
Henkin Semantics for Reasoning with Natural

Language

Instructions for Working with the Source Code

Michael Hahn Frank Richter
mhahn@sfs.uni-tuebingen.de
f.richter@em.uni-frankfurt.de

2015

Contents

1 General 2

I Typical Workflow: Examples 2

2 Preparation 2

3 Replicating the Experiments 3

4 Processing Natural-Language Sentences 3

5 Accessing the Test Suite 4

6 Running Inference Engines 5

II Documentation 6

7 Data formats encoding formulae 6

8 Grammar Fragment and Meaning Postulates 7

9 Important Predicates 8
9.1 Manipulating higher-order terms 8
9.2 Translation . 8
9.3 Output . 8
9.4 Passing formulae to inference engines 9

1

1 General

The present manual documents the source code for the paper

Michael Hahn and Frank Richter. Henkin semantics for reasoning with
natural language. Journal of Language Modelling, 2015

The software is in part adapted from the source code of

Patrick Blackburn and Johan Bos. Representation and Inference for Nat-
ural Language. A First Course in Computational Semantics. CSLI, 2005

henceforth referred to as BB1, available at http://www.let.rug.nl/bos/comsem/
software1.html. We generally followed the structure of their semantic frag-
ments, and defined an analogous fragment named HOI (‘higher-order inten-
sional’).

Part I of this manual presents exemplary inputs which illustrate the func-
tionality of the package. They put you in a position to replicate our experiments.
Part II shows where our code departs from BB1; it contains all necessary infor-
mation to get started with manipulating the grammar fragment.

Part I

Typical Workflow: Examples

2 Preparation

• Install the reasoning engines on your machine from external sources. The
program will call them with the commands

prover9 FILE

eprover --tptp-in < FILE

tptp2dfg FILE FILE2; SPASS FILE2 (where FILE2 is a temporary file)

mace4 -c < FILE

Modify the predicates in inferenceEngines.pl if you do not want to use
all supported engines.

• Adjust the definition of translationStrategy/2 in foTranslation.pl

to get the desired strength. In short:

translationStrategy(hybrid, weak). = weak translation

translationStrategy(hybrid, medium). = strong translation

There are a few other options, described in the source code, for other
translations which are not covered in the paper.

• Run a Prolog interpreter in the folder src/ and consult HOI.pl.

2

http://www.let.rug.nl/bos/comsem/software1.html
http://www.let.rug.nl/bos/comsem/software1.html

3 Replicating the Experiments

For replicating our experiments or running your own experiments on modified or
new grammar fragments, consult fracas.pl and remove everything from inside
the directory tpinput/. Then run the following in Prolog:

initTheoremProversOnTestsuite.

Afterward, run the following in src/:

perl testTP.perl prover9 tpinput

perl testTP.perl eprover tpinput

perl testTP.perl spass tpinput

perl testMB.perl prover9 tpinput

perl printResults.perl tpinput

The last script will output the results in LATEX and compute the statistics that
is reported in the paper.

4 Processing Natural-Language Sentences

Now we turn to examples of how the analyses of natural language input can be
inspected. For the formatting of Ty2 terms and first-order expressions, refer to
Section 7.

• Inspecting the analysis of a sentence in Ty2 and in the first-order transla-
tion:

lambdaHOI([a,man,thinks,mia,dances],[Ty2|_]),

translate(Ty2,FO).

Result:

Ty2: Ty2 representation of the input sentence. If the sentence has mul-
tiple analyses in the grammar, the tail of the list will contain more Ty2
representations.

FO: first-order translation of the Ty2 representation

• Inspecting the first-order translation including the axioms and meaning
postulates:

lambdaHOI([a,woman,dances],[Ty2|_]),

translateWithAxioms(Ty2,FO).

Result :

Ty2: Ty2 representation of the first analysis of the input sentence

FO: first-order translation including axioms and meaning postulates

• Inspecting an analysis with LATEX output:

lambdaHOI([every,man,dances],[Ty2|_]),

ho2Latex(Ty2, short, fo).

3

Result:

Ty2: the Ty2 representation of the sentence

Furthermore, Ty2 is printed in LATEX. For more details on ho2Latex, see
Section 9.3.

• Inspecting the semantic analysis of a phrase:

np(A,[john],[]),

getFeatureValue(A,sem,Sem),

completeAndUnifyTypes(Sem,Sem2),

betaConvert(Sem2,Sem3),

ho2Latex(Sem3,short,ho).

Result:

A: the feature structure assigned to the string ‘John’ by the grammar when
it is analyzed as an NP

Sem: the semantic representation contained in A, encoding a partially-
typed higher-order term (see Section 7 for this format)

Sem2: the semantic representation contained in A, encoded as a fully well-
typed higher-order term

Sem3: the beta-converted version of Sem2

Finally, Sem3 is printed in LATEX format. See Section 9.3 on ‘Output’ for
the options available for ho2Latex/3.

When applied to other phrasal categories, the first line must be changed to
match the corresponding syntactic label in the grammar in
englishGrammar.pl (which is adapted from the BB1 grammar).

5 Accessing the Test Suite

• Accessing test items from our test suite (hoOnferenceTestSuite.pl)

testItemFO(ID,C,D-E,HO,FO-FONeg).

Result: retrieves item ID (replace with any integer for which there is a
test item) from the test suite.

C: label (valid, contingent, contradictory)

D: list of premises

E: conjecture

HO: Ty2 representation of the inference

FO: first order translation of the positive formula (p→ γ in Section 4.4 in
the paper)

FONeg: first order translation of the negative formula (p → ¬γ in Sec-
tion 4.4 in the paper)

• Accessing FraCaS items: after consulting fracas.pl, use

4

fracasTestItemFO(Section,ID,C,D-E,HO,FO-FONeg).

Result: similar to before. Section matches the section (an integer ranging
from 1 to 9), ID the id of the item (an integer between 1 and 346), and
the other variables have the same meaning as before.

• Print the entire test suite

lambdaHOITestSuite.

Result: prints the Ty2 analyses for the test items

6 Running Inference Engines

For the commands below, at least one of the supported inference engines must
be installed.

• Testing validity of natural language inferences (with meaning postulates):

testInferenceSentence([mia,dances,or,does,not,dance]).

Result: terminates quickly with success messages from the provers.

testInferenceSentence([mia,dances]).

Result: does not terminate (or terminates without success message)

• Testing validity of Ty2 terms:

op(500,xfx,@).

testInferenceFormula((or @ (not @ a)) @ a).

Result: terminates quickly with success messages from the provers.

Any partially-well-typed higher-order term that can be resolved unam-
biguously to a term of type t can be the argument of testInferenceFormula.

• Creating input files for the inference engines:

First consult fracas.pl and remove everything inside tpinput/. Then
run

initTheoremProversOnTestsuite.

Result: creates files in tpinput/ for all test items (both ours and FraCaS)

• Run theorem provers on the full test suite:

After running the previous command, execute the following on the com-
mand line:

perl testTP.perl prover9 tpinput

5

Result: Runs Prover9 on the entire test suite, with timeout set to 30
seconds, and creates a logfile at tpinput/tp-prover9.log. The timeout is
set in testTP.perl. The parameter prover9 can be replaced by eprover,

spass.

• Run model builders on the full test suite:

perl testMB.perl prover9 tpinput

Result: Runs Mace4 on the entire test suite, with timeout set to 30 sec-
onds, and creates a logfile at tpinput/mb-prover9.log.

• Printing results and computing statistics:

After running testTP.perl on prover9, eprover, and spass, and after
running testMB.perl on prover9, execute

perl printResults.perl tpinput

Result: Will print the results of the inference engines as LATEX source code,
and will compute some statistics. With this script the results reported in
the paper can be verified directly.

Part II

Documentation

7 Data formats encoding formulae

This section describes the syntactic formats for encoding first-order formulae
and Ty2 terms.

• Blackburn & Bos first-order formulae. This is the input format used by
the predicates creating output files for inference engines. The predicate
fo2bb(In,Out) converts from our format to BB1 format

• Our syntax for first-order formulae. Extends the BB1 format with more
logical operators, otherwise the same. Inspect fo2bb(In,Out) for details.

• (Well-typed) Higher-order terms. This is the output format of lambdaHOI/2.
It is defined as follows:

TermWithType → (Term,Type)

Term → Atom, where Atom = Functor(Type, ..., Type)

Term → lam(VariableWithType,Term)

Term → (TermWithType @ TermWithType)

Term → PrologVariable

VariableWithType → (PrologVariable,Type)

Type → e|s|t|PrologVariable

6

Type → (Type,Type)

Some predicates will assume that the term is also well-typed, i.e., that
lambda abstraction and functional application result in terms of the cor-
rect type, and that the logical constants have the types stated in the paper.
There might be additional restrictions, use syntaxCheck/1 to make sure
your term will be processed properly.

• Partially typed higher-order terms. This is the output format of the gram-
matical analysis, and the format used in writing the fragment itself. It is
defined by adding the rule: TermWithType → Term .

There are problems if the term does not really make sense, e.g., if the same
Prolog variable is used both for a type and for a term. Moreover, there
can be problems if the type of some variable or constant is not completely
determined by the information given in the term.

completeAndUnifyTypes(IN,OUT) from betaConversion.pl converts par-
tially typed terms to full higher-order terms, performing type inference to
the extent that it is possible.

8 Grammar Fragment and Meaning Postulates

This section describes the encoding of the grammar fragment, the meaning
postulates, and the test suite. They all can of course be freely modified.

CFG rules and lexicon are essentially the same as in the BB1 grammar,
extended by some words and constructions.

Semantic Composition is defined by the predicate combine/2 of BB1 in
semRulesHOI.pl. The Ty2 representations of syntactic categories may be par-
tially typed terms up to the sentential category ‘S’, determined by composition
rules such as

combine(s:(A @ B),[np:A,vp:B]).

At the level of the text category ‘T’, the relevant combination rule transforms
the entire term into a well-typed Ty2 term (by two rules at the beginning of the
file), and, for every subterm of the form lam((W,s),X), it unifies W with every
free world variable that occurs in X.

Semantic Lexicon is in semlexHOI.pl, as in the BB1 fragments. Format:

semLexBB(SyntacticCategory,FeatureStructure)

where the features of the feature structure depend on the category as in BB1’s
grammar, and the sem value (which must be the last value for the generation of
semLex/2 entries to work) should be a partially typed Ty2 term.

Upon compilation, these entries are converted to the semLex/2 assertions
used by the BB1 grammar (in which the sem values are well-typed Ty2 terms)
by code at the end of semlexHOI.pl.

7

Meaning Postulates are in linguisticAxioms.pl. Format:

lingaxHO(ListOfTriggeringTy2ConstantSymbols, ListOfFreeTypeVariables,

Ty2Term, Description)

where Ty2Term can be partially typed. ListOfFreeTypeVariables is currently
not supported and should be [] to be safe. The types of the triggering constant
symbols do not have to be given, but underspecifying argument types of poly-
morphic constants might lead to problems. Upon compilation, these entries are
converted to assertions of

foTranslation:lingax(Triggers,FirstOrderTranslationOfPostulate,...)

The postulates are printed in LATEX format by printMeaningPostulates/0.

Test suite see Section 5.

Axioms are contained in translationTypedTotalAxioms.pl.

9 Important Predicates

9.1 Manipulating higher-order terms

betaConversion.pl:

• syntaxCheck(In): checks the format of a higher-order term

• betaConvert(In,Out)

9.2 Translation

The predicates for FO translation are:

• translate(In,Out)

• translateWithAxioms(In,Out)

The translation is implemented in translationTypedTotalHybrid.pl. Some
other translations that are not described in the paper are also implemented (in-
spect foTranslation.pl).

Choosing translation see Section 2, ‘Preparation’.

9.3 Output

Ty2 formulae can be printed in LATEXwith the predicate
ho2Latex(Term,Mode,SMode)

where
Term is a Ty2 term
Mode is one of strict(total) [with all types attached], strict(partial)

[no types attached to complex terms], short [no types].
SMode is one of ho (curried), fo (uncurried + primitive quantifiers)

8

9.4 Passing formulae to inference engines

The predicates are directly inherited from BB1 and work analogously. They
take FO formulae in BB1’s format. See Section 6 for examples.

callInference.pl:

• callTP(Formula,Solved,Engine)

• callMB(Problem,DomainSize,Model,Engine)

The interface to the engines itself is provided by Perl scripts as in BB1 (see
Section 6 for instructions on how to run them). To add a new reasoning engine,
modify the Perl scripts, and supply a suitable declaration of proverCall/3 or
initModelBuilders/2 in callInference.pl.

References

[1] Patrick Blackburn and Johan Bos. Representation and Inference for Natural
Language. A First Course in Computational Semantics. CSLI, 2005.

[2] Michael Hahn and Frank Richter. Henkin semantics for reasoning with nat-
ural language. Journal of Language Modelling, 2015.

9

	General
	I Typical Workflow: Examples
	Preparation
	Replicating the Experiments
	Processing Natural-Language Sentences
	Accessing the Test Suite
	Running Inference Engines

	II Documentation
	Data formats encoding formulae
	Grammar Fragment and Meaning Postulates
	Important Predicates
	Manipulating higher-order terms
	Translation
	Output
	Passing formulae to inference engines

