
H. Cirstea, S. Escobar (Eds.): Third International Workshop on Rewriting
Techniques for Program Transformations and Evaluation (WPTE’16).
EPTCS 235, 2017, pp. 78–92, doi:10.4204/EPTCS.235.6

c© N. Dallmeyer & M. Schmidt-Schauß
This work is licensed under the
Creative Commons Attribution License.

An Environment for Analyzing Space Optimizations in
Call-by-Need Functional Languages

Nils Dallmeyer
Goethe-University
Frankfurt am Main

dallmeyer@ki.cs.uni-frankfurt.de

Manfred Schmidt-Schauß
Goethe-University
Frankfurt am Main

schauss@ki.cs.uni-frankfurt.de

We present an implementation of an interpreter LRPi for the call-by-need calculus LRP, based on a
variant of Sestoft’s abstract machine Mark 1, extended with an eager garbage collector. It is used as
a tool for exact space usage analyses as a support for our investigations into space improvements of
call-by-need calculi.

1 Introduction

Lazy functional languages like Haskell use call-by-need as evaluation strategy. This leads to a more
declarative way of programming where a specification of the result is emphasized instead of specifying
the sequence of evaluations. This approach allows a lot of correct program transformations that can po-
tentially be used by a compiler for optimization purposes. It would be a very helpful information to know,
whether a program transformation decreases time/space usage or in which situations this may occur. We
will capture this using the notion of improvements. In this paper we emphasize space improvements, pur-
suing our long-term research goal to analyze time- and space-improvements for Haskell-like languages.
The goal of this paper is to put forward further studies on improvements, with a main focus on providing
a test environment to support and speed up the analysis of improvements.

Previous work on improvements w.r.t. time usage (the number of reduction steps), is e.g. [9, 10,
11] for call-by-name and [8, 15, 13, 14] for call-by-need. There seem to be only a few studies on
space improvements, by Gustavsson and Sands [4, 5, 3]. Their notion of (strong) space improvement
is mainly the same as ours, however, they use an untyped (restricted) language. We will investigate a
typed language since typing enables more transformations to be improvements, for example map id xs

is equivalent to xs under typing, but not in untyped calculi. The reason is that also contexts must be typed
and thus only tests that are (type-)compatible with the intention of the program are used for characterizing
improvements.

We will use the lazy typed functional core language LRP [12] for defining and analyzing space im-
provements. LRP has a rich syntax including letrec, data constructors and case-expressions, Haskell’s
seq-operator, and polymorphic typing, modeling Haskell’s core language. Evaluation in LRP is defined
by a rewriting semantics. An improvement w.r.t. a measure is a locally applicable (and correct) trans-
formation that transforms an expression e1 to e2, such that e2 is at least as good as e1 w.r.t. the chosen
measure in all contexts. Our correctness notion is contextual equivalence, which means that e1,e2 behave
identically w.r.t. termination in all contexts.

Our approach is to use an abstract Sestoft-machine (see also [4]) as interpreter in order to have a
realistic model for the resource consumption at runtime. Since space is an issue, in particular the maxi-
mally used space during an evaluation, a detection of dynamically generated garbage is required, which
leads to the implementation of an (eager) garbage collector. This is nontrivial, since letrec permits cyclic

http://dx.doi.org/10.4204/EPTCS.235.6
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

N. Dallmeyer & M. Schmidt-Schauß 79

references. Furthermore, indirections x = y in letrec-environments turned out to lead to more space
consumption in the Sestoft machine than in the calculus, which is defeated by removing indirections at
compile time as well as adapting the abstract machine. Removing indirections can be done efficiently
(see Section 5.1.1). The interpreter implementation is also shown to exactly count the maximal space
usage for machine expressions (see Theorem 5.3). Our specific space analyses can exhibit in examples
the reason for unexpected space increases, can refute transformations being space improvements, and
can also give hints on the complexity of evaluations.

Outline In Section 2 LRP is introduced. In Section 3 LRP is extended with garbage collection.
Space improvements are explained in Section 4. In Section 5 the LRP-interpreter is described. The
analyses and some results are in Section 6. We conclude in Section 7.

2 Polymorphically Typed Lazy Lambda Calculus

We recall the Polymorphically Typed Lazy Lambda Calculus (LRP) [13] as language. We also motivate
and introduce several necessary extensions for supporting realistic space analyses.

LRP [12] is LR (e.g. see [16]) extended with types. I.e., LRP is an extension of the lambda cal-
culus by polymorphic types, recursive letrec-expressions, case-expressions, seq-expressions, data
constructors, type abstractions Λa.s to express polymorphic functions and type applications (s τ) for
type instantiations. The syntax of expressions and types of LRP is defined in Fig. 1.

Syntax of expressions and types: Let type variables a,ai ∈ TVar and term variables x,xi ∈ Var. Every
type constructor K has an arity ar(K) ≥ 0 and a finite set DK of data constructors cK,i ∈ DK with an
arity ar(cK,i)≥ 0.

Types Typ and polymorphic types PTyp are defined as follows:
τ ∈ Typ ::= a | (τ1→ τ2) | (K τ1 . . . τar(K))

ρ ∈ PTyp ::= τ | ∀a.ρ
Expressions Expr are generated by this grammar with n≥ 1 and k ≥ 0:

s, t ∈ Expr ::= u | x :: ρ | (s τ) | (s t) | (seq s t) | (letrec x1 :: ρ1 = s1, . . . ,xn :: ρn = sn in t)
| (cK,i :: (τ) s1 . . . sar(cK,i)) | (caseK s of {(PatK,1-> t1) . . . (PatK,|DK |-> t|DK |)})

PatK,i ::= (cK,i :: (τ) (x1 :: τ1) . . . (xar(cK,i) :: τar(cK,i)))

u ∈ PExpr ::= (Λa1.Λa2. . . .Λak.λx :: τ.s)

Figure 1: Syntax of expressions and types

An expression is well-typed if it can be typed using typing rules that are defined in [12]. LRP is a
core language of Haskell and is simplified compared to Haskell, because it does not have type classes
and is only polymorphic in the bindings of letrec variables. But LRP is strong enough to express
polymorphically typed lists, and functions working on such data structures.

From now on we use Env as abbreviation for a letrec-environment, {xg(i) = s f (i)}m
i= j for xg(j) =

s f (j), . . . ,xg(m) = s f (m) and alts for case-alternatives. We use FV (s) and BV (s) to denote free and bound
variables of an expression s and LV (Env) to denote the binding variables of a letrec-environment.
Furthermore we abbreviate (cK,i s1 . . . sar(cK,i)) with c #»s and λx1. . . .λxn.s with λx1, . . . ,xn.s. The data
constructors Nil and Cons are used to represent lists, but we may also use the Haskell-notation [] and (:)
instead.

80 Analyzing Space Optimizations in Call-by-Need Functional Languages

A context C is an expression with exactly one hole [·] at expression position. A value is an abstraction
λx.s, a type abstraction u or a constructor application c #»s .

After the reduction position is determined using the labeling algorithm of [12], a unique reduction
rule of Fig. 2 is applied at this position which constitutes a normal-order reduction step.

(lbeta) C[((λx.s)sub r)]→C[(letrec x = r in s)]
(Tbeta) ((Λa.u)sub τ)→ u[τ/a]
(cp-in) (letrec x1 = vsub,{xi = xi−1}m

i=2,Env in C[xvis
m])

→ (letrec x1 = v,{xi = xi−1}m
i=2,Env in C[v])

where v is a polymorphic abstraction
(cp-e) (letrec x1 = vsub,{xi = xi−1}m

i=2,Env,y =C[xvis
m] in r)

→ (letrec x1 = v,{xi = xi−1}m
i=2,Env,y =C[v] in r)

where v is a polymorphic abstraction
(llet-in) (letrec Env1 in (letrec Env2 in r)sub)→ (letrec Env1,Env2 in r)
(llet-e) (letrec Env1,x = (letrec Env2 in t)sub in r)→ (letrec Env1,Env2,x = t in r)
(lapp) C[((letrec Env in t)sub s)]→C[(letrec Env in (t s))]
(lcase) C[(caseK (letrec Env in t)sub of alts)]→C[(letrec Env in (caseK t of alts))]
(seq-c) C[(seq vsub t)]→C[t] if v is a value
(seq-in) (letrec x1 = (c #»s)sub,{xi = xi−1}m

i=2,Env in C[(seq xvis
m t)])

→ (letrec x1 = v,{xi = xi−1}m
i=2,Env in C[t]) if v is a value

(seq-e) (letrec x1 = (c #»s)sub,{xi = xi−1}m
i=2,Env,y =C[(seq xvis

m t)] in r)
→ (letrec x1 = v,{xi = xi−1}m

i=2,Env,y =C[t] in r) if v is a value
(lseq) C[(seq (letrec Env in s)sub t)]→C[(letrec Env in (seq s t))]
(case-c) C[(caseK csub of {. . .(c→ t) . . .})]→C[t] if ar(c) = 0, otherwise:

C[(caseK (c #»x)sub of {. . .((c #»y)→ t) . . .})]→C[(letrec {yi = xi}ar(c)
i=1 in t)]

(case-in) (letrec x1 = csub,{xi = xi−1}m
i=2,Env in C[(caseK xvis

m of {. . .(c→ r) . . .})])
→ (letrec x1 = c,{xi = xi−1}m

i=2,Env in C[r]) if ar(c) = 0; otherwise:
(letrec x1 = (c #»t)sub,{xi = xi−1}m

i=2,Env in C[(caseK xvis
m of {. . .((c #»z)→ r) . . .})])

→ (letrec x1 = (c #»y),{yi = ti}ar(c)
i=1 ,{xi = xi−1}m

i=2,Env in C[letrec {zi=yi}ar(c)
i=1 in r])

(case-e) (letrec x1 = csub,{xi = xi−1}m
i=2,u =C[(caseK xvis

m of {. . .(c→ r1) . . .})], Env
in r2)
→ (letrec x1 = c,{xi = xi−1}m

i=2,u =C[r1],Env in r2) if ar(c) = 0; otherwise:
(letrec x1 = (c #»t)sub,{xi = xi−1}m

i=2,
u =C[(caseK xvis

m of {. . .((c #»z)→ r) . . .})],Env in s)
→ (letrec x1 = (c #»y),{yi = ti}ar(c)

i=1 ,{xi = xi−1}m
i=2,

u =C[letrec {zi = yi}ar(c)
i=1 in r],Env in s)

Figure 2: Basic reduction rules. The variables yi are fresh.

The classical β -reduction is replaced by the sharing (lbeta). (Tbeta) is used for type instantiations
concerning polymorphic type bindings. The rules (cp-in) and (cp-e) copy abstractions which is needed
when the reduction rule has to reduce an application (f g) where f is an abstraction defined in a letrec-
environment. The rules (llet-in) and (llet-e) are used to merge nested letrec-expressions; (lapp), (lcase)
and (lseq) move a letrec-expression out of an application, a seq-expression or a case-expression;
(seq-c), (seq-in) and (seq-e) evaluate seq-expressions, where the first argument has to be a value or a

N. Dallmeyer & M. Schmidt-Schauß 81

value which is reachable through a letrec-environment. (case-c), (case-in) and (case-e) evaluate case-
expressions by using letrec-expressions to realize the insertion of the variables for the appropriate
case-alternative.

The following abbreviations are used: (cp) is the union of (cp-in) and (cp-e); (llet) is the union of
(llet-in) and (llet-e); (lll) is the union of (lapp), (lcase), (lseq) and (llet); (case) is the union of (case-c),
(case-in), (case-e); (seq) is the union of (seq-c), (seq-in), (seq-e).

Normal order reduction steps and notions for termination are defined as follows:

Definition 2.1 (Normal order reduction). A normal order reduction step s LRP−−→ t is performed (uniquely)
if the labeling algorithm in [12] terminates on s, inserting sub (subexpression) and vis (visited by the
labeling), and the applicable rule of Fig. 2 produces t. The notation

LRP,∗−−−→ is the reflexive, transitive

closure,
LRP,+−−−→ is the transitive closure of s LRP−−→ t; and

LRP,k−−−→ denotes k normal order steps.

Definition 2.2. 1. A weak head normal form (WHNF) is a value, or an expression letrec Env in v,
where v is a value, or an expression letrec x1 = c #»t ,{xi = xi−1}m

i=2,Env in xm.

2. An expression s converges to an expression t (s↓t or s↓ if we do not need t) if s
LRP,∗−−−→ t where t is a

WHNF. Expression s diverges (s↑) if it does not converge.
3. The symbol ⊥ represents a closed diverging expression, e.g.letrec x = x in x.

Definition 2.3. For LRP-expressions s, t, s≤c t holds iff ∀C[·] : C[s]↓⇒C[t]↓, and s∼c t holds iff s≤c t
and t ≤c s. The relation ≤c is called contextual preorder and ∼c is called contextual equivalence.

The following notion of reduction length is used for measuring the time behavior in LRP.

Definition 2.4. For a closed LRP-expression s with s↓s0, let rln(s) be the sum of all (lbeta)-, (case)- and
(seq)-reduction steps in s↓s0, and let rlnall(s) be the number of all reductions, but not (TBeta), in s↓s0.

3 LRP with Eager Garbage Collection

The calculus LRP does not remove garbage itself. However, for measuring the space-behavior, garbage
should be ignored (and removed). Thus in this section we add reduction rules for removing garbage, and
show that an evaluation strategy with garbage collection does not change the semantics of the calculus.
In Fig. 3 the rules for garbage collection are defined. We use (gc) for the union of (gc1) and (gc2).

(gc1) (letrec {xi = si}n
i=1,Env in t)→ (letrec Env in t) if for all i : xi /∈ FV (t,Env)

(gc2) (letrec x1 = s1, . . . , xn = sn in t)→ t if for all i : xi /∈ FV (t)

Figure 3: Garbage collection rules

Since we focus on space improvements, it is useful to model eager garbage collection also in the
calculus, which leads to the calculus LRPgc. It collects (dynamic) garbage only in the top letrec,
which is sufficient to remove all (reference-) garbage, if the starting program does not contain garbage.

Definition 3.1. LRPgc is LRP where the normal-order reduction is modified as follows:
Let s be an LRP-expression. A normal-order-gc (nogc) reduction step is defined by two cases:

1. If a (gc)-transformation is applicable to s in the top letrec, then this transformation is applied to
s, where the maximal number of bindings is removed.

2. If 1. is not applicable and an LRP-normal-order reduction step is applicable to s, then this normal-
order reduction is applied to s.

82 Analyzing Space Optimizations in Call-by-Need Functional Languages

A sequence of nogc-reduction steps is called an nogc-reduction sequence. An LRPgc-WHNF s is either an
LRP-WHNF which is not a letrec expression, or it is an LRP-WHNF that is a letrec-expression which
does not permit (gc)-transformation in the top letrec. If for s, there is an nogc-reduction sequence that
leads to an LRPgc-WHNF, then we say s converges w.r.t. LRPgc and write s↓nogc.
In LRPgc, the equivalence s∼c,nogc t is defined as for LRP, but w.r.t.↓nogc.

Several subsequent (gc)-reductions are possible in an LRPgc-normal-order reduction sequence, for
example a (gc2)-reduction followed by a (gc1)-reduction.

We will show in the following that the calculi LRP and LRPgc are equivalent w.r.t. convergences as
well as w.r.t. the rln-measure.

In the following we will use complete sets of forking (and commuting) diagrams (more informa-
tion on this technique is in [16]). A forking is an overlapping between a normal-order transforma-
tion and a non-normal-order transformation (also called internal transformation). A complete set of
forking diagrams for transformation b contains a forking diagram for each possible forking of the
form s2

nogc←−− s1
b−→ s′1. The treatment is similar for commuting diagrams and commuting situations

s1
b−→ s′1

nogc−−→ s′2. We will use the notation (nogc,a) which is an arbitrary nogc-reduction if not oth-
erwise stated. If the label a is used twice, then all occurrences of a represent the same rule. Let
LCSC := {(lbeta), (case), (seq), (cp)}.

Lemma 3.2. The forking diagrams between a nogc-reduction and a non-normal-order (gc)-transforma-
tion in LRPgc in any context are the following:

s1
gc //

nogc,a
��

s′1
nogc,a

��
s2

gc // s′2

s1
gc //

nogc,cp
��

s′1
nogc,cp

��
s2

gc // s3
gc // s′2

s1
gc //

nogc,a
��

s′1
nogc,a

yy
s2

s1
gc //

nogc,lll
��

s′1

s2

gc

99

The commuting diagrams can be immediately derived from the forking diagrams.

Proof. The first diagram occurs if the nogc-reduction and the transformation can be commuted. The sec-
ond diagrams happens if the gc-transformation was done in the copied abstraction. The third diagram oc-
curs, if the effect of the gc-transformation was also done by the nogc-reduction, where we assume that

gc−→
and

nogc,a−−−→ are different. Finally the fourth diagram occurs for example in (letrec Env1 in (s1 s2))
nogc←−−

((letrec Env1 in s1) s2)
gc−→ (s1 s2) and where (letrec Env1 in (s1 s2))

gc−→ (s1 s2).

Theorem 3.3. LRP and LRPgc are convergence-equivalent, i.e. for all expressions s: s↓ ⇐⇒ s↓nogc.

Proof. If s↓nogc then s↓ holds, since (gc) and all reductions of the calculus are correct w.r.t. LRP-normal-
order reduction, which follows from their untyped correctness (see [16]).
Under the assumption that (gc) is correct in LRPgc, it is straightforward to show that s↓ implies s↓nogc.
It remains to show that (gc) is correct in LRPgc: Therefore we have to use the diagrams in Lemma 3.2 for
(gc). We consider the situation s0

nogc,∗←−−− s1
gc−→ s′1 where s0 is an LRPgc-WHNF. For the induction proof

we consider the smaller diagram s2
nogc←−− s1

gc−→ s′1 and show that there is a nogc-reduction of s′1 such that
rlnall(s′1)≤ rlnall(s1). First we observe that LRPgc-WHNFs remain LRPgc-WHNFs under (gc).
The induction measure is rlnall(s1). For the situation s2 = s′1 or if any of the four diagrams applies to the

N. Dallmeyer & M. Schmidt-Schauß 83

situation, the induction hypothesis applies, where in case of diagrams 2, we have to apply it twice. This
shows that there is a nogc-reduction of s1 to a LRPgc-WHNF.

The second part is to consider the situation s1
gc−→ s′1

nogc,∗−−−→ s′0, where s′0 is an LRPgc-WHNF. Here
we show more: that there is an nogc-reduction of s1 with rlnLCSC(s1)≤ rlnLCSC(s′1), where rlnLCSC counts
the normal-order reductions from LCSC until a WHNF is reached. The induction is on the lexicographic
combination of the measures (rlnLCSC(s′1), µlll(s1), |s′1|, rlnall(s′1)), where µlll is the measure from [16]

that is strictly decreased by every lll−→ and
gc−→-reduction, and |s′1| is the size of s′1 as an expression. If

s′1 is an LRP-WHNF, then either s1
gc−→ s′1 is a normal-order reduction, and we are done, or it is not a

normal-order reduction, and s1 is also an LRP-WHNF.
If s1

gc−→ s′1 is an nogc-reduction, then the claim holds. In the case of the first diagram, the induction
hypothesis can be applied by the following reasoning: if the s′1-reduction is a LCSC-reduction, then
the measure is decreased; if it is an (lll) or (gc), then the first component is the same but pair of the
second and third component is strictly smaller. In the case of the second diagram, rlnLCSC(s′2) is strictly
smaller, and hence also, by the induction hypothesis, rlnLCSC(s3) and we can again apply the induction
hypothesis. In the case of the third diagram, reasoning is obvious. Finally, in the case of the fourth
diagram, µlll(s2)< µlll(s′1), hence the induction hypothesis can be applied.

Corollary 3.4. The contextual equivalences of LRP and LRPgc are identical.

The proof of Theorem 3.3 also shows that the rln-measure of expressions is the same for LRP and
LRPgc. Hence we can drop the distinction between LRP and LRPgc w.r.t. rln as well as for ∼c.

4 Time- and Space-Improvements

For space analyses, we first define the size of expressions:

Definition 4.1. The size size(s) of an expression s is the following number:
size(x) = 0
size(c #»s) = 1+∑

n
i=1size(si)

size(λx.s) = 1+size(s)
size(c #»x ->e) = 1+size(e)

size(s t) = 1+size(s)+size(t)
size(seq s1 s2) = 1+size(s1)+size(s2)
size(letrec {xi = si}n

i=1 in s) = size(s)+∑
n
i=1size(si)

size(case e of {alt1 . . . altn}) = 1+size(e)+∑
n
i=1size(alti)

Type annotations are not counted by the size measure and thus they are also not shown in the defini-
tion of size. Note that our chosen size measure also does not count variables, the number of letrec-
bindings, nor the letrec-label itself. This can be justified, since these constructs are usually represented
more efficiently (or do not occur) in realistic implementations, for example in the abstract machine.

For measuring the space-behavior of s, we use the maximum size occurring in an nogc-reduction
sequence to a WHNF:

Definition 4.2. Let s be a closed LRP-expression. If s = s0
nogc−−→ s1

nogc−−→ . . .
nogc−−→ sn where sn is a WHNF,

then spmax(s) is the maximum of size(si). If s↑ then spmax(s) = ∞.

This measure is very strict and especially appropriate if the available space is limited. A transforma-
tion is a time improvement [14, 13] if it never increases the rln-reduction length, and a transformation is
a space improvement if it never increases the space consumption.

Definition 4.3. Let s, t be two expressions with s∼c t. Then s is a maxspace-improvement of t, s≤maxspace

t, if for all contexts C: If C[s], C[t] are closed then spmax(C[s])≤ spmax(C[t]).
We say s (time-)improves t, s� t, if for all contexts C: If C[s], C[t] are closed, then rln(C[s])≤ rln(C[t]).

These relations are precongruences. Note that we use n < ∞, and ∞≤ ∞.

84 Analyzing Space Optimizations in Call-by-Need Functional Languages

5 An Abstract Machine for LRP

In this section we present the abstract machine (a variant of the Sestoft-machine) to evaluate LRP-
programs and measure their time and space usage. However, the conceptually simple abstract machine
has to be extended and adapted to obtain a good behavior w.r.t. space measuring: it must be able to
remove unused bindings in letrecs, and it has to prevent superfluous duplications of expressions in the
input as well as their dynamic creation. A first step is to transform the LRP-expressions into so-called
machine expressions on which the Sestoft-machine can be applied. These are LRP-expressions with the
restriction that arguments of applications, constructor applications, and the second argument of seq must
be variables. We also remove all type information.

Definition 5.1. The translation ψ from arbitrary LRP-expressions into machine expressions is defined
as follows, where y,yi are fresh variables:

ψ(x :: ρ) := x
ψ(s τ) := ψ(s)
ψ(Λa1.Λa2.Λak.λx::τ.s) := λx.ψ(s)

ψ(s t) := letrec y = ψ(t) in (ψ(s) y)
ψ(seq s t) := letrec y = ψ(t) in (seq ψ(s) y)
ψ(c #»s) := letrec {yi = ψ(si)}n

i=1 in (c #»yi)
ψ(letrec {xi = si}n

i=1 in t) := letrec {xi = ψ(si)}n
i=1 in ψ(t)

ψ(caseK e of {(PatK,1-> t1) . . . (PatK,|DK |-> t|DK |)})
:= caseK ψ(e) of {(PatK,1->ψ(t1)) . . .(PatK,|DK |->ψ(t|DK |))}

The transformation adds letrec-expressions and removes type annotations. This transformation
does not change the reduction length, i.e. rln(s) = rln(ψ(s)) (see [13]). It is easy to see that size(s) =
size(ψ(s)) holds. Below we will show that for machine expressions s the value spmax(s) is correctly
computed. Unfortunately, this does not hold in general: for example ((seq True (λx.a)) True) and
(letrec x1 = True,x2 = λx.a in (seq True x2) x1) have different spmax-values for size(a) ≥ 1:
5+size(a) and 4+2size(a), respectively, since the latter has a space peak at (letrec x1 = True,x2 =
λx.a in (λx.a) x1).

The used abstract machine is defined in [14, 13] and is based on the abstract machine Mark 1 by
Peter Sestoft (see [17]), which was designed for call-by-need evaluation. The machine is extended in a
straightforward way to handle seq-expressions, where a seq-expression evaluates the first argument to a
value and then returns the second argument. A state Q is a triple 〈Γ | s | S〉, where Γ is an environment of
variable-to-expression bindings (sometimes called heap), s is a machine expression (often called control
expression) and S is a stack with entries #app(x), #seq(x), #case(alts) and #upd(x) where x is a variable
and alts is a list of case alternatives. Because the stack is implemented as a list we sometimes use the
usual list notation for the stack. The control expression is the expression which has to be evaluated next,
together with the stack it controls the control flow of the program. The stack is also responsible to trigger
updates on the heap. Note that the WHNFs of the abstract machine are machine expressions that are
WHNFs.

The abstract machine is defined in Fig. 4. The execution of a program starts with the whole program
as control expression and an empty heap and stack. The transition rules define the transition from one
state to the next, where at most one rule is applicable in each step.

The rules (Unwind1), (Unwind2), and (Unwind3) perform the search for the redex (according to
the labeling in LRP), by storing arguments of applications, seq-expressions, or case-alternatives on the
stack. The rule (Lookup) moves heap bindings into the scope of evaluation (if they are demanded). If
evaluation of a binding is finished, the rule (Update) restores the result in the heap. (Letrec) moves
letrec-bindings into the heap, by creating new heap bindings. (Subst) is applicable if the first argument

N. Dallmeyer & M. Schmidt-Schauß 85

of an application is evaluated to an abstraction and the stack contains the argument. It then performs
a β -reduction (with a variable as argument). (Branch) analogously performs a (case)-reduction on the
abstract machine. (Seq) evaluates a seq-expression. Rule (Blackhole) results in an infinite loop, i.e. an
error.

The abstract machine iteratively applies these rules until a final state is reached. Note that the control
expression of a state is a Mark 1 value if no rule is applicable.

The (optional) rule (GC) performs garbage collection of bindings. The (optional) rule (SCRem)
performs a specific form of saving space: it prevents unnecessary copying of values by avoiding the
intermediate construction of indirections y = x and applying the replacement instead. For a correct space
measurement, these rules have to be applied whenever possible.

Initial state: 〈 /0 | e | []〉 where e is a machine expression.
Transition rules:
(Unwind1) 〈Γ | (s x) | S〉 → 〈Γ | s | #app(x) : S〉
(Unwind2) 〈Γ | (seq s x) | S〉 → 〈Γ | s | #seq(x) : S〉
(Unwind3) 〈Γ | caseK s of alts | S〉 → 〈Γ | s | #case(alts) : S〉
(Lookup) 〈Γ,x = s | x | S〉 → 〈Γ | s | #upd(x) : S〉
(Letrec) 〈Γ | letrec Env in s | S〉 → 〈Γ,Env | s | S〉
(Subst) 〈Γ | λx.s | #app(y) : S〉 → 〈Γ | s[y/x] | S〉
(Branch) 〈Γ | cK,i

#»x | #case(. . . ((cK,i
#»y)-> t) . . .) : S〉 → 〈Γ | t[#»x / #»y] | S〉

(Seq) 〈Γ | v | #seq(y) : S〉 → 〈Γ | y | S〉 if v is a Mark 1 value
(Update) 〈Γ | v | #upd(x) : S〉 → 〈Γ,x = v | v | S〉 if v is a Mark 1 value
(Blackhole) 〈Γ | y | S〉 → 〈Γ | y | S〉 if no binding for y exists on the heap

Garbage Collection and Stack Chain Removal (both optional):
(GC) 〈Γ,{xi = si} | s | S〉 → 〈Γ | s | S〉 where {xi = si} is the maximal set such that for all i:

xi /∈ FV (Γ),xi /∈ FV (s),#app(xi) /∈ S,#seq(xi) /∈ S, and if xi ∈ FV (alts) then #case(alts) /∈ S
(SCRem) 〈Γ | s | #upd(x) : #upd(y) : S〉 → 〈Γ[x/y] | s[x/y] | #upd(x) : S[x/y]〉
Value: A machine expression is a Mark 1 value if it is an abstraction or constructor application.
WHNF: Let v be a Mark 1 value. Then a machine expression is a Mark 1-WHNF if it is a Mark 1
value or of the form letrec x1 = e1, . . . , xn = en in v.
Final State: Let v be a Mark 1 value, then a final state is: 〈Γ | v | []〉

Figure 4: Mark1: Initial state, transition rules, value, WHNF and final state

The rule (Update) is only applicable if (Lookup) was used before, hence (Letrec) is the only rule
which is able to add completely new bindings to the heap.

Moreover every (Lookup) triggers an (Update). There are situations where a variable as control
expression leads to another variable as control expression (e.g. variable chains in letrec-environments).
For example the state 〈Γ | True | #upd(x) : #upd(y) : #upd(z) : S〉 leads to three (Update) in sequence.
Seen as a letrec-environment, letrec x = y,y = z,z = True leads to letrec x = True,y = True,z =
True. But if we consider the rules in Fig. 2, we see that LRP does copy such values right to the needed
position, without copying it to each position of the corresponding chain. The following example even
shows that the difference in space consumption is at least c ·n, where c is the size of the value v:

letrec id = (λx.x),x1 = (id x2), . . . ,xn−1 = (id xn),xn = v in seq x1 (T x1 x2 . . . xn)

The tuple (T x1 x2 . . . xn) ensures that none of the bindings can be removed by the garbage collector.

86 Analyzing Space Optimizations in Call-by-Need Functional Languages

Machine execution leads to a sequence of n (Update)-transitions, where the value v gets copied to each
binding of the chain. To avoid this effect, the rule (SCRem) has to be applied whenever possible. If we
consider the example above, then we have:

〈Γ | True | #upd(x) : #upd(y) : #upd(z) : S〉 (SCRem),2−−−−−−→ 〈Γ[x/y,x/z] | True | #upd(x) : S[x/y,x/z]〉

The rule (SCRem) is correct, since 〈Γ | v | #upd(x) : #upd(y)〉 corresponds to letrec Γ,x = v,y = x in y
with x 6= y before application, and after the application it is 〈Γ[x/y] | v[y/x] | #upd(x)〉 corresponding to
letrec Γ[x/y],x = v[y/x] in y[y/x] and replacing variables by variables is shown to be correct in [16].

Now we compare LRP with the abstract machine:

Definition 5.2. Let s be a closed machine expression such that 〈 /0 | s | []〉 n→ Q where Q is a final state.

1. mln(s) is the number of all (Subst)-, (Branch)- and (Seq)-steps in the sequence.

2. mlnall(s) is the number of all machine steps in the sequence, thus mlnall(s) = n.

3. mspmax(s) is max{size(Sti) | 1≤ i≤ n,¬(Sti−1 = 〈Γ,c #»x ,S〉∧Sti−1
Update−−−−→ Sti)}, (i.e. states after

(Update) are ignored for constructor applications), where 〈 /0 | s | []〉= St1→ St2→ . . .→ Stn = Q.

If s diverges then mln(s) = mlnall(s) = mspmax(s) := ∞.

The size of a machine state is the sum of the heap sizes seen as outer letrec, the size of the control
expression and the expressions on the stack, where the #-labels are not counted. (Update) might increase
the size of the current state in contrast to LRP, where variables can be processed directly without looking
up and then updating them (e.g. compare (case-in) of LRP with (Branch) of the Mark 1).

We show that the abstract machine can be used for computing reduction lengths and space measures
as needed for reasoning on time- and space-improvements (restricted to machine expressions in the case
of space-improvements):

Theorem 5.3 (Adequacy of the abstract machine w.r.t. resource consumption). Let s be an LRP expres-
sion with s↓.

1. On input ψ(s), the measure mln(ψ(s)) coincides with rln(s).

2. If s is a machine expression and if the abstract machine eagerly applies (GC) and (SCRem), then
mspmax(s) coincides with spmax(s).

Proof. Since in [13] it was shown that rln(s) =mln(ψ(s)) holds, LRP, restricted to machine expressions,
and Mark-1 provide equal results concerning reduction lengths. Note that this does not hold for rlnall
and mlnall, since the abstract machine moves letrec-environments directly on top, while LRP needs
additional (lll)-reduction steps.

Because bindings x = y are eliminated by (SCRem) the only difference between evaluating the ma-
chine expressions s in LRPgc and the evaluation of s on the abstract machine with eagerly applying
rules (GC) and (SCRem) concerning space is the following: The abstract machine copies constructor
applications in contrast to LRP. The constructor applications are either directly processed by a (Seq) or
(Branch), or the copying is a final (Update)-transition. The claim holds, since we do not count the sizes
of exactly these intermediate states between (Update) and (Seq) as well as (Update) and (Branch), and a
final (Update) in the computation of mspmax(s).

N. Dallmeyer & M. Schmidt-Schauß 87

5.1 Implementation

The LRP interpreter (LRPi) is implemented in Haskell and can be downloaded here:
http://www.ki.informatik.uni-frankfurt.de/research/lrpi

All details concerning compilation can be found on this page. The interpreter is able to execute LRP-
programs and to generate statistics concerning reduction lengths and different space measures. Various
size and space measures can be defined easily, thus the interpreter can be used to compare different size
and space measurements or to explore other resource usages apart from time and space analyses.
The interpreter is user friendly and is able to calculate TikZ-pictures showing the size-values during
runtime (for use in LaTeX).

The rule (GC) is implemented as a stop-and-copy garbage collector that is called by the abstract
machine depending on the garbage collection mode. If we set the garbage collector to run after each
state transition, then the reduction length and spmax-results (restricted to LRP-machine-expressions in
the case of space measurement) are correctly counted for LRPgc, since the interpreter automatically
applies (SCRem) whenever possible.

5.1.1 Removing Indirection Chains

We support the interpretation by two initial operations: There is a complete garbage collection before
starting the interpretation, and an efficient algorithm to remove chains of indirections (variable-variable
binding chains) in the input expression, which avoids unnecessary space consumption in the Sestoft
machine. The algorithm is only applied once at compile time, since none of the rules in Fig. 4 create
variable-to-variable bindings that cannot be removed by (SCRem). Since we often configure the garbage
collector to run whenever possible, this can reduce the runtime of garbage collection runs for large
programs. This is implemented efficiently and runs in time O(n logn) where n is the number of variables.
For more information see [1].

6 Analyses for Examples

This section contains analyses illustrating the performance and output of the interpreter and tool LRPi.
In particular it shows several experiments: a simple program transformation, various fold-applications
and a fusion, comparing two list-reverse variants, and sharing vs. non-sharing. The latter is illustrated by
an example that can be seen as a variant of common subexpression elimination which shows that saving
space may increase the runtime and that a transformation, which for a large class of tests reduces the
space, might fail to be a space improvement in some cases. All analyses are done after translating the
input to machine expression format.

One of the aims of LRPi is to support conjectures of space improvements by affirmative tests, or
to refute the space improvement property of a specific transformation by finding a counter example.
Since LRPi only tests in the empty environment, a complete test would require to perform the test also
within contexts, which, however, cannot be done completely, since there are infinitely many, even using
context lemmas to minimize the set of necessary contexts. Using a simulation mode, the contexts could
be restricted to testing the functions on arguments. For these tests typing makes a big difference, since
certain transformations are correct only if typing is respected and also the space improvement property
may depend on the restriction to typed arguments or type-correct insertion into contexts.
Examples for conjectured space improvements are the reductions of the calculus (see Fig.2) used as
transformations, with the exception of the (cp)-reductions.

http://www.ki.informatik.uni-frankfurt.de/research/lrpi

88 Analyzing Space Optimizations in Call-by-Need Functional Languages

The used function definitions can be found in Fig. 5. The fold-function definitions are taken from
[15], concat and concatMap are inlined versions of the definitions in [6]. We first consider fold-
functions of Haskell. foldr is the usual right-fold, foldl the usual left-fold and foldl’ a more strict
variant of foldl, which is not completely strict, since the used seq only evaluates w until a value is
achieved. Following [15], we use the LRPi to find an example in which foldl is worse than foldr if

comp = λ f ,g.(λx. f (g x))
foldr = λ f ,z,xs.case xs of {([]->z)

((y : ys)-> f y (foldr f z ys))}
foldl = λ f ,z,xs.case xs of {([]->z)

((y : ys)->foldl f (f z y) ys)}
foldl′ = λ f ,z,xs.case xs of {([]->z)

((y : ys)->
letrec w = (f z y)
in seq w (foldl′ f w ys))}

map = λ f , lst.case lst of {([]-> [])
((x : xs)->((f x) : (map f xs)))}

tail = λ lst.case lst of {
([]->⊥) ((x : xs)->xs)}

replicate = λn,x.case n of {(Zero-> [])
((Succ m)->x : (replicate m x))}

last = λ lst.case lst of {(x : xs)->
case xs of {([]->x)

((y : ys)->last xs)}}

reverse = λxs.case xs of {([]-> [])
((y : ys)->reverse ys ++ [y])}

reverse′ = λxs.reversew [] xs
reversew = λxs,ys.case ys of {([]->xs)

((z : zs)->reversew (z : xs) zs)}
(++) = λxs,ys.case xs of {([]->ys)

((z : zs)->z : (zs ++ ys))}
concat = λxs.(foldr

(λx,y.foldr (λ z,zs.(z : zs)) y x)
[] xs)

concatMap = λ f ,xs.(foldr
(λx,b.foldr
(λ z,zs.(z : zs)) b (f x))

[] xs)
xor = λx,y.case x of {

(True->case y of {
(True->False)
(False->True)})

(False->y)}

Figure 5: Several function definitions

the preconditions on arguments are not fulfilled. Choosing xor for f and False as e, the requirement
f e s � f s e holds, but the requirement (f (f s1 s2) s3) � (f s1 (f s2 s3)) is not fulfilled for s1 =
True, s2 = False,s3 = False. A list starting with a single True element followed by k− 1 False-
elements generated using a take-function/list generator approach (using a Peano encoding to represent
the numbers) is used as input list.

We configure LRPi to collect garbage whenever possible. As we will see, foldr indeed has a better
runtime behavior than foldl and the space consumption of foldr and foldl’ are almost equal. More-
over, we see that foldl has a much worse space behavior than foldl’. This difference is caused by the
known stack problems of foldl that can be solved in the case of xor by using foldl’ instead.

We can identify the stack overflow problem (of fold-expressions) in the space diagram in Fig. 7 using
k = 250, directly calculated by LRPi. Let si be the i-th expression during execution. Because of lazy
evaluation, the foldl-expression is expanded step by step without calculating any intermediate results
until foldl itself is no longer required and is removed by the garbage collector. This leaves a long chain
of nested (++)-function calls that lead to the big rise of the curve, because this causes a long chain of
(lbeta)- and (case)-transformations. The small decrease before the rise of the curve is caused by the
removal of foldl by the garbage collector, because the definition of foldl is not needed anymore after
the expansion is completed. Note that (gc)-reductions are not counted by mlnall, but counted in the
following diagrams in Fig. 7.

N. Dallmeyer & M. Schmidt-Schauß 89

k 25 50 75 100 125 150 175 200 225 250
foldl using xor

mln 302 602 902 1202 1502 1802 2102 2402 2702 3002
mlnall 1085 2160 3235 4310 5385 6460 7535 8610 9685 10760
spmax 217 417 617 817 1017 1217 1417 1617 1817 2017

foldl′ using xor

mln 327 652 977 1302 1627 1952 2277 2602 2927 3252
mlnall 1235 2460 3685 4910 6135 7360 8585 9810 11035 12260
spmax 87 112 137 162 187 212 237 262 287 312

foldr using xor

mln 279 554 829 1104 1379 1654 1929 2204 2479 2754
mlnall 1016 2016 3016 4016 5016 6016 7016 8016 9016 10016
spmax 90 115 140 165 190 215 240 265 290 315

Figure 6: Table of analysis results for different fold-variants

2369 4737 7106 9474

288
576
864

1153
1441
1729

1
0 i

size(si)

Figure 7: Size diagram for foldl using xor and input size k = 250

We now want to compare reverse with reverse′ in Fig 8. We use last to force the evaluation
and moreover we create a list containing k times the element True using replicate k True. This
supports the following conjectures on complexities: reverse requires quadratic runtime, caused by the
left-associativity of (++) while reverse′ requires linear runtime. Because (++) only goes through each
intermediate list, reverse appears to not need asymptotically more space than reverse′. Both reverse
and reverse′ appear to have a linear space complexity, perhaps reverse′ has smaller constants in the
asymptotic complexity formula.

Now we want to have a short look on fusion. The composition of functions can lead to well readable
programs, because recursions are hidden and the main steps of the calculation are clearly visible. But
this leads to intermediate structures and to an increase of the reduction length and especially space
consumption, if we use a realistic (non-eager) garbage collector. The Glasgow Haskell Compiler (GHC)
uses the so called short cut fusion as introduced in [2]. This approach eliminates such intermediate tree
and list structures to gain a better runtime and to reduce the needed space.

As shown in [7], short cut fusion might be unsafe if seq is used, but in the majority of cases this

90 Analyzing Space Optimizations in Call-by-Need Functional Languages

k 50 100 150 200 250 300 350 400
last (reverse (replicate k True))

mln 4230 15955 35180 61905 96130 137855 187080 243805
mlnall 15799 59074 129849 228124 353899 507174 687949 896224
spmax 462 862 1262 1662 2062 2462 2862 3262

last (reverse’ (replicate k True))

mln 457 907 1357 1807 2257 2707 3157 3607
mlnall 1782 3532 5282 7032 8782 10532 12282 14032
spmax 100 150 200 250 300 350 400 450

Figure 8: Comparing two reverse variants

k 100 200 300 400 500 600 700 800 900 1000
Difference of reduction lengths between fused and unfused

∆ mln 206 406 606 806 1006 1206 1406 1606 1806 2006
∆ mlnall 623 1223 1823 2423 3023 3623 4223 4823 5423 6023

Difference of spmax between fused and unfused
∆ Eager 14 14 14 14 14 14 14 14 14 14
∆ Every 1000th 47 47 47 47 47 47 47 47 47 47
∆ Every 2000th 60 60 60 60 60 60 60 60 60 60
∆ Never 132 232 332 432 532 632 732 832 932 1032

Figure 9: Differences in time and space between fused and unfused concatMap

approach works and is used by the GHC. Moreover [18] shows that this approach might increase sharing
and therefore a part of the memory is longer used. Thus it may increase the space consumption.

We now want to compare (comp concat map) tail with concatMap tail. As input we use a
list containing k inner lists of the form [True,True], again generated by a list-generator/take-function
approach. The differences in the table are the unfused version minus the fused version. The results are
in Fig. 9. As expected the reduction length and space consumption behaves linearly in all cases. We also
see that the frequency of the garbage collector directly affects the space consumption, if we compare
each garbage collection mode of the fused with the unfused version. The rarer the garbage collector runs
the higher is the difference in space consumption: If we turn off the garbage collector and use the fused
version instead of the unfused version, then the decrease of space consumption is linear in the length of
the list.

With regard to nogc the advantage concerning space consumption of the fused versions over the un-
fused versions of the above examples is only constant, but the advantage is even linear if we turn off
garbage collection. Thus the above examples for fusion are space improvements in a weak sense. Prac-
tically, the weak space improvements above are very useful because they are also time improvements.

The final example is a case where the decrease of space consumption behaves inverse to time con-
sumption. The example experiments in Fig. 10 reports on comparing (list ++ list) ++ (list ++ list)
with let xs = list in (xs ++ xs) ++ (xs ++ xs) (written here in Haskell notation), driving evaluation

N. Dallmeyer & M. Schmidt-Schauß 91

k 12 13 14 200 400 600 800 1000
Shared append

mln 297 321 345 4809 9609 14409 19209 24009
mlnall 1152 1245 1338 18636 37236 55836 74436 93036
spmax 77 79 81 453 853 1253 1653 2053

Unshared append
mln 453 489 525 7221 14421 21621 28821 36021
mlnall 1730 1867 2004 27486 54886 82286 109686 137086
spmax 78 79 80 266 466 666 866 1066

Figure 10: Shared versus unshared append

using the last function, and where ++ is the the append function. The first expression has four separate
occurrences of a (long) list, whereas the second expression shares the lists, where list varies in length in
the experiments. The results are consistent with the claim that common subexpression elimination (cse)
is a time improvement [14], and show that (cse) and an increase of sharing in general may increase the
(maximal) space usage. In neither direction the example is a space improvement, which shows that (cse)
is not a space improvement.

7 Conclusion and Future Work

We demonstrated that the interpreter LRPi is a useful tool for exploring improvements. The conceptual
work on it also had an influence on constructing appropriate models of resource consumption. Among
the influences are: the calculus must incorporate (gc), and the Sestoft machine turned out to have a
non-optimal space behavior, which had to be improved. We expect that in the future there will be more
influences and feedback in both directions between measuring tool with its experiments and the theory.

Future research into the relations between calculus, machine translations and abstract machine is
justified. Further work is to extend LRPi also taking contexts (according to Def. 4.3) into account, or
automating the inspection of series of arguments, in order to improve the affirmative power for space
improvements. Moreover, a more practical integer representation would be helpful, since Peano encod-
ings affect and pollute the space measurement. Also refining the garbage collection (for example locally
generated garbage) is an issue.

Acknowledgments

We thank David Sabel for discussions and hints which were very helpful in improving the paper. We also
thank the reviewers of WPTE for the numerous helpful remarks.

References

[1] Nils Dallmeyer (2016): Design and implementation of a test suite for exploring space improvements in a
call-by-need functional language with polymorphic types. Msc. thesis, Institut für Informatik, J.W.Goethe-
University Frankfurt.

92 Analyzing Space Optimizations in Call-by-Need Functional Languages

[2] Andrew Gill, John Launchbury & Simon L. Peyton Jones (1993): A Short Cut to Deforestation. In: Proc.
Conference on Functional Programming Languages and Computer Architecture, FPCA ’93, ACM, New
York, NY, USA, pp. 223–232, doi:10.1145/165180.165214.

[3] Jörgen Gustavsson (2001): Space-Safe Transformations and Usage Analysis for Call-by-Need Languages.
PhD thesis, Department of Computing Science, Chalmers University of Technology and Göteborg University.

[4] Jörgen Gustavsson & David Sands (1999): A Foundation for Space-Safe Transformations of Call-by-Need
Programs. Electronic Notes in Theoretical Computer Science 26, pp. 69 – 86. HOOTS ’99, Higher Order
Operational Techniques in Semantics, doi:10.1016/S1571-0661(05)80284-1.

[5] Jörgen Gustavsson & David Sands (2001): Possibilities and Limitations of Call-by-need Space Improvement.
In: Proc. Sixth ACM SIGPLAN International Conference on Functional Programming, ICFP ’01, ACM, New
York, NY, USA, pp. 265–276, doi:10.1145/507635.507667.

[6] Hackage (2016): Hackage, the base package. Available at http://hackage.haskell.org/package/
base.

[7] Patricia Johann & Janis Voigtländer (2006): The Impact of Seq on Free Theorems-Based Program Transfor-
mations. Fundam. Inf. 69(1-2), pp. 63–102.

[8] Andrew Moran & David Sands (1999): Improvement in a Lazy Context: An Operational Theory for Call-
by-need. In: Proc. 26th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL ’99, ACM, New York, NY, USA, pp. 43–56, doi:10.1145/292540.292547.

[9] David Sands (1991): Operational Theories of Improvement in Functional Languages (Extended Ab-
stract). In: Proc. Fourth Glasgow Workshop on Functional Programming, Springer-Verlag, pp. 298–311,
doi:10.1007/978-1-4471-3196-0 24.

[10] David Sands (1995): A Naı̈ve Time Analysis and its Theory of Cost Equivalence. Journal of Logic and
Computation 5, pp. 495–541, doi:10.1093/logcom/5.4.495.

[11] David Sands (1995): Total Correctness by Local Improvement in Program Transformation. In: Proc. 22nd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’95, ACM, New
York, NY, USA, pp. 221–232, doi:10.1145/199448.199485.

[12] Manfred Schmidt-Schauß & David Sabel (2014): Contextual Equivalences in Call-by-Need and Call-
By-Name Polymorphically Typed Calculi (Preliminary Report). In M. Schmidt-Schauß, M.Sakai,
D. Sabel & Y. Chiba, editors: WPTE 2014, OASICS 40, Schloss Dagstuhl, pp. 63–74,
doi:10.4230/OASIcs.WPTE.2014.63.

[13] Manfred Schmidt-Schauß & David Sabel (2015): Improvements in a Functional Core Language with Call-
By-Need Operational Semantics. Frank report 55, Institut für Informatik. Fachbereich Informatik und
Mathematik. J. W. Goethe-Universität Frankfurt am Main. Available at http://www.ki.informatik.
uni-frankfurt.de/papers/frank.

[14] Manfred Schmidt-Schauß & David Sabel (2015): Improvements in a functional core language with
call-by-need operational semantics. In Moreno Falaschi & Elvira Albert, editors: Proc. 17th In-
ternational Symposium on Principles and Practice of Declarative Programming, ACM, pp. 220–231,
doi:10.1145/2790449.2790512.

[15] Manfred Schmidt-Schauß & David Sabel (2015): Sharing-Aware Improvements in a Call-by-Need Functional
Core Language. In Ralf Lämmel, editor: Proceedings of IFL, IFL ’15, ACM, New York, NY, USA, pp. 6:1–
6:12, doi:10.1145/2897336.2897343.

[16] Manfred Schmidt-Schauß, David Sabel & Marko Schütz (2008): Safety of Nöcker’s Strictness Analysis. J.
Funct. Program. 18(4), pp. 503–551, doi:10.1017/S0956796807006624.

[17] Peter Sestoft (1997): Deriving a Lazy Abstract Machine. J. Funct. Program. 7(3), pp. 231–264,
doi:10.1017/S0956796897002712.

[18] Josef Svenningsson (2002): Shortcut Fusion for Accumulating Parameters & Zip-like Functions. In: Proc.
Seventh ACM SIGPLAN International Conference on Functional Programming, ICFP ’02, ACM, New York,
NY, USA, pp. 124–132, doi:10.1145/581478.581491.

http://dx.doi.org/10.1145/165180.165214
http://dx.doi.org/10.1016/S1571-0661(05)80284-1
http://dx.doi.org/10.1145/507635.507667
http://hackage.haskell.org/package/base
http://hackage.haskell.org/package/base
http://dx.doi.org/10.1145/292540.292547
http://dx.doi.org/10.1007/978-1-4471-3196-0_24
http://dx.doi.org/10.1093/logcom/5.4.495
http://dx.doi.org/10.1145/199448.199485
http://dx.doi.org/10.4230/OASIcs.WPTE.2014.63
http://www.ki.informatik.uni-frankfurt.de/papers/frank
http://www.ki.informatik.uni-frankfurt.de/papers/frank
http://dx.doi.org/10.1145/2790449.2790512
http://dx.doi.org/10.1145/2897336.2897343
http://dx.doi.org/10.1017/S0956796807006624
http://dx.doi.org/10.1017/S0956796897002712
http://dx.doi.org/10.1145/581478.581491

	1 Introduction
	2 Polymorphically Typed Lazy Lambda Calculus
	3 LRP with Eager Garbage Collection
	4 Time- and Space-Improvements
	5 An Abstract Machine for LRP
	5.1 Implementation
	5.1.1 Removing Indirection Chains

	6 Analyses for Examples
	7 Conclusion and Future Work

