 1.0.8 and the Chernoff bound (Lemma 1.0.6)

P

[
ej,S <

(1− δ)d|S|
k − 1

]
≤ O(

√
n) · P

[
êj,S <

(1− δ)d|S|
k − 1

]

≤ O(
√
n) exp

[
− δ2d|S|

3(k − 1)

]
≤ exp(−n · Ωk(ln k/k)). (4.123)

Let ES be the event that ej,S ≥ (1−δ)d|S|
k−1 for all j = 2, . . . , k. Taking a union bound over all ≤ 2n/k

possible sets S and all k − 1 colours j, we obtain from (4.123)

P [∃S : ES does not occur] ≤ (k − 1)2n/k exp(−n · Ωk(ln k/k)) ≤ exp(−n · Ωk(ln k/k)).(4.124)

Conditioning on ES , let Xj,S be the number of vertices in v ∈ Vj that do not have a neighbour

in S. Using Lemma 1.0.8 (the binomial approximation to the hypergeometric distribution), we can
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4. On the chromatic number of random regular graphs

approximate Xj,S by a binomial random variable X̂j,S = Bin(ρjn, qj), where

qj = P

[
Bin

(
d,

ej,S
dnρj

)
= 0

]
≤
(

1−
ej,S
dnρj

)d
≤ exp

[
−(1− δ)αd

k − 1

]
[as ej,S ≥ 1−δ

k−1d|S|]

≤ k−2α(1−2δ). (4.125)

More precisely, Lemma 1.0.8 yields

P [Xj,S ≥ t|ES ] ≤ O(
√
n) P

[
X̂j,S ≥ t

]
for any t > 0. (4.126)

Setting q = k−2α(1−2δ), X̂S = Bin((1 − ρ1)n, q), and XS =
∑k

j=2Xj,S , we obtain from (4.125)

and (4.126)

P [XS ≥ t|ES ] ≤ O(
√
n) P

[
X̂S ≥ t

]
for any t > 0. (4.127)

Let α′ = α+ 2 ln−1/4 k. By (4.127) and the Chernoff bound,

P
[
XS ≥

n

k
(1− α′)|ES

]
≤ O(

√
n) P

[
X̂S ≥

n

k
(1− α′)

]
≤ exp

[
−n
k

(1− α′ + o(1)) ln

(
1− α′

ekq

)]
. (4.128)

Further, we let α′′ = α(1 + Ok(ln
−1/3 k)) such that α′′ρ1n = αn/k and take the union bound over

all (
ρ1n

(1− α′′)ρ1n

)
≤ exp(ρ1n(1− α′′)(1− ln(1− α′′)))

ways to choose the set S: from (4.128) we obtain

k

n
ln P

[
∃S : XS · 1ES ≥

n

k
(1− α′)

]
≤ (1−α′′)(1−ln(1−α′′))−(1−α′) ln

1− α′

ekq
+o(1). (4.129)

Because the function z ∈ [0, 1] 7→ −z ln z is bounded, (4.129) yields

k

n
ln P

[
∃S : XS · 1ES ≥

n

k
(1− α′)

]
≤ Ok(1) + (1− α′) ln(kq)

≤ Ok(1) + (1− 2α(1− 2δ))(1− α′) ln k. (4.130)

Finally, because 0.509 ≤ α ≤ 0.99 and δ = 10−4, we see that 2α(1 − 2δ) ≥ 1.001. Hence, (4.130)

implies
1

n
ln P

[
∃S : XS · 1ES ≥

n

k
(1− α′)

]
≤ −Ωk(ln k/k)n. (4.131)

The assertion follows from (4.124) and (4.131).
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4.6. Lower-bounding the cluster size

Proof of Proposition 4.5.5. Lemmas 4.5.7 and 4.5.8 readily imply the desired bound on the expected

number of colourings that violate the first or the second conditions in Definition 4.5.4. With respect

to the third condition, let (ρ, µ) be an admissible pair that satisfies (4.121) and let Z ′′ρ,µ be the number

of k-colourings σ such that σ−1(i) = ρin and eG(n,d)(σ
−1(i), σ−1(j)) = dnµij for all i, j ∈ [k] that

violate (4.122) for some 0.509 ≤ α ≤ 0.99. We claim that

1

n
ln E

[
Z ′′ρ,µ

]
≤ −Ωk(ln k/k). (4.132)

Indeed, by (4.105) the total number Zρ,µ of k-colourings such that

σ−1(i) = ρin and eG(n,d)(σ
−1(i), σ−1(j)) = dnµij (4.133)

for all i, j ∈ [k] satisfies

1

n
ln E [Zρ,µ] ≤ 1

n
ln E [Zk−col] = Ok(k

−1). (4.134)

Furthermore, if σ : V → [k] is such that |σ−1(i)| = ρin for all i ∈ [k], then G(σ, µ) is nothing but

the conditional distribution of the random graph G(n, d) given that eG(n,d)(σ
−1(i), σ−1(j)) = dnµij .

Thus, Lemma 4.5.9 shows that for any such σ,

1

n
ln P

[
(4.122) is violated|eG(n,d)(σ

−1(i), σ−1(j)) = dnµij for all i, j ∈ [k]
]
≤ −Ωk(ln k/k).

(4.135)

Combining (4.134) and (4.135) and using the linearity of expectation, we obtain (4.132).

Finally, assume that σ : V → [k] has the property (4.122). Let τ : V → [k] be another colouring

that satisfies condition 1 in Definition 4.5.4 and assume that τ ∈ C∗(σ). Let i ∈ [k] and consider

the sets S = σ−1(i) ∩ τ−1(i) and T = τ−1(i) \ σ−1(i). Because both σ, τ satisfy condition 1. in

Definition 4.5.4, we have |S| ≥ 0.509nk . For the same reason, the set T satisfies

|T | ≥ n

k
− |S| −Ok(k−1 ln−1/3 k)n >

n

k
− |S| − 2n

k
ln−1/4 k.

Hence, (4.122) implies that nkρii(σ, τ) = |S| > 0.99nk . Thus, σ satisfies the third condition in Defini-

tion 4.5.4. Therefore, the assertion follows from (4.132).

4.6. Lower-bounding the cluster size

Throughout this section we keep the notation and the assumptions from Section 4.5.1. In particular

let ρ be a probability distribution on [k] and µ be a probability distribution on [k] × [k] that satisfy

condition (4.106) and (4.107).
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4. On the chromatic number of random regular graphs

4.6.1. Outline

The aim in this section is to prove Proposition 4.5.6. Essentially this means that we need to establish a

lower bound on the size of the cluster C∗(σ) of the nice p-rainbow k-colouring σ. Roughly speaking,

we are going to show that almost all vertices that fail to be rainbow have precisely two colours to

choose from, and that these colour choices can be made nearly independently. In effect, it is going

to emerge that for a p-rainbow colouring the cluster size is about 2(1−p)n. Technically, a bit of work

is required because we need to get a rather precise handle on the probability of certain “rare events”.

That is, we need to perform some large deviations analyses relatively accurately.

More precisely, throughout this section ρ signifies a probability distribution on [k] that satisfies the

first condition (4.106) in the definition of “nice”. Further, σ : V → [k] denotes a map such that

|σ−1(i)| = ρin for all i ∈ [k]. A vertex v is i-vacant with respect to σ in a graph G on V if σ(v) 6= i

and if v does not have a neighbour in Vi = σ−1(i). We are going to work once more with the

random multi-graph G(σ, µ) as defined in Section 4.3 with µ a probability distribution on [k] × [k].

LetAp,σ = Ap,σ(µ) be the event that σ is p-rainbow in G(σ, µ). Finally, let Λk(G) denote the set of all

nice k-colourings of the d-regular (multi-)graph G. Recall that Z ′(G) is the number of k-colourings

of G that fail to be nice.

Proposition 4.6.1. Let ρ be a probability distribution on [k] and µ be a probability distribution on

[k]× [k] that satisfy condition (4.106) and (4.107) such that (ρ, µ) is (d, n)-admissible. Let σ : V →
[k] be such that |σ−1(i)| = ρin for all i ∈ [k]. Then in the random multi-graph G(σ, µ) the following

statements are true.

1. There exist p′, q satisfying

p′ = p+Ok(k
−1 ln−7/8 k) and q = 1− 1/k +Ok(k

−1 ln−1 k) (4.136)

such that PG(σ,µ)[Ap,σ] ≤ exp
[
−min

{
DKL (p′, q) +Ok(k

−1 ln−7/8 k),Ωk(ln
1/8 k/k)

}
n
]
.

2. Let V∗ be the set of vertices v such that there exist 1 ≤ j < j′ ≤ k such that v is both j-vacant

and j′-vacant. Then

PG(σ,µ)

[
|V∗| > n

k ln3/4 k

]
≤ exp

[
−n · Ωk(ln

1/9 k/k)
]
.

3. Let Vij be the set of j-vacant v ∈ σ−1(i) and V̂ =
∑

i,j∈[k] |Vij | · 1|Vij |>n/k2.9 . Then

PG(σ,µ)

[
|V̂| > 2n

k ln3/4 k

]
≤ exp

[
−n · Ωk(ln

1/9 k/k)
]
.
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We defer the proof of Proposition 4.6.1 to Section 4.6.2. In addition, in Section 4.6.3 we are going to

prove that the j-vacant vertices do not span a lot of edges w.h.p. More precisely, we have

Proposition 4.6.2. With the notation and assumptions of Proposition 4.6.1, let V ′ij = Vij \ V∗ if

|Vij | ≤ n/k2.9, while V ′ij = ∅ otherwise. For each j ∈ [k] let Ej be the number of edges spanned by⋃
i∈[k] V ′ij and set E =

∑
j∈[k]Ej . Then

PG(σ,µ)

E >
n

k ln4/5 k
,
k

n

∑
i 6=j
|V ′ij | ∈ [0.01, 100]

 ≤ exp
[
−Ωk(ln

1/9 k/k)n
]
.

Proof of Proposition 4.5.6. Given σ : V → [k] and ρ such that |σ−1(i)| = ρin for all i ∈ [k] let M

be the set of all probability distributions µ on [k] × [k] that satisfy (4.107) such that (ρ, µ) is (d, n)-

admissible. Write Λ = Λk(G(σ, µ)) for the sake of brevity. Recall that Zp denotes the number of nice

p-rainbow k-colourings of G(n, d). By Bayes’ formula and because |M | = nO(1),

1

n
ln E [Zp] ≤

1

n
ln E [Zk−col] +

1

n
ln
∑
µ∈M

PG(σ,µ)[σ ∈ Λ, Ap,σ]

≤ o(1) +
1

n
ln E [Zk−col] +

1

n
ln max

µ∈M
PG(σ,µ)[σ ∈ Λ, Ap,σ]. (4.137)

If p ∈ ∆ = [1− 20
k , 1−

1
20k ], then the first part of Proposition 4.6.1 implies together with (4.137) that

there exist p′, q satisfying (4.136) such that

1

n
ln E [Zp] ≤

1

n
ln E [Zk−col]−DKL(p′, q) + o(1) [as DKL (p′, q) = Ok(1/k) for p ∈ ∆].

Together with (4.105) this proves the second part of Proposition 4.5.6.

Further, if p 6∈ ∆, then for any p′, q satisfying (4.136) we have DKL (p′, q) ≥ 0.94/k. Therefore, the

first part of Proposition 4.6.1 implies together with (4.105) and (4.137) that

1

n
ln E [Zp] =

1

n
ln
∑
σ∈[k]n

P[σ ∈ Λ, Ap,σ] ≤ 1

n
ln E [Zk−col]−

0.94

k
+ ok(1/k) ≤ − 1

3k
, (4.138)

whence the third assertion of Proposition 4.5.6 follows.

We are left to prove the first assertion, i.e., the bound on the number of Z ′′p of nice p-rainbow k-

colourings that fail to be p-heavy. Due to (4.138) we may confine ourselves to p ∈ ∆. With the

notation from Proposition 4.6.2, let V ′ =
⋃
i 6=j V ′ij . Let Bp,σ be the event that either |V ′| < (1 −

p)(1 − ln−2/3 k)n or |V∗| > n/(k ln3/4 k) or |V̂| > 2n/(k ln3/4 k) or E > nk−1 ln−4/5 k. Then
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Propositions 4.6.1 and 4.6.2 imply

max
µ∈M

PG(σ,µ) [Ap,σ, Bp,σ, σ ∈ Λ] ≤ exp(−Ωk(ln
1/9 k/k)n). (4.139)

Suppose that σ ∈ Λ and that Ap,σ occurs but Bp,σ does not. Let V ′′ be the set of vertices v ∈ V ′ such

that v is j-vacant for some j ∈ [k] and such that v is not adjacent to any other j-vacant vertex in V ′.
Because Bp,σ does not occur, we have

|V ′′| ≥ |V ′| − 2E ≥ (1− p)(1− ln−2/3 k)n− 2nk−1 ln−4/5 k ≥ (1− p)(1− 2 ln−2/3 k)n.

For any subset S ⊂ V ′′ there exists a k-colouring τ such that τ(v) 6= σ(v) for all v ∈ S and

τ(v) = σ(v) for all v ∈ V \ S. More precisely, since every vertex v ∈ S is j-vacant for precisely one

j 6= σ(v), we can set τ(v) = j. This yields a k-colouring because by the construction of V ′′ no two

vertices in S that receive colour j under τ are adjacent. Let C∗(σ) denote the set of colourings τ that

can be obtained in this way. We have just established that if Ap,σ, σ ∈ Λ occur but Bp,σ does not, then

C∗(σ) ≥ 2(1−p)(1−2 ln−2/3 k)n ≥ 2ypn.

Further, we claim that given Ap,σ, σ ∈ Λ, we have

C∗(σ) ⊂ C∗ = {τ : τ is a k-colouring of G(σ, µ) and ρii(σ, τ) ≥ 0.51 for all i ∈ [k]} . (4.140)

Indeed, |V ′ij | ≤ n/k2.9 for all i, j ∈ [k] by the very definition of theses sets. In combination with

(4.106) this bound implies that |τ−1(i) − n/k| ≤ n/(k ln1/3 k) for all i ∈ [k] and all τ ∈ C∗.
Consequently, the third condition in Definition 4.5.4 entails that τ ∈ C∗. Finally, Bayes’ formula,

(4.105), (4.139) and (4.140) yield

1

n
ln E

[
Z ′′
]
≤ 1

n
ln E[Zk−col] +

1

n
ln
∑
µ∈M

PG(σ,µ) [Ap,σ, Bp,σ, σ ∈ Λ]− Ωk(ln
1/9 k/k),

as claimed.

4.6.2. Proof of Proposition 4.6.1

We continue to assume that ρ, µ satisfy (4.106) and (4.107). Fix a map σ : V → [k] with colour

classes Vi = σ−1(i) of sizes |Vi| = ρin. Clearly, whether a vertex is i-vacant or not only depends on

the colours of its neighbours. Recall from Section 4.3 that for a probability distribution µ on [k]× [k]

we denote by Γσ,µ : V × [d]→ V × [d] a random configuration that respects σ and µ. Because we are

only interested in the colours of the neighbours of the vertices, we let Γ∗σ,µ : V × [d]→ [k] map each
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4.6. Lower-bounding the cluster size

clone (v, l) to the colour i if Γσ,µ(v, l) ∈ Vi × [d].

To describe the distribution of the random map Γ∗σ,µ in simpler terms, let gσ,µ = (gσ,µ(v, l))l∈[d],v∈V

be a family of independent [k]-valued random variables such that

P [gσ,µ(v, l) = j] =
µij
ρi

for l ∈ [d], i, j ∈ [k] , v ∈ Vi.

Let Bµ be the event that |{(v, l) ∈ Vi × [d] : gσ,µ(v, l) = j}| = µijdn for all i, j ∈ [k] . Then we have

the following multivariate analogue of Lemma 1.0.8 (the binomial approximation to the hypergeomet-

ric distribution).

Fact 4.6.3. For any event E we have P
[
Γ∗σ,µ ∈ E

]
= P [gσ,µ ∈ E|Bµ] ≤ nO(1) · P [gσ,µ ∈ E ] .

Let us call v ∈ V j-vacant in gσ,µ if σ(v) 6= j and gσ,µ(v, l) 6= j for all l ∈ [d]. Moreover, v is

rainbow in gσ,µ unless it is j-vacant for some j ∈ [k]. Armed with Fact 4.6.3, we can analyse the

number of j-vacant vertices fairly easily.

Lemma 4.6.4. Let U∗ be the number of vertices v ∈ V such that for two distinct colours j, j′ ∈
[k] \ {σ(v)}, v is both j-vacant and j′-vacant in gσ,µ. Then

P

[
U∗ >

n

k ln3/4 k

]
≤ exp

[
−n · Ωk(ln

1/9 k/k)
]
.

Proof. For a vertex v and colours j, j′ ∈ [k] \ {σ(v)}, j 6= j′ let

pv,j,j′ = P [gσ,µ(v, l) 6∈ {j, j′} for all l ∈ [d]] .

Because the (gσ,µ(v, l))l∈[d] are mutually independent, we have

pv,j,j′ =

(
1−

µij + µij′

ρi

)d
.

Our assumptions (4.106) and (4.107) on ρ and µ ensure that (µij + µij′)/ρi ≥ 1.99/k. As, moreover,

d ≥ 1.99k ln k, we obtain

pv,j,j′ ≤ (1− 0.99/k)1.99k ln k ≤ k−1.9.

Because this estimate holds for all v, j, j′ and since the (gσ,µ(v, l))v∈V,l∈[d] are mutually indepen-

dent, we conclude that U∗ is stochastically dominated by a binomial random variable Bin(n, k−1.9).
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4. On the chromatic number of random regular graphs

Therefore, the Chernoff bound (Lemma 1.0.6) yields

P

[
U∗ >

n

k ln3/4 k

]
≤ P

[
Bin(n, k−1.9) >

n

k ln3/4 k

]

≤ exp

[
− n

k ln3/4 k
· ln
(

k0.9

e ln3/4 k

)]
≤ exp

[
−n · Ωk(ln

1/9 k/k)
]
,

as claimed.

Lemma 4.6.5. Let U be the number of v ∈ V that are rainbow in gσ,µ. For any p ∈ [0, 1] there exist

p′, q satisfying (4.136) such that

1

n
ln P [U = (1− p)n] ≤ max

{
−DKL

(
1− p′, q

)
+Ok(k

−1 ln−7/8 k),−Ωk(ln
1/8 k/k)

}
+ o(1).

Proof. Let I be the set of all i ∈ [k] such that

|ρi − 1/k| ≤ k−1 ln−2 k and (4.141)

|µij − k−1(k − 1)−1| ≤ k−1(k − 1)−1 ln−2 k for all j ∈ [k] \ {i}. (4.142)

Our assumptions (4.106) and (4.107) on ρ, µ ensure that there are fewer than ln8 k indices i ∈ [k]

such that (4.141) is not satisfied and fewer than ln8 k indices i ∈ [k] such that (4.142) is not satisfied.

Therefore, the number n̄ of vertices v that belong to a class Vi such that i /∈ I is n̄ = nOk(ln
8 k/k)

since |Vi| = ρin ≤ 1.01/k for all i ∈ [k] by (4.106). Let ε = n̄/n = Ok(ln
8 k/k) be the fraction of

vertices that belong to a class Vi such that i /∈ I. Let ŨI be the number of vertices v ∈
⋃
i∈I Vi that

are not rainbow and ŨĪ be the number of v ∈
⋃
i/∈I Vi that are not rainbow.

Assume that i ∈ I. Due to (4.142) the probability that v ∈ Vi is j-vacant in gσ,µ for j 6= i is

pij = (1− µij/ρi)d = (1− 1/k +Ok(k
−1 ln−2 k))d = exp(−2 ln k +Ok(ln

−1 k)).

Similarly, (4.142) ensures that for j′ 6∈ {i, j} the probability that v ∈ Vi is both j-vacant and j′-vacant

in gσ,µ is

pijj′ = (1− (µij + µij′)/ρi)
d = (1− 2/k +Ok(k

−1 ln−2 k))d = exp(−4 ln k +Ok(ln
−1 k)).

Hence, by inclusion/exclusion the probability that there exists j ∈ [k] such that v ∈ Vi is j-vacant in

gσ,µ is

pi = (k +Ok(ln
8 k)) exp(−2 ln k +Ok(ln

−1 k)) = k−1(1 +Ok(ln
−1 k)). (4.143)
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We proceed to estimate the probability that v ∈
⋃
i/∈I Vi is j-vacant for some j ∈ [k].

Thus, let i ∈ [k] \ I and let v ∈ Vi. Our assumptions (4.106) and (4.107) on ρ, µ ensure that for

j ∈ [k] \ {i} the probability pij = (1 − µij/ρi)d that v is j-vacant in gσ,µ satisfies (with room to

spare)

k−2.1 ≤ (1− 1.01/k)2.01k ln k ≤ pij ≤ (1− 0.99/k)1.99k ln k ≤ k−1.9.

Similarly, the probability pijj′ = (1 − (µij + µij′)/ρi)
d that v is both j-vacant and j′-vacant in gσ,µ

for distinct j, j′ ∈ [k] \ {i} is bounded below and above by

k−4.1 ≤ (1− 2.01/k)2.01k ln k ≤ pijj′ ≤ (1− 1.99/k)1.99k ln k ≤ k−3.9.

Hence, by inclusion/exclusion the probability that there is j such that v is j-vacant in gσ,µ is

k−1.1 ≤ pi ≤ k−0.9. (4.144)

Because the events {v is j-vacant in gσ,µ} are mutually independent for all v by the definition of gσ,µ,

(4.143) implies that ŨI is stochastically dominated by a random variable with distribution Bin((1 −
ε)n, p∗) with parameter p∗ = k−1(1 + Ok(ln

−1 k)). On the other hand, (4.143) also implies that ŨI
stochastically dominates a random variable with distribution Bin((1 − ε)n, p∗) with p∗ = k−1(1 +

Ok(ln
−1 k)) < p∗. We distinguish three cases to show that for any p ∈ [0, 1] there exists q =

1− 1/k +Ok(k
−1 ln−1 k) such that

1

n
ln P

[
ŨI = p(1− ε)n

]
≤ −(1− ε)DKL (1− p, q) + o(1). (4.145)

Case 1 p∗ ≤ p ≤ p∗. Set q = 1− p. Then DKL (1− p, q) = 0 and, of course,

1

n
ln P

[
ŨI = p(1− ε)n

]
≤ o(1).

Case 2 p < p∗. Set q = 1− p∗ = 1− k−1(1 +Ok(ln
−1 k)). Since p < 1− q we have

P
[
ŨI = p(1− ε)n

]
≤ P

[
ŨI ≤ p(1− ε)n

]
≤ P [Bin((1− ε)n, 1− q) ≤ p(1− ε)n]

= exp [−(1− ε)DKL (p, 1− q)n+O(lnn)] [by Lemma 1.0.4]

= exp [−(1− ε)DKL (1− p, q)n+O(lnn)] .
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4. On the chromatic number of random regular graphs

Case 3 p > p∗. Set q = 1− p∗ = 1− k−1(1 +Ok(ln
−1 k)). Since p > 1− q we have

P
[
ŨI = p(1− ε)n

]
≤ P

[
ŨI ≥ p(1− ε)n

]
≤ P [Bin((1− ε)n, 1− q) ≥ p(1− ε)n]

= exp [−(1− ε)DKL (p, 1− q)n+O(lnn)] [by Lemma 1.0.4]

= exp [−(1− ε)DKL (1− p, q)n+O(lnn)] .

Thus we have established (4.145) in any case.

Furthermore, the bound (4.144) implies that ŨĪ is stochastically dominated by a random variable with

distribution Bin(d1.01n ln8 k/ke, k−0.9). Consequently, Lemma 1.0.6 (the Chernoff bound) gives

P

[
ŨĪ ≥

n

k ln7/8 k

]
≤ exp

[
−nΩk(ln

1/8 k/k)
]
. (4.146)

To complete the proof, suppose that (1 − p)n is an integer. Since ŨI ≤ n − U ≤ ŪI + ŨĪ , (4.146)

yields

P [U = (1− p)n] ≤ P
[
ŨI = n(p+Ok(k

−1 ln−7/8 k))
]

+ exp
[
−nΩk(ln

1/8 k/k)
]
.(4.147)

Hence, consider a number

p′ = (1− ε)−1(p+Ok(k
−1 ln−7/8 k)).

Then p′ = (1 + ε)p+Ok(k
−1 ln−7/8 k) and (4.145) shows that there exists

q = 1− 1/k +Ok(k
−1 ln−1 k)

such that

P
[
ŨI = p′(1− ε)n

]
≤ exp

[
−(1− ε)DKL

(
1− p′, q

)
n+O(lnn)

]
. (4.148)

We consider two cases.

Case 1 p′ ≤ k−0.9. Expanding the Kullback-Leibler divergence to the second order, we find

(1− ε)DKL

(
1− p′, q

)
= DKL

(
1− p′, q

)
+Ok(k

−1 ln−7/8 k).

Case 2 p′ > k−0.9. We have DKL (1− p′′, q) = Ωk(ln k/k).

Thus the assertion follows from (4.147) and (4.148).
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Lemma 4.6.6. Let Uij be the number of vertices v ∈ Vi that are j-vacant in gσ,µ. The random

variable

Û =
∑
i,j∈[k]

|Uij | · 1|Uij |>n/k2.9

satisfies P
[
Û > 2n

k ln3/4 k

]
≤ exp

[
−nΩk(ln

1/9 k/k)
]
.

Proof. Let U ′ij be the number of vertices v ∈ Vi that are j-vacant in gσ,µ but not j′-vacant in gσ,µ for

any j′ ∈ [k] \ {i, j}. Let

Û ′ =
∑

i,j∈[k]:i 6=j

∣∣U ′ij∣∣ · 1|U ′ij|>n/k2.9 .

Due to Lemma 4.6.4 it suffices to prove that

P

[
Û ′ >

n

k ln3/4 k

]
≤ exp

[
−nΩk(ln

1/9 k/k)
]
. (4.149)

To establish (4.149) we use a first moment argument. Let I ⊂ [k]2 be a set of pairs (i, j) such that

i 6= j. Moreover, let s = (sij)i,j∈I be a family of non-negative integers such that

sij > n/k2.9 for all (i, j) ∈ I and
∑

(i,j)∈I

sij =

⌈
n

k ln3/4 k

⌉
. (4.150)

Furthermore, let S = (Sij)i,j∈[I] be a family of pairwise disjoint sets such that

Sij ⊂ Vi and |Sij | = sij for all (i, j) ∈ I. (4.151)

Let E(S) be the event that for all (i, j) ∈ I the vertices v ∈ Sij are j-vacant in gσ,µ, and let E(s) be

the event that there exists S satisfying (4.151) such that E(S) occurs. Clearly, if Û > nk−1 ln−3/4 k,

then E(s) occurs for some I and some s satisfying (4.150). Thus, we need to bound P [E(s)].

We begin by estimating P [E(S)]. Consider a vertex v ∈ Sij for some (i, j) ∈ I. Our assump-

tions (4.106) and (4.107) on µ and ρ ensure that

P [v is j-vacant in g] = (1− µij/ρi)d ≤ (1− 0.99/k)1.99k ln k ≤ k−1.95.

Since these events occur independently for all v ∈ Sij and because the sets Sij are pairwise disjoint,

we obtain

P [E(S)] ≤
∏

(i,j)∈I

∏
v∈Sij

P [v is j-vacant in gσ,µ] ≤ k−1.95
∑

(i,j)∈I sij . (4.152)
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4. On the chromatic number of random regular graphs

To estimate P [E(s)], we use the union bound. More precisely, for a given s satisfying (4.150) the

number of possible S satisfying (4.151) is bounded by

H =
∏

(i,j)∈I

(
ρin

sij

)
≤

∏
(i,j)∈I

(
2n/k

sij

)
[by our assumption (4.106) on the ρi]

≤ exp

 ∑
(i,j)∈I

sij ln

(
2en/k

sij

) ≤ exp

 ∑
(i,j)∈I

sij ln
(
2ek1.9

) [as sij > k−2.9n]. (4.153)

Combining (4.152) and (4.153), we obtain

P [E(s)] ≤ H · k−1.95
∑

(i,j)∈I sij ≤ exp

 ∑
(i,j)∈I

sij ln
(
2ek−0.05

)
≤ exp

(
−nΩk(ln

1/4 k/k)
)

[as
∑

(i,j)∈I sij > nk−1 ln−3/4 k]. (4.154)

Since the total number of sets I and vectors s satisfying (4.150) is bounded by a polynomial in n, the

assertion follows from (4.154).

Finally, Proposition 4.6.1 follows by combining Fact 4.6.3 with Lemmas 4.6.4, 4.6.5 and 4.6.6.

4.6.3. Proof of Proposition 4.6.2

The proof is based on a first moment argument. Let Vi = σ−1(i) for all i ∈ [k]. Let I ⊂ [k]2 be a set

of pairs (i, j) such that i 6= j. Moreover, let s = (sij)(i,j)∈I be a non-negative integer vector such that

0 < sij ≤ k−2.9n for all (i, j) ∈ I and 0.01nk ≤
∑

(i,j)∈I sij ≤ 100nk . (4.155)

Further, let S = (Sij)(i,j)∈I be a family of pairwise disjoint sets such that

Sij ⊂ Vi and |Sij | = sij for all (i, j) ∈ I. (4.156)

In addition, let Q be a set of edges of the complete graph on V × [d] such that the following is true.

We have |Q| = dnk−1 ln−4/5 ke. Moreover, for any edge {(v, l), (v′, l′)} ∈ Q
there exist indices i, i′, j such that i 6= i′, (i, j) ∈ I, (i′, j) ∈ I, v ∈ Sij ,

v′ ∈ Si′j .
(4.157)

In words, any edge in Q connects clones of vertices in sets Sij , Si′j with i 6= i′. Let E(S, Q) be the

event that the vertices in Sij are j-vacant for all (i, j) ∈ I and that the matching Γσ,µ contains Q.
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Furthermore, let E(S) be the event that E(S, Q) occurs for some Q satisfying (4.157), let E(s) be the

event that E(S) occurs for some S satisfying (4.156), and let E be the event that E(s) occurs for some

s that satisfies (4.155). If E > nk−1 ln−4/5 k and k
n

∑
i 6=j |V ′ij | ∈ [0.01, 100], then the event E occurs.

Hence, our task is to prove that

P [E ] ≤ exp(−Ωk(ln
1/9 k/k)n). (4.158)

To establish (4.158), we are going to work our way from bounding P[E(S, Q)] to bounding P[E ]. Let

us begin with the following simple bound on the probability that the edges Q occur in Γσ,µ.

Lemma 4.6.7. Suppose that s, S and Q satisfy (4.155)–(4.157). Then P [Q ⊂ Γσ,µ] ≤
(

5
dn

)|Q|
Proof. This follows immediately from Lemma 4.3.5 and Remark 4.3.6.

Based on Lemma 4.6.7, we can estimate P[E(S, Q)].

Lemma 4.6.8. Suppose that s, S and Q satisfy (4.155)–(4.157). Let s =
∑

(i,j)∈I sij . Then

P [E(S, Q)|Q ⊂ Γσ,µ] ≤ k−(2+Ok(ln−4 k))s.

Proof. LetW ⊂ V ×[d] be the set of all clones that do not occur in any of the edges inQ. Moreover, let

qij be the number of Vi×[d]-Vj×[d] edges inQ and set µ′ij = µij− qij
dn . In addition, let ρ′i =

∑
j∈[k] µ

′
ij .

Furthermore, let g′ : W → [k] be a random map defined as follows.

For each pair (v, l) ∈ W with v ∈ Vi and every j ∈ [k] \ {i} let g′(v, l) = j with

probability µ′ij/ρ
′
i, independently of all others.

Then in analogy to Fact 4.6.3, we have

P
[
(Γ∗σ,µ(w, j))w∈W,j∈[d] ∈ A

]
≤ nO(1) P

[
g′ ∈ A

]
for any event A. (4.159)

Since (4.157) provides that |Q|/n ∼ k−1 ln−4/5 k, we see that

∥∥ρ− ρ′∥∥
1
≤
∥∥µ− µ′∥∥

1
≤ Ok(k−2 ln−9/5 k). (4.160)

Now, let I ′ be the set of all (i, j) ∈ I such that

|µij − k−1(k − 1)−1| ≤ 2

k(k − 1) ln4 k
and |ρ′i − k−1| ≤ 2

k ln4 k
.
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4. On the chromatic number of random regular graphs

Then (4.160) implies together with our assumption on ρ, µ that

|I \ I ′| ≤ ln12 k. (4.161)

Furthermore, for (i, j) ∈ I ′ we let S′ij =
{
v ∈ Sij : |({v} × [d]) ∩W | ≥ d− k7/8

}
. In other words,

S′ij contains all v ∈ Sij that occur in no more than k7/8 edges in Q.

The bound (4.159) implies together with the construction of g′ that

P [E(S, Q)|Q ⊂ Γσ,µ] ≤ nO(1) · P [∀(i, j) ∈ I, v ∈ Sij : v is j-vacant in g′]

≤ nO(1) · P
[
∀(i, j) ∈ I ′, v ∈ S′ij : v is j-vacant in g′

]
= nO(1)

∏
(i,j)∈I′

∏
v∈S′ij

P [v is j-vacant in g′] . (4.162)

Further, because for any v ∈ S′ij the values (g′(v, l))l:(v,l)∈W are independent, we have

P [v is j-vacant in g′] = (1− µ′ij/ρ′i)|({v}×[d])∩W | ≤ (1− µ′ij/ρ′i)d−k
7/8

[as v ∈ S′ij]

≤ (1− k−1(1 +Ok(ln
−4 k)))d−k

7/8
[because (i, j) ∈ I ′]

≤ k−2+Ok(ln−4 k). (4.163)

To complete the proof, let s′ =
∑

(i,j)∈I′ |S′ij |. Because |Q|/n ∼ k−1 ln−4/5 k by (4.157), we have

∑
(i,j)∈I′

|Sij \ S′ij | ≤
1

2
k−15/8n.

Furthermore, as |Sij | ≤ k−2.9n for all (i, j) ∈ I, we have∑
(i,j)∈I\I′

|Sij | ≤ |I \ I ′|k−2.9n ≤ k−2.8n [due to (4.161)].

Combining these two bounds, we see that s′ ≥ s− k−15/8n. Thus, (4.162) and (4.163) yield

P [E(S, Q)|Q ⊂ Γσ,µ] ≤ k−(2+Ok(ln−4 k))s′ ≤ k−(2+Ok(ln−4 k))s,

as desired.

Corollary 4.6.9. Suppose that s and S satisfy (4.155) and (4.156). Let s =
∑

(i,j)∈I sij . Then

P [E(S)] ≤ exp
[
−2s ln k − Ωk(ln

1/9 k/k)n
]
.
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Proof. Given s and S, let H = H(s,S) be the number of sets Q that satisfy (4.157). Any such set

Q decomposes into sets Qj of edges joining two clones in
⋃
i:(i,j)∈I Sij . Since |Sij | ≤ k−2.9n for all

i, j, we have |
⋃
i:(i,j)∈I Sij | ≤ k−1.9n for all j. Let η = |Q| = dnk−1 ln−4/5 ke and η′ = kdη/ke.

Because the uniform distribution maximizes the entropy, we get

H ≤ exp(o(n)) ·
((dn/k1.9

2

)
η′/k

)k
= exp

[
(1 + ok(1)) · η ln

(dn)2

k2.8η

]
. (4.164)

Hence, Lemmas 4.6.7 and 4.6.8 and the union bound yield

P [E(S)] ≤
∑
Q

P [E(S, Q)] =
∑
Q

P [E(S, Q)|Q ⊂ Γσ,µ] · P [Q ⊂ Γσ,µ]

≤ exp
[
−2s(ln k +Ok(ln

−3 k))
]
·
∑
Q

P [Q ⊂ Γσ,µ]

≤ exp
[
−2s(ln k +Ok(ln

−3 k))
]
· H ·

(
5

dn

)η
≤ exp

[
−2s ln k +Ok(k

−1)n+ η ln
5dn

k2.8η

]
[due to (4.164)]. (4.165)

Finally, our assumptions on d and η ensure that 5dn/
(
k2.8η

)
≤ k−0.7. Consequently, η ln 5dn

k2.8η
≤

−Ωk(ln k/k)n, and thus the assertion follows from (4.165).

Corollary 4.6.10. Suppose that s satisfies (4.155). Then P [E(s)] ≤ exp
[
−Ωk(ln

1/9 k/k)n
]
.

Proof. For a given s let H = H(s) be the number of S satisfying (4.156). Let s =
∑

(i,j)∈I sij .

Because the uniform distribution maximizes the entropy, we have

H ≤
(
n

s

)
ks ≤ exp

[
s

(
1 + ln

kn

s

)]
= exp

[
2s ln k +Ok(k

−1)n
]

; (4.166)

the last inequality follows because (4.155) provides that s = Θk(k
−1)n. The assertion follows

from (4.166), Corollary 4.6.9 and the union bound.

Finally, as there is only a polynomial number nO(1) of vectors s that satisfy (4.155), Corollary 4.6.10

implies (4.158), whence the proof of Proposition 4.6.2 is complete.
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5 Analysing Survey Propagation Guided Decimation on Ran-
dom Formulas

Let us start with pulling over the probabilistic framework lined out in [35] including the proofs for

sake of completeness. Let us emphasize that besides the probabilistic framework there is a significant

overlap between proofs of statements in this chapter and analogous statements in [35]. Since the

innovative contribution to our result and the work already contained in [35] is extremely hard to

separate we are going to do this explicitly for each section and each statement. In particular, there

are parts that have been adopted word-by-word and some only barley updated. However, not only for

the sake of completeness but also since [35] is not published yet and the available preprint contains

several minor bugs we decided to revise also the parts that could be taken over without any update

and include them here entirely not claiming copyright and credits. For each statement in this chapter,

that is adopted one to one, we will explicitely quote [35]. Moreover, this chapter is to a large extend

adopted word-by-word from a preprint version of [73] that is available online3.

Throughout this chapter we let ρk = (1 + εk) ln(k) where (εk)k≥3 is the sequence promised by

Theorem 3.2.1 and let r = 2kρ where ρ ≥ ρk.

5.1. Lower bounding the entropy

To facilitate the analysis, we are going to work with a slightly modified version of SPdec. While the

original SPdec assigns the variables in the natural order x1, . . . , xn, the modified version PermSPdec

chooses a permutation π of [n] uniformly at random and assigns the variables in the order

xπ(1), . . . , xπ(n).

Let β̄Φ denote the probability distribution induced on Σ by PermSPdec(Φ). Because the uniform

distribution over k-CNFs is invariant under permutations of the variables a moment of thought en-

lightens

Fact 5.1.1. If β̄Φ(S(Φ)) ≤ exp (−Ω(n)) w.h.p., then success(Φ) = βΦ(S(Φ)) ≤ exp (−Ω(n))

w.h.p.

3arXiv:1602.08519
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Let Φ be a k-CNF. Given a permutation π ∈ Sn and a partial assignment σ : {xπ(s) : s ≤ t} →
{−1, 1} we let Φt,π,σ denote the formula obtained from Φ by substituting the values σ(xπ(s)) for the

variables xπ(s) for 1 ≤ s ≤ t and simplifying. Formally, Φt,π,σ is obtained from Φ as follows:

• remove all clauses a of Φ that contain a variable xπ(s) with 1 ≤ s ≤ t such that σ(xπ(s)) =

sign(xπ(s), a).

• for all clauses a that contain a xπ(s) with 1 ≤ s ≤ t such that σ(xπ(s)) = sign(xπ(s), a), remove

xπ(s) from a.

• remove any empty clauses (resulting from clauses of Φ that become unsatisfied if we set xπ(s)

to σ(xπ(s)) for 1 ≤ s ≤ t) from the formula.

For a number δ > 0 and an index l > t we say that xπ(l) is (δ, t)-biased if∣∣∣∣µ[ω]
xπ(l)

(Φt,π,σ, 1)− 1

2

(
1− µ[ω]

xπ(l)
(Φt,π,σ, 0)

)∣∣∣∣ > δ. (5.1)

Moreover the triple (Φ, π, σ) is (δ, t)-balanced if no more than δ(n− t) variables are (δ, t)-biased.

The variable xπ(t+1) is uniformly distributed over the set V \ {xπ(s) : s ≤ t} of currently unassigned

variables. Hence, if (Φ, π, σ) is (δ, t)-balanced, then the probability that xπ(t+1) is (δ, t)-biased is

bounded by δ. (That is the reason why we introduced PermSPdec decimating the variables in random

order.) Furthermore, given that xπ(t+1) is not (δ, t)-biased, the probability that PermSPdec will set

it to ’true’ lies in the interval [1
2 − δ,

1
2 + δ]. Consequently,∣∣∣∣12 − P

[
σ(xπ(t+1)) = 1|(Φ, π, σ) is (δ, t)-balanced

]∣∣∣∣ ≤ 2δ.

Thus, the smaller δ the closer σ(xπ(t+1)) comes to being uniformly distributed. Hence, if (δ, t)-

balancedness holds for “many” t with a “small enough” δ, then β̄Φ will be close to the uniform distri-

bution on Σ.

To put this observation to work, let θ = 1− t/n be the fraction of unassigned variables and define

δt = exp(−cθk), ∆t =
t∑

s=1

δt and t̂ =

(
1− ln(ρ)

c2k

)
n, (5.2)

where 1 � c > 0 is a small enough absolute constant, say 10−1010. Since we use it frequently

throughout this chapter we obtain by (5.2) for all t ≤ t̂ that

θk ≥ ln(ρ)/c2

which is the expected clause length at decimation step t. We establish the following expression for
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∆t.

Lemma 5.1.2. For any 0 ≤ t ≤ t̂ we have

∆t = (1 + o(1))δtn/(ck).

Furthermore, ∆t̂ ∼
n
ck

[
(ρ)−

1
c − exp(−ck)

]
.

Proof. We have

∆t =
t∑

s=1

δs = exp (−ck)
t∑

s=1

exp (csk/n) = exp (−ck)

(
exp (ck(t+ 1)/n)− 1

exp (ck/n)− 1
− 1

)
. (5.3)

Since exp (ck/n) = 1 + ck/n+O(n−2) and t̂ = Ω(n), we obtain from (5.3)

∆t̂ ∼
n

ck

(
exp

(
ck

(
t̂

n
− 1

))
− exp (−ck)

)
=

n

ck

(
(kr/2k)−

1
c − exp (−ck)

)
.

Furthermore, for 1 ≤ t ≤ t̂ equation (5.3) yields the upper bound

∆t ≤ exp (−ck) · exp (ck(t+ 1)/n)− 1

exp (ck/n)− 1
=

exp (ck(t− n)/n)

1− exp (−ck/n)

∼ n

ck
exp (−ck(1− t/n)) ,

as exp (−ck/n) = 1− ck/n+O(n−2).

For ξ > 0 we say that Φ is (t, ξ)-uniform if

| {(π, σ) ∈ Sn × Σ : (Φ, π, σ) is not (δt, t)-balanced} | ≤ 2nn! · exp [−10(ξn+∆t)] .

Now it is possible to relate the distribution β̄Φ to the uniform distribution on Σ for (t, ξ)-uniform

formulas.

Proposition 5.1.3. Suppose that Φ is (t, ξ)-uniform for all 0 ≤ t ≤ t̂. Then

β̄Φ(E) ≤ |E|
2t̂
· exp [6(∆t̂ + ξn)] + exp(−ξn/2) for any E ⊂ Σ.

Proposition 5.1.3 reduces the proof of Theorem 3.2.1 to showing that Φ is (t, ξ)-uniform with some

appropriate probability. The rather technical proof of Proposition 5.1.3 will be carried out in Sec-
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tion 5.7.

We call a clause a of a formula Φ redundant if Φ has another clause b such that a and b have at least

two variables in common. Furthermore, we call the formula Φ tame if

i. Φ has no more than lnn redundant clauses, and

ii. no more than lnn variables occur in more than lnn clauses of Φ.

The following is a well-known fact.

Lemma 5.1.4. The random formula Φ is tame w.h.p.

The following result provides the key estimate for proving that Φ is (t, ξ)-uniform with a very high

probability.

Theorem 5.1.5. For any k, r satisfying 2kρk/k < r ≤ 2k ln 2 there is ξ = ξ(k, r) ∈ [0, 1
k ] so that for

n large enough the following holds. Fix any permutation π of [n] and any assignment σ ∈ Σ. Then

for any 0 ≤ t ≤ t̂ we have

P [(Φ, π, σ) is (δt, t)-balanced|Φ is tame] ≥ 1− exp [−3ξn− 10∆t] .

Corollary 5.1.6. In the notation of Theorem 5.1.5

P
[
∀t ≤ t̂ : Φ is (t, ξ)-uniform|Φ is tame

]
≥ 1− exp [−3ξn] .

Proof. For 1 ≤ t ≤ t̂ and a k-CNF Φ we let Xt(Φ) signify the number of pairs (π, σ) ∈ Sn × Σ such

that (Φ, π, σ) fails to be (δt, t)-balanced. Then Theorem 5.1.5 yields

E [Xt(Φ)|Φ is tame] ≤ 2nn! · exp (−3ξn− 10∆t) .

Hence, by Markov’s inequality and the union bound

P
[
∃t ≤ t̂ : Xt(Φ) > 2nn! · exp (−ξn− 10∆t) |Φ is tame

]
≤ n exp (−2ξn) ≤ exp (−ξn) . (5.4)

Since Φ is (t, ξ)-uniform if Xt(Φ) ≤ 2nn! · exp (−ξn− 10∆t), the assertion follows from (5.4).

Proof of Theorem 3.2.1. Let us keep the notation of Theorem 5.1.5. By Lemma 5.1.4 we may condi-

tion on Φ being tame. Let U be the event that Φ is (t, ξ)-uniform for all 1 ≤ t ≤ t̂. Let S be the event

that |S(Φ)| ≤ n ·E [|S(Φ)|]. By Corollary 5.1.6 and Markov’s inequality, we have Φ ∈ U ∩S w.h.p.,
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then by Proposition 5.1.3

β̄Φ(S(Φ)) ≤ S(Φ)

2t̂
· exp (6(∆t̂ + ξn)) + exp (−ξn/2)

≤ n · E [|S(Φ)|] · 2t̂ exp (6(∆t̂ + ξn)) + exp (−ξn/2) . (5.5)

By Lemma 1.0.1 and 5.1.2 we have E [|S(Φ)|] ≤ 2n exp
(
−rn/2k

)
and ∆t̂ ≤

n
ck (kr/2k)−

1
c . Plug-

ging these estimates and the definition (5.2) of t̂ into (5.5), we find that given Φ ∈ U ∩ S ,

β̄Φ(S(Φ)) ≤ n exp

(
n

(
− r

2k
+

ln(kr/2k) ln(2)

c2k
+

6

ck
(kr/2k)−

1
c + 6ξ

))
+ exp (−ξn/2) .

Recalling that ρ = kr/2k and ξ ≤ 1/k, we thus obtain

β̄Φ(S(Φ)) ≤ n exp

(
−n
k

(
ρ− ln ρ ln 2

c2
− 6

cρ
1
c

+ 6

))
+ exp (−ξn/2) . (5.6)

Hence, since ρ ≥ ln k, (5.6) yields β̄Φ(S(Φ)) = exp (−Ω(n)). Finally, Theorem 3.2.1 follows from

Fact 5.1.1.

5.2. Tracing the Survey Propagation Operator

To establish Theorem 5.1.5 we have to prove that Φ is (δt, t)-balanced with probability very close to

one. This is really the most technical part of the proof and needs fundamentally new ideas compared

to the BP result in [35]. Thus, our task is to study the SP operator defined in (3.6) to (3.8) on Φt.

Roughly speaking, Theorem 5.1.5 asserts that with probability very close to one, most of the messages

µ
[`]
x→a(±1) are close to 1

2(1 − µ[`]
x→a(0)). To obtain this bound, we are going to proceed in two steps:

we will exhibit a small number of quasirandom properties and show that these hold in Φt with the

required probability. Then, we prove that deterministically any formula that has these properties is

(δt, t)-balanced.

5.2.1. The “typical” value of π[`]
x→a(ζ)

First of all recall that the messages sent from a variable x to a clause a ∈ N(x) are obtained by

ψζ(π
[`]
x→a(1), π[`]

x→a(−1)) for ζ ∈ {−1, 0, 1}.

This in mind, we claim a strong statement that both π
[`]
x→a(1) and π

[`]
x→a(−1) are very close to a

“typical” value π[`] for most of the variables x ∈ Vt and clauses a ∈ N(x) at any iteration step `

under the assumption that the set of biased variables, or at least a superset that we get a handle on, is
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small at time `− 1. Assuming that

π[`]
x→a(1) = π[`]

x→a(−1) = π[`]

we of course obtain unbiased messages by

µ[`]
x→a(±1) = ψ1(π[`]) = ψ−1(π[`]) =

1

2
(1− µ[`]

x→a(0)).

The products π[`]
x→a(ζ) are nothing else but the product of the messages

µ
[`−1]
b→x (0) = 1−

∏
y∈N(b)\{x}

µ
[`−1]
y→b (−sign(y, b))

sent from all clauses b ∈ N(x, ζ) \ {a} to x. Therefore, we define inductively 0 ≤ π[`] ≤ 1 to be

the product of this kind over a “typical” neighbourhood. The term “typical” refers to the expected

number of clauses of all lengths that contain at most one additional biased variable. Focusing on

those clauses will suffice to get the tightness result of the biases. Moreover, we assume that all of

the messages µ[`−1]
y→b (−sign(y, b)) sent from variables to clauses in such a typical neighbourhood are

ψsign(y,b)(π[`− 1], π[`− 1]) which we claim to be a good estimation of most of the messages sent at

time `−1. Additionally, define τ [`] = (1−ψ0(π[`])) as the estimate of the sum µ
[`]
x→a(1)+µ

[`]
x→a(−1).

Let us emphasize that there is no “unique” π[`] to get the proofs to work and the way it is obtained in

the following is in some sense the canonical and convenient choice to sufficiently bound the biases for

most of the messages.

Generally, let T ⊂ Vt and x ∈ Vt. Then the expected number of clauses of length j that contain x and

at most one additional variable from the set T is asymptotically

µj,≤1(T ) = 2jρ · P [Bin(k − 1, θ) = j − 1] · P
[
Bin

(
j − 1,

|T |
θn

)
< 2

]
. (5.7)

Indeed, the expected number of clauses of Φ that x appears in equals km/n = kr = 2kρ. Further-

more, each of these gives rise to a clause of length j in Φt iff exactly j − 1 among the other k − 1

variables in the clauses are from Vt while the k − j remaining variables are in V \ Vt and occur with

negative signs. (If one of them had a positive sign, the clause would have been satisfied by setting the

corresponding variable to true. It would thus not be present in Φt anymore.) Moreover, at most one

of the j − 1 remaining variables is allowed to be from the set T . The fraction of variables in T in Vt
equals |T |θn . Finally, since x appears with a random sign in each of these clauses the expected number

of clauses of length j that contain x and at most one other variable from the set T is asymptotically

µj,≤1(t)/2.
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Additionally let 0 ≤ p ≤ 1 and define

τ(p) = 1− ψ0 (p) and π(T, p) =
10θk∏

j=0.1θk

(
1− (2/τ(p))−j+1

)µj,≤1(T )/2
. (5.8)

Moreover, let

Π(T, p) =

10θk∑
j=0.1θk

µj,≤1(T )

2
· (2/τ(p))−j+1

be the approximated absolute value of the logarithm of π(T, p). We obtain the following accuracy

result.

Lemma 5.2.1. Let T ⊂ Vt and 0 ≤ p ≤ 1. We have

|Π(T, p) + lnπ(T, p)| ≤ δ4.

Proof. Using the approximation | ln(1− z) + z| ≤ z2 for |z| ≤ 1
2 we obtain

|Π(T, p) + lnπ(T, p)| =

∣∣∣∣∣∣
10θk∑

j=0.1θk

µj,≤1(T )

2
· (2/τ(p))−j+1

+ ln

 10θk∏
j=0.1θk

(
1− (2/τ(p))−j+1

)µj,≤1(T )/2

∣∣∣∣∣∣
≤

10θk∑
j=0.1θk

µj,≤1(T )

2
·
∣∣∣(2/τ(p))−j+1 + ln

(
1− (2/τ(p))−j+1

)∣∣∣
≤

10θk∑
j=0.1θk

µj,≤1(T )

2
· (2/τ(p))−2j+2

≤
10θk∑

j=0.1θk

2−j+1ρ [by (5.7) and as 0 ≤ τ(p) ≤ 1]

≤ 20θkρ2−0.1θk ≤ δ−4 [as θk ≥ ln(ρ)/c2 and c� 1]

as claimed.

For a fixed variable x ∈ Vt the expected number of clauses that contain more than one additional

variable from a “small” set T for a “typical” clause length 0.1θk ≤ j ≤ 10θk is very close to the
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expected number of all clauses of that given length. Thus, the actual size of T will influence π(T, p)

but this impact is small if T is small and the following bounds on π(T, p) can be achieved.

Lemma 5.2.2. Let T ⊂ Vt of size |T | ≤ δθn and 0 ≤ p ≤ 2 exp(−ρ). Then exp (−2ρ) ≤ π(T, p) ≤
2 exp (−ρ).

Proof. We start by establishing bounds on τ(p) as

1 ≥ τ(p) = 1− ψ0(p) = 1− p

2− p
≥ 1− p. (5.9)

To get the lower bound we use the elementary inequality ln(1− z) ≥ −2z for z ∈ [0, 0.5] and find

lnπ(T, p) =

10θk∑
j=0.1θk

µj,≤1(T )

2
· ln
(

1− (2/τ(p))1−j
)
≥ −2

10θk∑
j=0.1θk

µj,≤1(T )

2
· (2/τ(p))−j+1

= −2ρ
10θk∑

j=0.1θk

τ(p)j−1 P [Bin (k − 1, θ) = j − 1] P [Bin (j − 1, |T |/θn) < 2]

[by (5.7)]

≥ −2ρ [by (5.9)] .

To obtain the upper bound we apply Lemma 1.0.6 (the Chernoff bound) and get

P [0.1θk < Bin(k − 1, θ) < 10θk] ≥ 1− exp (−θk/2) (5.10)

and since |T |/θn ≤ δ we have

P [Bin (j − 1, |T |/θn) < 2] ≥ P [Bin (j − 1, |T |/θn) = 0] ≥ (1− δ)j−1. (5.11)
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Therefore,

lnπ(T, p) =

10θk∑
j=0.1θk

µj,≤1(T )

2
· ln
(

1− (2/τ(p))1−j
)
≥ −

10θk∑
j=0.1θk

µj,≤1(T )

2
· (2/τ(p))−j+1

= −ρ
10θk∑

j=0.1θk

τ(p)j−1 P [Bin (k − 1, θ) = j − 1] P [Bin (j − 1, |T |/θn) < 2]

[by (5.8)]

≤ −ρ(1− δ)10θk(1− p)10θk
10θk∑

j=0.1θk

P [Bin (k − 1, θ) = j − 1]

[by (5.9) and (5.11)]

≤ −ρ(1− δ)10θk(1− p)10θk(1− exp (−θk/2)) [by (5.10)] . (5.12)

As δ, p, exp (−θk/2) < 0.2 due to the elementary inequality 1 − z ≥ exp (−2z) for z ∈ [0, 0.2] and

by (5.12) we obtain

lnπ(T, p) ≤ −ρ · (1− (20δθk + 20pθk + 2 exp (−θk/2)))

≤ −ρ ·
(

1−
(

20ρ−1/c ln(ρ)/c2 + 40 exp(−ρ) ln(ρ)/c2 + 2ρ−1/(2c2)
))

[as θk ≥ ln(ρ)/c2]

= −ρ+ ok (1) ≤ −ρ+ ln 2 [as c� 1],

as desired.

5.2.2. Biased messages

Let us now define the bias for the messages at each iteration step ` similarly to the definition of the

biases of the marginals (5.1). We do this not only for the 1 and −1 messages as done in [35] but also

for the 0 messages, where the reference value for the 0 message is computed with π[`] the estimate of

the “typical” π[`]
x→a(ζ) at the actual iteration step `. To introduce this necessary additional bias for the

0 message results in a more complicated bias for the 1 and−1 messages. This is one of the substantial

reasons why many of the computations that are carried out in [35] could not simply be adopted but

needed extensive revision. In fact, it needed additional new ideas to prove, that these biases still remain

small by applying the Survey Propagation operator. However, it needs substantial work to verify that

the properties entailed in [35] can be adjusted to obtain a similar result for the Survey Propagation

operator as for the Belief Propagation operator in [35].
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Hence, for ` ≥ 0, x ∈ Vt and a ∈ N(x) let

∆[`]
x→a = µ[`]

x→a(1)− 1

2

(
1− µ[`]

x→a(0)
)

and

E[`]
x→a =

1

2

(
µ[`]
x→a(0)− ψ0(π[`])

)
.

We say that x ∈ Vt is `-biased if

max
a∈N(x)

|∆[`]
x→a| > 0.1δ or max

a∈N(x)
|E[`]

x→a| > 0.1δπ[`]

and `-weighted if

max
a∈N(x)

|E[`]
x→a| > 10π[`].

Let B[`] be the set of all `-biased variables and B′[`] be the set of all `-weighted variables. Obviously,

by definition, we have B′[`] ⊂ B[`].

Writing µ[`]
x→a(sign(x, a)) in terms of the biases obtain

µ[`]
x→a(−sign(x, a)) =

1

2
(1− ψ0(π[`]))−

(
E[`]
x→a + sign(x, a)∆[`]

x→a

)
= τ [`]/2−

(
E[`]
x→a + sign(x, a)∆[`]

x→a

)
(5.13)

We are going to prove that |∆[`]
x→a| and |E[`]

x→a| are small for most x and a ∈ N(x). That is, given the

∆
[`]
x→a and E[`]

x→a we need to prove that the biases∆[`+1]
x→a and E[`+1]

x→a do not “blow up”. The proof is by

induction where the hypothesis is that at most δtθn variables are `-biased and at most δ2θn variables

are `-weighted and our goal is to show that the same holds true for `+ 1.

5.2.3. The quasirandom property

We will now exhibit a few simple quasirandom properties that Φt is very likely to exhibit. Based only

on these graph properties we identify potentially `-biased or `-weighted variables. In turn, we prove

that variables in the complement of these sets are surely not `-biased resp. `-weighted. Moreover, we

show that these sets are small enough with sufficiently high probability. Notice, that these quasirandom

properties to some extend differ substantially from those introduced in [35].

To state the quasirandom properties, fix a k-CNF Φ. Let Φt denote the CNF obtained from Φ by

substituting “true” for x1, . . . , xt and simplifying (1 ≤ t ≤ n). Let Vt = {xt+1, . . . , xn} be the set of

variables of Φt. Let δ = δt. With c > 0 we let k1 =
√
cθk. For a variable x ∈ Vt, ζ ∈ {1,−1} and a
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set T ⊂ Vt let

N (x, ζ) = {b ∈ N(x, ζ) : 0.1θk ≤ |N(b)| ≤ 10θk} ,

N≤1(x, T, ζ) = {b ∈ N (x, ζ) : |N(b) ∩ T \ {x}| ≤ 1},

Ni(x, T, ζ) = {b ∈ N (x, ζ) : |N(b) ∩ T \ {x}| = i} for i ∈ {0, 1},

N1(x, T, ζ) = {b ∈ N(x, ζ) : |N(b) \ T | ≥ k1 ∧ |N(b) ∩ T \ {x}| = 1},

N>1(x, T, ζ) = {b ∈ N(x, ζ) : |N(b) \ T | ≥ k1 ∧ |N(b) ∩ T \ {x}| > 1}.

Thus, N≤1(x, T, ζ) is the set of all clauses a that contain x with sign(x, a) = ζ (which may or may

not be in T ) and at most one additional variable from T . In addition, there is a condition on the length

|N(b)| of the clauses b in the decimated formula Φt. Having assigned the first t variables, we should

“expect” the average clause length to be θk. The sets Ni(x, T, ζ) are a partition of N≤1(x, T, ζ)

separating clauses that contain exactly one additional variable from T \ {x} and clauses that contain

none.

Q1 No more than 105δθn variables occur in clauses of length less than θk/10 or greater than 10θk

in Φt. Moreover, there are at most 10−4δθn variables x ∈ Vt such that

(θk)3δ ·
∑

b∈N(x,ζ)

2−|N(b)| > 1.

Q2 For any set T ⊂ Vt of size |T | ≤ sθn such that δ5 ≤ s ≤ 10δ and any p ∈ (0, 1] there are at

most 10−3δ2θn variables x such that for one ζ ∈ {−1, 1} either∣∣∣∣∣∣Π(T, p)−
∑

b∈N≤1(x,T,ζ)

(2/τ(p))1−|N(b)|

∣∣∣∣∣∣ > 2δ/1000 or

∑
b∈N1(x,T,ζ)

2−|N(b)| > 104ρθks or

∑
b∈N≤1(x,T,ζ)

2−|N(b)| > 104ρ.

Q3 If T ⊂ Vt has size |T | ≤ δθn, then there are no more than 10−4δθn variables x such that at

least for one ζ ∈ {−1, 1} ∑
b∈N>1(x,T,ζ)

2|N(b)∩T\{x}|−|N(b)| > δ/(θk).
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Q4 For any 0.01 ≤ z ≤ 1 and any set T ⊂ Vt of size |T | ≤ 100δθn we have

∑
b:|N(b)∩T |≥z|N(b)|

|N(b)| ≤ 1.01

z
|T |+ 10−4δθn.

Q5 For any set T ⊂ Vt of size |T | ≤ 10δθn, any p ∈ (0, 1] and any ζ ∈ {−1, 1} the linear operator

Λ(T, µ, ζ) : RVt → RVt ,

Γ = (Γy)y∈Vt 7→

 ∑
b∈N≤1(x,T,ζ)

∑
y∈N(b)\{x}

(2/τ(p))−|N(b)| sign(y, b)Γy


has norm ‖ Λ(T, µ, ζ) ‖�≤ δ4θn.

Definition 5.2.3. Let δ > 0. We say that Φ is (δ, t)-quasirandom if Q1-Q5 are satisfied.

Apart from a bound on the number of very short/very long clauses, Q1 provides a bound on the

“weight” of clauses in which variables x ∈ Vt typically occur, where the weight of a clause b is

2−|N(b)|. Moreover, Q2 and Q3 provide that there is no small set T for which the total weight of the

clauses touching that set is very big. In addition, Q2 (essentially) requires that for most variables x

the weights of the clauses where x occurs positively/negatively should approximately cancel. Further,

Q4 provides a bound on the lengths of clauses that contain many variables from a small set T . Finally,

the most important condition is Q5, providing a bound on the cut norm of signed and weighted matrix

representations of Φt. Notice, that compared to the quasirandom properties in [35] there is in particular

a stronger bound on the number of exceptional vertices in Q2.

Proposition 5.2.4 ([35]). There is a sequence (εk)k≥3 with limk→∞ εk = 0 such that for any k, r

satisfying 2k(1 + εk) ln(k)/k ≤ r ≤ 2k ln 2 there is ξ = ξ(k, r) ∈ [0, 1
k ] so that for n large and δt, t̂

as in (5.2) for any 1 ≤ t ≤ t̂ we have

P [Φ is (δt, t)-quasirandom|Φ is tame] ≥ 1− exp (−10(ξn+∆t))

Theorem 5.2.5. There is a sequence (εk)k≥3 with limk→∞ εk = 0 such that for any k, r satisfying

2k(1 + εk) ln(k)/k ≤ r ≤ 2k ln 2 and n sufficiently large the following is true.

Let Φ be a tame k-CNF with n variables and m clauses that is (δt, t)-quasirandom

for some 1 ≤ t ≤ t̂. Then Φ is (δt, t)- balanced.

The proof of Proposition 5.2.4 based on standard arguments applying the theory of large deviations.

Not only due to some update of the quasirandom properties from [35] carrying out these computations
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carefully should give the conviction that these properties are sufficiently highly concentrated inΦ. This

may be considered as being counter intuitive for some of these properties. Theorem 5.2.5 together with

Proposition 5.2.4 yields Theorem 5.1.5.

5.2.4. Setting up the induction

From here on throughout the whole chapter we assume Φ to be tame and all statements to hold for any

t ≤ t̂. Let δ = δt.

We like to show that for most variables x ∈ Vt for all a ∈ N(x) simultaneously for both ζ ∈
{−1, 1} the values π[`]

x→a(ζ) are close to a typical value which is estimated by π[`] for each iteration

step [`] of SP. Therefore, we are going to trace the SP operator on Φt iterated from the initial set of

messages µ[0]
x→a(±1) = 1

2 and µ[0]
x→a(0) = 0 for all x ∈ Vt and a ∈ N(x). To do so, we define sets

T1[`], . . . , T4[`] ⊂ Vt and parameters π[`] and τ [`] inductively that will allow us to identify biased

variables. Let T [`] = T1[`] ∪ T2[`] ∪ T3[`] ∪ N(T4[`]) and T ′[`] = T1[`] ∪ T2[`]. It will turn out

that T [`] is a superset of the set of biased variables and T ′[`] a superset of the variables x ∈ Vt

such that for one clause a ∈ N(x) we find |ψ0(π[`]) − µ
[`]
x→a(0)| is large. Let us emphasize that

this is indeed a fundamental difference to [35], where only the set of biased variables with respect to

the 1 and −1 messages is traced. Also the T sets are defined similar to the ones in [35], there is a

significant difference by adjusting the exact assumptions and parameters to the updated statements of

the quasirandom properties and introducing an additional set for tracing the weighted variables.

Let us define for x ∈ Vt, a ∈ N(x) and ζ ∈ {1,−1}

N [`+1]
≤1 (x→ a, ζ) = N≤1(x, T [`], ζ) \ {a}

N [`+1]
1 (x→ a, ζ) = N1(x, T [`], ζ) \ {a}

N [`+1]
0 (x→ a, ζ) = N0(x, T [`], ζ) \ {a}

N
[`+1]
>1 (x→ a, ζ) = N(x, ζ) \ ({a} ∪ N≤1(x, T [`], ζ)).

and

P
[`+1]
≤1 (x→ a, ζ) =

∏
b∈N≤1(x,T [`],ζ)\{a}

µ
[`]
b→x(0)

P
[`+1]
>1 (x→ a, ζ) =

∏
b∈N(x,ζ)\({a}∪N≤1(x,T [`],ζ))

µ
[`]
b→x(0).
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Note, that

π[`]
x→a(ζ) = P

[`]
≤1(x→ a, ζ) · P [`]

>1(x→ a, ζ). (5.14)

First of all, for ` = 0 we set T1[0] = T2[0] = T3[0] = T4[0] = ∅ and additionally π[0] = 0 and

τ [0] = 1. Now we define inductively

π[`+ 1] = π (T [`], π[`]) , Π[`+ 1] = Π (T [`], π[`]) and τ [`+ 1] = τ (π[`+ 1])

and let

T1[`+ 1] =

{
x ∈ Vt : max

(a,ζ)∈N(x)×{−1,1}

∣∣∣P [`+1]
≤1 (x→ a, ζ)− π[`+ 1]

∣∣∣ > 0.01δπ[`+ 1]

}

contain all variables for which P [`+1]
≤1 (x→ a, ζ) fails to be close enough to the typical value.

Let T2[`+ 1] be the set of all variables x that have for at least one ζ = {−1, 1} at least one of the

following properties.

T2a.
∣∣∣Π[`+ 1]−

∑
b∈N≤1(x,T [`],ζ) (2/τ [`])1−|N(b)|

∣∣∣ > 2δ/1000.

T2b. Either ∑
b∈N1(x,T [`],ζ)

2−|N(b)| > 104ρθkδ or
∑

b∈N1(x,T ′[`],ζ)

2−|N(b)| > 104ρθkδ2.

T2c.
∑

b∈N≤1(x,T [`],ζ) 2−|N(b)| > 104ρ.

A variable x is (` + 1)-harmless if it enjoys the following four properties simultaneously for ζ ∈
{−1, 1}.

H1. We have δ(θk)3
∑

b∈N(x) 2−|N(b)| ≤ 1, and 0.1θk ≤ |N(b)| ≤ 10θk for all b ∈ N(x).

H2.
∑

b∈N1(x,T [`],ζ) 2−|N(b)| ≤ ρ(θk)5δ and
∑

b∈N>1(x,T [`],ζ) 2|N(b)∩T [`]\{x}|−|N(b)| ≤ δ/(θk).

H3. There is at most one clause b ∈ N(x) such that |N(b) \ T [`]| ≤ k1.

H4.
∣∣∣Π[`+ 1]−

∑
b∈N≤1(x,T [`],ζ) (2/τ [`])1−|N(b)|

∣∣∣ ≤ 0.01δ.

Let H[`+ 1] signify the set of all (` + 1)-harmless variables and H[0] = ∅. Further, let T3[`+ 1] be

the set of all variables x that have at least one of the following properties.

T3a. There is a clause b ∈ N(x) that is either redundant, or |N(b)| < 0.1θk, or |N(b)| > 10θk.

T3b. δ(θk)3
∑

b∈N(x) 2−|N(b)| > 1.

T3c. At least for one ζ = {−1, 1} we have
∑

b∈N>1(x,T [`],ζ) 2|N(b)|∩T [`]\{x}|−|N(b)| > δ/(θk).
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T3d. x occurs in more than 100 clauses from T3[`].

T3e. x occurs in a clause b that contains fewer than 3|N(b)|/4 variables form H[`].

Furthermore, we let

T4[`+ 1] =
{
a ∈ φt : |N(a)| ≥ 100k1 ∧ |N(a) \ T [`]| ≤ k1

}
\ T4[`]. (5.15)

As promised we obtain

Proposition 5.2.6. Assume that π[`] ≤ 2 exp (−ρ). We have B[`] ⊂ T [`] and B′[`] ⊂ T ′[`] for all

` ≥ 0.

Furthermore, we establish the following bounds on the size of T [`] and T ′[`]. Since the sets are defined

by graph properties independent from the actual state of the algorithm the quasirandom properties

suffice to obtain

Proposition 5.2.7. If Φ is (δt, t)-quasirandom, we have T [`] < δθn, T ′[`] < δ2θn and π[`] ≤
2 exp (−ρ) for all ` ≥ 0.

Proposition 5.2.6 and 5.2.7 are the main technical statements and differ to there counterparts in [35]

by additionally bounding the size of the `-weighted variables and taking the π[`] into account.

5.2.5. Sketch of proof

Before we dive into the proofs of the rather technical statements let us give a sketch of the proof in

order to develop an intuition of the underlying idea of the proof.

Writing µ[`]
x→a(sign(x, a)) in terms of the biases as in (5.13) we obtain

µ[`]
x→a(−sign(x, a)) =

1

2
(1− ψ0(π[`]))−

(
E[`]
x→a + sign(x, a)∆[`]

x→a

)
= τ [`]/2−

(
E[`]
x→a + sign(x, a)∆[`]

x→a

)
(5.16)

We are going to prove that |∆[`]
x→a| and |E[`]

x→a| are small for most x and a ∈ N(x). That is, given the

∆
[`]
x→a and E[`]

x→a we need to prove that the biases ∆[`+1]
x→a and E[`+1]

x→a do not ’blow up’. The proof is by

induction where the hypothesis is that at most δtθn variables are `-biased and at most δ2θn variables

are `-weighted and our goal is to show that the same holds true for `+ 1. To establish this, we need to

investigate one iteration of the update rules (3.6) and (3.8).
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Now, to estimate how far π[`+1]
x→a (ζ) actually strays from π[`+ 1] we start by rewriting (3.6) in terms

of the biases ∆[`]
x→a and E[`]

x→a, we obtain

µ[`]
a→x(0) = 1−

∏
y∈N(a)\{x}

τ [`]/2−
(
E[`]
y→a + sign(y, a)∆[`]

y→a

)

= 1− (2/τ [`])1−|N(a)| ∏
y∈N(a)\{x}

1− 2/τ [`]
(
E[`]
y→a(0) + sign(y, a)∆[`]

y→a

)
. (5.17)

Under the assumption that 0.1θ ≤ |N(a)| ≤ 10θk, and |∆[`]
y→a| ≤ 0.1δ = exp(−cθk) as well as

|E[`]
y→a| ≤ 0.1π[`]δ ≤ exp(−cθk) for all y ∈ N(a) \ {x}, and since by induction and Lemma 5.2.2

τ [`] is close to 1 we can approximate (5.17) by

µ[`]
a→x(0) = 1− (2/τ [`])1−|N(a)| ∏

y∈N(a)\{x}

1− 2/τ [`]
(
E[`]
y→a(0) + sign(y, a)∆[`]

y→a

)

∼ exp

− (2/τ [`])1−|N(a)|

1− 2/τ [`]
∑

y∈N(a)\{x}

(
E[`]
y→a(0) + sign(y, a)∆[`]

y→a

)

Finally, we approximate

lnπ[`+1]
x→a (ζ) = ln

∏
b∈N(x,ζ)

µ
[`]
b→x(0)

∼ −
∑

b∈N(x,ζ))\{a}

(2/τ [`])1−|N(b)|

1− 2/τ [`]
∑

y∈N(b)\{x}

(
E

[`]
y→b(0) + sign(y, b)∆

[`]
y→b

) (5.18)

which we claim to be very close to π[`]. To prove that, we show that Π[`+ 1] − lnπ
[`+1]
x→a (ζ) is close

to zero which by induction, Lemma 5.2.2 and (5.18) supposes to be the case if

Π[`+ 1]−
∑

b∈N(x,ζ)\{a}

(2/τ [`])1−|N(b)|

1− 2/τ [`]
∑

y∈N(b)\{x}

(
E

[`]
y→b(0) + sign(y, b)∆

[`]
y→b

)
is close to zero.

The first contribution to that sum is just the weight of clauses in which x appears in with sign ζ. This

should be close to the value π[`+ 1] by definition for many variables.

The second contribution comes from the biases of the ’zero-messages’. This influence is small since

the bound on E[`]
y→b is so tight and the set of `-weighted variables is so small that only a little number

of variables are influenced by `-weighted variables.
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The third contribution ∑
b∈N(x,ζ)\{a}

∑
y∈N(b)\{x}

(2/τ [`])2−|N(b)| sign(y, b)∆[`]
y→a

is a linear function of the bias vector ∆[`] from the previous round. Indeed, this operator can be

represented by a matrix

Λ̂ζ = (Λ̂ζx→a,y→b)x→a,y→b with entries

Λ̂ζx→a,y→b =

(2/τ [`])2−|N(b)| sign(y, b) if a 6= b, x 6= y, and b ∈ N(x, ζ),

0 otherwise.

with x→ a, y → b ranging over all edges of the factor graph of Φt.

Since Λ̂ζ is based on Φt, it is a random matrix. One could therefore try to use standard arguments

to bound it in some norm (say, ‖Λ̂ζ‖�). The problem with this approach is that Λ̂ζ is very high-

dimensional: it operates on a space whose dimension is equal to the number of edges of the factor

graph. In effect, standard random matrix arguments do not apply.

To resolve this problem, consider a “projection” of Λ̂ζ onto a space of dimension merely |Vt|θn,

namely

Λζ : RVt → RVt ,Γ = (Γy)y∈Vt 7→

 ∑
b∈N(x,ζ)

∑
y∈N(b)\{x}

(2/τ [`])2−|N(b)| sign(y, b)Γy


x∈Vt

One can think of Λζ as a signed and weighted adjacency matrix of Φt. Standard arguments easily

show that ‖Λζ‖� ≤ δ4
t θn with a very high probability. In effect, we expect that for all but a very small

number of variables x ∈ Vt we have simultaneously for ζ ∈ {−1, 1} that

max
a∈N(x)

∣∣∣∣∣∣
∑

b∈N(x,ζ)\{a}

∑
y∈N(b)\{x}

(2/τ [`])2−|N(b)| sign(y, b)∆
[`]
y→b

∣∣∣∣∣∣ ≤ δt/4.
The quasirandom properties are designed to identify graphs such that the number of variables where

the ∼ signs in the above discussion is not appropriate is small and the influence of each small poten-

tially set of biased variables is small.

Let us now turn this sketch into an actual proof. In Section 5.3, we prove Proposition 5.2.6. In Section

5.4 we prove Proposition 5.2.7. In Section 5.5 we prove Theorem 5.2.5. Finally, in Section 5.6 we

establish that the quasirandom properties hold on Φt with the required probability.
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5.3. Proof of Proposition 5.2.6

Throughout this section we assume that

π[`] ≤ 2 exp (−ρ) for all ` ≥ 0 (5.19)

and thus

1 ≥ τ [`] = 1− ψ0(π[`]) ≥ 1− π[`] ≥ 1− 2 exp (−ρ) ≥ 1− 2k−(1+ε). (5.20)

The proof will be by induction on `. We start with a tightness result regarding π[`+1]
x→a (ζ).

Proposition 5.3.1. Let x ∈ Vt. Suppose B[`] ⊂ T [`]. Then simultaneously for ζ ∈ {−1, 1} we have

max
a∈N(x,ζ)

∣∣∣π[`+1]
x→a (ζ)− π[`+ 1]

∣∣∣ ≤
δπ[`+ 1]/80 if x /∈ T [`+ 1]

2π[`+ 1] if x /∈ T ′[`+ 1].

To prove Proposition 5.3.1 we establish an elementary estimate of the messages µ[`]
b→x(0) from clauses

to variables. The counterpart in [35] is Lemma 28 updated by the 0 message bias. The counterpart

of Corollary 5.3.3, 5.3.4 and 5.3.5 are Corollary 29 to 31 in [35] that needed to be rephrased for the

µ
[`]
b→x(0) messages. The proof idea is rather similar also in particular the proof of Corollary 5.3.4

needed elaborate adjustment to the Survey Propagation operator and fixing several bugs. The same

was done for the proof of Proposition 5.3.1 and 5.2.6 that is implicitly contained in the proof of

Proposition 27 in [35].

Lemma 5.3.2. Let x be a variable and let b ∈ N(x) be clause. Let tb = |N(b) ∩B[`] \ {x}|. Then

0 ≤ 1− µ[`]
b→x(0) ≤ (2/τ [`])1−|N(b)|+tb exp(δ|N(b)|).

Proof. For any y ∈ N(b) \ {x} by (5.13) we have

µ
[`]
y→b(−sign(y, b)) = τ [`]/2−

(
E

[`]
y→b + sign(y, b)∆

[`]
y→b

)
.
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Therefore, by definition (3.6) we have

0 ≤ 1− µ[`]
b→x(0) =

∏
y∈N(b)\{x}

τ [`]/2−
(
E

[`]
y→b + sign(y, b)∆

[`]
y→b

)

= (2/τ [`])1−|N(b)| ∏
y∈N(b)\{x}

1− 2/τ [`]
(
E

[`]
y→b + sign(y, b)∆

[`]
y→b

)

≤ (2/τ [`])1−|N(b)| · (2/τ [`])tb ·
∏

y∈N(b)\({x}∪B[`])

1 + 2/τ [`]
∣∣∣E[`]

y→b + sign(y, b)∆
[`]
y→b

∣∣∣
[as |E[`]

y→b + sign(y, b)∆
[`]
y→b| ≤ τ [`]/2 for all y ∈ N(b)]

≤ (2/τ [`])1−|N(b)|+tb · exp

2
∑

y∈N(b)\({x}∪B[`])

∣∣∣E[`]
y→b + sign(y, b)∆

[`]
y→b

∣∣∣
 [by (5.20)]

≤ (2/τ [`])1−|N(b)|+tb · exp (|N(b)|δ)

[as |∆[`]
y→b| ≤ 0.1δ and |E[`]

y→b| ≤ 0.1δ for all y /∈ B[`]].

Corollary 5.3.3. Let x be a variable and let T ⊂ N(x) be a set of clauses such that |N(b)| ≥ 01.θk

for all b ∈ T . For each b ∈ T let tb = |N(b) ∩ B[`] \ {x}|. Assume that tb < |N(b)| − 2 and

|N(b)| ≤ 10θk for all b ∈ T . Then µ[`]
b→x(0) > 0 for all b ∈ T and∣∣∣∣∣ln∏

b∈T
µ

[`]
b→x(0)

∣∣∣∣∣ ≤∑
b∈T

(2/τ [`])4−|N(b)|+tb .

Proof. For each b ∈ T there is y ∈ N(b)\{x} such that y /∈ B[`], because tb < |N(b)|−2. Therefore,

by (3.6) µ[`]
b→x(0) > 0. Lemma 5.3.2 implies that

1 ≥ µ[`]
b→x(0) ≥ 1− (2/τ [`])1−|N(b)|+tb exp (δ|N(b)|) . (5.21)

Our assumptions tb < |N(b)| − 2, |N(b)| ≤ 10θk and (5.20) ensure that

(2/τ [`])1−|N(b)|+tb ≤ 1/2 and exp (δ|N(b)|) ≤ 1.1,

whence (2/τ [`])1−|N(b)|+tb exp (δ|N(b)|) ≤ 0.6. Due to the elementary inequality 1−z ≥ exp(−2z)

for z ∈ [0, 0.6], (5.21) thus yields

µ
[`]
b→x(0) ≥ exp

(
− (2/τ [`])3−|N(b)|+tb exp (δ|N(b)|)

)
≥ exp

(
− (2/τ [`])4−|N(b)|+tb

)
. (5.22)
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Multiplying (5.22) up over b ∈ T and taking logarithms yields

0 ≥ ln
∏
b∈T

µ
[`]
b→x(0) ≥ −

∑
b∈T

(2/τ [`])4−|N(b)|+tb exp (δ|N(b)|)

as desired.

Corollary 5.3.4. Suppose that x ∈ H[`] and that a ∈ N(x) is a clause such that |N(a) \ T [`− 1]| ≤
k1. Moreover, assume that B[`− 1] ⊂ T [`− 1]. Then |∆[`]

x→a| ≤ 0.01.

Proof. Let ζ ∈ {−1, 1}. Since x ∈ H[`] for each b ∈ N(x, ζ)\{a} we have the following properties.

P1. By H1 we have 0.1θk ≤ |N(b)| ≤ 10θk.

P2. By H3 we have |N(b) \ T [`− 1]| ≥ k1.

P3. Let tb = |N(b) ∩ B[`− 1] \ {x}|. Our assumption that B[`− 1] ⊂ T [`− 1] and condition H3
ensure that

tb ≤ |N(b) ∩ T [`− 1]| ≤ |N(b)| − k1 < |N(b)| − 2.

Since |N(a) \ T [`− 1]| ≤ k1 by property P2 we find

N
[`]
>1(x→ a, ζ) = N>1(x, T [`− 1], ζ)

and set T = N
[`]
>1(x→ a, ζ). By P1 and P3 Corollary 5.3.3 applies to T and yields

∣∣∣lnP [`]
>1(x→ a, ζ)

∣∣∣ =

∣∣∣∣∣ln∏
b∈T

µ
[`−1]
b→x (0)

∣∣∣∣∣ ≤∑
b∈T

(2/τ [`])4−|N(b)|+tb (5.23)

and H2 ensures that
∑

b∈T (2/τ [`])−|N(b)|+tb ≤ δ, whence (5.23) entails∣∣∣P [`]
>1(x→ a, ζ)− 1

∣∣∣ ≤ 10−4. (5.24)

Moreover, x ∈ H[`] and therefore by H1 and since |N(a) \ T [`− 1]| ≤ k1 � 0.1θk we have

|N(a) ∩ T [`− 1]| > 1. Thus we get

N [`]
≤1(x→ a, ζ) = N≤1(x, T [`− 1], ζ).

This yields the factorization

P
[`]
≤1(x→ a, ζ) =

∏
b∈N0(x,T [`−1],ζ)

µ
[`−1]
b→x (0) ·

∏
b∈N1(x,T [`−1],ζ)

µ
[`−1]
b→x (0). (5.25)
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With respect to the second product, Corollary 5.3.3 yields since tb ≤ 1 and |N(b)| ≥ 0.1θk if b ∈
N1(x, T [`− 1], ζ) that∣∣∣∣∣∣ln

∏
b∈N1(x,T [`−1],ζ)

µ
[`−1]
b→x (0)

∣∣∣∣∣∣ ≤
∑

b∈N1(x,T [`−1],ζ)

(2/τ [`])5−|N(b)|

≤ 32ρ(θk)5δ [by H2 and (5.20)]

≤ 10−6 [as δ = exp (−cθk) with θk ≥ ln(ρ)/c2]

and thus ∣∣∣∣∣∣1−
∏

b∈N1(x,T [`−1],ζ)

µ
[`−1]
b→x (0)

∣∣∣∣∣∣ ≤ 10−5 (5.26)

Furthermore, by (3.6) and (5.13) for any b ∈ N0(x, T [`− 1], ζ) we have

µ
[`−1]
b→x (0) = 1−

∏
y∈N(b)\{x}

τ [`]/2−
(
E

[`]
y→b + sign(y, b)∆

[`]
y→b

)

= 1− (2/τ [`])1−|N(b)| ∏
y∈N(b)\{x}

1− 2/τ [`]
(
E

[`]
y→b + sign(y, b)∆

[`]
y→b

)
. (5.27)

Since b ∈ N0(x, T [`− 1], ζ), we have y /∈ B[`− 1] ⊂ T [`− 1], and thus |∆[`−1]
y→b | ≤ 0.1δ and

|E[`−1]
y→b | ≤ 0.1δπ[`− 1] for all y ∈ N(b) \ {x}. Letting

αb = 1−
∏

y∈N(b)\{x}

1− 2/τ [`]
(
E

[`]
y→b + sign(y, b)∆

[`]
y→b

)
we find with (5.20) that

−10δθk
P1
≤ 1− (1 + 0.5δ)|N(b)| ≤ αb ≤ 1− (1− 0.5δ)|N(b)| P1

≤ 10δθk. (5.28)

Thus, by (5.27), (5.28) and P1 we compute

1 ≥ µ[`−1]
b→x (0) ≥ 1− (2/τ [`])1−|N(b)| (1 + 10δθk) ≥ 0.99. (5.29)

Using the elementary inequality −z − z2 ≤ ln(1− z) ≤ −z for 0 ≤ z ≤ 0.5, we obtain from (5.27),
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(5.28) and (5.29)

lnµ
[`−1]
b→x (0) ≤ − (2/τ [`])1−|N(b)| (1− αb) ≤ − (2/τ [`])1−|N(b)| (1− 10δθk)

lnµ
[`−1]
b→x (0) ≥ − (2/τ [`])1−|N(b)| (1− αb)− (2/τ [`])2(1−|N(b)|) (1− αb)2

≥ − (2/τ [`])1−|N(b)| (1 + 10δθk).

Summing these bounds up for b ∈ N0(x, T [`− 1], ζ), we obtain

ln
∏

b∈N0(x,T [`−1],ζ)

µ
[`−1]
b→x (0) ≤ −

∑
b∈N0(x,T [`−1],ζ)

(2/τ [`])1−|N(b)|

+10kδ
∑

b∈N0(x,T [`−1],ζ)

(2/τ [`])1−|N(b)|

≤ −
∑

b∈N0(x,T [`−1],ζ)

(2/τ [`])1−|N(b)| + 10(kθ)−3 [by H1]

= −
∑

b∈N≤1(x,T [`−1],ζ)

(2/τ [`])1−|N(b)|

+
∑

b∈N1(x,T [`−1],ζ)

(2/τ [`])1−|N(b)| + 2(kθ)−3

≤ −Π[`] + 10−3δ + ρ (θk)5 δ + 10(θk)−3 [by H2, H4]

≤ −Π[`] + 10−6 [because δ = exp (−cθk) and θk ≥ ln(ρ)/c2].

Analogously, we obtain ln
∏
b∈N0(x,T [`−1],ζ) µ

[`−1]
b→x (0) ≥ −Π[`]− 10−6 and thus∣∣∣∣∣∣Π[`] + ln

∏
b∈N0(x,T [`−1],ζ)

µ
[`−1]
b→x (0)

∣∣∣∣∣∣ ≤ 10−6. (5.30)

Consequently, (5.30) and Lemma 5.2.1 yield∣∣∣∣∣∣π[`]−
∏

b∈N0(x,T [`−1],ζ)

µ
[`−1]
b→x (0)

∣∣∣∣∣∣ ≤ 10−5π[`]. (5.31)

Plugging (5.26) and (5.31) into (5.25) we see that∣∣∣P [`]
≤1(x→ a, ζ)− π[`]

∣∣∣ ≤ 10−4π[`], (5.32)
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while ∣∣∣P [`]
>1(x→ a, ζ)− 1

∣∣∣ ≤ 10−4 [by (5.24)]. (5.33)

Therefore, (5.14) as well as (5.32) and (5.33) yield∣∣∣π[`]
x→a(ζ)− π[`]

∣∣∣ ≤ 10−3π[`]. (5.34)

By (3.8), (5.34) and Lemma 1.0.10 we have∣∣∣µ[`]
x→a(1)− ψ1(π[`])

∣∣∣ =
∣∣∣ψ1(π[`]

x→a(1), π[`]
x→a(−1))− ψ1(π[`])

∣∣∣ ≤ 2 · 10−3 (5.35)∣∣∣µ[`]
x→a(0)− ψ0(π[`])

∣∣∣ =
∣∣∣ψ0(π[`]

x→a(1), π[`]
x→a(−1))− ψ0(π[`])

∣∣∣ ≤ 2 · 10−3π[`] (5.36)

and therefore, by (5.2), (5.35) and (5.36) we find

|∆[`]
x→a| =

∣∣∣∣µ[`]
x→a(1)− 1

2
(1− µ[`]

x→a(0))

∣∣∣∣ ≤ ∣∣∣∣ψ1(π[`])− 1

2
(1− ψ0(π[`]))

∣∣∣∣+5 · 10−3

≤ 0.01 [by (1.7)].

as claimed.

Corollary 5.3.5. Let ` ≥ 1 and b be a clause such that N(b) 6⊂ T [`]. Let x ∈ N(b). Assume that

B[`− 1] ⊂ T [`− 1]. Then

1− µ[`−1]
b→x (0) ≤ exp (−k1/2) .

Proof. Since N(b) 6⊂ T [`], there exists a y /∈ T [`] and because b ∈ N(y) by T3a we have

0.1θk ≤ |N(b)| ≤ 10θk. (5.37)

We consider two cases

Case 1 |N(b) \ T [`− 1]| > k1. By (5.37) and Lemma 5.3.2 we find

exp (− exp (−0.6k1)) ≤ exp
(
−23−k1 exp (δ|N(b)|)

)
≤ µ[`−1]

b→x (0) ≤ 1,

whence the assertion follows.

Case 2 |N(b) \ T [`− 1]| ≤ k1. The assumption N(b) 6⊂ T [`] implies that b 6⊂ T3[`]. But since

|N(b) \ T [`− 1]| ≤ k1 and by (5.37), the only possible reason why b /∈ T3[`] is that b ∈
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T3[`− 1] (cf. the definition of T3[`]). As N(b) 6⊂ T3[`], T3e implies

|N(b) ∩H[`− 1]| ≥ 3|N(b)|/4. (5.38)

Let J = N(b) ∩ H[`− 1]. Since b ∈ T3[`− 1], we have ` ≥ 2 and |N(b) \ T [` − 2]| ≤ k1.

Therefore, Corollary 5.3.4 implies that ∆[`−1]
y→b ≤ 0.01 for all y ∈ J . Thus, for all x ∈ N(b) we

have

µ
[`−1]
b→x (0) = 1−

∏
y∈N(b)\{x}

µ
[`−1]
y→b (−sign(y, b))

≥ 1− 0.501|J |−1
(5.38)

≥ 1− 0.501
3
4
|N(b)|−1 ≥ 1− 0.5010.07θk.

Consequently,∣∣∣µ[`−1]
b→x (0)− 1

∣∣∣ ≤ 0.5010.07θk ≤ exp (−θk/100) ≤ exp (−k1) .

Thus, we have established the assertion in either case.

Proof of Proposition 5.3.1. Let us fix an ` ≥ 0 and assume that B[`] ⊂ T [`]. Let x ∈ Vt \ T [` + 1].

Corollary 5.3.5 implies that

1− µ[`]
a→x(0) ≤ exp (−k1/2) for all a ∈ N(x). (5.39)

We claim

|P [`+1]
>1 (x→ a, ζ)− 1| ≤ δ/500 for all a ∈ N(x), ζ ∈ {1,−1}. (5.40)

To establish (5.40), we consider two cases.

Case 1 x /∈ N(T4[`]). Let T = N
[`+1]
>1 (x → a, ζ) be the set of all clauses b that contribute to the

product P [`+1]
>1 (x → a, ζ). Since x /∈ N(T [`] ∪ T [`+ 1]), none of the clauses b ∈ T features

more than |N(b)| − k1 variables from T [`] (just from the definition of T4[`+ 1]). Furthermore,

because x /∈ T3[`+ 1], T3c is not satisfied and thus we obtain the bound∑
b∈T

(2/τ [`])|N(b)|∩T [`]\{x}|−|N(b)| ≤
∑

b∈N>1(x,T [`],ζ)

2|N(b)|∩T [`]\{x}|−|N(b)|

≤ δ/(θk) ≤ δ/104. (5.41)

Since x /∈ T [`+ 1], T3a ensures that 0.1θk ≤ |N(b)| ≤ 10θk for all b ∈ T . Therefore, (5.40)

follows from (5.41) and Corollary 5.3.3.
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Case 2 x ∈ N(T4[`]). Let T = N
[`+1]
>1 (x→ a, ζ) \ T4[`] be the set of all clauses b that occur in the

product P [`+1]
>1 (x → a, ζ), apart from those in T4[`]. Since x /∈ T3[`+ 1] ∪N(T4[`+ 1]), this

set T also satisfies (5.41). Thus, since x /∈ T3[`+ 1] and therefore |N(b)| ≥ 0.1θk Corollary

5.3.3 yields ∣∣∣∣∣ln∏
b∈T

µ
[`]
b→a(0)

∣∣∣∣∣ ≤ δ/103. (5.42)

Let T ′ = N
[`+1]
>1 (x→ a, ζ)∩T4[`]. As condition T3d ensures that |T ′| ≤ |N(x)∩T4[`]| ≤ 100,

(5.39) implies ∣∣∣∣∣ln ∏
b∈T ′

µ
[`]
b→a(0)

∣∣∣∣∣ ≤ 2|T ′| exp(−k1/2) ≤ δ/1000. (5.43)

Since N [`+1]
>1 (x→ a, ζ) = T ∪ T ′, (5.42) and (5.43) yield |1− P [`+1]

>1 (x→ a, ζ)| ≤ δ/500.

Thus we have established (5.40) in either case.

Let a ∈ N(x). If x /∈ T1[`+ 1] by definition

|π[`+ 1]− P [`+1]
≤1 (x→ a, ζ)| ≤ π[`+ 1]δ/100. (5.44)

Thus by (5.40) and (5.44) we obtain for all x /∈ T [`+ 1]∣∣∣π[`+ 1]− π[`+1]
x→a (ζ)

∣∣∣ =
∣∣∣π[`+ 1]− P [`+1]

≤1 (x→ a, ζ) · P [`+1]
>1 (x→ a, ζ)

∣∣∣
≤ π[`+ 1]δ/80.

To show the second assertion let x /∈ T ′[`+ 1] and a ∈ N(x). In particular, x /∈ T1[`+ 1] and thus

by (5.44) we find∣∣∣π[`+ 1]− π[`+1]
x→a (ζ)

∣∣∣ =
∣∣∣π[`+ 1]− P [`+1]

≤1 (x→ a, ζ) · P [`+1]
>1 (x→ a, ζ)

∣∣∣
≤ 2π[`+ 1] [since 0 ≤ P [`+1]

>1 (x→ a, ζ) ≤ 1]

as claimed.

Proof of Proposition 5.2.6. To prove that B[`] ⊂ T [`] and B′[`] ⊂ T ′[`] we proceed by induction

on `. Since B[0] = B′[0] = ∅ the assertion is trivial for ` = 0. We assume that ` ≥ 1 and that

B[`] ⊂ T [`].
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Let x ∈ Vt \ T [` + 1] and a ∈ N(x, ζ) and ζ ∈ {−1, 1}. We will prove that x /∈ B[`+ 1]. By

Proposition 5.3.1 simultaneously for ζ ∈ {−1, 1} we have∣∣∣π[`+1]
x→a (ζ)− π[`+ 1]

∣∣∣ ≤ δπ[`+ 1]/80. (5.45)

By (3.8), (5.45) and Lemma 1.0.10 we have∣∣∣µ[`+1]
x→a (ζ)− ψζ(π[`+ 1])

∣∣∣ ≤ δ/20 (5.46)∣∣∣µ[`+1]
x→a (0)− ψ0(π[`+ 1])

∣∣∣ ≤ π[`+ 1]δ/40. (5.47)

Thus, ∣∣∣∆[`+1]
x→a

∣∣∣ =

∣∣∣∣µ[`+1]
x→a (ζ)− 1

2

(
1− µ[`+1]

x→a (0)
)∣∣∣∣

≤
∣∣∣∣ψζ(π[`+ 1])− 1

2
(1− ψ0(π[`+ 1]))

∣∣∣∣+ δ/20 + π[`+ 1]δ/40

[by (5.46) and (5.47)]

≤ δ/10. [since π[`+ 1] ≤ 2k−(1+ε) by (5.19) and by (1.7)]

and ∣∣∣E[`+1]
x→a

∣∣∣ =

∣∣∣∣12 (µ[`+1]
x→a (0)− ψ0(π[`+ 1])

)∣∣∣∣
≤ π[`+ 1]δ/80 [by (5.47)].

Consequently, x /∈ B[`+ 1].

Similarly, let x ∈ Vt \ T ′[` + 1] and a ∈ N(x, ζ) for some ζ ∈ {−1, 1}. We will prove that

x /∈ B′[`+ 1]. By Proposition 5.3.1 simultaneously for ζ ∈ {−1, 1} we have∣∣∣π[`+1]
x→a (ζ)− π[`+ 1]

∣∣∣ ≤ 2π[`+ 1].

Therefore, Lemma 1.0.10 yields
∣∣∣µ[`+1]
x→a (0)− ψ0(π[`+ 1])

∣∣∣ ≤ 4π[`+ 1]δ and thus

∣∣∣E[`+1]
x→a

∣∣∣ =

∣∣∣∣12 (µ[`+1]
x→a (0)− ψ0(π[`+ 1])

)∣∣∣∣ ≤ 2π[`+ 1]δ.

Consequently, x /∈ B′[`+ 1].
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5.4. Proof of Proposition 5.2.7

Conditioned on the quasirandom properties we bound the sizes of |T ′[`]| ≤ δ2θn and |T [`]| ≤ δθn by

induction on `. Thus, we may assume that |T [`]| ≤ δθn and |T ′[`]| ≤ δ2θn.

Lemma 5.4.2 and 5.4.3 are with minor adjustments similar to Lemma 32 and 33 in [35]. The Proof

of Proposition 5.2.7 needed additional ideas since the statement is more involved as the analogue

statement in [35].

We begin by bounding the sizes of the sets T2[`+ 1], T3[`+ 1] and T4[`+ 1].

Lemma 5.4.1. Assume that |T1[`]∪T2[`]∪T3[`]| ≤ δθn/3 and |N(T4[`])| ≤ δθn/2. Then |N(T4[`+ 1])| ≤
δθn/2.

Proof. By construction we have T4[`] ∩ T4[`+ 1] = ∅ (cf. 5.15). Furthermore, also by construction

N(T4[`]) ⊂ T [`], and each clause in T4[`+ 1] has at least a 0.99-fraction of its variables in T [`].

Thus, |N(b) ∩ T [`]| ≥ 0.99|N(b)| for all b ∈ T4[`] ∪ T4[`+ 1]. Hence, Q4 yields

|N(T4[`])|+ |N(T4[`+ 1])| ≤
∑

b∈T4[`]∪T4[`+1]

|N(b)|

≤ 1.01

0.99
|T [`]| ≤ 1.03(|T1[`]|+ |T2[`]|+ |T3[`]|+ |N(T4[`])|).

Hence, |N(T4[`+ 1])| ≤ 1.03(|T1[`]|+ |T2[`]|+ |T3[`]|) + 0.03|N(T4[`])| ≤ δθn/2.

Lemma 5.4.2. Assume that |T [`]| ≤ δθn and |T ′[`]| ≤ δ2θn. Then |T2[`+ 1]| ≤ δ2θn/100.

Proof. Applying Q2 to the set T [`] ≤ δθn yields that the number of variables that satisfy either T2a,

the first part of T2b or T2c is ≤ 3δ2θn/1000. Applying Q2 to the set T ′[`] ≤ δ2θn yields that the

number of variables that satisfy the second part of T2b is ≤ δ2θn/1000. The assertion follows.

Lemma 5.4.3. Assume that |T1[`] ∪ T2[`] ∪ T3[`]| ≤ δθn/3 and |N(T4[`])| ≤ δθn/2. Moreover,

suppose that |T [`− 1]| ≤ δθn. Then |T3[`+ 1]| ≤ δθn/6.

Proof. The assumption that Φ is tame and condition Q1 readily imply that the number of variables

that satisfy either T3a or T3b is ≤ δθn/1000. Moreover, we apply Q3 to the set T [`] of size

|T [`]| ≤ |T1[`] ∪ T2[`] ∪ T3[`]|+ |N(T4)| ≤ 0.9δθn (5.48)

to conclude that the number of variables satisfying T3c is ≤ δθn/1000.
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To bound the number of variables that satisfy T3d, consider the subgraph of the factor graph induced

on T4[`] ∪N(T3[`]). For each x ∈ N(T4[`]) let Dx be the number of neighbours of x in T4[`]. Let ν

be the set of all x ∈ Vt so that Dx ≥ 100. Then Q4 yields

100ν ≤
∑

x∈N(T4[`])

Dx =
∑

a∈T4[`]

|N(a)| ≤ 1.01|T [`]|+ δθn/10000 ≤ δθn

[as N(b) ⊂ T [`] for all b ∈ T4[`]].

Hence, there are at most ν ≤ 0.01δθn variables that satisfy T3d. In summary, we have shown that

| {x ∈ Vt : x satisfies one of T3a - T3d} | ≤ 15δθn/1000.

To deal with T3e, observe that if a clause a has at least |N(a)|/4 variables that are not harmless, then

one of the following statements is true

i. a contains at least |N(a)|/20 variables x that violate either H1, H2 or H4.

ii. a contains at least |N(a)|/5 variables x that violate condition H3.

Let C1 be the set of clauses a for which i. holds and let C2 be the set of clauses satisfying ii., so that

the number of variables satisfying T3e is bounded by
∑

a∈C1∪C2 |N(a)|.

To bound
∑

a∈C1 |N(a)|, let Q be the set of all variables x that violate either H1, H2 or H4 at time `.

Then conditions Q1-Q3 entail that |Q| ≤ 3δθn/1000 (because we are assuming |T [`− 1]| ≤ δθn).

Therefore, condition Q4 implies that∑
a∈C1

|N(a)| ≤ 21|Q|+ δθn/10000 ≤ 64δθn/10000. (5.49)

To deal with C2 let B′ be the set of all clauses b such that |N(b)| ≥ 100k1 but |N(b) \ T [`]| ≤ k1.

Since we know from (5.48) that |T [`]| ≤ δθn, condition Q4 applied to T [`] implies

|N(B′)| ≤
∑
b∈B′
|N(b)| ≤ 1.03|T [`]|+ δθn/10000 ≤ 1.0301δθn. (5.50)

In addition, let B′′ be the set of length less than 100k1 = 100
√
cθk ≤ 0.1θk by our choice of c, Q1

implies that |N(B′′)| ≤ δθn/10000. Hence, (5.50) shows that B = B′ ∪ B′′ satisfies

|N(B)| ≤ 1.0302δθn. (5.51)

Furthermore, let U be the set of all clauses a such that N(a) ⊂ N(B). Let U be the set of variables
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x ∈ N(B) that occur in at least two clauses from U . Then by Q4

|U |+ |N(b)| ≤
∑
a∈U
|N(a)| ≤ 1.01|N(B)|+ δθn/10000,

whence |U | ≤ 0.01|N(B)|+ δθn/10000 ≤ 2δθn/100 due to (5.51). Since B ⊂ U , the set U contains

all variables that occur in at least two clauses from B, i.e., all variables that violate condition H3.

Therefore, any a ∈ C2 contains at least |N(a)|/5 variables from U . Applying Q4 once more, we

obtain ∑
a∈C2

|N(a)| ≤ 5.05 · 2δθn/100 + δθn/10000 = 0.1201δθn.

Combining this estimate with the bound (5.49) on C1, we conclude that the number of variables sat-

isfying T3e is bounded by
∑

a∈C1∪C2 |N(a)| ≤ 0.127δθn. Together with (5.49) this yields the asser-

tion.

In section 5.4.1 we will derive the following bound on |T1[`+ 1]|.

Proposition 5.4.4. If |T [`]| ≤ δθn and |T ′[`]| ≤ δ2θn, then |T1[`+ 1] \ T2[`+ 1]| ≤ δ2θn/6.

Proof of Proposition 5.2.7. We are going to show that

|T1[`] ∪ T2[`]| ≤ δ2θn/3 (5.52)

|T1[`] ∪ T2[`] ∪ T3[`]| ≤ δθn/3 and |N(T4[`])| ≤ δθn/2 (5.53)

for all ` ≥ 0. This implies that |T [`]| ≤ δθn and |T ′[`]| ≤ δ2θn for all ` ≥ 0, as desired.

In order to proof (5.52) and (5.53) we proceed by induction on ` showing additionally that

π[`] ≤ 2 exp (−ρ) (5.54)

for all ` ≥ 0. The bounds on ` = 0 are immediate from definition. Now assume (5.52) to (5.54) hold

for all l ≤ `. Then Lemma 5.2.2 shows that π[`+ 1] ≤ 2 exp (−ρ). Additionally, Lemma 5.4.2 and

Proposition 5.4.4 show that |T1[`+ 1] ∪ T2[`+ 1]| ≤ δ2θn/3. Moreover, Lemma 5.4.3 applies (with

the convention that T [−1] = ∅), giving |T1[`+ 1] ∪ T2[`+ 1] ∪ T3[`+ 1]| ≤ δθn/3. Finally, Lemma

5.4.1 shows that |N(T4[`])| ≤ δθn/2.
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5.4.1. Proof of Proposition 5.4.4

Throughout this section we assume that |T [`]| ≤ δθn, |T ′[`]| ≤ δ2θn and π[`] ≤ 2 exp (−ρ). For a

variable x ∈ Vt, a ∈ N(x) and ζ ∈ {1,−1} we let

σ[`+1]
x→a (ζ) =

∑
b∈N [`+1]

≤1 (x→a,ζ)

(2/τ [`])1−|N(b)|

α[`+1]
x→a (ζ) =

∑
b∈N [`+1]

≤1 (x→a,ζ)

∑
y∈N(b)\{x}

(2/τ [`])1−|N(b)| sign(y, b)∆
[`]
y→b

β[`+1]
x→a (ζ) =

∑
b∈N [`+1]

≤1 (x→a,ζ)

∑
y∈N(b)\{x}

(2/τ [`])1−|N(b)|E
[`]
y→b

L[`+1]
x→a (ζ) = σ[`+1]

x→a (ζ) + α[`+1]
x→a (ζ) + β[`+1]

x→a (ζ).

Proposition 5.4.5. For any variable x /∈ T ′[`+ 1], any clause a ∈ N(x) and ζ ∈ {1,−1} we have∣∣∣L[`+1]
x→a (ζ) + lnP

[`+1]
≤1 (x→ a, ζ)

∣∣∣ ≤ 10−3δ

Proposition 5.4.5 is similar to Proposition 35 in [35] with only minor adjustments. We will prove

Proposition 5.4.5 in Section 5.4.2. Lemma 5.4.6 is the counterpart to Lemma 37 in [35] but needed

extensive updates to the Survey Propagation operator. Lemma 5.4.7 is very similar to Lemma 36

in [35]. Lemma 5.4.8 is similar to Lemma 38 in [35] but with a stronger bound on the number of

exceptional vertices. Some calculations in the proof had to be carried out more carefully. Lemma

5.4.9 is completely new and the main innovative contribution to this section.

Lemma 5.4.6. Let x be a variable and let b1, b2 ∈ N(x) be such that |N(bi) ∩ T [`]| ≤ 2 and

|N(bi)| ≥ 0.1θk for i = 1, 2. Then ∣∣∣∆[`]
x→b1 −∆

[`]
x→b2

∣∣∣ ≤ δ3.

Proof. By Proposition 5.2.6 we have B[`− 1] ⊂ T [`− 1]. Furthermore, our assumptions ensure that

N(bi) \ T [`] 6= ∅. Hence, Corollary 5.3.5 yields

µ
[`−1]
bi→x(0) > 0 and 1− µ[`−1]

bi→x(0) ≤ exp (−k1/2) ≤ δ7 (5.55)

for i = 1, 2. There are two cases.

Case 1 There is c ∈ N(x, ζ) \ {b1, b2} such that µ[`−1]
c→x (0) = 0 for one ζ ∈ {−1, 1}. Then
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π
[`]
x→b1(ζ) = π

[`]
x→b2(ζ) = 0 and by (3.6) to (3.8) we find µ

[`]
x→b1(−ζ) = µ

[`]
x→b2(−ζ) =

0, µ
[`]
x→b1(0) = µ

[`]
x→b2(0) = 0 and µ[`]

x→b1(ζ) = µ
[`]
x→b2(ζ) = 1 and therefore ∆[`]

x→b1 = ∆
[`]
x→b2 .

Case 2 For all c ∈ N(x)\{b1, b2}we have 0 < µ
[`−1]
c→x (1). Then (3.6) to (3.8) yield 0 < µ

[`]
x→bi(0) <

1 for i = 1, 2. Let

P [`]
x (ζ) =

∏
b∈N(x,ζ)\{b1,b2}

µ
[`−1]
b→x (0) for ζ ∈ {−1, 1}.

Then for i = 1, 2 we have

π
[`]
bi→x(ζ) = P [`]

x (ζ) · µ[`−1]
bi→x(0).

We bound ∣∣∣∣∣ln
(
π

[`]
bi→x(ζ)

P [`]
x (ζ)

)∣∣∣∣∣ =
∣∣∣lnµ[`−1]

bi→x(0)
∣∣∣ ≤ δ6 [by (5.55)].

and obtain ∣∣∣∣∣1− π
[`]
bi→x(ζ)

P [`]
x (ζ)

∣∣∣∣∣ ≤ δ5.

Therefore,
∣∣∣P [`]

x (ζ)− π[`]
bi→x(ζ)

∣∣∣ ≤ δ5P [`]
x (ζ). Now, Lemma 1.0.10 applies for each i = 1, 2

such that ∣∣∣ψ0(π
[`]
bi→x(1), π

[`]
bi→x(−1))− ψ0(P [`]

x (1),P [`]
x (−1))

∣∣∣ ≤ 2δ5 ≤ δ4 (5.56)∣∣∣ψ1(π
[`]
bi→x(1), π

[`]
bi→x(−1))− ψ1(P [`]

x (1),P [`]
x (−1))

∣∣∣ ≤ 2δ5 ≤ δ4. (5.57)

Consequently, since

µ
[`]
x→bi(ζ) = ψζ(π

[`]
bi→x(1), π

[`]
bi→x(−1))

and ∣∣∣∆[`]
x→b1 −∆

[`]
x→b2

∣∣∣ =

∣∣∣∣µ[`]
x→b1(1)− µ[`]

x→b2(1)− 1

2

(
µ

[`]
x→b2(0)− µ[`]

x→b1(0)
)∣∣∣∣

by (5.56) and (5.57) we obtain∣∣∣∆[`]
x→b1 −∆

[`]
x→b2

∣∣∣ ≤ 3δ4 ≤ δ3.

Hence, we have established the desired bound in both cases.
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Lemma 5.4.7. For all variables x /∈ T2[`+ 1] we have

max
a∈N(x)

∣∣∣σ[`+1]
x→a (ζ)−Π[`+ 1]

∣∣∣ ≤ 3δ/1000 for ζ ∈ {−1, 1}.

Proof. Let x /∈ T2[`+ 1] and a ∈ N(x). SinceN [`+1]
≤1 (x→ a, ζ) = N≤1(x, T [`], ζ) \ {a}, we obtain

∣∣∣Π[`+ 1]− σ[`+1]
x→a (ζ)

∣∣∣ ≤
∣∣∣∣∣∣Π[`+ 1]−

∑
b∈N≤1(x,T [`],ζ)

(2/τ [`])1−|N(b)|

∣∣∣∣∣∣
+1

a∈N [`+1]
≤1 (x→a,ζ) · 2

1−|N(a)|

≤ 2δ/1000 + 1
a∈N [`+1]

≤1 (x→a,ζ) · 2
1−|N(a)| [by T2a]

≤ 2δ/1000 + exp (−0.05θk)

[as |N(a)| ≥ 0.1θk if a ∈ N [`+1]
≤1 (x→ a, ζ)]

≤ 3δ/1000

as desired.

Lemma 5.4.8. For all but at most 0.1δ2θn variables x /∈ T2[`+ 1] we have

max
a∈N(x)

∣∣∣α[`+1]
x→a (ζ)

∣∣∣ ≤ 10−3δ for ζ ∈ {−1, 1}.

Proof. For a variable y let N (y) be the set of all clauses b ∈ N(y) such that b ∈ N≤1(x, T [`], ζ) for

some variable x ∈ Vt. If N (y) = ∅ we define ∆y = 0; otherwise select ay ∈ N (y) arbitrarily and set

∆y = ∆
[`]
y→ay . Thus, we obtain a vector ∆ = (∆y)y∈V with norm ||∆||∞ ≤ 1

2 . Let

A[`+1](ζ) = (α[`+1]
x (ζ))x∈Vt = Λ(T [`], π[`], ζ)∆,

where Λ(T [`], π[`], ζ) is one of the linear operators from condition Q5 in Definition 5.2.3. That is, for

any x ∈ Vt we have

α[`+1]
x (ζ) =

∑
b∈N≤1(x,T [`],ζ)

∑
y∈N(b)\{x}

(2/τ [`])−|N(b)| sign(y, b)∆y.

Because |T [`]| ≤ δθn, condition Q5 ensures that ||Λ(T [`], π[`], ζ)||� ≤ δ4θn. Consequently,

||A[`+1](ζ)||1 = ||Λ(T [`], π[`], ζ)∆||1 ≤ ||Λ(T [`], π[`], ζ)||�||∆||∞ ≤ δ4θn. (5.58)
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Since ||A[`+1](ζ)||1 =
∑

x∈Vt |α
[`+1]
x (ζ)|, (5.58) implies that

|{x ∈ Vt : |α[`+1]
x (ζ)| > δ1.5}| ≤ δ2.5θn. (5.59)

To infer the Lemma from (5.59), we need to establish a relation between α[`+1]
x (ζ) and α[`+1]

x→a (ζ) for

x /∈ T2[`] and a ∈ N(x). Since for each b ∈ N (y) there is a x ∈ Vt such that b ∈ N≤1(x, T [`], ζ), we

see that |N(b) ∩ T [`]| ≤ 2 and |N(b)| ≤ 0.1θk for all b ∈ N (y). Consequently, Lemma 5.4.6 applies

to b ∈ N (y), whence
∣∣∣∆[`]

y→b −∆
[`]
y→b′

∣∣∣ ≤ δ3 for all y ∈ Vt, b, b′ ∈ N (y). Hence,

∣∣∣∆[`]
y→b −∆y

∣∣∣ ≤ δ3 for all y ∈ Vt, b ∈ N (y). (5.60)

Consequently, we obtain for x /∈ T2[`+ 1]

max
a∈N(x)

∣∣∣2α[`+1]
x (ζ)− α[`+1]

x→a (ζ)
∣∣∣

= max
a∈N(x)

∣∣∣∣∣∣1a∈N≤1(x,T [`],ζ) ·
∑

y∈N(a)\{x}

(2/τ [`])1−|N(a)| sign(y, a)∆y

+
∑

b∈N [`+1]
≤1 (x→a,ζ)

∑
y∈N(b)\{x}

(2/τ [`])1−|N(b)| sign(y, b)
(
∆y −∆[`]

y→b

)∣∣∣∣∣∣∣
≤ 1a∈N≤1(x,T [`],ζ) ·

∑
y∈N(a)\{x}

(2/τ [`])1−|N(a)| |∆y|

+
∑

b∈N [`+1]
≤1 (x→a,ζ)

∑
y∈N(b)\{x}

(2/τ [`])1−|N(b)|
∣∣∣∆y −∆[`]

y→b

∣∣∣
≤ 1a∈N≤1(x,T [`],ζ) · |N(a)| (2/τ [`])−|N(a)|

+ δ3
∑

b∈N≤1(x,T [`],ζ)

|N(b)| (2/τ [`])1−|N(b)| [by (5.60)]

≤ 10θk2−0.1θk + 10δ3θk
∑

b∈N≤1(x,T [`],ζ)

(2/τ [`])1−|N(b)|

[as 0.1θk ≤ |N(a)| ≤ 10θk if a ∈ N≤1(x, T [`], ζ)]

≤ δ2 + 105ρδ3θk [by T2c]

≤ δ/10000 [as δ = exp (−cθk) and θk ≥ ln(ρ)/c2]. (5.61)

If x /∈ T2[`+ 1] is such that |α[`+1]
x (ζ)| ≤ δ1.5, then (5.61) implies that |α[`+1]

x→a (ζ)| ≤ δ/5000 for any
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a ∈ N(x). Therefore, the assertion follows from (5.59).

Lemma 5.4.9. For any variable x /∈ T2[`+ 1] we have

max
a∈N(x)

∣∣∣β[`+1]
x→a (ζ)

∣∣∣ ≤ δ/1000 for ζ ∈ {−1, 1}.

Proof. Let us recall that N [`+1]
≤1 (x→ a, ζ) = N [`+1]

0 (x→ a, ζ) ∪N [`+1]
1 (x→ a, ζ) where we have

N [`+1]
0 (x→ a, ζ) = N0(x, T [`], ζ) \ {a} and

N [`+1]
1 (x→ a, ζ) = N1(x, T [`], ζ) \ {a}

= (N1(x, T [`] \ T ′[`], ζ) ∪N1(x, T ′[`], ζ)) \ {a}

since T ′[`] ⊂ T [`]. Therefore, let

Γ1 = N0(x, T [`], ζ) and Γ2 = N1(x, T [`] \ T ′[`], ζ) and Γ3 = N1(x, T ′[`], ζ).

Since for all b ∈ Γ1 we have
∣∣∣E[`]

y→b

∣∣∣ ≤ 0.1δπ[`] for all y ∈ N(b) we obtain

∑
b∈Γ1

∑
y∈N(b)\{x}

(2/τ [`])1−|N(b)| |E[`]
y→b| ≤

∑
b∈Γ1

(2/τ [`])1−|N(b)| |N(b)|δπ[`]. (5.62)

For all b ∈ Γ2 there exists one y1 ∈ N(b) such that
∣∣∣E[`]

y1→b

∣∣∣ ≤ 10π[`] and
∣∣∣E[`]

y→b

∣∣∣ ≤ 0.1δπ[`] for all

y ∈ N(b) \ {y1}. We obtain∑
b∈Γ2

∑
y∈N(b)\{x}

(2/τ [`])1−|N(b)| |E[`]
y→b|≤

∑
b∈Γ2

(2/τ [`])1−|N(b)| ((|N(b)| − 1) δπ[`] + 10π[`]) . (5.63)

For all b ∈ Γ3 there exists one y1 ∈ N(b) such that
∣∣∣E[`]

y1→b

∣∣∣ ≤ 1 and
∣∣∣E[`]

y→b

∣∣∣ ≤ 0.1δπ[`] for all

y ∈ N(b) \ {y1}. We obtain∑
b∈Γ3

∑
y∈N(b)\{x}

(2/τ [`])1−|N(b)| |E[`]
y→b| ≤

∑
b∈Γ3

(2/τ [`])1−|N(b)| ((|N(b)| − 1) δπ[`] + 1) (5.64)
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Let x /∈ T2[`+ 1]. Since N [`+1]
≤1 (x→ a, ζ) ⊂ Γ1 ∪ Γ2 ∪ Γ3 we get by (5.62) to (5.64) that

∣∣∣β[`+1]
x→a (ζ)

∣∣∣ =

∣∣∣∣∣∣∣
∑

b∈N [`+1]
≤1 (x→a,ζ)

∑
y∈N(b)\{x}

(2/τ [`])1−|N(b)|E
[`]
y→b

∣∣∣∣∣∣∣
≤

∑
b∈N≤1(x,T [`],ζ)

(2/τ [`])1−|N(b)| |N(b)|δπ[`]

+
∑
b∈Γ2

∑
y∈N(b)\{x}

(2/τ [`])1−|N(b)| 10π[`]

+
∑
b∈Γ3

∑
y∈N(b)\{x}

(2/τ [`])1−|N(b)|

≤ 106ρθkδπ[`] + 105ρθkδπ[`] + 105ρθkδ2 [by T2b and as |N(b)| ≤ 10θk]

≤ δ/1000 [as π[`] ≤ k−(1+εk), θk ≥ ln(ρ)/c2 and c� 1],

as claimed.

Proof of Proposition 5.4.4. Let S be the set of all variables x /∈ T2[`+ 1] such that simultaneously

for ζ ∈ {−1, 1} we have

max
a∈N(x)

|α[`+1]
x→a (ζ)| ≤ δ/1000.

For any x /∈ T2[`+ 1] Lemma 5.4.7 and 5.4.9 imply that for both ζ ∈ {−1, 1}

max
a∈N(x)

|σ[`+1]
x→a (ζ)−Π[`+ 1]| ≤ 3δ/1000

max
a∈N(x)

|β[`+1]
x→a (ζ)| ≤ δ/1000

and Proposition 5.4.5 entails that for any x ∈ S and a ∈ N(x) we have∣∣∣Π[`+ 1]− lnP
[`+1]
≤1 (x→ a, ζ)

∣∣∣ ≤ ∣∣∣L[`+1]
x→a (ζ)

∣∣∣+ 10−3δ

≤
∣∣∣σ[`+1]
x→a (ζ)−Π[`+ 1]

∣∣∣+
∣∣∣α[`+1]
x→a (ζ)

∣∣∣+
∣∣∣β[`+1]
x→a (ζ)

∣∣∣+ 10−3δ

≤ δ/100.

Therefore,
∣∣∣P [`+1]
≤1 (x→ a, ζ)/ exp (−Π[`+ 1])− 1

∣∣∣ ≤ δ/50 and thus

∣∣∣P [`+1]
≤1 (x→ a, ζ)− exp (−Π[`+ 1])

∣∣∣ ≤ δ exp (−Π[`+ 1]) /50
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and by Lemma 5.2.1 ∣∣∣P [`+1]
≤1 (x→ a, ζ)− π[`+ 1]

∣∣∣ ≤ δπ[`+ 1]/40.

Consequently,

T1[`+ 1] \ T2[`+ 1] ⊂ Vt \ (S ∪ T2[`+ 1])

and thus Lemma 5.4.8 implies |T1[`+ 1] \ T2[`+ 1]| ≤ |Vt \ (S ∪ T2[`+ 1])| ≤ δ2θn/1000.

5.4.2. Proof of Proposition 5.4.5

Lemma 5.4.10. Let x ∈ Vt, a ∈ N(x), ζ ∈ {1,−1} and b ∈ N [`+1]
≤1 (x→ a, ζ). Then

lnµ
[`]
b→x(0) = (2/τ [`])1−|N(b)|

1 + 2/τ [`]
∑

y∈N(b)\{x}

E
[`]
y→b + sign(y, b)∆

[`]
y→b


+ (2/τ [`])1−|N(b)| (θkδ + |N(b) ∩ T [`] \ {x}|) ·Ok(kθδ)

Proof. The definition of the set N [`+1]
≤1 (x→ a, ζ) ensures that for all b ∈ N [`+1]

≤1 (x→ a, ζ) we have

|N(b) ∩ T [`]| ≤ 2 and 0.1θk ≤ |N(b)| ≤ 10θk. (5.65)

Therefore, Lemma 5.3.2 shows that |1 − µ[`]
b→x(0)| ≤ δ2 (recall from Proposition 5.2.6 that B[`] ⊂

T [`]). Furthermore, b is not redundant, and thus not a tautology, because otherwise N(b) ⊂ T3[`] ⊂
T [`] due to T3a in contradiction to (5.65).

Recall (5.17) the representation of

µ
[`]
b→x(0) = 1− (2/τ [`])1−|N(b)| ∏

y∈N(b)\{x}

1− 2/τ [`]
(
E

[`]
y→b + sign(y, b)∆

[`]
y→b

)
.

Let Γ = N(b) \ (T [`] ∪ {x}). As Proposition 5.2.6 shows B[`] ⊂ T [`] contains all biased variables,

we have
∣∣∣∆[`]

y→b

∣∣∣ ≤ 0.1δ and
∣∣∣E[`]

y→b

∣∣∣ ≤ 0.1π[`]δ for all y ∈ Γ. By (5.20) we have τ [`] ≥ 1
2 , thus we
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can use the approximation | ln(1− z) + z| ≤ z2 for |z| ≤ 1
2 to obtain∣∣∣∣∣∣

ln
∏
y∈Γ

1− 2/τ [`]
(
E

[`]
y→b + sign(y, b)∆

[`]
y→b

)+
∑
y∈Γ

2/τ [`]
(
E

[`]
y→b + sign(y, b)∆

[`]
y→b

)∣∣∣∣∣∣
≤
∑
y∈Γ

∣∣∣ln(1− 2/τ [`]
(
E

[`]
y→b + sign(y, b)∆

[`]
y→b

))
+ 2/τ [`]

(
E

[`]
y→b + sign(y, b)∆

[`]
y→b

)∣∣∣
≤ 4

∑
y∈Γ

(
E

[`]
y→b + sign(y, b)∆

[`]
y→b

)2
≤ 40θkδ2 (5.66)

since |Γ| ≤ |N(b)| ≤ 10θk, |∆[`]
y→a| ≤ 0.1δ and |E[`]

y→a| ≤ 0.1π[`]δ for all y ∈ Γ. Hence∣∣∣∣∣∣
∑
y∈Γ

2sign(y, b)∆
[`]
y→b

∣∣∣∣∣∣ ≤ 2θkδ. (5.67)

Therefore, taking exponentials in (5.66), we obtain∏
y∈Γ

1− 2/τ [`]
(
E

[`]
y→b + sign(y, b)∆

[`]
y→b

)

= exp

Ok(θkδ)2 −
∑
y∈Γ

2/τ [`]
(
E

[`]
y→b + sign(y, b)∆

[`]
y→b

)
= 1−

∑
y∈Γ

2/τ [`]
(
E

[`]
y→b + sign(y, b)∆

[`]
y→b

)
+Ok(θkδ)

2. (5.68)

Furthermore, the definition of N [`+1]
≤1 (x→ a, ζ) ensures that

|N(b) \ (Γ ∪ {x})| = |N(b) ∩ T [`] \ {x}| ≤ 1.

If there is y0 ∈ N(b) ∩ T [`] \ {x}, then (5.67) and (5.68) yield∏
y∈N(b)\{x}

1− 2/τ [`]
(
E

[`]
y→b + sign(y, b)∆

[`]
y→b

)

=
(

1− 2/τ [`]
(
E

[`]
y0→b + sign(y0, b)∆

[`]
y0→b

))
·
∏
y∈Γ

1− 2/τ [`]
(
E

[`]
y→b + sign(y, b)∆

[`]
y→b

)
= 1−

∑
y∈N(b)\{x}

2/τ [`]
(
E

[`]
y→b + sign(y, b)∆

[`]
y→b

)
+Ok(θkδ).
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Hence, in any case we have∏
y∈N(b)\{x}

1− 2/τ [`]
(
E

[`]
y→b + sign(y, b)∆

[`]
y→b

)

= 1−
∑

y∈N(b)\{x}

2/τ [`]
(
E

[`]
y→b + sign(y, b)∆

[`]
y→b

)
+ (θkδ + |N(b) ∩ T [`] \ {x}|) ·Ok(θkδ)

which is a small constant. Thus, combining this with (5.66) and using the approximation | ln(1− z) +

z| ≤ z2 for |z| ≤ 1
2 we see that

µ
[`]
b→x(0) = − (2/τ [`])1−|N(b)|

1−
∑

y∈N(b)\{x}

2/τ [`]
(
E

[`]
y→b + sign(y, b)∆

[`]
y→b

)
+ (2/τ [`])1−|N(b)| (θkδ + |N(b) ∩ T [`] \ {x}|) ·Ok(θkδ),

whence the assertion follows.

Proof of Proposition 5.4.5. By the definition of P [`+1]
≤1 (x→ a, ζ) we have for both ζ ∈ {−1, 1} that

lnP
[`+1]
≤1 (x→ a, ζ) =

∑
b∈N [`+1]

≤1 (x→a,ζ)

lnµ
[`]
b→x(0).

Hence, Lemma 5.4.10 yields

lnP
[`+1]
≤1 (x→ a, ζ)

= L[`+1]
x→a +

∑
b∈N [`+1]

≤1 (x→a,ζ)

(2/τ [`])1−|N(b)| (θkδ + |N(b) ∩ T [`] \ {x}|) ·Ok(kθδ). (5.69)

Let x /∈ T ′[`+ 1]. Condition T2c implies

Ok(δθk)2
∑

b∈N [`+1]
≤1 (x→a,ζ)

(2/τ [`])1−|N(b)| ≤ Ok(δθk)2
∑

b∈N≤1(x,T [`],ζ)

2−|N(b)|

≤ Ok(δθk)2 · ρ ≤ δ/1000 (5.70)

142



5.5. Completing the proof of Theorem 5.2.5

Furthermore, T2b yields

Ok(δθk)
∑

b∈N [`+1]
≤1 (x→a,ζ)

(2/τ [`])1−|N(b)| |N(b) ∩ T [`] \ {x}| ≤ Ok(θδk)
∑

b∈N1(x,T [`],ζ)

2−|N(b)|

≤ Ok(θkδ) · ρθkδ

≤ δ/1000. (5.71)

Finally, the assertion follows by plugging (5.70) and (5.71) into (5.69).

5.5. Completing the proof of Theorem 5.2.5

This proof is similar to the proof of Theorem 25 in [35] but of course adjustments to the Survey

Propagation operator are necessary.

We are going to show that for ζ ∈ {1,−1} simultaneously∣∣∣∣µ[ω]
x (Φt, ζ)− 1

2

(
1− µ[ω]

x (Φt, 0)
)∣∣∣∣ ≤ δ = δt (5.72)

for all x ∈ Vt\T [ω+1]. This will imply Theorem 5.2.5 because |T [ω+1]| ≤ δt(n−t) by Proposition

5.2.7.

Thus, let x ∈ Vt \ T [ω + 1] and recall from (3.9) that

π[ω+1]
x (Φt, ζ) =

∏
b∈N(x,ζ)

µ
[ω]
x→b(0)

and from (3.9) that

µ[ω]
x (Φt, ζ) = ψζ

(
π[ω+1]
x (Φt, 1), π[ω+1]

x (Φt,−1)
)
. (5.73)

If N(x) = ∅, then trivially π[ω+1]
x (Φt, 1) = π

[ω+1]
x (Φt,−1) = 1 and µ[ω]

x (Φt, ζ) = 0 for ζ ∈ {1,−1}
and µ[ω]

x (Φt, 0) = 1. Consequently, (5.72) holds true.

Therefore, assume that N(x) 6= ∅ and pick an arbitrary a ∈ N(x). Since x /∈ T [ω + 1] Proposition

5.3.1 yields ∣∣∣π[ω+1]
x→a (ζ)− π[ω + 1]

∣∣∣ ≤ δπ[ω + 1]/50. (5.74)

143



5. Analysing Survey Propagation Guided Decimation on Random Formulas

Furthermore, since x /∈ T [ω + 1] we may apply Corollary 5.3.5 which yields

1− µ[ω]
a→x(0) ≤ exp (−k1/2) ≤ δ2. (5.75)

Thus we compute∣∣∣π[ω+1]
x (Φt, ζ)− π[ω + 1]

∣∣∣ ≤ ∣∣∣π[ω+1]
x (Φt, ζ)− π[ω+1]

x→a (ζ)
∣∣∣+ δπ[ω + 1]/50 [by (5.74)]

≤
∣∣∣π[ω+1]
x→a (ζ) · (1− µ[ω]

a→x(0))
∣∣∣+ δπ[ω + 1]/50

≤ δ2(π[ω + 1] + δπ[ω + 1]/50) + δπ[ω + 1]/50

[by (5.74) and (5.75)]

≤ δπ[ω + 1]/20. (5.76)

Finally, (5.76) and (5.73) with Lemma 1.0.10 yield∣∣∣µ[ω]
x (Φt, ζ)− ψζ(π[ω + 1])

∣∣∣ =
∣∣∣ψζ(π[ω+1]

x (Φt, 1), π[ω+1]
x (Φt,−1))− ψζ(π[ω + 1])

∣∣∣
≤ δ/5 (5.77)∣∣∣µ[ω]

x (Φt, 0)− ψ0(π[ω + 1])
∣∣∣ =

∣∣∣ψ0(π[ω+1]
x (Φt, 1), π[ω+1]

x (Φt,−1))− ψ0(π[ω + 1])
∣∣∣

≤ δπ[ω + 1]/10. (5.78)

Thus, ∣∣∣∣µ[ω]
x (Φt, ζ)− 1

2

(
1− µ[ω]

x (Φt, 0)
)∣∣∣∣ ≤ ∣∣∣∣ψζ(π[ω + 1])− 1

2
(1− ψ0(π[ω + 1]))

∣∣∣∣
+δ/5 + δπ[ω + 1]/10

[by (5.77) and (5.78)]

≤ δ [by (1.7)],

as desired.

5.6. Proof of Proposition 5.2.4

This section contains the proofs that Φt posses the quasirandom properties with sufficiently high

probability. For those quasirandom properties that are identical to the ones in [35] the proofs are of

course identical. We will explicitly hint the reader to the innovative parts.
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Recall from (5.2) that δt = exp (−c(1− t/n)k) and t̂ =
(

1− ln ρ
c2k

)
n. Suppose that 1 ≤ t ≤ t̂. Then

θ = 1− t/n. Set δ = δt = exp (−cθk) for brevity. Lemma 5.1.2 yields

δθn > 1015∆t. (5.79)

To prove Proposition 5.2.4, we will study two slightly different models of random k-CNFs. In the

first “binomial” model Φbin, we obtain a k-CNF by including each of the (2n)k possible clauses over

V = {x1, . . . , xn} with probability p = m/(2n)k independently, where each clause is an ordered

k-tuple of not necessarily distinct literals. Thus, Φbin is a random set of clauses, and E [Φbin] = m.

In the second model, we choose a sequence Φseq of m independent k-clauses Φseq(1), . . . ,

Φseq(m), each of which consists of k independently chosen literals. Thus, the probability of each

individual sequence is (2n)−km. The sequenceΦ′seq corresponds to the k-CNFΦseq(1), . . . ,Φseq(m)

with at most m clauses. The following well-known fact relates Φ to Φbin,Φseq

Fact 5.6.1. For any event E we have

P [Φ ∈ E ] ≤ = O(
√
m) · P [Φbin ∈ E ] ,

P [Φ ∈ E ] ≤ = O(
√
m) · P [Φseq ∈ E ] .

Due to Fact 5.6.1 and (5.79), it suffices to prove that the statements Q1-Q5 hold for either ofΦ,Φbin,Φseq
with probability at least 1− exp

(
−10−13δθn

)
.

5.6.1. Establishing Q1

This section is adopted word-by-word (some small corrections) from [35]. We are going to deal with

the number of variables that appear in “short” clauses first.

Lemma 5.6.2. With probability at least 1 − exp(−10−6δθn) in Φt there are no more than θn ·
10−5δ/(θk) clauses of length less than 0.1θk.

Proof. We are going to work with Φbin. Let Lj be the number of clauses of length j in Φtbin. Then

for any j ∈ [k] we have

λj = E [Lj ] = m · 2j−k
(
k

j

)
θj(1− θ)k−j =

2jρθn

j

(
k − 1

j − 1

)
θj−1(1− θ)k−j . (5.80)

Indeed, a clause has length j in Φtbin iff it contains j variables from the set Vt of size θn and k − j

145



5. Analysing Survey Propagation Guided Decimation on Random Formulas

variables form V \ Vt and none of the k− j variables from V \ Vt occurs positively. The total number

of possible clauses with these properties is 2j
(
k
j

)
(θn)j((1− θ)n)k−jρ, and each of them is present in

Φtbin with probability p = m/(2n)k independently.

Let’s start by bounding the total number L∗ =
∑

j<θk/10 Lj of “short” clauses. With (5.80) it’s

expectation is bounded by

E [L∗] =
∑

j<θk/10

λj ≤ 20.1θkρθn · P [Bin(k − 1, θ) < θk/10]

≤ 20.1θkρθn · exp (−θk/3) [by Lemma 1.0.6]

≤ θ exp (−θk/4)n [as θk ≥ ln(ρ)/c2].

Furthermore, L∗ is binomially distributed, because clauses appear independently inΦbin. Hence again

by Lemma 1.0.6 we have

P [L∗ > θn · /(θk)] ≤ exp

(
−10−5δ

θk
· ln
(

10−5δ/(θk)

exp (1− θk/4)

)
· θn

)

≤ exp

(
− δ

5 · 105θk
· θk · θn

)
≤ exp

(
−10−6δθn

)
.

Hence, the assertion follows from (5.81) and Fact 5.6.1.

Corollary 5.6.3. With probability at least 1−exp(−10−6δθn) inΦt no more than 10−6δθn variables

appear in clauses of length less than 0.1θk.

Proof. This is immediate from Lemma 5.6.2.

As a next step, we are going to bound the number of variables that appear in clauses of length≥ 10θk.

Lemma 5.6.4. With probability at least 1− exp(−10−11δθn) we have∑
b∈Φt:|N(b)|>10θk

|N(b)| ≤ 10−6δθn.

Proof. For a given µ > 0 let Lµ be the event that Φtseq has µ clauses so that the sum of the lengths of

these clauses is at least λ = 10θkµ. Then

P [Lµ] ≤
(
m

µ

)(
kµ

λ

)
θλ
(

1

2
+ θ

)kµ−λ
.
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Indeed there are
(
m
µ

)
ways to choose µ places for these µ clauses in Φseq. Once these have been spec-

ified, there are kµ literals that constitute the µ clauses, and we choose λ whose underlying variables

are supposed to be in Vt; the probability that this is indeed the case for all of these λ literals is θλ.

Moreover, in order for each of the clauses to remain in Φtseq, the remaining kµ−λ literals must either

be negative or have underlying variables from Vt, leading to the (θ + 1/2)kµ−λ factor. Thus

P [Lµ] ≤
(
m

µ

)(
(1/2 + θ)

(e
5

)10θ
)kµ

[as λ = 10θkµ]

≤
(
enρ

kµ

)µ(
(1 + 2θ)

(e
5

)10θ
)kµ

[as m = n · 2kρ/k]

≤
(
enρθ

λ

(e
4

)10θk
)µ

=

((
10enρ

kµ

)1/(10θk) (e
4

))λ
[as λ = 10θkµ].

Hence, if λ ≥ 10−6δθn we get

P [Lµ] ≤

((
107eρ

δ

)1/(10θk) (e
4

))λ
≤
(e

3

)λ
[as θk ≥ ln(ρ)/c2 and δ = exp (−cθk)]

≤ exp
(
−10−10δθn

)
.

Thus, we see that Φtseq with probability at least 1− exp
(
−10−10δθn

)
we have∑

b|N(b)|>10θk

|N(b)| ≤ 10−6δθn. (5.81)

Hence, Fact 5.6.1 implies that (5.81) holds in Φt with probability at least 1− exp
(
−10−11δθn

)
.

Corollary 5.6.5. With probability at least 1 − exp(−10−11δθn) no more than 10−6δθn variables

appear in clauses of length greater than 10θk.

Proof. The number of such variables is bounded by
∑

b:|N(b)|>10θk |N(b)|. Therefore, the assertion

follows from Lemma 5.6.4

Lemma 5.6.6. Let x ∈ Vt. The expected number of clauses of length j in Φtbin where x is the

underlying variable of the lth literal is

µj =
2jρ

j
· P [Bin(k − 1, θ) = j − 1] . (5.82)
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Proof. There are 2j
(
k
j

)
(θn)j−1 ((1− θ)n)k−j possible clauses that have exactly j literals whose un-

derlying variable is in Vt such that the underlying variable of the jth such literal is x. Each such clause

is present in Φbin with probability p = m/(2n)k = ρ
kn

1−k independently.

Lemma 5.6.7. With probability at least 1−exp(−10−12δθn) no more than 10−4δθn variables x ∈ Vt
are such that δ(θk)3

∑
b∈N(x) 2−|N(b)| > 1.

Proof. For x ∈ Vt let Xj(x) be the number of clauses of length j in Φtbin that contain x, and let

Xjl(x) be te number of such clauses where x is the underlying variable of the lth literal of that clause

(1 ≤ l ≤ j). Then E [Xjl(x)] = µj , with µj as in (5.82). Since 1/δ = exp (cθk) and θk ≥ ln(ρ)/c2,

we see that 2jδ−1(θk)−5/j > 100µj . Hence, Lemma 1.0.6 (the Chernoff bound) yields

P
[
Xjl(x) > 10(µj + 2jδ−1(θk)−5/j)

]
≤ ζ, with ζ = exp

(
−10/(δ(θk)5)

)
.

Let Vjl be the set of all variables x ∈ Vt such that Xjl(x) > 10(µj + 2jδ−1(θk)−5/j). Since the

random variables (Xjl(x))x∈Vt are mutually independent, Lemma 1.0.6 yields

P

[
|Vjl| >

δ

(θk)9
· θn

]
≤ exp

(
− δθn

(θk)9
· ln
(

δ

e(θk)9ζ

))
.

Since ζ−1 = exp
(
10/(δ(θk)5)

)
= exp

(
10 exp(cθk)/(θk)5

)
and θk ≥ ln(ρ)/c2 � 1, we have

ln

(
δ

e(θk)9ζ

)
≥ − ln(ζ)/2, (5.83)

whence

P

[
|Vjl| >

δ

(θk)9
· θn

]
≤ exp

(
δθn

2(θk)9
· ln ζ

)
≤ exp

(
− θn

(θk)15

)
≤ exp (−δθn) . (5.84)

Furthermore, if x /∈ Vjl for all 1 ≤ l ≤ 10θk and all 1 ≤ l ≤ j, then∑
b∈N(x):|N(b)|≤10θk

2−|N(b)| ≤ 10
∑

j≤10θk

2−j(jµj + 2jδ−1(θk)−5)

≤ 100δ−1(θk)−4 + 10
∑

j≤10θk

j2−jµj

≤ 100δ−1(θk)−4 + 10ρ < δ−1(θk)−3,

where we used that θk ≥ ln(ρ)/c2, so that 1/δ ≥ (θk)5ρ. Hence, the assertion follows from (5.84),

Fact 5.6.1 and the bound on the number of variables in clauses of length> 10θk provided by Corollary

5.6.5.
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5.6.2. Establishing Q2 and Q3

In this section substantially new proofs are included. We added Lemma 5.6.8 and updated Lemma 47

in [35] by Lemma 5.6.9 adding a new case in the case distinction. The statements of Lemma 5.6.10

and Corollary 5.6.11 and 5.6.12 are tighter regarding the concentration compared to there counterparts

in [35]. New ideas and adjusted computations are necessary to achieve these improved statements.

Lemma 5.6.13 as well as Corollary 5.6.14 and 5.6.15 are adjusted as the objects of interest differ from

the related ones in [35]. Moreover, tighter concentration is proven in this cases too. The same is true

for Corollary 5.6.16.

Let T ⊂ Vt be a set of size |T | ≤ sθn for some δ5 ≤ s ≤ 10δ. For a variable x we let Q(x, i, j, l, T )

be the number of clauses b of Φtbin such that the ith literal is either x or ¬x, |N(b)| = j, and |N(b) ∩
T \ {x}| = l. Let

µj,l(T ) =

j∑
i=1

E [Q(x, i, j, l, T )] = j · E [Q(x, 1, j, l, T )] .

Lemma 5.6.8. For all x ∈ Vt we have

E [Q(x, i, j, l, T )] =
2jρ

j
· P [Bin(k − 1, θ) = j − 1] · P [Bin(j − 1, |T |/(θn)) = l]

= µj · P [Bin(j − 1, |T |/(θn)) = l] .

Proof. Let ν = |T |
θn . There are

2j
(
k

j

)(
j − 1

l

)
((1− ν)θn)j−1−l (νθn)l ((1− θ)n)k−j

= 2j
(
k

j

)(
j − 1

l

)
(1− ν)j−1−l (ν)l(θn)j−1 ((1− θ)n)k−j

possible clauses that have exactly j − l literals whose underlying variable is in Vt \ T and l literals

whose underlying variable is in T such that the underlying variable of the jth such literal is x. Each

such clause is present in Φbin with probability p = m/(2n)k = ρ
kn

1−k independently.
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Lemma 5.6.9. Suppose that l ≥ 0, j − l > k1 and 0.1θk ≤ j ≤ 10θk. Let

m(θ, j) = max{(θk)−1,P [Bin(k − 1, θ) = j − 1]} and

γi,l(s) =


10 · 2jρm(θ, j)/j if l = 0

10 · 2jsρm(θ, j) if l = 1

10 · 2j−ls1.9 if l ≥ 2.

Then for any i, x, T we have P [Q(x, i, j, l, T ) > γi,l(s)] ≤ exp
(
− exp

(
c2/3θk

))
.

Proof. The random variable Q(x, i, j, l, T ) has a binomial distribution, because clauses appear inde-

pendently in Φbin. By Lemma 5.6.8 we have for l > 1

E [Q(x, i, j, l, T )] ≤
(
j

l

)
δlµj ≤ ρ

(
j

l

)
sl2j ≤ 2j−ls1.9;

in the last step we used that s0.05 ≤ δ0.05 ≤ 1/ρ, which follows from our assumption that θk ≤
ln(ρ)/c2, and that 2j

(
j
l

)
≤ (2j)l ≤ (20θk)l ≤ s0.02l. Hence by Lemma 1.0.6 in the case j− l > k1 =

√
cθk, we get

P
[
Q(x, i, j, l, T ) > 10 · 2j−ls1.9

]
≤ exp

(
−2j−ls1.9

)
≤ exp

(
−2k1s1.9

)
≤ exp

(
− exp

(
c2/3θk

))
,

as s ≥ δ5 and thus δ = exp (−cθk).

By a similar token, in the case l = 1 we have

E [Q(x, i, j, l, T )] ≤ jsµj = ρs2j P [Bin(k − 1, θ) = j − 1] .

Hence, once more by the Chernoff bound

P
[
Q(x, i, j, l, T ) > 10 · 2jsρm(θ, j)

]
≤ exp

(
−2jsρm(θ, j)

)
≤ exp

(
−2k1s/(θk)

)
≤ exp

(
− exp

(
c2/3θk

))
,

as claimed.

Finally, analogously in the case l = 0 we have

E [Q(x, i, j, l, T )] ≤ µj =
2jρ

j
P [Bin(k − 1, θ) = j − 1] .
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Thus, applying the Chernoff bound yields

P
[
Q(x, i, j, l, T ) > 10 · 2jρm(θ, j)/j

]
≤ exp

(
−2jρm(θ, j)/j

)
≤ exp

(
−0.1 · 20.1θk/(θk)2

)
≤ exp

(
− exp

(
c2/3θk

))
as claimed.

Let Z(i, j, l.T ) be the number of variables x ∈ Vt for which Q(x, i, j, l, T ) > γj,l(s).

Lemma 5.6.10. Suppose that l ≥ 1, j − l > k1 and 0.1θk ≤ j ≤ 10θk. Then for any i, T we have

P
[
Z(i, j, l, T ) > δ2/(θk)4

]
≤ exp

(
− δ2θn

2(θk)4
· exp

(
c2/3θk

))

Proof. Whether a variable x ∈ Vt contributes to Z(i, j, l, T ) depends only on those clauses of Φtbin
whose ith literal reads either x or ¬x. Since these sets of clauses are disjoint for distinct variables and

as clauses appear independently inΦtbin, Z(i, j, l, T ) is a binomial random variable. By Lemma 5.6.9,

E [Z(i, j, l, T )] ≤ θn exp
(
− exp

(
c2/3θk

))
.

Hence, Lemma 1.0.6 yields

P
[
Z(i, j, l, T ) > δ2θn/(θk)4

]
≤ exp

(
− δ2θn

2(θk)4
ln

(
δ2

(θk)4 exp
(
1− exp(c2/3θk)

)))

≤ exp

(
− δ2θn

2(θk)4
exp(c2/3θk)

)
,

as desired.

Corollary 5.6.11. With probability 1− exp(−δθn) the random formula Φtbin has the following prop-

erty.

For all i, j, l, T such that l ≥ 1, j − l > k1, 0.1θk ≤ j ≤ 10θk and |T | ≤ δθn
we have Z(i, j, l, T ) ≤ δ2θn/(θk)4.

(5.85)

Proof. We apply the union bound. There are at most n
(
n
δθn

)
ways to choose the set T , and no more

than n ways to choose i, j, l. Hence, by Lemma 5.6.10 the probability that there exist i, j, T such that
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Z(i, j, l, T ) > θn exp
(
− exp

(
c2/3θk

))
is bounded by

n2

(
n

δθn

)
exp

(
− δ2θn

2(θk)4
exp(c2/3θk)

)
≤ exp

(
o(n) + δθn ln(δθ)− δ2θn

2(θk)4
exp

(
c2/3θk

))
≤ exp

(
δθn

(
o(1) + ln(δθ)− exp

(
c3/4θk

)))
≤ exp (−δθn) ,

[as θk ≥ ln(ρ)/c2 and δ = exp (−cθk)]

as claimed.

Corollary 5.6.12. With probability 1 − exp(−10−12δθn) the random formula Φt has the following

property.

If T ⊂ Vt has size |T | ≤ sθn for some δ5 ≤ s ≤ 10δ, then for all but

10−4δ2θn variables x ∈ Vt we have

∑
N≤1(x,T,ζ)

2−|N(b)| < 104ρ and
∑

N1(x,T,ζ)

2−|N(b)| < sρθk

Proof. Given T ⊂ Vt of size |T | ≤ sθn for some δ5 ≤ s ≤ 10δ, let VT be the set of all variables x

with the following property.

For all 1 ≤ i ≤ j, 1 ≤ l ≤ j − k1, and 0.1θk ≤ j ≤ 10θk we have

Q(x, i, j, l, T ) ≤ γj,l(s).
(5.86)

Let

J> = {j ∈ N : 0.1θk ≤ j ≤ 10θk and m(θ, j) = P [Bin(k − 1, θ) = j − 1]}}

J≤ = {j ∈ N : 0.1θk ≤ j ≤ 10θk and m(θ, j) = (θk)−1}.
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Then for all x ∈ Vt we have

∑
N≤1(x,T,ζ)

2−|N(b)| =
∑

0.1θk≤j≤10θk

j∑
i=1

(Q(x, i, j, 0, T ) +Q(x, i, j, 1, T ))2−j

≤
∑

0.1θk≤j≤10θk

j∑
i=1

10 · (j−1 + s)ρm(θ, j) [due to i.]

≤
∑

0.1θk≤j≤10θk

10 · 10θk · 2 · (0.1θk)−1ρm(θ, j)

[as 0.1θk ≤ j ≤ 10θk and s ≤ exp (−cθk)]

≤
∑
j∈J>

200ρP [Bin(k − 1, θ) = j − 1]}+
∑
j∈J≤

200ρ(θk)−1

≤ 200ρ+ 2000ρ [as |J≤| ≤ 10θk]

≤ 104ρ.

Similarly,

∑
N1(x,T,ζ)

2−|N(b)| =
∑

0.1θk≤j≤10θk

j∑
i=1

Q(x, i, j, 1, T ))2−j

≤ 10θk
∑

0.1θk≤j≤10θk

10ρsm(θ, j) [due to i.]

≤ 10θk
∑
j∈J>

20ρsP [Bin(k − 1, θ) = j − 1]}+ 10θk
∑
j∈J≤

20ρs(θk)−1

≤ 200θksρ+ 2000θkρs [as |J≤| ≤ 10θk]

≤ 104θkρs.

Thus to complete the proof we need to show that with sufficiently high probability Vt is sufficiently

big for all T . By Corollary 5.6.11 and Fact 5.6.1 with probability ≥ 1 − exp (−δθn/2) the random

formula Φt satisfies (5.85). In this case, for all T the number of variables that fail to satisfy (5.86)

is bounded by δθn/(θk)4 < 10−5δθn. Thus, with probability ≥ 1 − exp
(
−10−12δθn

)
we have

|Vt| > θn(1− 10−4δ) for all T , as desired.

For a set T ⊂ Vt and numbers i ≤ j we let N≤1(x, i, j, T, ζ) be the number of clauses b ∈ N(x, ζ)

in Φtbin such that |N(b)| = j, the underlying variable of the ith literal of b is x such that sign(x) = ζ

and |N(b) ∩ T \ {x}| ≤ 1. Let µj,≤1(T ) = µj,0(T ) + µj,1(T ) and B(i, j, T ) be the set of variables
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such that for at least one ζ ∈ {−1, 1} we have

|N≤1(x, i, j, T, ζ)− µj,≤1(T )/(2j)| > 2jδ(θk)−3

Lemma 5.6.13. Let T ⊂ Vt be a set of size |T | ≤ δθn. Let i, j be such that i ≤ j and 0.1θk ≤ j ≤
10θk. Then in Φtbin we have P

[
B(i, j, T ) > δ2θn/(θk)3

]
≤ exp

(
−δ2θn exp (θk/22)

)
.

Proof. Let x ∈ Vt. In the random formula Φtbin we have

N≤1(x, i, j, T, 1) +N≤1(x, i, j, T,−1) = Q(x, i, j, T, 0) +Q(x, i, j, T, 1).

Furthermore,N≤1(x, i, j, T, 1) andN≤1(x, i, j, T,−1) are binomially distributed with identical means,

because in Φtbin each literal is positive or negative with probability 1
2 . By Lemma 5.6.8 we have

E [N≤1(x, i, j, T, ζ)] =
1

2
· E [Q(x, i, j, T, 0) +Q(x, i, j, T, 1)]

=
1

2j
(µj,0(T ) + µj,1(T )) = µj,≤1(T )/(2j).

Let us introduce the short hand µ̄j = µj,≤1(T )/(2j) ≤ µj . We obtain the following bounds on µ̄j as

µ̄j = µj,≤1(T )/(2j) ≤ µj ≤ µj ≤ 2jρ [by (5.82)] (5.87)

Let ηj = 2jδ/(θk)3. Hence, applying Lemma 1.0.6 (the Chernoff bound) a several times yields

Case 1 µ̄j ≤ ηj .

P [N≤1(x, i, j, T, ζ) > µ̄j + ηj ] ≤ exp (−ηj/4) (5.88)

P [N≤1(x, i, j, T, ζ) < µ̄j − ηj ] ≤ exp (−ηj/4) (5.89)

Case 2 µj,≤1(T )/(2j) > ηj .

P [N≤1(x, i, j, T, ζ) > µ̄j + ηj ] ≤ exp

(
−
η2
j

6µ̄j

)
(5.90)

P [N≤1(x, i, j, T, ζ) < µ̄j − ηj ] ≤ exp

(
−
η2
j

6µ̄j

)
. (5.91)
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Thus, for j ≥ 0.1θk as δ = exp (−cθk) , j ≥ 0.1θk and by (5.87) we have

exp (−ηj/4) ≤ exp (− exp [θk/18]) and (5.92)

exp

(
−
η2
j

6µ̄j

)
≤ exp

(
− 2jδ2

6ρ2(θk)6

)
≤ exp (− exp [θk/18]) (5.93)

and therefore by (5.88) to (5.93) we obtain

P [|N≤1(x, i, j, T, ζ)− µj,≤1(T )/(2j)| > ηj ] ≤ exp (− exp (θk/20)) . (5.94)

For different x ∈ Vt the random variables N≤1(x, i, j, T, ζ) are independent (because we fix the

position i where x occurs). Hence, B(i, j, T ) is a binomial random variable, and (5.94) yields

E [B(i, j, T )] ≤ θn exp (− exp (θk/20))) .

Consequently, Lemma 1.0.6 (the Chernoff bound) gives

P
[
B(i, j, T ) > δ2θn/(θk)3

]
≤ exp

(
− δ

2θn

(θk)3
ln

(
δ2θn/(θk)3

exp (1− exp (θk/20)) θn

))

≤ exp

(
− δ

2θn

(θk)3
· exp (θk/21)

)
≤ exp

(
−δ2θn exp (θk/22)

)
as claimed.

Corollary 5.6.14. With probability ≥ 1 − exp (−δθn) the random formula Φtbin has the following

property.

For all T ⊂ Vt of size |T | ≤ δθn and all i, j such that i ≤ j, 0.1θk ≤ j ≤
10θk we have B(i, j, T ) ≤ δ2θn/(θk)3

Proof. Let i, j be such that i ≤ j, 0.1θk ≤ j ≤ 10θk. By Lemma 5.6.13 and the union bound, the

probability that there is a set T such that B(i, j, T ) > δ2θn/(θk)3 is bounded by

n

(
θn

δθn

)
exp

(
−δ2θn exp (θk/22)

)
≤ exp (o(n) + δθn(1− ln(θδ)− δ exp (θk/22)))

≤ exp (−2δθn) [as δ = exp (−cθk)].

Since there are no more than (10θk)2 ways to choose i, j, the assertion follows.
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Corollary 5.6.15. With probability≤ 1−exp
(
−10−12δθn

)
the random formulaΦt has the following

property.

If T ⊂ Vt has size |T | ≤ δθn and p ∈ (0, 1], then there are no more than

10−5δ2θn variables x ∈ Vt such that

∣∣∣∣∣∣Π(T, p)−
∑

b∈N≤1(x,T,ζ)

(2/τ(p))−|N(b)|

∣∣∣∣∣∣ > δ/1000

Proof. Given T ⊂ Vt, let V(T, ζ) be the set of all x ∈ Vt such that for all 1 ≤ i ≤ j ≤ 10θk and we

have

|N≤1(x, i, j, T, ζ)− µj,≤1(T )/(2j)| ≤ 2jδ/(θk)3. (5.95)

Then for all x ∈ V(T, ζ) we have∣∣∣∣∣∣Π(T, p)−
∑

b∈N≤1(x,T,ζ)

(2/τ(p))−|N(b)|

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

0.1θk≤j≤10θk

(2/τ(p))−j

[
µj,≤1(T )/2−

j∑
i=1

N≤1(x, i, j, T, ζ)

]∣∣∣∣∣∣
≤

∑
0.1θk≤j≤10θk

(2/τ(p))−j
j∑
i=1

|µj,≤1(T )/(2j)−N≤1(x, i, j, T, ζ)|

≤
∑

0.1θk≤j≤10θk

(2/τ(p))−j · 2jδ/(θk)3 [by (5.95)]

≤ 100δ/(θk) [as τ(p) ∈ (0, 1]]

≤ δ/1000.

By Corollary 5.6.14 and Fact 5.6.1 with probability ≥ 1− exp (−δθn/2) the number of variables not

in V(T, ζ) for at least one ζ ∈ {−1, 1} is bounded by 10−5δ2θn for all T , as claimed.

Finally, to establish Q3 we obtain

Corollary 5.6.16. With probability 1 − exp(−10−12δθn) the random formula Φt has the following
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property.

If T ⊂ Vt has size |T | = δθn, then for all but 10−4δθn variables x we have

∑
N>1(x,T,ζ)

2|N(b)∩T\{x}|−|N(b)| < δ/(θk)

Proof. Given T ⊂ Vt of size |T | ≤ δθn, let VT be the set of all variables x with the following two

properties.

i. For all b ∈ N(x, ζ) we have 0.1θk ≤ |N(b)| ≤ 10θk.

ii. For all 0.1θk ≤ j ≤ 10θk and 1 ≤ i ≤ j, 1 ≤ l ≤ j − k1 we have Q(x, i, j, l, T ) ≤ γj,l(δ).

Then for all x ∈ Vt we have

∑
N>1(x,T,ζ)

2|N(b)∩T\{x}|−|N(b)| =
∑

0.1θk≤j≤10θk

j∑
i=1

j−k1∑
l=2

Q(x, i, j, l, T )2l−j [due to i.]

≤ 10θk
∑

0.1θk≤j≤10θk

j−k1∑
l=2

γj,l(δ)2
l−j [due to ii.]

≤ 1000(θk)2δ1.9 < δ/(θk) [as δ = exp (−cθk)]

Thus to complete the proof we need to show that with sufficiently high probability Vt is sufficiently

big for all T . By Lemma 5.6.2 and 5.6.4 with probability 1 − 2 exp
(
−10−11δθn

)
the number of

variables x that fail to satisfy i. is less than 2 · 10−6δθn. Furthermore, by Corollary 5.6.11 and Fact

5.6.1 with probability≥ 1−exp (−δθn/2) the random formulaΦt satisfies (5.85). In this case, for all

T such that |T | ≤ deltaθn the number of variables that fail to satisfy ii. is bounded by δθn/(θk)4 <

10−5δθn. Thus, with probability ≥ 1 − exp
(
−10−12δθn

)
we have |Vt| > θn(1 − 10−4δ) for all T ,

as desired.

5.6.3. Establishing Q4

This section is adopted word-by-word (some small corrections) from [35].

We carry the proof out in the model Φseq. Let 0.01 ≤ z ≤ 1 and let T be a set of size |T | = qθn with

q ≤ 100δ.

Lemma 5.6.17. Let S,Z > 0 be integers and let Ez(T, S, Z) be the event that Φtseq contains a set Z
of Z clauses with the following properties.
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i. S =
∑

b∈Z |N(b)| > 1.009|T |/z,

ii. For all b ∈ Z we have 0.1θk ≤ |N(b)| ≤ 10θk,

iii. All b ∈ Z satisfy |N(b) ∩ T | ≥ z|N(b)|.

Then P [Ez(T, S, Z)] ≤ q0.99999zS .

Proof. We claim that in Φtseq,

P [Ez(T, S, Z)] ≤
(
m

Z

)(
kZ

S

)(
S

zS

)
2S−kZθS(1− θ)kZ−SqzS .

Indeed, Φtseq is based on the random sequenceΦseq of m independent clauses. Out of these m clauses

we choose a subset Z of size Z, inducing a
(
m
Z

)
factor. Then out of the kZ literal occurrences of the

clauses in Z we choose S (leading to the
(
kZ
S

)
factor) whose underlying variables lie in Vt, which

occurs with probability θ = |Vt|/n independently for each literal (inducing a θS factor). Furthermore,

all kZ−S literals whose variables are in V \Vt must be negative, because otherwise the corresponding

clauses would have been eliminated from Φtseq; this explains the 2S−kZ(1 − θ)kZ−S factor. Finally,

out of the S literal occurrences in Vt a total of at least zS has an underlying variable from T (a factor

of
(
S
zS

)
), which occurs with probability q = |T |/(θn) independently (hence the qzS factor).

Hence we obtain

P [Ez(T, S, Z)] ≤
(
m

Z

)
2−kZ

(
21/z · e

z
· q
)zS
·
(
kZ

S

)
θS(1− θ)kZ−S

≤
(
m

Z

)
2−kZ

(
21/z · e

z
· q
)zS
≤
(
m

Z

)
2−kZ (Cq)zS (5.96)

for a certain absolute constant C > 0, because z ≥ 0.01. Since all clauses lengths are required to be

between 0.1θk and 10θk, we obtain 0.1S/(θk) ≤ Z ≤ 10S/(θk). Therefore,(
m

Z

)
2−kZ ≤

( em
2kZ

)Z
=
(eρn
kZ

)Z
[as m = 2kρn/k]

≤
(

10eρθn

S

)Z

≤
(

10eρ

1.009q

)Z
[as S ≥ 1.009qθn/z ≥ 1.009qθn by i.]. (5.97)

Since q ≤ 100δ = 100 exp (−cθk) and θk ≥ ln(ρ)/c2, we have 1/q ≥ 100ρ. Hence, (5.97) yields(
m

Z

)
2−kZ ≤ q−2Z ≤ q−20S/(θk). (5.98)
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Plugging (5.98) into (5.96), we obtain for θk ≤ ln(ρ)/c2 and S ≥ 1.009|T |/z

P [Ez(T, S, Z)] ≤ q−20S/(θk) · (Cq)zS ≤ q0.99999zS ,

as claimed.

Corollary 5.6.18. Let E be the event that there exist a number 0.01 ≤ z ≤ 1, a set T ⊂ Vt of size

|T | ≤ 100δθn and S ≥ 1.01
z |T | + 10−6δθn, Z > 0 such that Ez(T, S, Z) occurs. Then E occurs in

Φt with probability ≤ exp
(
−10−7δθn

)
.

Proof. Let 0.01 ≤ z ≤ 1 and 0 < q ≤ 100δ. Let s, Z > 0 be integers such that S ≥ 1.01
z qθn +

10−6δθn. Let Ez(q, S, Z) denote the event that there is a set T ⊂ Vt of size |T | = qθn such that

Ez(T, S, Z) occurs. Then by Lemma 5.6.17 and the union bound, in Φtseq we have

P [E(q, S, Z)] ≤
(
θn

qθn

)
q0.99999zS ≤ exp

(
qθn(1− ln q + 1.008 ln q) + 0.9 · 10−6δθn ln q

)
≤ exp

(
−0.9 · 10−6δθn

)
[as q ≤ 100δ < 1/e]. (5.99)

Since there are onlyO(n4) possible choices of S,Z, z and q, (5.99) and Fact 5.6.1 imply the assertion.

Corollary 5.6.19. With probability at least 1− exp
(
−10−12δθn

)
, Φt has the following property.

Let 0.01 ≤ z ≤ 1 and let T ⊂ Vt have size 0.01δθn ≤ |T | ≤ 100δθn. Then

∑
b:|N(b)∩T |≥z|N(b)|

|N(b)| ≤ 1.01

z
|T |+ 2 · 10−5δθn. (5.99)

Proof. Lemmas 5.6.2 and 5.6.4 and Corollary 5.6.18 imply that with probability at least 1−exp
(
−10−11δθn

)
,Φt

has the following properties.

i. E does not occur.

ii.
∑

b:|N(b)|/∈[0.1θk,10θk] |N(b)| ≤ 10−5δθn.

Assume that i. and ii. hold and let T ⊂ Vt be a set of size |T | ≤ 100δθn. Let 0.01 ≤ z ≤ 1. Let NT
be the set of all clauses b of Φt such that |N(b) ∩ T | ≥ z|N(b)| and 0.1θk ≤ |N(b)| ≤ 10θk. Then i.

159



5. Analysing Survey Propagation Guided Decimation on Random Formulas

implies that

∑
b∈NT

|N(b)| ≤ 1.009

z
|T |+ 10−6δθn.

Furthermore, ii. yields∑
b:|N(b)∩T |≥z|N(b)|

|N(b)| ≤
∑

b:|N(b)|/∈[0.1θk,10θk]

|N(b)|+
∑
b∈NT

|N(b)|

≤ 1.009|T |/z + 2 · 10−5δθn,

as desired.

5.6.4. Establishing Q5

This section is very close to the counterpart in [35] although several corrections and adjustment to the

slightly updated operator had to take place.

We are going to work with the probability distribution Φseq (sequence of m independent clauses).

LetM be the set of all indices l ∈ [m] such that the lth clause Φseq(l) does not contain any of the

variables x1, . . . , xt positively. In this case,Φseq(l) is still present in the decimated formulaΦtseq (with

all occurrences of ¬x1, . . . ,¬xt eliminated, of course). For each l ∈ M let L(l) be the number of

literals in Φseq(l) whose underlying variable is in Vt. We may assume without loss of generality that

for any l ∈ M the L(l) “leftmost” literals Φseq(l, i), l ≤ i ≤ L(l), are the ones with an underlying

variable from Vt.

Let T ⊂ Vt. Analysing the operator ΛT directly is a little awkward. Therefore, we will decompose

ΛT into a sum of several operators that are easier to investigate. For any 0.1θk ≤ L ≤ 10θk, l ≤ i <

j ≤ L, l ∈M, and any distinct x, y ∈ Vt we define

mxy(i, j, l, L, 1) =


1 if L(l) = L,Φseq(l, i) = x and Φseq(l, j) = y

−1 if L(l) = L,Φseq(l, i) = x and Φseq(l, j) = ¬y

0 otherwise

and

mxy(i, j, l, L,−1) =


1 if L(l) = L,Φseq(l, i) = ¬x and Φseq(l, j) = ¬y

−1 if L(l) = L,Φseq(l, i) = ¬x and Φseq(l, j) = y

0 otherwise,
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while we let mxx(i, j, l, L, ζ) = 0 for both ζ ∈ {−1, 1}. For a variable x ∈ Vt we let N (x, T, ζ)

be the set of all l ∈ M such that 0.1θk ≤ L(l) ≤ 10θk and the clause Φseq(l) contains at most one

literal whose underlying variable is in T \ {x} and sign(x) = ζ. Moreover, for l ∈ M let N (x, l) be

the set of all variables y ∈ Vt \ {x} that occur in clauses Φseq(l) (either positively or negatively). We

are going to analyse the operators

ΛijL(T, µ, ζ) : RVt → RVt ,

Γ = (Γy)y∈Vt 7→

 ∑
l∈N (x,T,ζ)

∑
y∈N (x,l)

(2/ν(µ))−Lmxym(i, j, l, L, ζ)Γy


x∈Vt

Lemma 5.6.20. For any 0.1θk ≤ L ≤ 10θk, 1 ≤ i, j ≤ L, i 6= j and for any set T ⊂ Vt we have

P
[∥∥ΛijL(T, µ, ζ)

∥∥
� ≤ δ

5θn
]
≥ 1− exp (−θn)

Proof. This proof is based on Fact 1.0.2. Fix two sets A,B ⊂ Vt. For each l ∈ M and any x, y ∈ Vt
the two 0/1 random variables∑

(x,y)∈A×B

max{mx,y(i, j, l, L, ζ), 0},
∑

(x,y)∈A×B

max{−mx,y(i, j, l, L, ζ), 0}

are identically distributed, because the clause Φseq(l) is chosen uniformly at random. In effect, the

two random variables

µζL(A,B) =
∑
l∈M

∑
(x,y)∈A×B

1l∈N (x,T ) max{mxy(i, j, l, L, ζ), 0},

νζL(A,B) =
∑
l∈M

∑
(x,y)∈A×B

1l∈N (x,T ) max{−mxy(i, j, l, L, ζ), 0}

are identically distributed. Furthermore, both µζL(A,B) and νζL(A,B) are sums of independent

Bernoulli variables, because the clauses (Φseq(l))l∈[m] are mutually independent.

We need to estimate the mean E
[
µζL(A,B)

]
= E

[
νζL(A,B)

]
. As each of the clauses Φseq(l) is

chosen uniformly, for each l ∈ [m] we have

P [l ∈M and L(l) = L] =

(
k

L

)
θL(1− θ)k−L2L−k.
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Therefore,

E
[
µζL(A,B) + νζL(A,B)

]
≤ m

(
k

L

)
θL(1− θ)k−L2L−k

=
2Lρθn

L

(
k − 1

L− 1

)
θL−1(1− θ)k−L [as m = 2kρ/k]

≤ 2Lρθn

L
.

Hence, Lemma 1.0.6 (the Chernoff bound) yields

P

[
|µζL(A,B)− E

[
µζL(A,B)

]
| > 10

√
2Lρ/L · θn

]

= P

[
|νζL(A,B)− E

[
νζL(A,B)

]
| > 10

√
2Lρ/L · θn

]
≤ 16−θn.

LetA be the event that ∃A,B ⊂ Vt : max{|µζL(A,B)−E
[
µζL(A,B)

]
|, |νζL(A,B)−E

[
νζL(A,B)

]
|} >

10
√

2Lρ/L · θn. Hence, by the union bound

P [A] ≤ 2 · 4θn · 16−θn ≤ exp (−θn) .

Thus, with probability at least 1− exp (−θn) we have

〈ΛijL(T, µ, ζ)1B,1A〉 = 2−L(µζL(A,B)− νζL(A,B))

≤ 2−L(|µζL(A,B)− E
[
µζL(A,B)

]
|+ |νζL(A,B)− E

[
νζL(A,B)

]
|)

≤ θn · 20

√
ρ

L2L
≤ 0.01δ5θn

[as L ≥ 0.1θk, θk ≥ ln(ρ)/c2, and δ = exp (−cθk)].

Finally, the assertion follows from Fact 1.0.2.

Corollary 5.6.21. With probability at least 1 − exp (−0.1θn) the random formula Φtseq has the fol-

162



5.7. Proof of Proposition 5.1.3

lowing property.

Let T ⊂ VT and let

Λ̄(T, µ, ζ) =
∑

0.1θk≤L≤10θk

L∑
j=1

L∑
i=1,i 6=j

ΛijL(T, µ, ζ).

Then
∥∥Λ̄(T, µ, ζ)

∥∥
� ≤ δ

4.9θn.

(5.99)

Proof. By Lemma 5.6.20 and the union bound, we have

P
[
∃T, i, j, L :

∥∥ΛijL(T, µ, ζ)
∥∥
� > δ5θn

]
≤ (10θk)32θn · exp (−θn) ≤ exp (−0.2θn) .

Furthermore, if
∥∥ΛijL(T, µ, ζ)

∥∥
� ≤ δ

5θn for all i, j, L then by the triangle inequality

∥∥Λ̄ijL(T, µ, ζ)
∥∥
� ≤ (10θn)3δ5θn ≤ δ4.9θn [as δ = exp (−cθk)],

as claimed.

To complete the proof of Q5, we observe that for (x, y) ∈ Vt × Vt the (x, y) entries of the matrices

Λ(T, µ, ζ) and Λ̄(T, µ, ζ) differ only if either x or y occurs in a redundant clause. Consequently, Q0
ensures that

∥∥Λ(T, µ, ζ)− Λ̄(T, µ, ζ)
∥∥
� = o(n). Therefore, Fact 5.6.1 and Corollary 5.6.21 imply

Φt satisfies Q5 with probability at least 1− exp (−11∆t).

5.7. Proof of Proposition 5.1.3

Let π ∈ Sn be the permutation chosen by PermSPdec uniformly at random, the order of decimation

of the variables. On a fixed k-CNF Φ let λΦ be the probability distribution on pairs (π,σ) ∈ Sn × Σ

induced by PermSPdec. Then β̄Φ is the σ-marginal of λΦ, i.e.,

β̄Φ(E) = λΦ [Sn × E ] for any E ⊂ Σ. (5.100)

In order to study λΦ, we consider another distribution λ′Φ on pairs (π,σ) ∈ Sn × Σ that is easier to

analyse and that will turn out to be ’close’ to λΦ.

To define λ′Φ let Bt be the set of all pairs (π, σ) such that (Φ, π, σ) is not (δt, t)-balanced. Moreover,

let B =
⋃t̂
t=0 Bt. The distribution λ′Φ is obtained by running the algorithm on Φ, whose pseudocode

is given in Figure 5.1.

Roughly speaking, PermSPdec’ disregards the SP outcome if it strays too far from the flat vector
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Algorithm 5.7.1. PermSPdec’(Φ)
Input: A k-CNF Φ on V = {x1, . . . , xn}. Output: An assignment σ′ : V → {−1, 1}.
0. Choose a permutation π ∈ Sn uniformly at random.
1. Let Φ0 = Φ.
2. For t = 0, . . . , n− 1 do
3. Use Survey Propagation to compute µ[ω]

xπ(t+1)
(Φt).

4. If (Φ,π,σ′) is (δt, t)-balanced then
let

σ′(xπ(t+1)) =

{
1 with probability µ[ω]

xπ(t+1)
(Φt)

−1 with probability 1− µ[ω]
xπ(t+1)

(Φt)

else
let σ′(xπ(t+1)) = ζ with probability 1

2 for ζ = ±1.
5. Obtain a formula Φt+1 from Φt by substituting the value σ(xπ(t+1)) for xπ(t+1) and simpli-
fying.
6. Return the assignment σ′.

Figure 5.1.: The PermSPdec’ algorithm.

1
21. We claim that λΦ and λ′Φ are related as follows. For F ⊂ Sn × Σ let

Ft̂ =
{

(π, σ) ∈ Sn × Σ : ∃(π∗, σ∗) ∈ F : ∀1 ≤ t ≤ t̂ : π∗(t) = π(t), σ∗(xπ(t)) = σ(xπ(t))
}
.

Thus, Ft is the set of all (π, σ) that coincide with some (π∗, σ∗) ∈ F ’up to time t̂’. In particular,

F ⊂ Ft̂.

Lemma 5.7.2. For any F ⊂ Sn × Σ we have λΦ [F ] ≤ λ′Φ [Ft̂] + λ′Φ [B].

Proof. By construction, for any (π, σ) /∈ Bt and any ζ ∈ {−1, 1} we have

λΦ
[
σ(xπ(t+1)) = ζ|π = π ∧ ∀s ≤ t;σ(xπ(s)) = σ(xπ(s))

]
= λ′Φ

[
σ(xπ(t+1)) = ζ|π = π ∧ ∀s ≤ t;σ(xπ(s)) = σ(xπ(s))

]
.

Hence, Bayes’ rule yields that for any pair (π.σ) /∈ B,

λΦ
[
∀t ≤ t̂ : π = π(t) ∧ σ(xπ(t)) = σ(xπ(t))

]
= λ′Φ

[
∀t ≤ t̂ : π = π(t) ∧ σ(xπ(t)) = σ(xπ(t))

]
.

(5.101)

In particular, λΦ [B] = λ′Φ [B]. Hence, for any event F we obtain

λΦ [F ] ≤ λΦ [Ft̂] ≤ λΦ [Ft̂ \ B] + λΦ [B]
(5.101)

= λ′Φ [Ft̂ \ B] + λ′Φ [B] ≤ λ′Φ [Ft̂] + λ′Φ [B] ,
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as desired.

Let λ′′ be the uniform probability distribution on Sn×Σ, and let (π,u) denote a pair chosen from λ′′.

To relate λ′Φ and λ′′, let At(π, σ) be equal to one if (π, σ) /∈ Bt and xπ(t) is (δt, t)-biased in (Φ, π, σ),

and set At(π, σ) = 0 otherwise. In addition, let A(π, σ) =
∑

t≤t̂At(π, σ).

Lemma 5.7.3. For any pair (π, σ) ∈ Sn × Σ we have

λΦ
[
∀t ≤ t̂ : π = π(t) ∧ σ′(xπ(t)) = σ(xπ(t))

]
= λ′′Φ

[
∀t ≤ t̂ : π = π(t) ∧ u(xπ(t)) = σ(xπ(t))

]
· 2A(π,σ)

∏
t≤T

1 + 2δt.

Proof. Fix any pair (π, σ) ∈ σn × Σ and let Lt be the event that

π(t) = π(t) and σ′(xπ(t)) = σ(xπ(t)).

Then for any 1 ≤ t ≤ t̂ we can bound the conditional probability λ′Φ
[
Lt|π(t) = π(t) ∧

∧
s<t Ls

]
as

follows.

Case 1 (π, σ) ∈ Bt. In this case (Φ,π,σ′) is not (δt, t)-balanced. Therefore, step 4 of PermSPdec’

chooses the value σ′(xπ(t)) uniformly. Hence, the event σ′(xπ(t)) = σ(xπ(t)) occurs with

probability 1
2 .

Case 2 (π, σ) /∈ Bt and At(π, σ) = 0. Since (Φ,π,σ) is (δt, t)-balanced, step 4 of PermSPdec’

uses SP marginals µ[ω]
xπ(t)

(Φ, ζ) in order to assign xπ(t). Because At(π, σ) = 0, the variable

xπ(t) is not (δt, t)-biased, whence both µ[ω]
xπ(t)

(Φ) ≤ 1
2 + δt and 1− µ[ω]

xπ(t)
(Φ) ≤ 1

2 + δt. Hence,

the probability that σ′(xπ(t)) = σ(xπ(t)) is bounded by 1
2 + δt.

Case 3 At(π, σ) = 1. In this case we just use the trivial fact that the probability of the event

σ′(xπ(t)) = σ(xπ(t)) is bounded by 1 ≤ 2(1
2 + δt).

In any case, we obtain the bound λ′Φ
[
Lt|π(t) = π(t) ∧

∧
s<t Ls

]
≤ 2At(π,σ)(1

2 + δt). Consequently,

as λ′′ is the uniform distribution, we get

λ′Φ
[
Lt|π(t) = π(t) ∧

∧
s<t Ls

]
λ′′
[
Lt|π(t) = π(t) ∧

∧
s<t Ls

] ≤ 2At(π,σ)(1 + 2δt). (5.102)

Multiplying (5.102) up for t ≤ t̂ yields the assertion.

To put Lemma 5.7.3 to work, we need to estimate A(π,σ′).

Lemma 5.7.4. We have λ′Φ [A(π,σ) > 4(∆t̂ + ξn)] ≤ exp (−ξn).
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Proof. We are going to bound the probability that At(π,σ′) = 1 given the values π(s),σ′(xπ(s)) for

1 ≤ s < t.

Case 1 the event Bt occurs. Then At = 0 by definition.

Case 2 the event Bt does not occur. In this case (ϕ,π,σ′) is (δt, t)-balanced, which means that

no more than δt(n − t) variables are biased. Since the permutation π is chosen uniformly at

random, the probability that xπ(t) is bounded by δt.

Thus in either case the conditional probability o the event At = 1 is bounded by δt. This implies that

the random variable A(π,σ′) =
∑

t≤t̂At(π,σ
′) is stochastically dominated by a sum of mutually

independent Bernoulli variables with means δ1, . . . , δt̂. Therefore, the assertion follows from Lemma

1.0.6 (the Chernoff bound).

Proof of Proposition 5.1.3. Combining Lemmas 5.7.3 and 5.7.4, we see that

λ′Φ [Ft̂] ≤ λ′Φ
[
At̂(π,σ

′) > 4(∆t̂ + ξn)
]

+ λ′Φ
[
Ft̂ ∧At̂(π,σ

′) ≤ 4(∆t̂ + ξn)
]

≤ exp (−ξn) + λ′′ [Ft̂] · 2
4(∆t̂+ξn)

∏
t≤t̂

1 + 2δt

≤ λ′′ [Ft̂] · exp (6∆t̂ + 4ξn) + exp (−ξn) for any F ⊂ Sn × Σ (5.103)

Our assumptions that Φ is (t, ξ)-uniform ensures that λ′′ [Bt] ≤ exp (−10(ξn+∆t̂)) for any t ≤ t̂.

Together with (5.103), this implies that

λ′Φ [Bt] ≤ λ′′ [Bt] exp (6∆t̂ + 4ξn) + exp (−ξn) ≤ 2 exp (−ξn) for any t ≤ t̂.

Therefore, by the union bound

λ′′Φ [B] ≤ 2t̂ exp (−ξn) ≤ exp (−0.9ξn) . (5.104)
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Finally, consider any E ⊂ Σ. Let F = Sn × E . Then

β̄Φ(E) = λΦ [F ] [due to (5.100)]

≤ λ′Φ [Ft̂] + λ′Φ [B] [by Lemma 5.7.2]

≤ λ′Φ [Ft̂] + exp (−0.9ξn) [by (5.104)]

≤ λ′′ [Ft̂] exp (6(∆t̂ + ξn)) + exp (ξn/2) [by (5.103)]

≤
|Ft̂|
n!2n

· exp (6(∆t̂ + ξn)) + exp (ξn/2) [as λ′′ is uniform]

≤ |E|
2t̂
· exp (6(∆t̂ + ξn)) + exp (ξn/2) [by the definition of Ft̂],

as desired.
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6 Walksat stalls well below the satisfiability threshold

This chapter is to a large extend adopted word-by-word from [38]. The master thesis of Haqshenas

actually contained an argument based on combining the random walk analysis as outlined in Section

3.3.2 with a union bound. However, that argument requires that r = (1 + ok(1))2k ln 2, a much

stronger assumption than that of Theorem 3.3.2. The author of this thesis contributed all the additional

arguments necessary to obtain the improved result of Theorem 3.3.2.

As carried out in the outline in Section 3.3.2 we start with formally stating the concept of a mist and

introducing the quasirandom properties.

Let Φ be a k-CNF on the variable set x1, . . . , xn.

A mist of Φ is a setM⊂ T (Φ) of assignments with the following two properties.

MI1 the assignments inM have pairwise distance at least 2κn.

MI2 for each σ ∈ T (Φ) there exists µ ∈M such that dist(µ, σ) ≤ 2κn.

Thus, the points of the mist are spread out but there is one near every assignment in T (Φ). Let

D(Φ,M) =
⋃
σ∈M

Dσ(0, 10)

be the set of all assignments at distance at most 10κn fromM. Moreover, for a truth assignment σ

and a set W ⊂ {x1, . . . , xn} let

XΦ(W,σ) =
∑

i∈UΦ(σ)

∑
j∈[k]

1{|Φij | ∈W} (6.1)

be the number of occurrences of variables from W in the unsatisfied clauses UΦ(σ). Further, call Φ

quasirandom if there is a mistM such that the following three statements hold.

Q1 we have |D(Φ,M)| ≤ 2n exp(−2n/k2).

Q2 for any τ ∈ Σ we have |M ∩ Dτ (0, 10)| ≤ k.

Q3 for every µ ∈ M in the mist and each σ ∈ Dµ(0, 100) \ T (Φ) we have XΦ(∆(µ, σ)) ≤
kUΦ(σ)/10.

Thus, the set D(Φ,M) is small and thus it is exponentially unlikely for the initial random σ[0] to
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belong to this set. Moreover, there are no more than k elements of the mistM in the vicinity of any

one assignment τ . Finally, Q3 says that if τ 6∈ T (Φ) is an assignment with many unsatisfied clauses

at distance no more than 100κn from µ ∈ M, then the probability that Walksat takes a step from

τ towards µ does not exceed 10%. Indeed, XΦ(∆(µ, τ)) is the number of flips that take Walksat

closer to µ, and kUΦ(τ) is the total number of possible flips.

Now, proving Theorem 3.3.2 comes down to establishing the following two statements.

Proposition 6.0.5. If Φ is quasirandom, then success(Φ, dexp(n/k2)e) ≤ exp(−n/k2).

Proposition 6.0.6. If m/n ≥ 195 · 2k ln2 k/k, then Φ is quasirandom w.h.p.

We prove Proposition 6.0.5 in Section 6.1 and Proposition 6.0.6 in Section 6.2. Theorem 3.3.2 is

immediate from Propositions 6.0.5 and 6.0.6.

6.1. Proof of Proposition 6.0.5

Suppose that Φ = Φ1 ∧ · · · ∧ Φm is a quasirandom k-CNF on the variables x1, . . . , xn. LetM be a

mist such that Q1–Q3 hold and set ω = dexp(n/k2)e. Recall that κ = ln k/k. Condition Q1 provides

that the event A = {σ[0] /∈ D(Φ)} has probability

P [A] ≥ 1− exp(−2n/k2). (6.2)

In the following we may therefore condition on A.

The key object of the proof is the following family of events: for µ ∈M and 1 ≤ t1 < t2 ≤ ω let

Hµ(t1, t2) =
{

dist(σ[t1], µ) = b10κnc, dist(σ[t2], µ) = b5κnc,

∀t1 ≤ t ≤ t2 : σ[t] ∈ Dµ(5, 10) \ T (Φ)
}
. (6.3)

In words, Hµ(t1, t2) is the event that at time t1 Walksat stands at distance precisely b10κnc from

µ, that the algorithm advances to distance b5κnc at time t2 while not treading closer to µ but staying

in Dµ(5, 10) at any intermediate step, and that Walksat does not hit T (Φ) at any intermediate step.

Let

H =
⋃

µ∈M,0≤t1<t2≤ω
Hµ(t1, t2).

Fact 6.1.1. We have P
[
∃t ≤ ω : σ[t] ∈ S(Φ)|A

]
≤ P [H|A].
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Proof. Recall that S(Φ) ⊂ T (Φ). Suppose that σ[t] ∈ S(Φ) for some t ≤ ω; then the algorithm halts

at time t. Let t0 < t be the minimum such that σ[t0] ∈ T (Φ). Then there exists µ ∈ M such that

dist(µ, σ[t0]) < 2κn. Further, given A we have dist(σ[0], µ) > 10κn. Hence, for some 0 < t1 < t0

the event dist(σ[t1], µ) ≤ 10κn occurs for the first time. Moreover, there exists a minimum t2 such

that t1 < t2 < t0 and dist(σ[t2], µ) ≤ 5κn. Since Walksat moves Hamming distance one in each

step, Hµ(t1, t2) occurs.

To show thatH is exponentially unlikely we are first going to estimate the probability of a single event

Hµ(t1, t2).

Lemma 6.1.2. Let τ1 /∈ T (Φ) and µ ∈M be such that dist(τ1, µ) = b10κnc. Then

P
[
Hµ(t1, t2)|A, σ[t1] = τ1

]
≤ exp(−κn/2) for all 1 ≤ t1 ≤ t2 ≤ ω.

Proof. For an index t1 < t ≤ t2 define

Yt+1 = dist(σ[t+1], µ)− dist(σ[t], µ) + 2 · 1{σ[t] 6∈ Dµ(5, 10) \ T (Φ)}. (6.4)

If the event Hµ(t1, t2) occurs, then σ[t] ∈ Dµ(5, 10) \ T (Φ) for all t1 ≤ t ≤ t2 and
∑

t1≤t<t2 Yt+1 ≤
1− 5κn. Moreover, we claim that

E[Yt+1 − Yt|σ[t] 6∈ T (Φ)] ≥ 4/5. (6.5)

Indeed, at time t + 1 Walksat chooses an unsatisfied clause and then a variable from that clause

uniformly at random. If Yt+1 < Yt, then the chosen variable is from the set ∆(µ, σ[t]) of variables

where σ[t] and µ differ. By (6.1) the probability of this event equals XΦ(W,σ[t])/kUΦ(σ[t]). Hence,

Q3 shows that the probability that dist(σ[t+1], µ) < dist(σ[t], µ) is bounded by 0.1, unless σ[t] 6∈
Dµ(5, 10) \ T (Φ). Consequently, (6.5) follows from the definition (6.4).

If we let (Wt)t≥1 be a sequence of independent ±1-random variables such that P[Wt = −1] = 0.1

and P[Wt = 1] = 0.9, then (6.5) implies

P
[
Hµ(t1, t2)|A, σ[t1] = τ1

]
≤ P

 ∑
t1≤t<t2

Yt+1 ≤ 1− 5n ln k/k



≤ P

 ∑
t1≤t<t2

Wt ≤ 1− 5n ln k/k

 .
Thus, the assertion follows from Corollary 1.0.5 and the fact thatHµ(t1, t2) can occur only if t2−t1 ≥
5κn, because Walksat moves Hamming distance one in each step.
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Proof of Proposition 6.0.5. By Lemma 6.1.2 each of the events contributing to H occurs only with

probability at most exp(−κn/2) given A. But since the number of assignments in the mistM and

hence the number of individual eventsHµ(t1, t2) may be much larger than exp(nκ/2), a simple union

bound on µ ∈ M won’t do. Indeed, the real problem here is the size of the mist and not the number

of possible choices of t1, t2, because t1, t2 ≤ ω and ω is (exponential but) relatively small. In other

words, we do not give away too much by writing

P [H|A] ≤
∑

0≤t1<t2≤ω
P

[⋃
µ∈MHµ(t1, t2)

∣∣∣∣A]

=
∑

0≤t1<t2≤ω

∑
σ∈Σ

P
[⋃

µ∈MHµ(t1, t2)|A, σ[t1] = σ
]

P
[
σ[t1] = σ|A

]
≤

∑
0≤t1<t2≤ω

max
σ∈Σ

P
[⋃

µ∈MHµ(t1, t2)|A, σ[t1] = σ
]

≤
∑

0≤t1<t2≤ω
max
σ∈Σ

∑
µ∈M

P
[
Hµ(t1, t2)|A, σ[t1] = σ

]
. (6.6)

To bound the last term, we recall from (6.3) that P
[
Hµ(t1, t2)|A, σ[t1] = σ

]
= 0 unless dist(µ, σ) =

b10κnc. Hence, Q2 implies that for any σ ∈ Σ the sum on µ in (6.6) has at most k non-zero summands.

Therefore, Lemma 6.1.2 gives

max
σ∈Σ

∑
µ∈M

P
[
Hµ(t1, t2)|A, σ[t1] = σ

]
≤ k exp(−nκ/2). (6.7)

Plugging (6.6) into (6.7) and recalling the choice of ω, we get

P [H|A] ≤ ω2k exp(−κn/2) ≤ exp(−n/k2), (6.8)

with room to spare. Finally, the assertion follows from (6.2), Fact 6.1.1 and (6.8).

6.2. Proof of Proposition 6.0.6

We begin with the following standard ‘first moment’ bound.

Lemma 6.2.1. We have E |T (Φ)| ≤ 2n exp (−ρn/2)).

Proof. For any fixed assignment σ ∈ Σ the number UΦ(σ) of unsatisfied clauses has distribution
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Bin(m, 2−k). Therefore, by Lemma 1.0.4 and our assumption on m/n,

P [σ ∈ T (Φ)] = exp(−mDKL

(
0.1 · 2−k, 2−k

)
+ o(n)) ≤ exp(−ρn/2).

Thus, the assertion follows from the linearity of expectation.

To proceed, we construct a mist M of the random formula Φ by means of the following iterative

procedure.

1. Initially letM = ∅.
2. While T (Φ) \

⋃
µ∈MDµ(0, 2) 6= ∅, add an arbitrary element of this set toM.

Let us fix any possible outcomeM of the above process. Of course,M depends on Φ but we do not

make this explicit to unclutter the notation. We now simply verify the conditions Q1–Q3 one by one.

Lemma 6.2.2. Q1 holds with probability 1− exp(−Ω(n))

Proof. We start with a naive bound on the number of assignments inDσ(0, 10) centered at an arbitrary

σ ∈ Σ. Stirling’s formula shows that for any fixed assignment σ ∈ Σ,

|Dσ(0, 10)| ≤
∑

j≤10κn

(
n

j

)
≤ n exp(10n ln2 k/k).

Hence, the construction ofM ensures that |D(Φ,M)| ≤ |T (Φ)| · n exp(10n ln2 k/k). Thus,

E [|D(Φ)|] ≤ E [|T (Φ)|] · n exp(10n ln2(k)/k).

Consequently, the assertion follows from Lemma 6.2.1 and our assumption on ρ.

For an assignment σ ∈ Σ let C(σ) be the set of all possible unsatisfied clauses under σ on the variable

set x1, . . . , xn. Then |C(σ)| = nk for all σ ∈ Σ.

The following Lemma proving that with high probability Q2 holds in Φ is similar to the statement

in [67] that certain “overlap structures” do not exist (where an “overlap structure” is an l-tuple of

NAE-satisfying assignments with pairwise distance ∼ κn for an appropriate integer l.) This concept

is an adaption of a bound on intersection densities for tuples of independent sets in sparse d-regular

graphs from [120]. There it is shown that no tuple of large local independent sets intersecting each

other in a certain way exists in a d-regular graph w.h.p. We are going to prove a similar statement,

namely that no m-tuple of assignments with a small number of unsatisfied clauses that have pairwise

distance ∼ κ and are all contained in Dτ (0, 10) for some τ ∈ Σ exist. Following [67] we also use an

inclusion/exclusion estimate, while here of course we are not focussing on satisfying assignments but
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on assignments with a relatively small number of unsatisfied clauses.

Lemma 6.2.3. Q2 holds w.h.p.

Proof. We prove the statement by way of a slightly different random formula model Φ′. In Φ′ each

of the (2n)k possible clauses is included with probability q = m/(2n)k independently in a random

order. A standard argument shows that this model is essentially equivalent to Φ. To be precise, we

claim that for any event E we have

P [Φ ∈ E ] ≤ O(
√
n) P

[
Φ′ ∈ E

]
+ o(1). (6.9)

To see this, let G be the event that Φ does not contain the same k-clause twice, i.e., Φi 6= Φj for all

1 ≤ i < j ≤ m. A simple union bound shows that P [Φ ∈ G] = 1 − O(1/n). Moreover, let m′ be

the total number of clauses of Φ′. The m′ is a binomial variable with mean m and Stirling’s formula

shows that P [m′ = m] = Θ(n−1/2). Thus, (6.9) follows from the observation that the distribution of

Φ′ givenm′ = m coincides with the distribution of Φ given G.

Hence, we are going to work with the model Φ′. Let M′ be the mist constructed for Φ′ by means

of our above procedure. Moreover, for τ ∈ Σ let P (τ) be the set of all k-tuples (σi)i∈[k] with the

following two properties.

P1 σi ∈ Dτ (0, 10) for all i ∈ [k] and

P2 dist(σi, σj) ≥ 2nκ for all i 6= j.

Then

|P (τ)| ≤ n ·
(

n

n10 ln(k)/k

)k
≤ n ·

(
ek

10 ln k

)10n ln k

≤ exp
(
10n ln2 k

)
. (6.10)

Further, if σ1, σ2 ∈ Σ are assignments such that dist(σ1, σ2) ≥ 2κn, then the number of possible

unsatisfied clauses under both σ1 and σ2 satisfies

|C(σ1) ∩ C(σ2)| = (n− dist(σ1, σ2))k ≤ ((1− 2 ln(k)/k)n)k ≤ k−2nk; (6.11)

this is because a clause that is unsatisfied under both σ1, σ2 must not contain any literals on which

the two assignments differ. We are going to upper bound the probability that for (σi)i∈[k] ∈ P (τ)

assignment σi renders at most ρn/10 clauses of Φ′ unsatisfied given that all of σ1, . . . , σi−1 do so.

The probability that this event occurs is upper bounded by the probability that Φ′ contains at most
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ρn/10 clauses from the set

C(σi|σ1, . . . , σi−1) = C(σi) \
i−1⋃
j=1

C(σj).

The estimate (6.11) and inclusion/exclusion yield

|C(σi|σ1, . . . , σi−1)| ≥ nk(1− (i− 1)k−2).

Hence, if we let Zi = Bin(bnk(1− (i− 1)k−2)c, q), then

P
[
σi ∈ T (Φ′)|σ1, . . . , σi−1 ∈ T (Φ′)

]
≤ P [Zi ≤ ρn/10] (6.12)

(this step required that the clauses of Φ′ appear independently). By the Chernoff bound, for i ≤ k we

have

P [Zi ≤ ρn/10] ≤ exp (−ρn/15) (6.13)

Consequently, P2, (6.12) and (6.13) yield for any (σi)i∈[k] ∈ P (τ),

P [σ1, . . . , σk ∈ T (Φ)] =
k∏
i=1

P [σi ∈ T (Φ)|σj ∈ T (Φ) for all j < i] ≤ exp (−kρn/15) . (6.14)

Further, let Q(Φ′, τ) be the set of all k-tuples (σi)i∈[k] ∈ P (τ) such that σ1, . . . , σk ∈ T (Φ′). Then

(6.10) and (6.14) imply

E
[
Q(Φ′, τ)

]
≤ exp

[
n
(
10 ln2(k)− kρ/15

)]
. (6.15)

Summing (6.15) on τ ∈ Σ and using ρ ≥ 195 ln2(k)/k, we get∑
τ∈Σ

E
∣∣Q(Φ′, τ)

∣∣ ≤ exp
[
n
(
(2 + 10) ln2(k)− 13 ln2(k)

)]
= exp(−Ω(n)). (6.16)

Finally, assume that Φ′ violates Q2. Then there is τ ∈ Σ such that Q(Φ′, τ) 6= ∅, because our

construction of M′ ensures that M′ ⊂ T (Φ′) and that the pairwise distance of assignments in M
is at least 2nκ. Consequently, (6.16) shows together with Markov’s inequality that Φ′ violates Q2
with probability at most exp(−Ω(n)). Thus, the assertion follows by transferring this result to Φ via

(6.9).

Lemma 6.2.4. Φ satisfies Q3 w.h.p.
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Proof. LetP = PΦ be the number of pairs (σ, τ) ∈ Σ×(Dσ(0, 100)\T (Φ)) such thatXΦ(∆(σ, τ)) >

kUΦ(τ)/10. To estimate P fix a pair (σ, τ) and let PΦ(σ, τ) be the event that XΦ(∆(σ, τ)) >

kUΦ(τ)/10. If τ ∈ Dσ(0, 100) \ T (Φ), then τ leaves at least UΦ(τ) ≥ ρn/10 clauses unsatis-

fied. More precisely, given UΦ(τ) each unsatisfied clause consists of k independent random literals

that are unsatisfied under τ . Since Dσ(0, 100), for any one of the kUΦ(τ) underlying variables the

probability of belonging to ∆(σ, τ) equals ∆(σ, τ)/n ≤ 100κ. Therefore, Lemma 1.0.4 shows that

P [PΦ(σ, τ)] ≤ P [Bin(k|UΦ(τ)|,∆(σ, τ)/n) > kUΦ(τ)/10] ≤ exp(−kρn/10). (6.17)

Summing (6.17) on σ ∈ Σ and τ ∈ Dσ(0, 100) and using our assumption on ρ, we get

E [P] ≤
∑
σ,τ

P [PΦ(σ, τ)] ≤ 4n exp(−kρn/10) ≤ 2−n

Thus, the assertion follows from Markov’s inequality.

Finally, Proposition 6.0.6 follows directly from Lemma 6.2.2 to 6.2.4.
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[60] P. Erdős, A. Rényi: On the evolution of random graphs. Magayar Tud. Akad. Mat. Kutato Int.

Kozl. 5 (1960) 17–61.

[61] U. Feige, E. Mossel, D. Vilenchik: Complete convergence of message passing algorithms for

some satisfiability problems. Theory of Computing 9 (2013) 617–651.

[62] J. Franco, M. Paull: Probabilistic analysis of the Davis Putnam procedure for solving the satis-

fability problem. Discrete Applied Mathematics 5 (1983) 77–87.

[63] E. Friedgut: Sharp thresholds of graph properties, and the k-SAT problem. Journal of the AMS

12 (1999) 1017–1054.

[64] A. Frieze, T. Łuczak: On the independence and chromatic numbers of random regular graphs.

Journal of Combinatorial Theory, Series B 54 (1992) 123–132.

[65] A. Frieze, S. Suen: Analysis of two simple heuristics on a random instance of k-SAT. Journal of

Algorithms 20 (1996) 312–355.

[66] D. Gamarnik, M. Sudan: Limits of local algorithms over sparse random graphs. Proc. of 5th

ICTS (2014) 369–376.

[67] D. Gamarnik, M. Sudan: Performance of Survey Propagation guided decimation algorithm for

the random NAE-K-SAT problem. arXiv 1402.0052v2 (2014).

[68] E. R. Gilbert: Random Graphs. Annals of Mathematical Statistics 30 (1959) 1141–1144.

[69] A. Goldberg: On the complexity of the satis ability problem. In the 4th Workshop on Automated

Deduction in Austin (1979) 1–6.

[70] G. Grimmett, C. McDiarmid: On colouring random graphs. Mathematical Proceedings of the

Cambridge Philosophical Society 77 (1975) 313–324.

[71] T. Hertli: 3-SAT Faster and Simpler - Unique-SAT Bounds for PPSZ Hold in General. SIAM J.

Comput. 43 (2014) 718–729.

181



Bibliography

[72] T. Hertli, R. Moser, D. Scheder: Improving PPSZ for 3-SAT using critical variables. Proc. 28th

STACS (2011) 237–248.

[73] S. Hetterich: Analysing Survey Propagation Guided Decimation on Random Formulas. Proc.

43rd ICALP (2016) in press.

[74] T. Hofmeister, U. Schöning, R. Schuler, O. Watanabe: A Probabilistic 3-SAT Algorithm Further

Improved. Proc. 19th STACS (2002) 192–202.

[75] K. Iwama, S. Tamaki: Improved Upper Bounds for 3-SAT. Proc. 15th SODA (2004) 328–328.

[76] E. Ising: Beitrag zur Theorie des Ferromagnetismus. Zeitschrift für Physik 31 (1925) 253–258.

[77] S. Janson, T. Łuczak, A. Ruciński: Random Graphs, Wiley (2000).
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A Appendix

Zusammenfassung

Seit den neunziger Jahren des vergangenen Jahrhunderts standen zufällige Bedingungserfüllungsprob-

leme (englisch "constrain satisfaction problems" (CSP)) auf der Agenda verschiedener Wissenschaften

wie der Diskreten Mathematik, der Informatik, der Statistischen Physik sowie einer ganzen Reihe

weiterer Anwendungsgebiete. Ziel ist es dabei, einen Zustand des Systems, wie beispielsweise eine

Belegung von Variablen, zu finden, welche eine Reihe von Bedingungen (englisch "constraints") er-

füllt. Aufgrund vielfältiger in diesem Kontext relevanter Gründe wurde eine enorme Mühe aufge-

wandt, diese Probleme in ihrer Komplexität, ihrer Berechenbarkeit, sowie die zugrundeliegenden

zufälligen diskreten Strukturen analytisch zu verstehen und effiziente Algorithmen zu entwickeln,

Instanzen der zufälligen CSP zu lösen.

In dieser Arbeit präsentieren wir drei Resultate aus dem Kontext zufälliger CSP. Durch eine Verbesserung

der unteren sowie der oberen Schranke für die vermuteten k-Färbbarkeitsschwelle erhalten wir eine

fast vollständige Lösung des Problems der Bestimmung der Chromatischen Zahl auf zufälligen reg-

ulären Graphen, welches von Coja-Oghlan, Efthymiou and dem Autoren dieser Arbeit 2016 im Journal

of Combinatorial Theory, Series B [39] veröffentlicht wurde. Zudem präsentieren wir negative Re-

sultate für zwei Algorithmen auf zufälligen k-SAT Instanzen. Zunächst eine Analyse von Walksat,

einem lokalen Suchalgorithmus, welche von Coja-Oghlan, Haqshenas und Hetterich beim SIAM Jour-

nal on Discrete Mathematics veröffentlicht wurde [38]. Des Weiteren präsentieren wir eine Analyse

von Survey Propagation Guided Decimation (SPdec), ein auf höchst komlexen Einsichten in zufäl-

lige CSP statistischer Physiker basierender Algorithmus, welche von dem Autoren der Arbeit in den

Procedings der 43. ICALP in Rom 2016 veröffentlicht und dort mit dem Best Student Paper - Track A

Award ausgezeichnet wurde [73].

Die chromatische Zahl zufälliger Graphen zu bestimmen ist eines der am längsten offenen Heraus-

forderungen in der probabilistischen Kombinatorik. Die chromatische Zahl eines Graphen ist die

kleinste ganze Zahl k, sodass eine Färbung der Knotenmenge ohne monochromatische Kanten ex-

istiert (dabei sind beide inzidente Knoten mit der gleichen Farbe gefärbt). Für Erdős-Rényi-Graphen

(GER(n,m)), das weitaus am tiefsten studierte Modell in der Literatur zufälliger Graphen, reicht die

Frage bis zu der bahnbrechenden Veröffentlichung von 1960 zurück, welche die Theorie zufälliger

Graphen begründete [60]. Das neben dem GER(n,m) am häufigsten studierte Modell ist sicherlich
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Zusammenfassung

der zufällige reguläre Graph G(n, d) [23, 77]. In der Dissertation wird eine fast vollständige Lösung

für das Chromatische Zahl Problem auf demG(n, d) präsentiert, zumindest für den Fall das d konstant

und insbesondere unabhängig von n ist, wenn n→∞ (der wohl am schwersten zu fassende und von

seiner kombinatorischen Herausforderung her interessanteste Bereich). Das Hauptresultat ist

Theorem. Es existiert eine Folge (εk)k≥3 mit limk→∞ εk = 0, sodass gilt

1. für d ≤ (2k − 1) ln k − 2 ln 2− εk ist G(n, d) k-färbbar mit hoher Wahrscheinlichkeit4.

2. für d ≥ (2k − 1) ln k − 1 + εk ist G(n, d) nicht k-färbbar mit hoher Wahrscheinlichkeit.

Wir haben keine Anstrengung unternommen, den Fehlerterm εk exakt zu bestimmen oder gar zu opti-

mieren.

Eine direkt Konsequenz aus diesem Theorem ist die exakte Bestimmung der chromatischen Zahl

χ(G(n, d)) für fast alle d.

Korollar. Es existiert eine Menge D ⊂ Z≥0 mit asymptotische Dichte 1 und eine explizite Funktion

F : D → Z≥0, sodass mit hoher Wahrscheinlichkeit χ(G(n, d)) = F(d) für alle d ∈ D.

Zufällige k-SAT Instanzen sind seit Jahrzehnten als besonders schwer und deshalb als Maßstab für die

Güte von Algorithmen bekannt [30]. Das einfachste und am tiefsten studierte Modell ist das folgende:

Sei k ≥ 3 eine ganze Zahl, sei r > 0 ein fester Parameter die Dichte beschreibend, sei n eine (große)

Zahl und sei m = drne. Dann ist Φ = Φk(n,m) eine unter allen (2n)km möglichen Formeln zufällig

uniform gezogene k-CNF.

Seit den frühen Anfängen wurde das Studium von zufälligem k-SAT von zwei Hypothesen gelenkt.

Erstens, dass für jedes k ≥ 3 eine bestimmte kritische Dichte rk−SAT > 0, der k-SAT Schwellwert

existiere, an welchem die Wahrscheinlichkeit, dass die zufällige Formel von fast 1 auf fast 0 falle.

Zweitens, dass zufällige Formeln mit einer Dichte nahe aber unterhalb von rk−SAT in einem sehr

intuitiven Sinne schwer zu berechnen seien [26, 30, 102].

Die besten bekannten Algorithmen finden erfüllende Belegungen in Polynomialzeit bis zu einer Dichte

von ungefähr r ∼ 2k ln k/k [34]. Mit einer einfachen Berechnung des zweiten Moments zusammen

mit einem "sharp threshold" Resultat [63] lässt sich beweisen, dass mit hoher Wahrscheinlichkeit

Lösungen bis zu einer Dichte von rsecond ∼ 2k ln k − k existieren. Wenn auch der Fall k = 3, 4 für

empirische Simulationen am Besten geeignet ist, wird das Bild sowohl klarer als auch dramatischer

für große Werte von k.

4Man sagt, dass ein zufälliges diskretes Objekt eine Eigenschaft mit hoher Wahrscheinlichkeit besitzt, wenn die
Wahrscheinlichkeit, dass diese Eigenschaft tatsächlich vorliegt mit n → ∞ gegen 1 geht.
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Tatsächlich scheitern Standardheuristiken wie Unit Clause Propagation schon für viel kleinere Dichten,

nämlich r = c2k/k für eine bestimmte Konstante c > 0 [65]. Das gleiche gilt (beweisbar) für

verschiedenste DPLL-basierte k-SAT-Solver [2, 107]. Also bleibt ein Faktor von ungefähr k/ ln k

zwischen der algorithmischen Schwelle und rsecond, der unteren Schranke an rk−SAT. Obwohl die em-

pirischen Hinweise für eine solche algorithmische Barriere überwältigend sind, gab es bislang wenig

Fortschritt diese tatsächlich in Allgemeinheit zu beweisen oder einzelne kompliziertere nicht-triviale

k-SAT-Solver zu analysieren.

Zufällige CSP standen im Fokus einer enormen wissenschaftlichen Entwicklung im Laufe der letzten

Jahre, welche hauptsächlich durch den beginnenden Austausch von Wissenschaftlern unterschiedlich-

ster Fachgebiete wie der Statistischen Physik, der Informatik und der Mathematik angefacht wurde.

Zu Beginn des neuen Jahrtausends entwickelten Physiker einen sehr komplexen und ausgefeilten aber

nicht rigorosen Ansatz, genannt die Cavitiy Methode, um zufällige CSP sowohl analytisch als auch al-

gorithmisch zu bewältigen. Die Cavity Methode liefert insbesondere präzise Vorhersagen für den Wert

von rk−SAT für ale k ≥ 3 [98], welche kürzlich für genügend große Werte von k rigoros verifiziert

wurde [56]. Das in dieser Arbeit enthaltende Resultat über die chromatische Zahl zufälliger regulärer

Graphen ist in Übereinstimmung mit dieser Entwicklung. Es ist durch das Implementieren der durch

die Cavity Methode erlangten Einsichten in Standardtechniken der probabilistischen Methode erreicht

worden.

Darüber hinaus lieferte die Cavity Methode eine heuristische Erklärung für das Scheitern einfacher

kombinatorischer DPLL-basierter Algorithmen weit unterhalb von rk−SAT. Insbesondere weil ex-

akt für Dichten um 2k ln k/k die Geometrie der Menge aller erfüllenden Belegungen eine dramatis-

che Veränderung erfährt. Die (weitestgehend) einzige Zusammenhangskomponente bricht mit hoher

Wahrscheinlichkeit in eine ganze Menge kleiner gut voneinander separierter Cluster auf [88]. Tat-

sächlich gehört eine typische (d.h. uniform zufällig gezogene) Belegung zu einem gefrorenen Cluster

- das heißt starke "long-range" Korrelationen treten zwischen den Variablen auf. Insbesondere gibt es

viele gefrorene Variablen, welche den selben Wert in allen erfüllenden Belegungen in diesem Cluster

annehmen. Die Menge der erfüllenden Belegungen hat, grob gesprochen, die Eigenschaften eines

fehlerkorrigierenden Codes, nur dass bisher keine zugrundeliegende algebraische Struktur gefunden

wurde. Folglich würde beispielsweise ein lokaler Suchalgorithmus auf der Suche nach einer erfüllen-

den Belegung offensichtlich die Fähigkeit haben müssen, eine ganzes Cluster zu überblicken und auf

einen Schlag alle gefrorenen Variablen auf den richtigen Wert zu setzen. Ohne einen Überblick über

die "globalen" Abhängigkeiten der Variablen zu haben, scheint dies unmöglich zu sein.

Sowohl die Zerlegung in viele Cluster als auch die Vorhersage bezüglich des Frierens sind weitestge-

hend rigoros bewiesen [104, 4] und wir beginnen den Einfluss dieses Bildes auf die Performance von

Algorithmen zu verstehen [3]. Tatsächlich stimmt die Dichte, an welcher Cluster und gefrorene Vari-

ablen auftauchen, exakt mit der Dichte überein, bis zu der Algorithmen bewiesener Weise erfüllende
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Zusammenfassung

Belegungen finden (zumindest für ausreichend große Klausellängen k). Genauer gesagt, liegt die k-

SAT-Schwelle asymptotisch bei r = 2k ln 2 − (1 + ln 2)/2 + ok(1), wobei ok(1) einen Fehlerterm

versteckt, der für große k gegen 0 konvergiert [43, 56]. Im Vergleich dazu kennt man Algorithmen,

die erfüllende Belegungen bis zu einer Dichte von r = (1 + ok(1))2k ln k/k effizient finden [34].

Des Weiteren treten sowohl Cluster als auch gefrorene Variablen für r > (1 + ok(1))2k ln k/k

auf [3, 4, 104]. Man möchte also vermuten, dass zufällige Formeln schon ab einer Dichte von unge-

fähr einem Faktor k unterhalb der k-SAT Schwelle "schwer zu lösen" sind. Bis heute hat es sich

aber trotz der strukturellen Ergebnisse und des durch die Arbeit der Physiker entworfenen, zwingen-

den und sehr intuitiven Bildes als bemerkenswert schwer herausgestellt, tatsächlich zu beweisen, dass

diese strukturellen Eigenschaften eine Barriere selbst für sehr einfache k-SAT Algorithmen darstellen.

Wir präsentieren einen ersten Schritt in Richtung eines solchen Beweises für Walksat, einen der

einfachsten, nicht-trivialen k-SAT Algorithmen. Unser Beweis nutzt den Fakt, dass erfüllende Bele-

gungen in ausreichend separierten Clustern liegen, als einer der ersten rigorosen Analysen von Al-

gorithmen, die aus den Einsichten der Physiker Nutzen ziehen können. Walksat ist ein lokaler

Suchalgorithmus, der im "worst case" um einen exponentiellen Faktor besser als "exhaustive search"

ist. Die Suchprozedur war außerdem in einigen der besten Algorithmen für k-SAT enthalten [57, 71,

72, 74, 75, 118, 125].

Walksat ist ein lokaler Suchalgorithmus. Er startet mit einer uniform zufälligen Belegung. Solange

die aktuelle Belegung keine Lösung ist, wählt der Algorithmus eine unerfüllte Klausel uniform zufällig

aus und flippt den Wert einer zufällig gewählten in der Klausel enthaltenden Variablen. Die gewählte

Klausel ist daraufhin erfüllt, aber andere, zuvor erfüllte Klauseln, können dadurch nun möglicherweise

unerfüllt sein. Wenn nach einer bestimmten Zahl ω an Iterationen keine erfüllende Belegung gefunden

wurde, gibt Walksat die Suche auf. Demnach ist der Algorithmus einseitig: Er kann erfüllende

Belegungen finden, jedoch kein Zertifikat für "Unerfüllbarkeit" der Formel liefern.

Für eine gegebene Formel Φ und ω > 0 sei success(Φ, ω) die Wahrscheinlichkeit (bezüglich der

zufälligen Entscheidungen der Algorithmen), dass Walksat(Φ, ω) eine erfüllende Belegung findet.

Also ist success(Φ, ω) eine Zufallsvariable, die von der zufälligen Formel Φ abhängt.

Theorem. Es existiert eine Konstante c > 0, sodass für alle k und alle r ≥ c2k ln2 k/k mit hoher

Wahrscheinlichkeit gilt

success(Φ, dexp(n/k2)e) ≤ exp(−n/k2).

Es ist wohlbekannt, dass die zufällige Formel Φ mit hoher Wahrscheinlichkeit unerfüllbar ist, wenn

r > 2k ln 2. Demnach impliziert die Bedingung r > c2k ln2 k/k im vorherigen Theorem eine untere

Schranke an die Klausellänge k, für welche das Theorem nicht ohne logische Aussage ist.
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rr4−SAT ∼ 9.93

SP 9.73

"gewichtet" BP 9.24

"einfaches" BP 9.05

SC 5.54

zChaff 5.35

Figure A.1.: Experimentelle Performance verschiedener Algorithmen auf zufälligem 4-SAT.

Die Dichte, welche das Theorem voraussetzt übersteigt die Schwelle für die Existenz von Clustern

und gefrorenen Variablen um einen Faktor c ln k, jedoch ist die k-SAT Schwelle um einen weiteren

Faktor von ungefähr k entfernt. Überdies beweist das Theorem, dass Walksat auf dramatische Weise

scheitert: Auf typischen zufälligen Formeln Φ ist die Erfolgswahrscheinlichkeit von Walksat expo-

nentiell klein, selbst wenn man Walksat eine exponentielle Zahl von Wiederholungen laufen lässt.

Selbst wenn man Walksat jede polynomielle Zahl oft von neuem startete, bleibt die gemeinsame

Erfolgswahrscheinlichkeit aller Versuche exponentiell klein.

Die Arbeit der Physiker hat bemerkenswerter Weise auch zur Entwicklung eines neuen effizienten

"message-passing" Algorithmus Survey Propagation Guided Decimation geführt, mit dem Ziel, die

vermutete algorithmische Barriere doch zu überwinden [101]. Präziser, der Algorithmus ist speziell

dahingehend entworfen, ganze Cluster von und nicht nur einzelne erfüllende Bedingungen zu finden.

Dafür charakterisiert er Cluster durch die durch die Bedingungen kaskadenartig weitreichenden Ko-

rrelationen "gefrorenen" Variablen und die "lokal freien" Variablen. Das grundlegende Design von

Survey Propagation Guided Decimation zielt also insbesondere darauf ab für solche Dichten effizient

zu arbeiten, bei welchen gefrorene Cluster existieren.

In Abbildung A.1 vergleichen wir die experimentell ermittelte Performance verschiedener Algorith-

men auf zufälligen 4-SAT Instanzen. Der vermutetet Erfüllbarkeitsschwellwert liegt bei ungefähr

r4−SAT ∼ 9.93 [96]. Survey Propagatio Guided Decimations findet gemäß den Experimenten in [87]

effizient erfüllende Belegungen für Dichten bis zu r = 9.73. Ein weiterer "message-passing" Al-

gorithmus, der auch durch die Arbeit der Statistischen Pysiker Anwendung auf Instanzen zufälliger

CSPs fand und als grundlegendes Schema für Survey Propagation zu verstehen ist, kursiert unter der

Bezeichung Belief Propagation. Nach Experimenten ist eine einfache Version von Belief Propagation

Guided Decimation bis r = 9.05 erfolgreich [122] und eine leicht verbesserte gewichtetet Version

(eine gewichtete Auswahlregel für die zu dezimierende Variable) sogar bis r = 9.24 [87]. Im Kontrast

dazu ist der beste "klassische" Algorithmus, welcher eine "Kürzeste-Klausel-Heuristik" (SC - shortest

clause) verwendent [65], nur bis circa r = 5.54 erfolgreich und ein gewerblicher SAT-Solver (zChaff)

sogar nur bis r = 5.35 erfolgreich, bevor er anfängt zu "backtracken" [87]
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Zusammenfassung

Obwohl die experimentelle Performance für kleine k ausgezeichnet ist, lässt sich keine offensichtliche

Verbindung zwischen dem Auftreten gefrorener Cluster und dem Erfolg der Algorithmen ableiten. Bis

dato haben nicht einmal die Methoden der Physiker zu einer Erklärung dieser empirischen Ergebnisse

oder zu einer präzisen Vorhersage geführt, bis zu welcher Dichte man erwarten könnte, dass Survey

Propagation Guided Decimation für generisches k effizient ist. Folglich wurde die Analyse von Survey

Propagation Guided Decimation zu einer der wichtigsten Herausforderungen im Kontext zufälliger

CSP.

Das in dieser Arbeit präsentierte Resultat liefert die erste rigorose Analyse von SPdec(der ele-

mentaren Version) von Survey Propagation Guided Decimation auf zufälligem k-SAT. Für eine präzise

Definition und detailierte Erklärung des Algorithmus verweisen wir auf die Standartliteratur wie [98].

Bevor wir das Resultat nennen, müssen wir, wie für Walksat, darauf hinweisen, dass zwei Ebenen

von Zufall involviert sind: Die Wahl der zufälligen Formel Φ zum einen und die "Münzwürfe" des

randomisierten Algorithmus SPdec zum anderen. Für eine (feste, nicht zufällige) k-CNF Φ sei mit

success(Φ) die Wahrscheinlichkeit bezeichnet, dass SPdec(Φ) eine erfüllende Belegung findet. Hier-

bei bezieht sich "Wahrscheinlichkeit" natürlich alleine auf die Münzwürfe des Algorithmus. Wendet

man jedoch SPdecauf eine zufällige k-CNF Φ an, wird die Erfolgswahrscheinlichkeit success(Φ)

eine Zufallsvariable. Bemerke, dass Φ für r > 2k ln 2 mit hoher Wahrscheinlichkeit nicht erfüllbar

ist.

Theorem. Es existiert eine Folge (εk)k≥3 mit limk→∞ εk = 0, sodass für alle k, r, welche 2k(1 +

εk) ln(k)/k ≤ r ≤ 2k ln 2 erfüllen, mit hoher Wahrscheinlichkeit success(Φ) ≤ exp(−Ω(n)).

Wenn die Erfolgswahrscheinlichkeit exponentiell klein in n ist, dann führt, analog zu Walksat, das

Anwenden von SPdec eine sub-exponentielle Zahl an Wiederholungen mit hoher Wahrscheinlichkeit

nicht dazu, eine erfüllende Belegung zu finden. Das widerlegt die Hypothese, dass SPdec zufällige

k-SAT Instanzen für entsprechende Dichten mit hoher Wahrscheinlichkeit effizient löst .
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