0526

Key to the Korean species of armored scale insects (Hemiptera: Diaspididae)

Soo-Jung Suh
Plant Quarantine Technology Center/QIA
167, Yongjeon 1-ro, Gimcheon-si,
Gyeongsangbuk-do, South Korea 39660

Date of Issue: February 24, 2017

Soo-Jung Suh
Key to the Korean species of armored scale insects (Hemiptera: Diaspididae) Insecta Mundi 0526: 1-11

ZooBank Registered: urn:lsid:zoobank.org:pub:42A72836-95E0-4805-802A-30B7CE6EBE81

Published in 2017 by

Center for Systematic Entomology, Inc.
P. O. Box 141874

Gainesville, FL 32614-1874 USA
http://centerforsystematicentomology.org/
Insecta Mundi is a journal primarily devoted to insect systematics, but articles can be published on any non-marine arthropod. Topics considered for publication include systematics, taxonomy, nomenclature, checklists, faunal works, and natural history. Insecta Mundi will not consider works in the applied sciences (i.e. medical entomology, pest control research, etc.), and no longer publishes book reviews or editorials. Insecta Mundi publishes original research or discoveries in an inexpensive and timely manner, distributing them free via open access on the internet on the date of publication.

Insecta Mundi is referenced or abstracted by several sources including the Zoological Record, CAB Abstracts, etc. Insecta Mundi is published irregularly throughout the year, with completed manuscripts assigned an individual number. Manuscripts must be peer reviewed prior to submission, after which they are reviewed by the editorial board to ensure quality. One author of each submitted manuscript must be a current member of the Center for Systematic Entomology.

Chief Editor: David Plotkin, e-mail: insectamundi@gmail.com
Assistant Editor: Paul E. Skelley, e-mail: insectamundi@gmail.com
Head Layout Editor: Eugenio H. Nearns
Editorial Board: J. H. Frank, M. J. Paulsen, Michael C. Thomas
Review Editors: Listed on the Insecta Mundi webpage
Manuscript Preparation Guidelines and Submission Requirements available on the Insecta Mundi webpage at: http://centerforsystematicentomology.org/insectamundi/

Printed copies (ISSN 0749-6737) annually deposited in libraries:

CSIRO, Canberra, ACT, Australia
Museu de Zoologia, São Paulo, Brazil
Agriculture and Agrifood Canada, Ottawa, ON, Canada
The Natural History Museum, London, UK
Muzeum i Instytut Zoologii PAN, Warsaw, Poland
National Taiwan University, Taipei, Taiwan
California Academy of Sciences, San Francisco, CA, USA
Florida Department of Agriculture and Consumer Services, Gainesville, FL, USA
Field Museum of Natural History, Chicago, IL, USA
National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
Zoological Institute of Russian Academy of Sciences, Saint-Petersburg, Russia
Electronic copies (Online ISSN 1942-1354, CDROM ISSN 1942-1362) in PDF format:
Printed CD or DVD mailed to all members at end of year. Archived digitally by Portico.
Florida Virtual Campus: http://purl.fcla.edu/fcla/insectamundi
University of Nebraska-Lincoln, Digital Commons: http://digitalcommons.unl.edu/insectamundi/
Goethe-Universität, Frankfurt am Main: http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hebis:30:3-135240
Copyright held by the author(s). This is an open access article distributed under the terms of the Creative Commons, Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited. http://creativecommons.org/ licenses/by-nc/3.0/

Layout Editor for this article: Eugenio H. Nearns

Key to the Korean species of armored scale insects (Hemiptera: Diaspididae)

Soo-Jung Suh
Plant Quarantine Technology Center/QIA
167, Yongjeon 1-ro, Gimcheon-si, Gyeongsangbuk-do, South Korea 39660
suhsj97@gmail.com; suhsj97@korea.kr

Abstract

A list of all 80 species of armored scale insects (Hemiptera: Diaspididae) in 30 genera that have been identified or documented in Korea, along with a dichotomous key to separate them, is provided.

Key words. Diaspidids, checklist, identification, indigenous species

Introduction

Armored scale insects (Hemiptera: Diaspididae) are the largest and most diverse family of scale insects, with 2,587 species known worldwide (García et al. 2016). They are highly evolved and specialized plant parasites, and generally have a cryptic way of life because of their small size and limited mobility. The female Diaspididae has two nymphal stages; first-instar nymphs (crawlers) have well-developed legs and are known as the dispersal stage; second-instar nymphs and adult females (third-instar) are legless, wingless, feed on sap, and are covered by a waxy shield incorporating the exuviae of previous instars; adult males (when present) have legs and one pair of wings and do not feed; many reproduce asexually and have no males (Rosen 1990).

Armored scale insects occur in every part of the world where plants grow. There is hardly any country in the world today where diaspidids do not cause serious pest problems, and their success invading new territories has made them a constant quarantine threat in many parts of the world (Rosen 1990). They are one of the most economically important groups of insects found on food crops and ornamental plants.

In the Republic of Korea, armored scale insects such as the Asiatic rose scale, Aulacaspis rosarum Borchsenius and the euonymus scale, Unaspis euonymi (Comstock), are considered major pests because they cause severe damage to trees and shrubs due to their high populations. In addition, more and more non-indigenous armored scale insects such as Aulacaspis yasumatsui Takagi (intercepted 29 times) and Lepidosaphes laterochitinosa Green (intercepted 65 times) are frequently intercepted on imported plants over the past 20 years and are considered to be potential invasive species (Suh 2016c).

Due to their importance, a survey was conducted between 2006 and 2015 to regularly update a list of armored scale insects found in the Republic of Korea. Recent articles (Paik 2000; Suh and Hodges 2007; Lee 2010; Suh 2011, 2012, 2013, 2014, 2015, 2016a, 2016b; Yu and Suh 2013; Suh and Evans 2016) in addition to information reported herein, have increased the number of armored scale species known to occur in the Republic of Korea to 80 species belonging to 30 genera.

The purpose of this paper is to provide an identification key to the genera and species of armored scale insects known to occur in Korea, based on characters of the adult female. This information will not only enable researchers to identify the species known to occur in Korea, but also aid in the recognition and early detection of newly introduced species.

Materials and Methods

This paper provides a dichotomous key and a list concerning 80 species of armored scale insects reported from Korea. But during the survey over the past ten years, nine species such as Chionaspis salicis (Linnaeus) and Comstockaspis macroporana (Takagi) were not collected (Table 1), although they have been documented in the Korean fauna of armored scale insects. While developing the key, the author was not able to examine specimens of these species from Korea. Terminology for the morphological structures used in the key follows that of Miller and Davidson (2005).

Results

Table 1 presents a list of the armored scale insects that were collected and reported from the Republic of Korea, along with their regional distribution in Korea. A dichotomous key to the Korean armored scale insects is provided.

Key to armored scale insects of Korea (slide-mounted adult females)

1. Dorsum of pygidium with areolate pattern .. 2

- Dorsum of pygidium without areolate pattern .. 3

2(1). With perispiracular pores near posterior spiracles; pygidial macroducts short, approximately 5 times longer than width of dermal orificePseudaonidia paeoniae (Cockerell)

- Without perispiracular pores near posterior spiracles; pygidial macroducts long, approximately 10 times longer than width of dermal orificePseudaonidia duplex (Cockerell)

3(1). Usually occurring on bamboos ... 4

- Rarely occurring on bamboos ... 9

4(3). Median lobes fused; lacking two-barred macroducts
Odonaspis secreta (Cockerell) (in part)

- Median lobes not fused; two-barred macroducts present ... 5

5(4). Median lobes yoked basally, with small space between them; medial lobule of second lobe larger than lateral lobule

Pinnaspis buxi (Bouché) (in part)

- Median lobes not basally yoked, separated by space at least a half width of lobe or far apart from each other; medial lobule of second lobe about same size as, or smaller than l lateral lobule .6

6(5). Apically toothed marginal plates absent anterior to 2nd lobes; median to 3rd lobes very small and pointed Unachionaspis tenuis (Maskell)

- Apically toothed marginal plates present anterior to 2nd lobes; median, second and third lobes without the above combination of features .7

7(6). With less than 10 perivulvar pores on each side of body; occurring on the leaves
\qquad
Kuwanaspis hikosani (Kuwana)

- With more than 20 perivulvar pores on each side of body; occurring on stems 8
8(7). Abdominal segment 1 with transverse row of macroducts ... Kuwanaspis howardi (Cooley)- Abdominal segment 1 without transverse row of macroducts

\qquad
Kuwanaspis pseudoleucaspis (Kuwana)
9(3). With at least one pore near the posterior or anterior spiracles 10
Without pores near the spiracles 63
10(9). Body elongate, oval, or turbinate; not as described below 16
Body elongate; head and/or anterior two thoracic segments rectangular in shape, wider than remainder of body 11
11(10). With ducts on dorsum of abdominal segment 2 12

- Without ducts on dorsum of abdominal segment 2 14
12(11). Spines more than 10 on ventral margins of abdominal segments 2 and 3 13
- Spines less than 10 on ventral margins of abdominal segments 2 and 3
Aulacaspis rosarum Borchsenius
13(12). Only known on Elaeagnus (Elaeagnaceae); median lobes broadly rounded, usually more than2 times width of second lobesAulacaspis difficilis (Cockerell)
- Only found on Smilax (Smilacaceae); median lobes round, usually less than 1.5 times width ofsecond lobesAulacaspis spinosa (Maskell)
14(11). With usually ducts on dorsum of abdominal segment 615
- Without ducts on dorsum of abdominal segment 6 Aulacaspis latissima (Cockerell)15(14). Median lobes narrowly rounded; basal sclerosis or yoke between median lobes producedanteriorlyAulacaspis yabunikkei Kuwana
- Median lobes broadly rounded; basal sclerosis or yoke between median lobes, not producedanteriorly ...Aulacaspis rosae (Bouché)
16(10). Pygidium with at least one pair of marginal scleroses indicating the intersegmental juncturesof the abdominal segments 6 to 8Odonaspis secreta (Cockerell) (in part)
- Pygidium without intersegmental scleroses 17
17(16). Pygidium with more than seven groups of perivulvar pores; dorsum with sclerotized areas anda row of gland spines present from the prothorax to abdominal segment 4
\qquadLopholeucaspis japonica (Cockerell)
- Pygidium and dorsum without the above combination of characters 18
18(17). Median lobes present, yoked basally by an internal sclerosis 19
- Median lobes present or absent; if present, not yoked basally by an internal sclerosis 36
19(18). Median lobes very tightly appressed with a small space between them 20
- Median lobes distinctly separate 25
20(19). Only found on conifers Pinnaspis chamaecyparidis Takagi
- Not found on conifers 21
21(20). Median lobes fused throughout their length, thus forming a single median lobePinnaspis uniloba (Kuwana)
- Median lobes although usually very closely appressed together, separate for at least some
distance from the apex, if not to the base 22
22(21). Median lobes protrude less than or about the same distance as second lobes 23
- Median lobes protrude beyond or about the same distance as second lobes 24
23(22). With submarginal ducts on dorsum of abdominal segment 5Pinnaspis aspidistrae (Signoret)
- Without submarginal ducts on dorsum of abdominal segment 5Pinnaspis buxi (Bouché) (in part)
24(22). Basal sclerosis of median lobes slender, scarcely produced anteriorly beyond bases of thelobeslobes
25(19). With at least a few macroducts on medial or submarginal areas of pygidium; not pupillarial (adult female developing with second-instar nymph exuvium) 26
- Without macroducts on medial or submarginal areas of pygidium; pupillarial
Fiorinia japonica Kuwana
26(25). Setae or gland spines absent between the median lobes 27
- \quad Setae or gland spines present between the median lobes 31
27(26). With a series of small dorsal macroducts (wider than microducts in gland spines) on the submedialarea of the abdomen28
- Without a series of small dorsal macroducts on the submedial area of the abdomen 30
28(27). Median lobes strongly divergent, with a straight medial margin; with small dorsal macroducts on the submedial area of abdominal segments 1 to 5 29
- Median lobes only slightly divergent, with a rounded medial margin; with small dorsalmacroducts on the submedial area of abdominal segments 1 to 4 ; on many hosts includingSalix and Populus (Salicaceae)Chionaspis salicis (Linnaeus)
29(28). With small dorsal macroducts on the submedial area of the prothorax and mesothorax; primarilyon Alnus (Betulaceae)Chionaspis alnus Kuwana
- Without small dorsal macroducts on the submedial area of the prothorax and mesothorax; onQuercus (Fagaceae)Chionaspis saitamaensis Kuwana
30(27). With dorsal macroducts on abdominal segment 6; primarily on Wisteria (Fagaceae)
\qquadChionaspis wistariae Cooley
Without dorsal macroducts on abdominal segment 6; on Acer (Sapindaceae)
Chionaspis acer (Takagi and Kawai)
31(26). Body oval or turbinate, length usually less than 1.5 times greatest width 32
- Body elongate, length usually 1.5 times or more than greatest width 33
32(31). Third space usually with 1 gland spine; at least 1 bifurcate or trifurcate gland spine in second,third, or fourth space; antennae with sclerotized projections apically; with 5-22 (10) smallmacroducts on each side of the metathorax and segment 1 ; on many hosts
\qquadPseudaulacaspis pentagona (Targioni-Tozzetti)
- Third space usually with 2 or more gland spines; simple gland spine in second, third, orfourth space; antennae rounded apically; with 0-15 (5) small macroducts on each side of themetathorax and segment 1; primarily on Prunus (Rosaceae)Pseudaulacaspis prunicola (Maskell)
33(31). With perispiracular pores near posterior spiracles 34
- Without perispiracular pores near posterior spiracles 35
34(33). With usually two rows of submarginal macroducts on abdominal segments 2 and 3; with $4-11$pores near anterior spiracles and $1-5$ pores near posterior spiracles; found on Zelkova andUlmus (Ulmaceae)Pseudaulacaspis ulmicola Tang
- With one row of submarginal macroducts on abdominal segments 2 and 3; with 13-27 poresnear anterior spiracles and $6-10$ pores near posterior spiracles; only found on Carpinus(Betulaceae)Pseudaulacaspis latiloba (Takagi and Kawai)

35(33). Without a duct on abdominal segment 6; antennae usually widely apart, width between antennae wider than distance between median lobes; only found on Quercus (Fagaceae)

- With duct on abdominal segment 6; antennae usually close together, width between antennaenarrower than distance between median lobes; found on many hostsPseudaulacaspis cockerelli (Cooley)
36(18). Median lobes round, with medial margin about the same length as lateral margin 39
- Median lobes with lateral margin conspicuously longer than medial margin 37
37(36). Pygidium with transverse sclerosis at the base of median lobe; bosses absent from abdomen 38
- Pygidium without transverse sclerosis at the base of median lobe; bosses present on abdomenAndaspis recurrens Takagi and Kawai
38(37). Pygidial marginal macroducts numbering 5 on each side; without submedian dorsal ducts on the pygidium Andaspis crawii Cockerell
- Pygidial marginal macroducts numbering 6 on each side; with submedian dorsal ducts on the pygidium Andaspis kashicola (Takahashi)
39(36). Second lobes bilobate with two lobules 40
- Second lobes simple with one lobule 59
40(39). Body elongate, body length more than two times maximum width 41
- Body turbinate, body length less than two times maximum width 56
41(40). Pygidium with three pairs of lobes; third lobes distinct 42
- Pygidium with two pairs of lobes; if third lobes present, then small and pointed 44
42(41). Macroducts present in submarginal and medial areas of abdominal segment 7; third lobesbilobate; not found on grasses43
- Macroducts absent from submarginal and medial areas of abdominal segment 7; third lobessimple; only found on grassesDuplachionaspis divergens (Green)
43(42). Perivulvar pores absent; second lobes usually protruding beyond the median lobes; head, thoraxand first abdominal segment sclerotized in mature femalesUnaspis yanonensis (Kuwana)
- Perivulvar pores present; second lobes not protruding beyond the median lobes; head, thoraxandfirst abdominal segment not sclerotizedUnaspis euonymi (Comstock)
44(41). Usually occurring on conifers 45
- Rarely occurring on conifers 48
45(44). Perivulvar pores in 8 groups, 3 auxiliary groups being present cephalad of usual 5 groups
Lepidosaphes pini (Maskell)
- Perivulvar pores in 4-5 groups 46
46(45). With minute spinules on head Lepidosaphes okitsuensis Kuwana
Without minute spinules on head 47
47(46). With lateral spurs between abdominal segments 1 and 2
48(44). With lateral spurs or tubercles on metathorax and/or on abdominal segments 49
- Without lateral spurs or tubercles 54
49(48). Eye spur like Lepidosaphes pinnaeformis (Bouché)
- Eye not spur like 50
50(49). With bosses or cicatrices on dorsal submargin of one or more abdominal segments

Lepidosaphes ulmi (Linnaeus)

- Without bosses or cicatrices 51
51(50). With minute spinules on head 52
- Without minute spinules on head 53
52(51). Without lateral spurs on metathorax Lepidosaphes tubulorum Ferris
With lateral spurs on metathorax Lepidosaphes ussuriensis (Borchsenius)
53(51). Cephalothorax elongate, little narrowing anteriorly; thoracic region and first abdominal segmentbecoming heavily sclerotized dorsally at full maturity .. Lepidosaphes gloverii (Packard)
- Cephalothorax gradually narrowing anteriorly; thoracic region remaining membranous, butabdominal segments becoming sclerotized dorsally at full maturity
Lepidosaphes yanagicola Kuwana
54(48). Dorsal macroducts present in a row across median area on abdominal segments 3 and 4;40 or fewer perivulvar pores 55
- Dorsal macroducts absent from median area on abdominal segments 3 and 4; 87-140 perivular pores Lepidosaphes towadensis Takagi and Kawai
55(54). Pygidium broadly rounded; median lobes separated by a space narrower than width of one median lobe; on many hosts including Malus, Prunus, and Pyrus (Rosaceae)

Lepidosaphes conchiformis (Gmelin)

- Pygidium more or less trapezoidal; median lobes separated by a space as wide as one medianlobe; primarily on Camellia (Theaceae)Lepidosaphes kamakurensis (Kuwana)
56(40). Submarginal areas of posterior pygidial segments with at least 2 barrel-shaped macroducts ..57
- Submarginal areas of posterior pygidial segments without macroductsCarulaspis juniperi (Bouché)
$57(56)$. Submedial macroducts present on abdominal segments 2 to 5 ; without notches on medial marginof the median lobes; primarily found on cactusDiaspis echinocacti (Bouché)
- Submedial macroducts absent from abdominal segments 2 to 5 ; with notches on medial marginof the median lobes; rarely found on cactus58
58(57). Submarginal macroducts numbering only two on each side; anterior spiracles with approximatelythree associated perispiracular pores.Diaspis boisduvalii Signoret
- Submarginal macroducts numbering more than two on each side; anterior spiracles withapproximately 14 associated perispiracular poresDiaspis bromeliae (Kerner)
59(39). Dermal pockets absent between posterior spiracle and body margin 60
- Dermal pockets present between posterior spiracle and body margin 61
60(59). Pygidial lobes conical projections (v-shape); pygidial plates exceeding the lobes; pupillarial
- Pygidial lobes U-shape; pygidial plates not exceeding the lobes; not pupillarial
\qquadParlatoria pergandii Comstock
61(59). Eye spur-like, apically pointedParlatoria proteus (Curtis)
- Eye variable, usually low dome-shaped 62
62(61). With about 60 perivulvar pores; most plates in spaces between first 3 lobes with 2 microducts
Parlatoria theae Cockerell
- With about 25 perivulvar pores; most plates in spaces between first 3 lobes with 1 microduct Parlatoria camelliae Comstock
63(9). Median lobes with basal sclerosis 79
- Median lobes without basal sclerosis 64
64(63). With perivulvar pores 65
- Without perivulvar pores 75
65(64). Paraphyses conspicuous, most as long as or longer than the length of the median lobes 66
- Paraphyses absent or inconspicuous; all paraphyses shorter than median lobes 69
66(65). Paraphyses \cap-shape between median lobes, between median and second lobes, and betweenthe second and third lobesHypaspidiotus jordani (Kuwana)
- Paraphyses straight-shape between median lobes, between median and second lobes, and 67between the second and third lobes
67(66). With at least 1 cluster of macroducts on submarginal areas of prepygidial segments 68
- Without a cluster of macroducts on submarginal areas of prepygidial segmentsChrysomphalus dictyospermi (Morgan)
68(67). With a cluster of macroducts on submarginal areas of abdominal segment 2 2
Chrysomphalus aonidum (Linnaeus)
- With a cluster of macroducts on submarginal areas of abdominal segments 2 and 3
Chrysomphalus bifasciculatus Ferris
69(65). Occurring on conifers 70
- Rarely occurring on conifers 7270(69). Second lobes about same size as, or slightly smaller than median lobes, normally same shapeas median lobes; anal opening same or narrower than median lobes 71
- Second lobes conspicuously smaller than median lobes, different shape from median lobes; analopening wider than median lobesHemiberlesia lataniae (Signoret) (in part)
71(70). Perivulvar pores present in five groups; median lobes and second lobes broadly rounded; withsubmarginal macroduct on abdominal segment 1Dynaspidiotus tsugae (Marlatt)
- Perivulvar pores present in four groups; median lobes and second lobes narrowly rounded;without submarginal macroduct on abdominal segment 1
Dynaspidiotus pseudomeyeri (Kuwana)

72(69). Anal opening large (wider and longer than median lobes) and separated from bases of median lobes by not more than 2 times than its longitudinal diameter \qquad
Hemiberlesia lataniae (Signoret) (in part)

- Anal opening small (narrower and shorter than median lobes) and separated from bases of median lobes by more than 2 times than its longitudinal diameter73
73(72). Third lobes with well-developed sclerotized point Selenomphalus distylii Takagi
- Third lobes simple without a sclerotized point 74
74(73). Median lobes closely appressed by less than one-fifth of their width; on Castanea and Quercus
(Fagaceae)Diaspidiotus cryptoxanthus (Cockerell)
- Median lobes separated by distinct space by more than one-half of their width; primarily onCamellia (Theaceae)Diaspidiotus degeneratus (Leonardi)
75(64). Second and third lobes about same size as median lobes 76
- Second and/or third lobes conspicuously smaller than median lobes 77
76(75). Scleroses associated with apophysis anterolaterad of the vulva present on venter of pygidium
- Scleroses associated with apophysis anterolaterad of the vulva absent from venter ofpygidiumAonidiella taxus Leonardi
77(75). Median lobes with lateral and medial notches; simple shaped plates anterior of seta markingabdominal segment 6; usually occurring on Pinus (Pinaceae)Diaspidiotus makii (Kuwana)
- Median lobes with usually lateral notch; bifurcate shaped plates anterior of seta markingabdominal segment 6; occurring on various hosts78
78(77). Anal opening large (wider than median lobes); with marginal macroducts on abdominal segment3Comstockaspis macroporana (Takagi)
- Anal opening small (narrower than median lobes); without marginal macroducts on abdominalsegment 3Comstockaspis perniciosa (Comstock)
79(63). Plates lateral to third lobe dentate, edges sclerotized, with fleshy processes; dorsal marginalsetae on the second and third lobes lanceolate (thick and dorsoventrally flattened)
Octaspidiotus stauntoniae (Takahashi)
$-$ Plates lateral to third lobe not dentate or sclerotized; dorsal marginal setae on the second andthird lobes slender to thick, not flattened80
80(81). Pygidial macroducts long (1.5 times distance between posterior apex of anal opening and baseof median lobes), normal; usually occurring on leaves81
- Pygidial macroducts short (less than 0.5 times distance between posterior apex of anal opening and base of median lobes), minute; usually occurring on roots 8281(80). Second lobes normally protruding beyond median lobesAspidiotus destructor Signoret- Second lobes not protruding beyond median lobesAspidiotus cryptomeriae Kuwana
82(80). With perivulvar pores Rhizaspidiotus canariensis (Lindinger)
- Without perivulvar pores Aspidiella phragmitis (Takahashi)

Discussion

The purpose of the present work is to provide a checklist and a key for the identification of Korean armored scale insects. This information will aid in the correct identification of each species which is essential for assessing the threat that each species poses and the management strategy that is to be taken. Armored scale insects have received much attention throughout the world due to the damage caused in economically important food crops and ornamental plants and also to the strong possibility of becoming invasive species with international trades for plants.

Of the nine scale species known to occur only in greenhouses, five species were just found on potted seedlings imported into Korea during the survey. They are considered to have failed to establish in the exterior environments. In addition this work provides correct information on the current status of nine greenhouse diaspidid species.

To date, eighty species of armored scale insects in 30 genera have been recorded from the Republic of Korea. However, it can be expected that more species of armored scale insects are likely to be found in Korea if taxonomic studies continue to be performed.

Acknowledgments

I am grateful to Drs. Gregory A. Evans (USDA/APHIS/NIS, Washington, DC, USA) and Takumasa Kondo (Corporación Colombiana de Investigación Agropecuaria (Corpoica), Centro de Investigacion Palmira, Palmira, Valle, Colombia) for reviewing the manuscript. Funding for this project came from QIA.

Literature Cited

García, M., B. Denno, D. R. Miller, G. L. Miller, Y. Ben-Dov, and N. B. Hardy. 2016. ScaleNet: A literature-based model of scale insect biology and systematics. (Available at ~http:// scalenet.info. Last accessed November 2016.)
Lee, Y. J. 2010. Family Diaspididae. p. 80-81. In: M.K. Paek (ed.). Checklist of Korean insects. Nature and Ecology; Seoul. 598 p.
Miller, D. R., and J. A. Davidson. 2005. Armored scale insect pests of trees and shrubs (Hemiptera: Diaspididae). Cornell University Press; Ithaca, NY. 442 p.
Paik, J. C. 2000. Economic Insects of Korea 6, Homoptera (Coccinea), Insecta Koreana Suppl. 13. National Institute of Agricultural Science and Technology; Seoul. 193 p.
Rosen, D. 1990. Armored Scale Insects, Their Biology, Natural Enemies and Control (series title: World Crop Pests, Vol. 4A). Elsevier Amsterdam; the Netherlands. 688 p.
Suh, S. J. 2011. Two new records of Andaspis armored scales (Hemiptera: Diaspididae) from Korea. Korean Journal of Applied Entomology 50: 75-77.
Suh, S. J. 2012. Notes on pupillarial species of armored scale insects from Korea (Hemiptera: Diaspididae). Korean Journal of Applied Entomology 51: 73-77.
Suh, S. J. 2013. On the armored scales, genus Aulacaspis Cockerell (Hemiptera: iaspididae), of Korea. Insect Mundi 0295: 1-8.
Suh, S. J. 2014. Updated list of Pinnaspis armored scales (Hemiptera: Diaspididae) of Korea. Insect Mundi 0347: 1-9.
Suh, S. J. 2015. New records of armored scale insects, Pseudaulacaspis MacGillivray (Hemiptera: Diaspididae), in Korea. Insect Mundi 0403: 1-8.
Suh, S. J. 2016a. New records of Chionaspis armored scales (Hemiptera: Diaspididae) in Korea. Insect Mundi 0489: 1-5.
Suh, S. J. 2016b. Armored scales (Hemiptera: Diaspididae) from warm temperate forests in Korea. Insect Mundi 0500: 1-6.
Suh, S. J. 2016c. Armoured scale insects (Hemiptera: Diaspididae) intercepted at the ports of entry in the Republic of Korea over the last 20 years. Bulletin OEPP/EPPO Bulletin 46: 313-331.
Suh, S. J., and G. A. Evans. 2016. A new record of the armored scale genus Carulaspis MacGillivray (Hemiptera: Diaspididae) from Korea and its aphelinid parasitoids (Hymenoptera: Aphelinidae). Insect Mundi 0466: 1-6.
Suh, S. J., and G. S. Hodges. 2007. Identification of armored scales (Hemiptera: Diaspididae) on bamboos in Korea. Journal of Asia-Pacific Entomology 10: 1-3.
Yu, H. M., and S. J. Suh. 2012. A new record for the genus Duplachionaspis armored scale (Hemiptera: Diaspididae) from Korea. Korean Journal of Applied Entomology 52: 63-67.

Received January 1, 2017; Accepted January 18, 2017.
 Review Editor Marcus Guidoti.

Table 1. Checklist of taxa treated in the identification key with distribution data in Korea (Codes for collecting regions in the Republic of Korea are as follows: GG, Gyeonggido; GW, Gangwondo; CB, Chungcheongbukdo; CN, Chungcheongnamdo; GB, Gyengsangbukdo; GN, Gyengsangnamdo; JB, Jeollabukdo; JN, Jeollanamdo; JJ, Jejudo. The nomenclature used here for the Diaspididae follows that of the scale insect database ScaleNet (García et al. 2016). The column headed ' NC ' indicates if the species was collected in the Republic of Korea during the survey (2006 to 2015). The asterisk mark (*) indicates 'unknown' (specimens not found outside of greenhouses in the Republic of Korea).

Scientific Name	Distribution within Korea									
	GG	GW	CB	CN	GB	GN	JB	JN	JJ	NC
Andaspis crawii (Cockerell)								\bullet	-	
Andaspis kashicola (Takahashi)					\bullet				-	
Andaspis recurrens Takagi and Kawai								-		
Aonidiella citrina (Coquillett)									-	
Aonidiella taxus Leonardi						\bullet			-	
Aspidiella phragmitis (Takahashi)									-	
Aspidiotus cryptomeriae Kuwana		\bullet			-	-		-	-	
Aspidiotus destructor Signoret						\bullet			\bullet	
Aulacaspis difficilis (Cockerell)						\bullet		\bullet		
Aulacaspis latissima (Cockerell)						\bullet			\bullet	
Aulacaspis rosae (Bouché)	-	-	\bullet			\bullet			-	
Aulacaspis rosarum Borchsenius	\bullet				\bullet	\bullet	\bullet	-		
Aulacaspis spinosa (Maskell)	\bullet			\bullet	\bullet	\bullet		\bullet	\bullet	
Aulacaspis yabunikkei Kuwana						-		-	-	
Carulaspis juniperi (Bouché)				\bullet						
Chionaspis acer (Takagi and Kawai)	-						\bullet			
Chionaspis alnus Kuwana					\bullet	\bullet				
Chionaspis saitamaensis Kuwana						\bullet		\bullet		
Chionaspis salicis (Linnaeus)										\bullet
Chionaspis wistariae Cooley	\bullet			\bullet		\bullet		-		
*Chrysomphalus aonidum (Linnaeus)	\bullet									
Chrysomphalus bifasciculatus Ferris				-		\bullet		\bullet	\bullet	
*Chrysomphalus dictyospermi (Morgan)										\bullet
Comstockaspis macroporana (Takagi)										\bullet
Comstockaspis perniciosa (Comstock)	-		-		\bullet	\bullet	\bullet		\bullet	
Cryptoparlatorea leucaspis Lindinger								\bullet		
Diaspidiotus cryptoxanthus (Cockerell)	-					\bullet		\bullet		
Diaspidiotus degeneratus (Leonardi)						\bullet		\bullet	\bullet	
Diaspidiotus makii (Kuwana)						\bullet				
*Diaspis boisduvalii Signoret										\bullet
*Diaspis bromeliae (Kerner)									\bullet	
*Diaspis echinocacti (Bouché)									\bullet	
Duplachionaspis divergens (Green)								\bullet		
Dynaspidiotus pseudomeyeri (Kuwana)	\bullet			\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	
Dynaspidiotus tsugae (Marlatt)										\bullet
Fiorinia japonica Kuwana						\bullet		\bullet		
*Hemiberlesia lataniae (Signoret)	\bullet									
Hypaspidiotus jordani (Kuwana)						\bullet		\bullet	\bullet	
Kuwanaspis hikosani (Kuwana)		\bullet				\bullet		\bullet		
Kuwanaspis howardi (Cooley)						\bullet		\bullet		
Kuwanaspis pseudoleucaspis (Kuwana)	\bullet					\bullet			\bullet	
Lepidosaphes conchiformis (Gmelin)						\bullet	\bullet	\bullet	\bullet	
Lepidosaphes gloverii (Packard)									\bullet	
Lepidosaphes japonica (Kuwana)				\bullet						

Scientific Name	Distribution within Korea									
	GG	GW	CB	CN	GB	GN	JB	JN	JJ	NC
Lepidosaphes kamakurensis (Kuwana)						\bullet		-		
Lepidosaphes okitsuensis Kuwana						-				
Lepidosaphes pallida (Maskell)	\bullet	-		\bullet	\bullet	\bullet	\bullet	-	\bullet	
Lepidosaphes pini (Maskell)	-	\bullet	-	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	
Lepidosaphes pinnaeformis (Bouché)			\bullet			\bullet		-	\bullet	
Lepidosaphes towadensis Takagi and Kawai										\bullet
Lepidosaphes tubulorum Ferris				-						
Lepidosaphes ulmi (Linnaeus)										-
Lepidosaphes ussuriensis (Borchsenius)	-			-	-	-	-		\bullet	
Lepidosaphes yanagicola Kuwana	\bullet	-						-	\bullet	
Lopholeucaspis japonica (Cockerell)	-	\bullet	-	-	\bullet	-	-	-	\bullet	
Octaspidiotus stauntoniae (Takahashi)						\bullet		\bullet	\bullet	
Odonaspis secreta (Cockerell)	-					\bullet	\bullet	\bullet	\bullet	
Parlatoria camelliae Comstock						-				
Parlatoria pergandii Comstock									-	
*Parlatoria proteus (Curtis)						\bullet				
Parlatoria theae Cockerell	-			-	-	\bullet	\bullet	-	\bullet	
Pinnaspis aspidistrae (Signoret)	-	-				\bullet			-	
*Pinnaspis buxi (Bouché)										-
Pinnaspis chamaecyparidis Takagi						\bullet	-	-		
Pinnaspis hikosana Takagi				-						
*Pinnaspis strachani (Cooley)										-
Pinnaspis uniloba (Kuwana)								-		
Pseudaonidia duplex (Cockerell)						\bullet		-	\bullet	
Pseudaonidia paeoniae (Cockerell)						-		\bullet	-	
Pseudaulacaspis cockerelli (Cooley)	-	-	-	-	-	\bullet	\bullet	-	\bullet	
Pseudaulacaspis kiushiuensis (Kuwana)	\bullet					\bullet			\bullet	
Pseudaulacaspis latiloba (Takagi and Kawai)						\bullet		\bullet		
Pseudaulacaspis pentagona (Targioni-Tozzetti)	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet	-	\bullet	-	
Pseudaulacaspis prunicola (Maskell)	\bullet					\bullet	\bullet	-		
Pseudaulacaspis ulmicola Tang	\bullet									
Rhizaspidiotus canariensis (Lindinger)		-								
Selenomphalus distylii Takagi									\bullet	
Unachionaspis tenuis (Maskell)	\bullet				-	\bullet	-	-	\bullet	
Unaspis euonymi (Comstock)	\bullet									
Unaspis yanonensis (Kuwana)						\bullet			\bullet	

