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Abstract

Biological diversity arises among genetically equal subpopulations in the same

environment, a phenomenon called phenotypic heterogeneity. The life cycle of the

enteric bacterium Photorhabdus luminescens involves a symbiotic interaction with

nematodes as well as a pathogenic association with insect larvae. P. luminescens

exists in two distinct phenotypic forms designated as primary (1°) and secondary

(2°). In contrast to 1° cells, 2° cells are non-pigmented due to the absence of

natural compounds, especially anthraquinones (AQs). We identified a novel type of

transcriptional regulator, AntJ, which activates expression of the antA-I operon

responsible for AQ production. AntJ heterogeneously activates the AQ production

in single P. luminescens 1° cells, and blocks AQ production in 2° cells. AntJ

contains a proposed ligand-binding WYL-domain, which is widespread among

bacteria. AntJ is one of the rare examples of regulators that mediate heterogeneous

gene expression by altering activity rather than copy number in single cells.
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1. Introduction

Phenotypic heterogeneity has recently developed into a major research focus in

microbiology. Formerly, it was thought that genetically isogenic bacterial cell

cultures coordinate gene expression collectively in a homogeneous environment.

However, more and more examples arise showing that bacterial populations consist

of genetically identical individual cells shaping different phenotypes, e.g.

sporulation [1], bacterial competence [2], antibiotic production [3], or quorum

sensing (see [4] for review). However, information about regulation mechanisms

of bacterial phenotypic heterogeneity at the molecular level is rare to date.

Photorhabdus luminescens is an insect pathogenic enteric bacterium that maintains

a mutualistic interaction with heterorhabditid nematodes, and can infect a variety

of insect species. The bacteria colonize the gut of the infective juvenile stage (IJs)

of the nematode Heterorhabditis bacteriophora. Upon entering insect larvae, the

IJs release the bacteria by regurgitation directly into the insect’s hemocoel. Once

inside, the bacteria rapidly replicate and quickly establish a lethal septicaemia in

the host by production of a broad range of different toxins that kill the insect within

two days. Bioconversion of the insect’s body by P. luminescens produces a rich

food source for the bacteria as well as for the nematodes. The bacteria support

nematode development and reproduction, probably by providing essential nutrients

that are required for efficient nematode proliferation [5, 6]. Furthermore, the

bacteria produce several antibiotics to defend the insect cadaver from other

bacteria. When the insect cadaver is depleted, the IJs and bacteria re-associate and

emerge from the carcass in search of a new insect host (see [7, 8] for overview).

P. luminescens is an ideal candidate to study phenotypic heterogeneity since the

bacteria exist in two distinct phenotypically different forms, primary (1°) and

secondary (2°) cells. During prolonged cultivation in insects or in culture medium,

individual 1° cells switch to the 2° phenotype, so that in the end of the infection

cycle approximately 20–50% of the cells have undergone the switching process [9,

10]. Both phenotypic variants are equally virulent towards insects. However, only

1° cells are known to associate with the nematodes and to trigger their

development. Furthermore, 2° cells are unable to support nematode growth and

development both in the insect cadaver as well as in culture. The reason why single

cells of P. luminescens undergo phenotypic switching is not understood. It is

assumed that the 2° variant is better adapted for a life in the soil, after being left in

the insect cadaver while the 1° cells have emerged with the nematodes [11].

Evidently, 1° cells exhibit several phenotypic characteristics that are absent from

2° cells [9, 10]. One of the most distinct phenotypes of phenotypic heterogeneity in

P. luminescens is pigmentation, which only occurs in 1° cells. Pigmentation is a

result of the production of anthraquinones (AQ) (Fig. 1A). Among the natural

products of P. luminescens, AQs have been extensively studied. AQs in general are
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[(Fig._1)TD$FIG]

Fig. 1. AQ production of P. luminescens and schematic representation of the identification of unknown

transcriptional regulators of the antA-I biosynthesis gene cluster via DNA protein pull down assay. A.
Major AQs (1–4) produced by P. luminescens. B. Organization of the ant biosynthesis gene cluster of P.
luminescens [14]. The promoter region of antA was amplified via PCR using 5′biotinylated forward

primers yielding three overlapping, biotinylated DNA fragments (I–III). C. Immobilization of the DNA

fragments I (internal control), II or III on streptavidin-coupled magnetic beads. Following incubation

with cell lysate loose binding proteins were washed off by four washing steps with increasing NaCl

concentrations. Finally, specific binding proteins were eluted in presence of 500 mM NaCl. D. SDS-
PAGE, separated proteins of the DNA protein pull down assay. Coomassie blue stained polyacrylamide

gel. 1–3: washing step 3 (175 mM NaCl) of fragments I–III, 4–6: washing step 4 (200 mM NaCl) of

fragments I–III and 7–9: elution fraction (500 mM NaCl) of fragments I–III, M: protein marker. Protein

bands smaller than 40 kDa and only visible in the elution fraction were cut out and identified via peptide

mass fingerprinting. E. Domain structure of AntJ. The protein consists of two domains, an N-terminal

HTH_11 domain, which is a putative DNA binding domain, and a C-terminal WYL domain, which is

supposed to bind ligands [20].
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common in plants, fungi and streptomycetes, but Photorhabdus is the only known

Gram-negative AQ producer [12, 13, 14]. The biosynthetic gene cluster (BGC) for

AQ production (antA-I) encodes a type II polyketide synthase (PKS), namely AntD

(KSα), AntE (KSβ) and AntF (ACP), as well as modifying enzymes (AntG-I) [14].

For some AQs weak antimicrobial activity was detected and they are assumed to

play an ecological role serving as deterrents against birds and scavenger insects

[11, 15, 16]. The exact physiological role of the AQs has yet to be elucidated. The

mechanism of regulation of the heterogeneous pigmentation phenotype, and

therefore AQ production, was similarly unknown.

Here we describe the identification of a regulator named AntJ that activates

expression of the antA-I operon. AntJ is a novel type of regulator, harboring a

putative DNA-binding domain that is essential for activation of AQ biosynthesis in

P. luminescens 1° cells. The AQ promoter PantA is heterogeneously activated in 1°

cells, whereas there is also a basal but homogeneous PantA activity present in 2°

cells, although 2° cells do not exhibit AQ biosynthesis. Drastic overproduction of

AntJ caused a homogeneous, strongly activated PantA activity in 1° as well as in 2°

cells and led to AQ production by the usually non-pigmented 2° cells. Since both

1° and 2° cells contained comparable levels of the regulator AntJ, we suppose that

AntJ directly mediates heterogeneous expression of antA-I by adjusting its activity

rather than its copy number.

2. Results

2.1. Identification of AntJ as transcriptional activator of the AQ
biosynthesis gene cluster

In order to identify a putative regulator of the AQ biosynthesis operon antA-I, we

performed a DNA-protein pull down assay using the upstream region of antA.

First, the 986 bp region upstream of antA (PantA) was subdivided into overlapping

fragments (Fig. 1B, I–III), which were then immobilized on magnetic beads.

Subsequently, the magnetic beads were incubated with P. luminescens 1° cell

lysate and proteins binding to PantA were pulled out and identified by peptide mass

fingerprinting (PMF) (Fig. 1C, D). Overall, we identified several proteins that

specifically bound to PantA. The protein binding to fragment I (control) was

identified as Plu2434 (CysB). In E. coli CysB is known to be a LysR-type family

transcriptional regulator which positively regulates the cysteine regulon [17].

Three proteins corresponding to the bands between 40 and 25 kDa could be found

in the elution fraction of fragment II as well as in the elution fraction of fragment

III. Therefore, fragment III, a smaller internal fragment of II, must comprise the

protein binding sites of the three proteins. The largest protein was identified as

Plu2548, the intermediate protein band emerged as Plu0919 and the lowest band

Article No~e00197

4 http://dx.doi.org/10.1016/j.heliyon.2016.e00197

2405-8440/© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://dx.doi.org/10.1016/j.heliyon.2016.e00197


was determined to be Plu4185. The corresponding gene plu4185 mapped directly

adjacent to antA-I and therefore was renamed as antJ.

Plu2548 was annotated as LysR-type family transcriptional regulator, and Plu0919

was identified as one of 35 PAS4-LuxR-type transcriptional regulators, whose

putative function in P. luminescens has been discussed before [18, 19]. AntJ

consists of an N-terminal HTH_11 domain (PF08279) and a C-terminal truncated

WYL-domain (PF13280) and shows weak similarity to the DNA binding

transcriptional regulator YafY (COG2378) [20] (Fig. 1E).

Due to the fact that all identified proteins are putative DNA binding transcriptional

factors, their function in regulation of the AQ biosynthesis was analyzed further.

Therefore, the corresponding genes were deleted separately. Neither the deletion of

plu0919 nor of plu2548 caused an altered pigmentation phenotype (Fig. S1).

However, the deletion of plu4185 (antJ) led to a complete loss of AQ production

(Fig. 2A, c).

In order to elucidate the function of AntJ, we first examined the domain

architecture. To date (October, 2016) the Pfam database counts 4519 protein

sequences containing a predicted WYL-domain (PF13280) from 1659 different

species. Nearly half of the proteins (2171) possess the same domain architecture as

AntJ (N-terminal HTH_11 domain and C-terminal WYL-domain) including

transcriptional regulators of human pathogens such as Pseudomonas aeruginosa. A

phylogenetic tree, which includes the closest homologues of AntJ (based on blastp

analyses), demonstrates that AntJ is only distantly related to its closest homologues

(Fig. 3 and Table S5). AntJ also shows a low sequence identity to the predicted

HTH_11/WYL regulators of the closely related genus Xenorhabdus (e.g. 44–43%
sequence identity for orthologous HTH_11/WYL regulators from Xenorhabdus

doucetiae, Xenorhabdus nematophila, Xenorhabdus szentirmaii, Xenorhabdus

bovienii) (NCBI blastp). Photorhabdus temperata, another AQ producer contains

an AntJ homologue with 91% sequence identity (NCBI blastp). The corresponding

gene similarly maps directly downstream of the predicted AQ biosynthesis gene

cluster. Photorhabdus asymbiotica does not produce AQs [21], and we could not

detect any AntJ homologue in this species.

2.2. AntJ positively regulates AQ production

In order to investigate a putative role of AntJ in the AQ biosynthesis, a marker-less

deletion of the antJ gene in 1° cells was generated, yielding the strain

TT01−1°ΔantJ. TT01–1° colonies as well as the liquid culture have an orange-

red color as a result of AQ production. In contrast, TT01−1°ΔantJ colonies are

beige to weak yellowish and the liquid culture is non-pigmented. HPLC-UV

confirmed that the antJ deletion strain no longer produces any AQs (Fig. 2A, c).

Complementation of ΔantJ was achieved in trans by introducing a low-copy
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number plasmid encoding antJ (pAKH04) (Fig. 2A, h). AQ production of both

wild type 1° cells carrying the empty vector and the complemented 1°ΔantJ cells

were quantitatively compared by using AQ peak areas (UV-chromatogram at 430

nm) of HPLC-UV analysis normalized to the OD600 at the time point of extraction

(Fig. S2A) AQ-256 (1) was not detectable after 24 h of cultivation in the

complemented strain (Fig. 2A, h) since 1 is the starting material for the production

of all other AQs and is consumed when other AQs are produced. The amount of

AQ-270a and b (2 and 3) reached almost 50% of wild type level, and AQ-284 (4)
production corresponds to 73% of the wild type (Fig. S2A). It is important to

[(Fig._2)TD$FIG]

Fig. 2. AntJ activates the promoter of the antABCDEFGHI operon and the production of AQs. A.
Comparison of the AQ production in different P. luminescens strains. HPLC-UV analysis (UV-

chromatograms at 430 nm) of the ethyl acetate (EE) extracts of a: TT01−1°, b: TT01−2°, c:

TT01−1°ΔantJ, d: TT01−1° + control 2 (pACYC_tacI/I), e: TT01−1° + antJ++ (pAKH05), f:

TT01−2° + antJ++ (pAKH05), g: TT01−1° + control 1 (pCOLA_tacI/I), h: TT01−1°ΔantJ + antJ+

(pAKH04), B. Heatmap of changes in transcription level of antA-J of TT01−1°ΔantJ compared to

TT01−1° wild type. C. Promoter activities of PantA in 1° and 2° cells with and without overproduction

of AntJ after 8 h, 24 h and 48 h at the population level. Error bars represent standard deviation of at least

three independently performed experiments. RFU, relative fluorescence units.
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compare the amount of 1–4 in total and not separately in order to avoid

determining effects caused by small differences in growth of the cultures. Upon

overexpression of antJ in 1° cells, the production of AQ-256 (1) was 46.42 ± 6.04

fold higher compared to wild type, 2 and 3 were present in comparable amounts,

whereas 4 was three-fold lower compared to the wild type (Fig. 2A, e and

Fig. S2A). Furthermore, a partial pigmentation due to AQ production could be

restored in the usually non-pigmented 2° cells by a simple overproduction of AntJ

(Fig. 2A, f and Fig. S2B). The production of 1 was 10.00 ± 0.73 fold higher than in

the empty vector control of the 1° wild type, whereas 2 and 3 were clearly less

produced (0.24 ± 0.01 fold and 0.21 ± 0.05 fold compared to the 1° wild type) and

4 was not detectable at all. Trace amounts of 2 were also detected for 2° cells

without overexpression of antJ (Fig. S2B).

Moreover, RNA sequencing confirmed a drastic down-regulation of the transcripts

antA-I, e.g. 195-fold (antG) and 72-fold (antA), upon deletion of antJ in 1° cells

(Fig. 2B). Thus, we conclude that AntJ raises the AQ production by activating the

transcription of the antA-I operon.

However, in the complemented antJ deletion strain the mRNA of antJ was still 18-

fold down-regulated compared to the wild type. In accordance to this finding the

transcription level of the antA-I genes was also found to be five- to tenfold lower

compared to the wild type (Fig. 2B). Other genes, whose transcription was affected

[(Fig._3)TD$FIG]

Fig. 3. AntJ is distributed among bacteria that produce secondary metabolites. Neighbour joining

dendrogram of AntJ homologues. Sequences are listed in Table S5. Sequences were aligned using

clustalW and the tree was generated using the Geneious tree builder incorporated into Geneious (v6.1.8)

utilizing the Jukes-Cantor distance model. Scale bar represents amino acid substitutions per amino acid

position.
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to a minor degree via AntJ, included a putative transcriptional regulator (plu0948)

and a monooxygenase (plu0947). Several of the 24 up-regulated mRNAs belong to

genes encoding enzymes of the primary metabolism e.g. three genes for fumarate

metabolism, seven genes involved in flagella biosynthesis and two genes encoding

proteins predicted to play a role in menaquinone biosynthesis of P. luminescens

(Table S4).

In line with these findings, chemical analysis revealed that the amount of other

known secondary metabolites [isopropylstilbene (IPS), GameXPeptides (GXP),

photopyrones (PPY) and phurealipids (PL)] [13, 22, 23, 24] is not significantly

affected when comparing the wild type with ΔantJ and the complemented strain

ΔantJ + antJ+ (Fig. S3A). However, overexpression of antJ in the TT01−1°
background leads to a reduction of photopyrones and PL A, indicating AntJ acts as

some sort of repressor of the genes encoding the ketosynthase PpyS involved in

PPY biosynthesis and the methyltransferase PliB responsible for the final PL

biosynthesis step. The 2° cells produce less of the other known secondary

metabolites compared to the 1° cells and antJ overexpression does not enhance the

production of these secondary metabolites (Fig. S3B).

Next, we investigated the influence of AntJ on the PantA promoter activity in 1° as

well as in 2° cells using a chromosomally integrated PantA-mCherry fusion [25].

Unexpectedly, 2° cells exhibited a PantA activity that was comparable to that in 1°

cells, when analyzed at the population level. Presence of plasmid-encoded antJ

increased PantA promoter activity up to twofold both in the 1° and 2° cell

population compared to cells carrying the empty vector after 24 h of growth

(Fig. 2C).

2.3. AntJ specifically binds within the PantA promoter region

We were further interested in how AntJ positively influences AQ production. As a

first step, we quantified the binding of AntJ to the PantA promoter region using

surface plasmon resonance (SPR) spectroscopy. For that reason, a double-stranded

biotinylated DNA fragment comprising approximately 400 bp upstream of the antA

gene was immobilized onto a sensor chip that was previously coated with

streptavidin. Different concentrations of purified AntJ were then injected over the

surface. The sensorgrams revealed a strong interaction of AntJ to the DNA with an

overall affinity (KD) of 100 nM defined by an association rate of ka = 1.7 × 105/

M*s and a dissociation rate of kd = 0.015/s (Fig. 4A). However, the sensorgram

shapes reveal that the binding mechanism does not reflect a true 1:1 binding event

since the curves do not follow a final and linear saturation. This could be due to the

fact that the DNA binding mechanism of AntJ is more complex as it has recently

been shown for the bacterial response regulator YpdB [26]. Another possible

explanation might be that a putative ligand of AntJ is missing, which would further
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stabilize the binding and end in higher association and slower dissociation rates.

Next, the binding region was specified to a 50 bp region within PantA via

electrophoretic mobility shift assays (EMSA). Six different 100 bp long DNA

fragments were used for the binding assays that each shared a 50 bp overlapping

[(Fig._4)TD$FIG]

Fig. 4. Characterization of the AntJ DNA-binding site. A. Identification of AntJ binding to the antA

promoter via SPR-spectroscopy. The biotinylated PantA fragment (398 bp) was captured onto a

streptavidin-coated sensor chip. Different concentrations of purified His-tagged AntJ (10 nM: purple

line; 25 nM: dark blue line; 50 nM: light blue line; 100 nM green and red line; 250 nM: yellow line; 500

nM: orange line) were passed over the chip. AntJ binds to the promoter region of antA with an overall

affinity (KD) value of 100 nM. B. Determination of a 50 bp long AntJ binding region within the antA

promoter region via an electrophoretic mobility shift assay (EMSA). Six different 100 bp long

fragments (a-f) were chosen comprising the whole promoter region. Each fragment shares a 50 bp

overlapping region with its adjacent fragment(s). Fragment b and c contain the AntJ binding region. C.
Identification of a potential DNA-binding motif of AntJ via reporter gene assays. In the upper panel the

potential binding motif of AntJ comprising the two redundant sequences AATGCT (M1 and M2), which

are separated via a 28 bp long spacer, is depicted. The lower graph shows a heterologous reporter assay

with E. coli LMG194 harboring pBAD24-antJ as well as different PantA-luxCDABE fusions; control: the

complete antA promoter, s1-s3: various truncations of the promoter region; mm1: altered potential

binding motif 1, mm2: altered potential binding motif 2, mspacer: altered 28 bp long spacer region. The

expression of antJ was induced via a final concentration of 0.0001% (w/v) arabinose. The graph shows

PantA activities in the respective reporter strains after 6 h of growth. Error bars represent SD of at least

three independently performed experiments.
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region. Only two of these fragments (b and c) were shifted in the presence of AntJ

suggesting that the DNA binding region of AntJ is localized within the overlapping

50 bp of DNA (Fig. 4B). This DNA fragment contained two DNA motif repeats

“AATGCT” (m1 and m2), which are separated by a 28 bp spacer region. This

region was predicted to reflect the specific DNA binding site of AntJ. To verify this

hypothesis, we used a heterologous AntJ reporter gene assay. An E. coli reporter

strain was used that harbors plasmid encoded antJ and different PantA-luxCDABE

promoter fusions. Three different truncations (s1, s2 and s3) of the PantA promoter

were tested for PantA promoter activity (Fig. 4C). The s1 truncation starts directly

upstream of the first “AATGCT” motif, and exhibited enhanced PantA activity

compared to the control PantA fragment revealing that the promoter is intact.

However, PantA activity was drastically decreased if the m1 motif was absent (s2)

and was further reduced if the spacer region in between m1 and m2 was missing

(s3). If the sequence was either modified in motif m1 (mm1) or in motif m2 (mm2)

no promoter activity was detectable revealing the specificity of each the m1 and

m2 motif within the PantA region for AntJ binding. In contrast to other DNA

binding proteins, the spacer region between the m1 and m2 repeat was of

functional importance since AntJ was no longer capable of activating the promoter

when the sequence of the spacer region was exchanged by a non-sense sequence

(mspacer). This reveals that the complete region between m1 and m2 including the

spacer is specific and essential for activation of PantA by AntJ.

2.4. PantA promoter activity is heterogeneous at the single-cell
level

Since PantA activity was comparable in 1° and 2° cell populations and only 1° cells

produce AQs, we investigated PantA activity at the single-cell level. For that

purpose, cells harboring a chromosomally integrated PantA-mCherry fusion were

used, which were generated as described before [25]. Then, the noise value of this

reporter strain meaning heterogeneity of PantA activity among single cells was

determined. The noise value, also referred to as coefficient of variation (CV),

describes the variance of fluorescence between a set of single cells and therefore

reflects the overall degree of heterogeneity, whereby a noise value of 1 would

reflect a high degree in heterogeneity, and a noise value approaching 0, total

homogeneity. For P. luminescens, a noise value >0.38 was found to reflect

heterogeneity [25]. It could be clearly observed that PantA activity is heterogeneous

with a noise value of 0.70 in 1° cells at the single-cell level (Fig. 5). A distinct

portion of the cells exhibited a very high promoter activity whereas the other cells

showed only a basal, rather weak PantA activity. However, we found a clear antJ

gene dose effect on the heterogeneous PantA activity. Upon introduction of one

additional copy of antJ under the control of its native promoter, the heterogeneity

was diminished by 39% to a noise value of 0.43 (Fig. 5). The mean fluorescence
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value was 1.4-fold increased, when compared to cells harboring only a single copy

of antJ (Fig. 5). 1° cells carrying a chromosomal insertion of a Ptac-antJ gene

fusion, exhibited a drastically increased antJ expression due to the strong tac-

promoter and showed a high PantA-activity in the presence and in the absence of the

[(Fig._5)TD$FIG]

Fig. 5. Heterogeneity of PantA activity at the single-cell level. Single-cell microscopy imaging of P.

luminescens TT01−1°(A), TT01−1°ΔantJ (B) and TT01−2° (C) cells with chromosomally integrated

PantA-mCherry reporter gene fusion and different levels of AntJ. The pictures at the left panel do not

contain additional levels of AntJ and reflect the native conditions. An additional copy of antJ was

integrated into the genome, which is either under control of the native antJ promoter (second from left

panel) or the inducible tac promoter (second from right panel). A control without a promoter upstream

of mCherry served as negative control (right panel). The bars in the phase contrast microscopy pictures

indicate a scale of 10 μm. The tac promoter was induced via the addition of 1 mM IPTG. Additionally,

pictures were taken when no IPTG was added (Fig. S5). The pictures depicted are made via overlay of

the phase contrast and the fluorophore channel. The fluorescence intensities of 450 single cells were

individually measured for each experiment, being analyzed using the software Big Cell Brother [28].

The noise values were calculated as SD/mean from 450 cells after 24 h of growth. Representative

images and values from one of three independently performed experiments are shown. For the separate

phase contrast and fluorescence pictures see Fig. S8. Box plots that show the distribution of mCherry

fluorescence signals and therefore the degree of heterogeneity are presented in Fig. S9. Additionally,

AQ production of these reporter strains was measured and compared (Fig. S5 and S6). AU: arbitrary

units.
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inducer IPTG (Fig. 5, Fig. S4). Upon addition of IPTG, the noise value was

decreased to 0.25 indicating total homogeneity, whereas the overall mean

fluorescence increased 5.7 fold. As expected, no PantA activity could be observed

in 1° cells lacking antJ (Fig. 5). However, a heterogeneous PantA activity (noise

value of 0.48) could be restored by simple integration of antJ at another site of the

chromosome. Overproduction of AntJ also mediated a homogeneously distributed

PantA activity in the ΔantJ background (Fig. 5, Fig. S9). In addition, AQ production

correlated with the detected PantA activity in all the reporter strains (Fig. S5 and

S6).

Interestingly, a homogeneous PantA activity could be detected in 2° cells (noise

value of 0.29). However, the overall mean fluorescence intensity of 1° and 2° cells

were comparable (Fig. 5, Fig. S11). By duplicating antJ on the chromosome in 2°

cells, the heterogeneity of PantA activity increased 1.9 fold, reaching a noise value

of 0.54 without detecting any increase in the mean fluorescence values. After

integration of an additional copy of antJ under control of Ptac into the genome of 2°

cells, the promoter activity of the anthraquinone operon could be enhanced with a

homogeneous pattern and AQ production (only for 2) was detectable. Contrary to

the results presented above (Fig. S2B) no production of 2 could be detected for 2°

cells without an additional copy of antJ (Fig. S6C).

Relative quantification of the secondary metabolites production showed that all 2°

reporter strains produce less of the tested secondary metabolites than the 1° cells

(Fig. S7C). Neither one additional copy of antJ under the control of its native

promoter, nor under the control of Ptac, changed the production level of secondary

metabolites compared to the respective strain without an additional copy of antJ

(Fig. S7).

2.5. 1° and 2° cells harbor similar AntJ copy numbers

To test whether heterogeneity of PantA activity is mediated by a different AntJ copy

number within individual cells, we generated translational antJ-mCherry fusions

that are under the control of the native antJ promoter. Then, the corresponding

PantJ-antJ-mCherry elements were integrated into the chromosomes of 1°, 1°ΔantJ
and 2° cells. However, no significant differences in the fluorescence of the strains

could be detected at the single-cell level (Fig. 6A). Additionally, the noise values

of 0.19, 0.21 and 0.21 for 1°, 1°ΔantJ and 2° cells, respectively, showed a

homogeneous distribution of AntJ-mCherry. Furthermore, no autoregulation of

AntJ seems to occur since the fluorescence intensity of 1°ΔantJ cells did not differ

significantly from 1° or 2° wild type cells. We additionally evaluated the

transcription levels of antJ by quantitative real-time PCR at three different time

points of the growth curve (early exponential, late exponential and stationary

phase) of 1° and 2° cultures. In relation to the housekeeping gene recA, no
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differences of antJ-mRNA could be detected (Fig. 6B). This suggests that

heterogeneous PantA activity is not simply mediated by different AntJ copy

numbers, but must be directly caused by different AntJ activities in single 1° as

[(Fig._6)TD$FIG]

Fig. 6. AntJ levels in P. luminescens TT01−1°, TT01−1°ΔantJ and TT01–2° cells. A. Single-cell
microscopy imaging of the three strains with chromosomally integrated PantJ-antJ-mCherry constructs.

The pictures depicted are made via overlay of the phase contrast and the fluorophore channel. For the

separate phase contrast and fluorescence pictures see Fig. S10. The bars in the phase contrast pictures

indicate a scale of 10 μm. The fluorescence intensities of 450 single cells were individually measured

for each experiment, being analyzed using the software Big Cell Brother [28]. The noise values were

calculated as SD/mean from 450 cells. The box plots represent the distribution of mCherry fluorescence

signals from 450 cells after 24 h of growth. Representative images and box plots from one of three

independently performed experiments are shown. AU: arbitrary units. B. The levels of antJ transcripts
in TT01−1° and TT01–2° cells were determined via qRT-PCR after 9 h (exponential phase), 24 h (late

exponential phase) and 30 h (stationary phase) of growth. Changes in transcript levels (expressed

relative to recA) were calculated using the CT method [55]. Error bars represent SD of three

independently performed experiments.
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well as in all 2° cells. Therefore, AntJ acts as a transcriptional activator of the AQ

operon and is, to our knowledge, one of the rare examples causing heterogeneous

gene expression by altering its affinity by a yet unknown mechanism rather than its

copy number.

3. Discussion

P. luminescens exists in two phenotypically different forms called primary (1°) and

secondary (2°). One of the predominant phenotypes specific for 1° cells is

pigmentation due to anthraquinone (AQ) production. However, it was unclear how

AQ production is regulated. Here we identified a novel type of regulator that we

named AntJ, which activates transcription of the antA-I operon and therefore AQ

production in 1° cells. AntJ is a member of the WYL-domain transcription factors.

Within the closest AntJ homologues are transcriptional regulators from different

bacteria that are pathogenic to eukaryotes and produce secondary metabolites, i.e.,

Legionella, Yersinia and Pseudomonas species. The WYL-domain (generally

described as being around 170 aa, Pfam database) in AntJ is predicted to be C-

terminally truncated (only 83 aa long). In most bacteria that have close AntJ

homologues (i.e. Pseudomonas, Legionella, Achromobacter, Ochrobactrum and

Xenorhabdus), the WYL-domain of the predicted DNA-binding proteins is also C-

terminally truncated, indicating that this could be an adaptation for the binding of a

similar ligand or binding partner. Interestingly, several species of Pseudomonas,

Ochrobactrum and Xenorhabdus have been isolated from (infected) insects

whereas the natural reservoirs for Legionella are probably amoeba. This is to the

best of our knowledge, the first time that a function of a WYL-type regulator has

been found that is involved in secondary metabolite production. The distribution of

HTH_11/WYL proteins emphasizes the versatility and the importance of this type

of regulators. Furthermore, the fact that the AntJ homologue of P. temperata,

which shows pigmentation, shares a similarity of 93.6% with AntJ of P.

luminescens whereas no AntJ homologue is found in P. asymbiotica implies a

highly specific function of AntJ in regulating the pigment production at least in

Photorhabdus species. The WYL-domain is predicted to be a putative ligand-

binding domain whose ligand is still unknown. Until now the WYL-domain has

only been found in bacteria [20]. We could show that the AntJ levels in 1° as well

as in 2° cells is constant, demonstrating that transcriptional activation of the antA-I

operon in single 1° cells is not mediated by a simple increase of AntJ. Therefore, a

specific activation of AntJ must be mandatory to bind to the PantA promoter and to

promote heterogeneity of AQ production. Since the WYL-domain is supposed to

act as a ligand-binding domain, activation of AntJ could be due to binding of a

specific metabolite or protein in single 1° cells, which does not exist in 2° cells.

Homogeneous activation of AQ production due to a simple overexpression of antJ

in 1° as well as in 2° cells must therefore lead to a ligand-independent activation
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caused by the enhanced AntJ copy number in the cells. On the other hand, a

putative inhibiting ligand of AntJ cannot be excluded. Whereas one additional

chromosomal copy of antJ under control of its native promoter did not lead to AQ

production in 2° cells, it was indeed sufficient to decrease heterogeneity of PantA
activity in 1° cells. Only upon plasmid based overexpression of antJ or

chromosomal integration of antJ with a strong inducible promoter was AQ

production detectable in 2° cells. Without additional expression of antJ only trace

amounts of 2 are detectable in 2° cells. It is obvious that production of AQs in 2°

cells can only be achieved upon drastic overproduction of AntJ, so that the

influence of a putative inhibiting ligand might be out-competed by high AntJ copy

numbers. The presence or absence of a putative ligand must therefore drive

activation of AntJ in single cells and mediate heterogeneity of PantA activation as a

noise generator. A similar system has already been described for Spo0A in Bacillus

subtilis. Spo0A is a master regulator for spore formation and is only active when

phosphorylated. The heterogeneous activation of Spo0A is achieved by a limiting

phosphate flux. Only upon a certain threshold of phosphorylated Spo0A within the

cell, sporulation is induced [27]. Another example for regulation of phenotypic

heterogeneity by a noise of phosphorylation is bioluminescence in Vibrio harveyi

[28]. The ratios between kinase and phosphatase activities of the three sensor

kinases and hence the phosphorylation state of the response regulator LuxO is not

only important for the signal output, but also for the noise of the system and

therefore of light production in single cells. However, it is unlikely that AntJ

activity is also driven by a heterogeneous post-translational modification like

Spo0A or LuxO. Moreover, several examples for heterogeneity in quorum sensing

exist, where the respective LuxR-type receptor binds the auto-inducer signal(s) and

therefore regulates heterogeneous gene expression (see [4] for review). Therefore,

we would suppose a similar mechanism for AntJ and the putative yet unknown

ligand to mediate heterogeneous AQ gene expression.

A global regulator that mediates phenotypic heterogeneity in Photorhabdus is

HexA, which was identified as global transcriptional regulator and repressor of

secondary metabolism [29, 30]. The influence of HexA on symbiosis was valued

when exploring that 2° cells of P. temperata restore the ability to support nematode

development upon inactivation of hexA. Therefore, HexA seems to be responsible

for the lack of symbiosis factors in 2° cells [29]. However, there are no differences

in heterogeneity of PantA activity in 1°ΔhexA cells detectable (our own

observation), so that variable HexA copy numbers in single 1° cells as well as

enhanced HexA levels in 2° cells do obviously not influence AntJ heterogeneity of

AQ production.

The absence of the global regulator HdfR (Plu4688) harms symbiosis due to the

incapability of P. luminescens cells to realize the transmission of the symbiont

[31]. Interestingly, deletion of hdfR altered the transcription level of 124 genes
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including the antA-I operon, which was down-regulated in 1°ΔhdfR cells.

However, we could not co-elute HdfR with the PantA promoter, suggesting that

HdfR indirectly influences antA-I expression, possibly by regulation of the putative

ligand that interacts with AntJ. Other regulators binding to the PantA region were

the LysR-type regulator Plu2548 and the LuxR-like protein Plu0919. However, a

deletion of the respective genes did not show any alterations in the pigmentation,

so that these regulators are not supposed to be responsible for heterogeneous PantA
activation.

In other AQ producing organisms, little is known about the regulation of AQ

synthesis. Cultures ofMorinda citrifolia plant cells are capable of using chorismate

as starting material for the production of AQs. However, no specific regulator has

yet been identified. It is known that in M. citrifolia AQ production is dependent on

the activity of the enzyme isochorismate synthase, which leads chorismate to AQ

[(Fig._7)TD$FIG]

Fig. 7. Model of the regulation of AQ production in P. luminescens 1° and 2° cells by AntJ. 1° cells are

depicted in yellow, 2° cells in cyan. The putative activating ligand of AntJ is shown in red.
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synthesis [32]. Comparable to that a correlation between a higher concentration of

the starting material malonyl-CoA within the cell and enhanced production of AQs

has also been proposed in P. luminescens [11]. Similar as in P. luminescens it was

shown in Aspergillus fumigatus that a global regulator of secondary metabolism,

LaeA, regulates the biosynthetic genes for AQ production, but the detailed

regulatory mechanism is not understood [33]. However, heterogeneous AQ

production has neither been described in Aspergillus fumigatus nor in Morinda

citrifolia.

It has been demonstrated before that both stochasticity, inherent in the biochemical

process of gene expression, and fluctuations in other cellular components can

contribute to overall variation of gene expression in single cells, that were referred

to as intrinsic and extrinsic noise [34]. Since AntJ copy number is constant in 1° as

well as in 2° cells it can be concluded that noise of AntJ activity is mainly caused

by extrinsic noise of a specific ligand. A basic principle of phenotypic

heterogeneity has been described due to noise based on molecules that exist in

low copy numbers within a cell [35]. Consequently, the cellular state

corresponding to the molecular composition of a cell and its gene expression

phenotype varies over time and between individual cells. Specific sources of this

variation can include stochastic gene expression [36] and stochastic partitioning of

molecules at cell division [37]. Another molecular mechanism that can result in

phenotypic heterogeneity independent of a specific ligand is the epigenetic

modification of the DNA caused by differences in DNA modification like

methylation. Those epigenetic modifications are an important source of phenotypic

heterogeneity in eukaryotic microorganisms [38, 39]. It could be possible that 1°

and 2° cells differ in their overall modification of the DNA, but however this has

not been described yet. Moreover, such a phenomenon could indeed explain the

absence of AQ biosynthesis in 2° cells, but not the heterogeneity of PantA activation

in single 1° cells. The heterogeneity in AQ production of 1° cells is a typical

example of division of labor [35] since production of AQ and secondary

metabolites in general can require a large fraction of the cellś genomic and

metabolic resources [40] and is therefore cost-intensive. Since the AQs are secreted

it is sufficient that only a part of the population invests the energetic costs for AQ

biosynthesis, whereas the whole population can benefit from it.

In summary, we propose that the presence of a putative ligand of AntJ at a certain

concentration promotes noise and therefore heterogeneity of AQ production in 1°

cells, whereas the predominant presence or the total absence of this ligand is the

reason for the lack of AQ production in 2° cells. However, the mechanism of a

ligand activating AntJ, which is from our point of view more likely, is illustrated in

Fig. 7. Overall, AntJ is a novel type of transcriptional activator and one of the rare

examples yet that mediates heterogeneous gene expression by altering its activity
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rather than its copy number. The identification of the putative ligand that might

bind to AntJ remains to be elusive.

4. Material and methods

4.1. Strains, plasmids and oligonucleotides

All strains used in this study are listed in Table S1, all plasmids in Table S2 and

oligonucleotides in Table S3.

4.2. Molecular biological methods

DNA manipulation was performed following standard procedures [41]. For

isolation of genomic DNA from P. luminescens TT01 Gentra Puregene Yeast/Bact

Kit (Qiagen, Hilden) or Ultra-Clean Microbial DNA Isolation Kit (Mo Bio

Laboratories Inc., Carlsbad) were used. Polymerase chain reaction (PCR) was done

with Phire Hot Start II DNA polymerase (Thermo Scientific, Darmstadt), OneTaq

polymerase (New England Biolabs, Frankfurt) or Q5 polymerase (New England

Biolabs, Frankfurt) according to the manufacturer’s instructions. Oligonucleotides
were purchased from Eurofins Genomics. The MinElute PCR Purification Kit

(Qiagen, Hilden) or HiYield® PCR DNA Fragment Extraction Kit (Südlabor,

Gauting) was used for DNA purification from agarose gels. Plasmid isolation was

performed with the Invisorb® Spin Plasmid Mini Two Kit (Stratec, Birkenfeld) or

HiYield® Plasmid Mini Kit (Südlabor, Gauting). DNA restrictions were performed

following the manufacturer’s protocol using endonucleases from Thermo Scientific

(Darmstadt) or New England Biolabs (Frankfurt).

4.3. Bacterial strains and culture conditions

P. luminescens and E. coli were aerobically grown in LB medium [41] at 30 °C (P.

luminescens) and 37 °C (E. coli). For agar plates 1.5% (w/v) agar was added to the

media. If necessary, media were supplemented with chloramphenicol (20 μg/ml),

kanamycin (50 μg/ml), gentamycin (15 μg/ml), ampicillin (100 μg/ml) and/or

rifampicin (50 μg/ml). The plasmid-based antJ overexpression in the P.

luminescens TT01−1° + antJ++ (pAKH05) and TT01−2° + antJ++ (pAKH05)

was induced with 0.1 mM IPTG. Expression of chromosomal Ptac-antJ was

induced upon addition of 1 mM IPTG. In order to avoid overexpression of antJ in

P. luminescens TT01−1°ΔantJ + antJ+ (pAKH04), Ptac was not induced and antJ

expression was achieved as result of the basal promoter activity. For growth of E.

coli ST18 the medium was supplemented with 5-aminolevulinic acid (50 μg/ml)

[42]. Pre-cultures were grown overnight and the following day appropriate

volumes of the pre-cultures were used for inoculation of the main cultures to an

OD600 = 0.05 (fluorescence microscopy) or OD600 = 0.1 (chemical analyses). All

strains are listed in Table S2.
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4.4. Generation of the plasmids

To complement antJ in the TT01−1°ΔantJ deletion strain and for overexpression

of antJ in the wild type, the entire coding sequence of antJ was amplified from

genomic DNA of P. luminescens using primers AKHp14 and AKHp15. Using

these primers on both ends of the insert a 24 bp overhang homologous region to

pCOLA_tacI/I or pACYC_tacI/I respectively, was added to enable Gibson

assembly. The backbones of pCOLA_tacI/I and pACYC_tacI/I were amplified

by PCR using primers AKHp12 and AKHp13. Assembled products (pAKH04 and

pAKH05) were used to transform E. coli DH10B. Plasmids were isolated and

transferred into strains TT01−1°ΔantJ and TT01−1° or TT01−2°, respectively.

For the purification of AntJ used for SPR spectroscopy, the plasmid pBAD24-antJ-

His was generated via amplification of antJ (728 bp) using primers antJ-NheI_fwd

and antJ-NdeI-ostop_rev. The insert and the vector were cut with restriction

enzymes NheI and NdeI. The correct insertion was verified via PCR using primers

pBAD24-seq_fwd and pBAD24-seq_rev.

For the purification of AntJ used in EMSA assays the plasmid pCATI4_antJ was

constructed. For that purpose antJ was amplified with the primers AKHp44/45 and

to both ends of the insert an overhang homologous to pCATI4 was attached for

Gibson assembly. The vector pCATI4 was amplified by PCR using primers

AKHp42/43. E. coli DH10B was transformed with the assembled vector. The

vector insert was verified via sequencing.

For reporter assays in E. coli LMG194, the plasmid pBAD24-antJ was generated

via amplification of antJ with the primers antJ-NheI_fwd and antJ-NdeI_rev (731

bp) and subsequent cleavage of the insert and the vector via NheI and NdeI. The

different constructs of the antA promoter region were cloned into the plasmid

pBBR1-mcs5-tt-lux. The complete promoter was amplified with the primers

PantA-XbaI_fwd and PantA-XmaI_rev (389 bp). For generation of the antA

promoter derivatives s1 (241 bp), s2 (239 bp) and s3 (203 bp), the primers PantA-

s1-XbaI_fwd, PantA-s2-XbaI_fwd and PantA-s3-XbaI_fwd were used and each

primer was combined with PantA-XmaI_rev for PCR. The construct mm1 (398 bp

PCR) was generated via an overlap-PCR (PantA-XbaI_fwd, PantA-XmAI_rev) of

the products that had been amplified with the primers pairs PantA-XbaI_fwd,

PantA-mm1-ol_rev and PantA-mm1-ol_fwd and PantA-XmaI_rev. The construct

mm2 (398 bp) was made via an overlap-PCR (PantA-XbaI_fwd, PantA-

XmAI_rev) of the products that had been amplified with the primer pairs PantA-

XbaI_fwd, PantA-mm2_rev and PantA-mm2_fwd, PantA-XmaI_rev. For con-

struction of the mspacer (398 bp) two PCRs with the primer pairs PantA-

XbaI_fwd, PantA-spacer-ol_rev and PantA-spacer-ol_fwd, PantA-XbaI_rev and a

subsequent overlap-PCR as described above were performed. All of the PCR

products were cut with restriction enzymes XbaI and XmaI and subsequently
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ligated with equally treated vector pBBR1-mcs5-tt-lux. Correct insertions were

verified via control-PCR using the primers check-pBBR_fwd and check-

pBBR_rev.

A PCR was performed to amplify eyfp with a size of 757 bp by using the primers

eyfp-mcs_fwd and eyfp-EcoRI_rev and the plasmid pEYFP as a template. The

PCR product and the vector pPINT-mCherry [25] were cut with the enzymes

ApaI and EcoRI and the resulting plasmid was called pPEINT-mCherry. The

control-PCR was performed using the primers check-mcherry-ins_rev and check-

eyfp2_rev with a resulting PCR size of 1106 bp.

In order to generate the eyfp fusions three different constructs were inserted into

pPEINT-Pless-mCherry-Pless-eyfp. PantJ (519 bp) was generated via PCR using

primers PantJ-NheI_fwd and PantJ-Not_rev and for generation of PantJ-antJ (1220

bp) primers PantJ-NheI_fwd and antJ-ostop-NcoI_rev were used. For generation of

both PCR products chromosomal DNA of P. luminescens was used as template.

Ptac-antJ was amplified via Ptac-antJ-NheI_fwd and antJ-ostop-NcoI_rev, contain-

ing the lacI repressor gene and antJ under the control of the tac-promoter. The

plasmid pAKH05 was used as template and the product size was 2110 bp.

A PCR was performed to generate PantA-mCherry fusions for all three plasmids.

PantA was amplified by a PCR with the primers PantA-NheI_fwd and PantA-

NheI_rev and the PCR product was cut with NheI. The proper insertion within the

correct direction was verified via DNA sequencing. The resulting plasmids were

called pPEINT-PantA-mCherry-PantJ-eyfp, pPEINT-PantA-mCherry-PantJ-antJ-eyfp

and pPEINT-PantA-mCherry-Ptac-antJ-eyfp. A control PCR with the primers check-

mcherry-ins_rev and check-eyfp _rev was performed.

For generation of the plasmids pPINT-PantJ-mCherry and pPINT-PantJ-antJ-

mCherry the following procedures were performed. PantJ was amplified via the

primers PantJ-NheI_fwd and PantJ-BamHI_rev resulting in a 516 bp product and

the 1215 bp long PantJ-antJ product was generated with the primers PantJ-

NheI_fwd and antJ-ostop-BamHI_rev. For both PCR products, chromosomal DNA

of P. luminescens was used as template. In order to insert PantJ and PantJ-antJ

upstream of mCherry, the vector pPINT-mCherry as well as the inserts were cut

with NheI and BamHI. The resulting plasmids were called pPINT-PantJ-mCherry

and pPINT-PantJ-antJ-mCherry. The correct insertions were verified by a PCR with

the primers check-mcherry-ins_rev and check-eyfp-ins_rev. Furthermore, all

generated plasmids were sequenced (Genomics core facility, LMU Biozentrum)

to verify correctness.
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4.5. Competent cells and transformation

E. coli cells were made chemically competent and transformed as described

elsewhere [43].

4.6. Generation of knockout mutants

The gene encoding AntJ (plu4185) was deleted using pCKcipB [24], which is a

derivative of pDS132 [44]. For the in frame deletion of antJ an upstream (926 bp)

and a downstream fragment (788 bp) of antJ were amplified by PCR using primers

AKHp06–AKHp09 introducing a PstI and a BamHI restriction site to the 5′end of

the upstream fragment and the 3′end of the downstream fragment, respectively.

Splice overlap extension was used to fuse the two PCR products, which were

subcloned into pJET1.2, digested using PstI and BamHI restriction sites and cloned

into pCKcipB via the PstI and BglII restriction sites. The resulting plasmid

pAKH01 was transferred by electroporation into E. coli S17-1 λpir. Transformants

were confirmed via plasmid extraction and restriction analysis before using for

conjugation with P. luminescens TT01. Conjugation and plasmid excision via a

second homologous recombination were performed as described before [14]. In

order to confirm the 702 bp markerless deletion of antJ primers AKHp10 and

AKHp11 were used. For the deletion of the genes plu0918-0925 and plu2548 a

similar strategy was applied. Upstream and downstream regions were amplified

using primers AKHp16-19 and AKHp22-25, respectively. In this way both

upstream/downstream fragments were each extended with a 20 bp/25 bp stretch

homologous to the vector and a 12–13 bp overlap homologous to the other

fragment. Related up- and downstream fragments were cloned into pCKcipB,

linearized with PstI and BglII using Gibson Cloning (Gibson Assembly Cloning

Kit, New England Biolabs GmbH). Deletion of 7498 bp or 887 bp were confirmed

by PCR using primers AKHp20-21 or AKHp26-27.

4.7. Reporter gene assays

For promoter activity assays in E. coli LMG194, cells were inoculated at an OD600

of 0.05 and aerobically grown at 37 °C in microtiter plates within a Tecan Infinite

F500 system (Tecan). OD600 and luminescence were measured every 10 minutes

for 8 h. Arabinose was added at a final concentration of 0.0001% (w/v) after the

cells reached an OD600 of 0.2. Data are reported as relative light units (RLU) in

counts per second per milliliter per OD600.

For reporter activity assays with P. luminescens, the OD600, which initially was

adjusted to 0.05, the cells were aerobically grown at 30 °C in microtiter plates with

a Tecan Infinite F500 system (Tecan). The OD and fluorescence intensity of

mCherry (560 nm excitation, 612 nm emission, 20 nm bandwidth) were measured

after 8, 24 and 28 h of incubation. Data are reported as relative fluorescence units
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(RFU). Raw fluorescence data were normalized with the optical density (OD600) of

the respective culture.

4.8. DNA-protein pull down assay

For the DNA-protein pull down assay the upstream region of antA (986 bp) was

amplified by PCR into three overlapping fragments using the primers AKHp01-05.

All forward primers were biotinylated. The PCR products were excised after gel

electrophoretic separation. Following agarose digest and isopropanol/glycogen

precipitation, the DNA was re-dissolved in distilled water. Dynabeads® M-280

Streptavidin were used according to the manufacturerś protocol (Invitrogen, Life

Technologies). 100 μl of the Dynabeads® were loaded with 3 μg of the purified

DNA fragment. P. luminescens was grown to an OD600 of 5.4 and harvested cells

were stored at −20 °C. A cell pellet from 100 ml culture was resuspended in 5 ml

lysis buffer [50 mM tris(hydroxymethyl)aminomethane Tris/HCl, pH 7.4, 5 mM

ethylenediaminetetraacetic acid (EDTA) disodium salt, 100 mM NaCl, 1 mM

dithiothreitol (DTT), 0.05% (v/v) Triton X–100, 1:200 protease inhibitor mix

(Protease Inhibitor Cocktail SetIII, EDTA free, Calbiochem®) a spatula tip

lysozyme]. For completion of cell lysis as well as destruction of cellular DNA the

cell suspension was sonicated. Unsolvable cell fragments were removed by

centrifugation. 3 μg promoter fragment (immobilized on the Dynabeads®) were

incubated together with 10 μg salmon sperm DNA with 1.4 ml cell lysate. After 15

min of incubation, washing steps (15 min) with increasing salt concentration were

performed [125/150/175/200 mM NaCl in 50 mM Tris/HCl, pH 7.4, 1 mM DTT,

0.05% (v/v) Triton X–100, 1:1000 protease inhibitor mix]. Final elution of the

proteins was realized by incubation with 500 mM NaCl in 50 mM Tris/HCl, pH 7.4

for 30 min. The proteins in the cell lysate, in the washing steps (W1-W4) and the

elution fraction were harvested using chloroform/methanol precipitation [45].

4.9. Peptide mass fingerprint

The dried protein pellets were solved in protein loading dye [20 mM Tris HCl, 4%

glycerin, 2% (w/v) SDS, 0.3 M β-mercaptoethanol, 0.04% (w/v) bromophenol blue,

pH 6.8] and proteins were size depended separated using SDS-PAGE. Bands of

interest were excised from Coomassie Blue G-250 stained gels and in-gel digested

with slight modifications as described earlier [46]. Reduction and alkylation were

performed as described in [46] (step 4.A). Prior to overnight digestion at 37 °C in

60 μl digestion buffer [10 ng μl−1 trypsin, 10% (v/v) ACN, 10 mM NH4HCO3] the

gel slice was washed three times with 50% 100 mM NH4HCO3/50% acetonitril

(ACN) for 10 min, and then with ACN for 10 min. Peptide extraction was

performed for 30 min at 37 °C with 30% ACN/0.1% trifluoroacetic acid (TFA)

followed by a second extraction with 50% ACN/0.1% TFA. Both extracts were
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mixed and dried under reduced pressure. Afterwards the peptides were dissolved in

20 μl 30% ACN/0.1% TFA and measured with MALDI MS.

4.10. MALDI MS analysis and Mascot database search

MALDI MS analysis and sample preparation was described earlier [47]. The

samples were 1:1 mixed with the matrix [20 mM 4-Chloro-α-cyanocinnamic acid

(ClCCA) solved in 70% (v/v) ACN] on a MALDI-Target and air-dried. Spectra

were analyzed with the Qual Browser (Version 2.0.7; Thermo Fisher Scientific,

Inc., Waltham) and used for a database search on the mascot server (matrixscience.

com) applying the following parameters: peptide mass fingerprint database:

NCBInr; enzyme: trypsin (3 missed cleavages allowed); fixed modification:

carbamidomethyl (C); variable modification: oxidation (M); peptide tolerance: 5

ppm; mass values: MH+, monoisotopic.

4.11. Integration of reporter genes into the genome of P.
luminescens

In order to integrate PantA-mCherry as well as the PantJ, PantJ-antJ and Ptac-antJ

constructs into the genome of P. luminescens, the donor strain E. coli ST18 [42],

which requires the addition of 5-aminolevulinic acid for growth, was first

transformed with the respective plasmids. The conjugative plasmid transfer was

subsequently performed by the filter mating method [42]. For that reason, the

donor as well as the recipient strain was cultivated up to an OD600 of 0.8–1. The
donor strain was washed in LB medium for 3 times and then mixed with the

recipient strain in a ratio of 1:5 in a final volume of 1/10 of the donor‘s initial

volume. A nitrocellulose filter was set onto an LB agar plate and the mixed cells

were then dropped onto the filter without dispersion. After the incubation at 30 °C

over-night, the cells were re-suspended in 500 μl LB and spread onto LB agar

plates containing kanamycin and incubated for up to two days at 30 °C. The

genomic DNA of single colonies were isolated and used as a template to check for

chromosomal integration of the plasmid via PCR (primers: check-rpmE_fwd,

oriT_fwd, gmR-pNPTS_fwd, check-mcherry-ins_rev, check-glmS_rev). As all the

strains yielded additionally PantJ-eYFP, PantJ-antJ-eYFP and Ptac-antJ-eYFP (no

induction) that had no fluorescence effect, the reporter strains are just referred to as

PantJ, PantJ-antJ and Ptac-antJ.

4.12. Transcription analyses using quantitative real-time PCR
(qPCR)

P. luminescens 1° and 2° cells were cultivated as described above. Samples were

taken at 9 h, 24 h and 30 h of growth before the total RNA was isolated using the

Quick RNA Mini prep kit (Zymo Research, Freiburg im Breisgau). The RNA was
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then re-transcribed to cDNA via the random-primed first-strand cDNA synthesis

kit (Thermo Scientific, Dreieich). Quantitative real-time PCR (iQ5 real-time PCR

detection system, BioRad, München) was performed using the synthesized cDNA,

a SYBR green detection system (BioRad, München) and specific internal primers

for antJ and recA. Samples from three independently performed experiments were

used and the Ct value (cycle threshold) was determined after 40 cycles using the iQ

software (BioRad, München). Values were normalized with reference to recA and

relative changes in transcript levels were calculated using the comparative ΔΔCt

method [48].

4.13. RNA extraction and sequencing

For RNA sequencing, the respective P. luminescens strains were inoculated in LB

broth with an OD600 of 0.3 with pre-cultures grown in the same medium. After

8–10 h of aerobic cultivation at 30 °C cells were harvested (OD600 = 5) and for

extraction of total RNA, cells from 1 ml culture were re-suspended in 800 μl AE-
buffer [20 mM NaOAc, 1 mM EDTA (pH 5.2) made in nuclease free water], mixed

with 500 μl acidified phenol:chloroform and after transfer to a homogenization

tube (lysing matrix B: 0.1 mm silica spheres, MP Biomedicals Germany GmbH)

disrupted using a cell homogenizer (FastPrep-24R 5G, MP Biomedicals Germany

GmbH) with two cycles of 30 s at 6 m s−1. After phase separation the aqueous

phase was extracted two times with 500 μl of chloroform. Finally, the RNA was

precipitated by adding 600 μl isopropanol and 120 μl 3 M sodium acetate at −20
°C overnight. The RNA was pelleted and washed twice with ice cold 70% (v/v)

ethanol, dried on ice and re-suspended in 35 μl nuclease free water. Then DNase

treatment (TURBO DNA-freeTM Kit, Life Technologies) was performed following

the manufacturer’s instructions. Eurofins Genomics GmbH (Ebersberg, Germany)

performed RNA quality control and rRNA depletion immediately before

sequencing the RNA samples. Data is available at the European Nucleotide

Archive (ENA) using accession number (ERP018162). During sequencing,

directionality of the reads was maintained and all sequencing data was mapped

to the P. luminescens TT01 genome [49] using the bowtie function as a part of

Nesoni (v0.128). The count function from Nesoni (v0.128) was subsequently used

to count before analysing with Limma/Voom, which is part of Degust (v0.19

available at http://www.vicbioinformatics.com/degust/). A false discovery rate

(FDR) of <0.01 was used and only sequences which were at least 1.5-fold up-/

down-regulated compared to the WT were considered significant. Transcripts with

more than 2.5-fold altered expression level in the empty vector control (TT01−1°
+ control1) compared to the WT were excluded (Table S4).
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4.14. Analytical scale culture extraction and HPLC-UV/MS
analysis

P. luminescens strains were inoculated in LB media in 100 ml Erlenmeyer flasks

with an overnight culture to an OD600 of 0.1 and aerobically grown for 24 h at 30

°C. For ethyl acetate (EE) extractions 2 ml samples of the cultures were extracted

for 1 h at RT with 2 ml EE + 0.1% FA. 1 ml of the organic supernatant was dried

under nitrogen flow. The extracts were re-dissolved in 250 μl methanol and

measured by HPLC-UV/MS. HPLC-UV/MS analysis was done as explained

before [50]. We used an ACN/0.1% FA in H2O/0.1% FA gradient from 5 to 95% in

12 min at a flow rate of 0.6 ml/min at 30 °C. Chromatograms were analyzed using

Bruker Compass DataAnalysis 4.2. For AQ quantification peak areas of the HPLC-

UV analysis (UV-chromatograms at 430 nm) were used. For SM quantification,

peak areas of the HPLC-MS chromatogram were determined using Bruker

Compass TargetAnalysis Version 1.3. The respective peak areas were normalized

against the cell density (OD600) when cultures were harvested.

4.15. Fluorescence microscopy and single-cell analysis

The P. luminescens fluorescence reporter strains were investigated using a

fluorescence microscope (Leica, Bensheim, Germany). An excitation wavelength

of 546 nm and a 605 nm emission filter with a 75 nm bandwidth was used to

measure mCherry. The cultures were inoculated at an OD600 of 0.05 with the

appropriate volume of the respective over-night cultures, and were then grown at

30 °C for 24 h in the presence of appropriate antibiotics. An agarose pad [0.5% (w/

v) agarose in PBS buffer, pH 7.4] was prepared onto a microscope slide, 7 μl of the
grown cultures were dropped onto the slide and covered with a coverslip. Three

independent biological experiments were performed. For each experiment, the

fluorescence intensities of 450 cells were measured using the single-cell analysis

tool Big Cell Brother [28].

4.16. Purification of AntJ

For purification of AntJ for SPR analysis, E. coli BL21 was transformed with

plasmid pBAD24-antJ-His. The cells were cultivated up to an OD600 of 0.5 and

then gene expression was induced by the addition of 0.5 mM IPTG. After 3–4 h of

aerobic cultivation at 30 °C the cells were harvested by centrifugation (6500 rpm,

15 min, 4 °C). After harvesting the cells were disrupted via using a Cell disruptor

(Constant Cell Disruption Systems, Northants, UK) at 1.35 kbar and 4 °C in lysis

buffer [50 mM Tris/HCl pH 7.5, 10% (v/v) glycerol, 10 mM MgCl2, 1 mM

dithiotreitol, 0.5 mM phenylmethylsulfonylfluoride, and 0.03 mg/ml (w/v) DNase].

After removal of intact cells and cell debris by centrifugation (9.000 × g, 10 min),

the cytosol was frozen at −80 °C. Purification was carried out as described before
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[51]. The equilibration and washing steps were performed in buffer E [50 mM Tris/

HCl, pH 7.5, 10% (v/v) glycerol, 200 mM NaCl, 2 mM β-mercaptoethanol, 10 mM

imidazole], and 250 mM imidazole was added for the elution of the protein from

the column.

For purification of AntJ for EMSA experiments, E. coli BL21 Star (DE3) was

transformed with plasmid pCATI4_antJ. Cells were aerobically grown at 30 °C in

autoinduction medium [LB medium supplemented with 3.3 g/l (NH4)2SO4, 6.8 g/l

KH2PO4, 7.1 g/l Na2HPO4, 5 g/l glycerol, 0.5 g/l glucose and 2.0 g/l α-lactose]
[52]. After 24 h cells were harvested (30.000 x g, 15 min, 4 °C) and pellets were

stored at −20 °C. Cell lysis and protein purification were performed as described

before [53]. Apart from this all buffers were adjusted to pH 7 and contained

additionally 10% (v/v) glycerol and 0.1% Triton X–100 in order to improve

solubility of AntJ. Purified AntJ was immediately used for EMSA experiments.

4.17. Electrophoretic mobility shift assay (EMSA)

Labeling of DNA regions for EMSA experiments was performed as described

before [54]. The antA upstream region was subdivided into overlapping fragments

a-f (100 bp). Each fragment shares a 50 bp overlapping region with its adjacent

fragment(s). The fragments were amplified and expanded to 140 bp using

oligonucleotides AKHp30-41, which add 20 bp stretches to both sides of the

fragment homologous to 5′Cy3-labeled oligonucleotide AKHp28 respectively

AKHp29. AKHp28 and AKHp29 were used in a second PCR. EMSAs were

performed with minor modifications as described before [54]. Briefly 0.125 pmol

5′-Cy3 labeled DNA fragments, together with 2.5 μg salmon sperm DNA and 0.5

pmol heterologously expressed and purified AntJ were incubated for 5 min at RT

in shift buffer [25 mM Tris-acetate, 0.5 mM DTT, 50 mM KC2H3O2, 8 mM Mg

(C2H3O2)2] before loading on native 4.5% polyacrylamide gels. Protein-DNA

complexes were separated from unbound DNA on the gel in TAE buffer (40 mM

Tris-acetate pH 7.8, 1 mM EDTA) applying a voltage of 3.5 V/cm. 5′-Cy3 labeled

DNA fragments on the gel were detected as described before [54].

4.18. Surface plasmon resonance (SPR) spectroscopy

SPR assays were performed in a Biacore T200 (GE Healthcare, München) using

carboxymethyl dextran sensor chips pre-coated with streptavidin (XanTec

SAD500L, XanTec Bioanalytics GmbH, Düsseldorf). Biotinylated fragments of

the antA promoter were generated by amplification of the PantA region using

chromosomal DNA of P. luminescens as template, and using the biotinylated

primer PantA-Btn_fwd and PantA-XmaI_rev. Before immobilizing the DNA

fragment, the chip was equilibrated by three injections using 1 M NaCl/50 mM

NaOH at a flow rate of 10 μl/min. 10 nM of the respective double-stranded
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biotinylated DNA fragment was injected using a contact time of 420 s and a flow

rate of 10 μl/min. As a final wash step, 1 M NaCl/50 mM NaOH/50% (v/v)

isopropanol was injected. Approximately 300 RU of the DNA fragment was

captured onto flow cell 2 of the chip. AntJ was diluted in HBS-EP+ buffer [10 mM

HEPES, pH 7.4, 150 mM NaCl, 3 mM EDTA, 0.05% (v/v) Surfactant P20] and

passed over flow cells 1 and 2 in different concentrations (0 nM, 10 nM, 25 nM, 50

nM, 100 nM, 125 nM, 250 nM, and 500 nM) using a contact time of 180 s followed

by a 240 dissociation time before the next cycle started. The experiments were

carried out at 25 °C at a flow rate of 30 μl/min. After each cycle the surface was

regenerated by injection of 2.5 M NaCl for 60 s at 30 μl/min flow rate.

Sensorgrams were recorded using the Biacore T200Control software 2.0 and

analyzed with the Biacore T200 Evaluation software 2.0. The surface of flow cell 1

was used to obtain blank sensorgrams for subtraction of bulk refractive index

background. The referenced sensorgrams were normalized to a baseline of 0. The

1:1 binding algorithm was used for calculation of the binding affinity. Peaks in the

sensorgrams at the beginning and the end of the injection emerged from the

runtime difference between the flow cells of each chip. Experiments were

performed in the Bioanalytics core facility of the LMU München.

4.19. Phylogenetic analysis

For the identification of the 100 most similar protein sequences of AntJ, a BLASTp

search against the non-redundant protein database from NCBI was performed. For

the phylogenetic analysis ClustalW was used to align the sequences. Three

sequences were deleted from the alignment due to the occurrence of unusual amino

acids. The tree was generated with the Geneious tree builder incorporated into

Geneious (v6.1.8) (Biomatters Ltd., New Zealand) utilizing the Jukes-Cantor

distance model.
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