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Abstract We present an in-depth study of masses and
decays of excited scalar and pseudoscalar q̄q states in
the Extended Linear Sigma Model (eLSM). The model
also contains ground-state scalar, pseudoscalar, vector and
axial-vector mesons. The main objective is to study the
consequences of the hypothesis that the f0(1790) reso-
nance, observed a decade ago by the BES Collaboration
and recently by LHCb, represents an excited scalar quarko-
nium. In addition we also analyse the possibility that the
new a0(1950) resonance, observed recently by BABAR,
may also be an excited scalar state. Both hypotheses receive
justification in our approach although there appears to
be some tension between the simultaneous interpretation
of f0(1790)/a0(1950) and pseudoscalar mesons η(1295),
π(1300), η(1440) and K (1460) as excited q̄q states.

1 Introduction

One of the most important features of strong interaction is
the existence of the hadron spectrum. It emerges from con-
finement of quarks and gluons – degrees of freedom of the
underlying theory, Quantum Chromodynamics (QCD) – in
regions of sufficiently low energy where the QCD coupling
is known to be large [1–4]. Although the exact mechanism of
hadron formation in non-perturbartive QCD is not yet fully
understood, an experimental fact is a very abundant spectrum
of states possessing various quantum numbers, such as for
example isospin I , total spin J , parity P and charge conju-
gation C .

This is in particular the case for the spectrum of mesons
(hadrons with integer spin) that can be found in the listings
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of PDG – the Particle Data Group [5]. In the scalar channel
(J P = 0+), the following states are listed in the energy
region up to approximately 2 GeV:

f0(500)/σ, K �
0(800)/κ, a0(980), f0(980), f0(1370),

K �
0(1430), a0(1450), f0(1500), f0(1710),

K �
0(1950), a0(1950), f0(2020), f0(2100).

The pseudoscalar channel (J P = 0−) is similarly well pop-
ulated:

π, K , η, η′(958), η(1295), π(1300), η(1405),

K (1460), η(1475), η(1760), π(1800), K (1830).

A natural expectation founded in the Quark Model (see Refs.
[6,7]; for a modern and modified version see for example
Refs. [8,9]) is that the mentioned states can effectively be
described in terms of constituent quarks and antiquarks –
ground-state q̄q resonances. In this context, we define ground
states as those with the lowest mass for a given set of quantum
numbers I , J , P and C . Such a description is particularly
successful for the lightest pseudoscalar states π , K and η.

However, this cannot be the full picture as the spectra
contain more states than could be described in terms of the
ground-state q̄q structure. A further natural expectation is
then that the spectra may additionally contain first (radial)
excitations of q̄q states, i.e., those with the same quan-
tum numbers but with higher masses. (In the spectroscopic
notation, the excited scalar and pseudoscalar states corre-
spond, respectively, to the 2 3P0 and 2 1S0 configurations.) Of
course, the possibility to study such states depends crucially
on the identification of the ground states themselves; in the
case of the scalar mesons, this is not as clear as for the pseu-
doscalars. Various hypotheses have been suggested for the
scalar-meson structure, including meson–meson molecules,
q̄q̄qq states and glueballs, bound states of gluons – see, e.g.,
Refs. [10–76]. Results of these studies are at times conflicting
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but the general conclusion is nonetheless that the scalar q̄q
ground states (as well as the glueball and the low-energy four-
quark states) are well defined and positioned in the spectrum
of particles up to and including the f0(1710) resonance.

The main objective of this work is then to ascertain which
properties the excited scalar and pseudoscalar q̄q states pos-
sess and whether they can be identified in the physical spec-
trum.

Our study of the excited mesons is based on the Linear
Sigma Model [77–80]. This is an effective approach to low-
energy QCD – its degrees of freedom are not quarks and
gluons of the underlying theory but rather meson fields with
various values of I , J , P and C .

There are several advantages that the model has to offer.
Firstly, it implements the symmetries of QCD as well as
their breaking (see Sect. 2 for details). Secondly, it contains
degrees of freedom with quantum numbers equal to those
observed experimentally and in theoretical first-principles
spectra (such as those of lattice QCD). This combination of
symmetry-governed dynamics and states with correct quan-
tum numbers justifies in our view the expectation that impor-
tant aspects of the strong interaction are captured by the pro-
posed model. Note that the model employed in this article is
wide-ranging in that it contains the ground-state scalar, pseu-
doscalar, vector and axial-vector q̄q states in three flavours
(u, d, s), the scalar dilaton (glueball) and the first excitations
in the three-flavour scalar and pseudoscalar channels. Con-
sidering isospin multiplets as single degrees of freedom, there
are 16 q̄q ground states and 8 q̄q excited states plus the scalar
glueball in the model. For this reason, it can be denoted the
“Extended Linear Sigma Model” (eLSM). A further advan-
tage of eLSM is that the inclusion of degrees of freedom with
a certain structure (such as q̄q states here) allows us to test
the compatibility of experimentally known resonances with
such structure. This is of immediate relevance for experimen-
tal hadron searches such as those planned at PANDA@FAIR
[81].

With regard to vacuum states, the model has been used
in studies of two-flavour q̄q mesons [82], glueballs [83–87],
K1 and other spin-1 mesons [88,89] and baryons [90]. It is,
however, also suitable for studies of the QCD phase diagram
[91–93]. In this article, we will build upon the results obtained
in Refs. [94,95] where ground-state q̄q resonances and the
glueball were considered in vacuum. Comparing experimen-
tal masses and decay widths with the theoretical predictions
for excited states, we will draw conclusions on structure of the
observed states; we will also predict more than 35 decays for
various scalar and pseudoscalar resonances (see Sect. 3.3).

Irrespective of the above advantages, we must note that
the model used in this article also has drawbacks. There are
two that appear to be of particular importance.

Firstly, some of the states that might be of relevance
in the region of interest are absent. The most important

example is the scalar glueball whose mass is comparable
[54,58,61,64,65] to that of the excited q̄q states discussed
here. The implementation of the scalar glueball is actually
straightforward in our approach (see Sect. 2) but the amount
of its mixing with excited states is as yet unestablished,
mainly due to the unfortunate lack of experimental data (dis-
cussed in Sect. 2.3.1).

Secondly, our calculations of decay widths are performed
at tree level. Consequently, unitarity corrections are not
included. A systematic way to implement them is to consider
mesonic loops and determine their influence on the pole posi-
tions of resonances. Substantial shift of the pole position may
then improve (or spoil) the comparison to the experimental
data. However, the results of Ref. [96] suggest that unitarity
corrections are small for resonances whose ratio of decay
width to mass is small as well. Since such resonances are
present in this article (see Sect. 3.3.3), the corrections will
not be considered here.

Excited mesons were a subject of interest already sev-
eral decades ago [97,98]; to date, they have been consid-
ered in a wide range of approaches including QCD mod-
els/chiral Lagrangians [99–104], Lattice QCD [105–110],
Bethe-Salpeter equation [111–114], NJL Model and its
extensions [115–125], light-cone models [126], QCD string
approaches [127] and QCD domain walls [128]. Chiral sym-
metry has also been suggested to become effectively restored
in excited mesons [129,130] rendering their understanding
even more important. A study analogous to ours (includ-
ing both scalar and pseudoscalar excitations and their var-
ious decay channels) was performed in extensions of the
NJL model [117–119,121,122]. The conclusion was that
f0(1370), f0(1710) and a0(1450) are the first radial exci-
tations of f0(500), f0(980) and a0(980). However, this
is at the expense of having very large decay widths for
f0(1370), f0(1500) and f0(1710); in our case the decay
widths for f0 states above 1 GeV correspond to experimental
data but the resonances are identified as quarkonium ground
states [94].

The outline of the article is as follows. The general struc-
ture and results obtained so far regarding ground-state q̄q
resonances are briefly reviewed in Sects. 2.1 and 2.2. Build-
ing upon that basis, we present the Lagrangian for the excited
states and discuss the relevant experimental data in Sect. 2.3.
Two hypotheses are tested in Sect. 3: whether the f0(1790)

and a0(1950) resonances can represent excited q̄q states; the
first one is not (yet) listed by the PDG but has been observed
by the BES II and LHCb Collaborations [131,132] and is
discussed in Sect. 2.3.1. We also discuss to what extent it
is possible to interpret the pseudoscalar mesons η(1295),
π(1300), η(1440) and K (1460) as excited states. Conclu-
sions are presented in Sect. 4 and all interaction Lagrangians
used in the model can be found in Appendix A. Our units are
h̄ = c = 1; the metric tensor is gμν = diag(+,−,−,−).
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2 The model

2.1 General remarks

A viable effective approach to phenomena of non-pertur
bative strong interaction must implement the symmetries
present in the underlying theory, QCD. The theory itself is
rich in symmetries: colour symmetry SU (3)c (local); chi-
ral U (N f )L × U (N f )R symmetry (L and R denote the
’left’ and ’right’ components and N f the number of quark
flavours; global, broken in vacuum spontaneously by the non-
vanishing chiral condensate 〈q̄q〉 [133,134], at the quantum
level via the axial U (1)A anomaly [135] and explicitly by
the non-vanishing quark masses); dilatation symmetry (bro-
ken at the quantum level [136,137] but valid classically in
QCD without quarks); CPT symmetry (discrete; valid indi-
vidually for charge conjugation C , parity transformation P
and time reversal T ); Z3 symmetry (discrete; pertaining to
the centre elements of a special unitary matrix of dimension
N f × N f ; non-trivial only at non-zero temperatures [138–
143]) – all of course in addition to the Poincaré symmetry.
Terms entering the Lagrangian of an effective approach to
QCD should as a matter of principle be compatible with all
symmetries listed above. Our subject is QCD in vacuum. In
this context, we note that the colour symmetry is automati-
cally fulfilled since we will be working with colour-neutral
degrees of freedom; the structure and number of terms enter-
ing the Lagrangian are then restricted by the chiral, CPT and
dilatation symmetries.

The eLSM Lagrangian has the following general structure:

L = Ldil. + L0 + LE (1)

and in Sects. 2.2 and 2.3 we discuss the structure of the
Lagrangians contributing to L as well as their matter con-
tent.

2.2 Ground-state Quarkonia and Dilaton: Lagrangian and
the matter content

This section contains a brief overview of the results obtained
so far in the Extended Linear Sigma Model that contains
N f = 3 scalar, pseudoscalar, vector and axial-vector quarko-
nia and the scalar glueball. The discussion is included for
convenience of the reader and in order to set the basis for the
incorporation of the excited quarkonia (Sect. 2.3). All details
can be found in Refs. [94,95].

In Eq. (1), Ldil implements, at the composite level, the
dilatation symmetry of QCD and its breaking [144–149]:

Ldil. = 1

2
(∂μG)2 − 1

4

m2
G

	2

(
G4 ln

G2

	2 − G4

4

)
(2)

where G represents the dilaton field and 	 is the scale that
explicitly breaks the dilatation symmetry. Considering fluc-
tuations around the potential minimum G0 ≡ 	 leads to
the emergence of a particle with J PC = 0++ – the scalar
glueball [83,95].

Terms that (i) are compatible in their structure with the chi-
ral, dilatation and CPT symmetries of QCD and (ii) contain
ground-state scalar, pseudoscalar, vector and axial-vector
quarkonia with N f = 3 and the dilaton are collected in the
L0 contribution to Eq. (1), as in Refs. [82,94,95]:
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)] − m2
0
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†
) Tr(L2
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+ |
Rμ|2] + 2h3 Tr(Lμ
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†)

+ g3[Tr(LμLνL
μLν) + Tr(RμRνR

μRν)]
+ g4[Tr

(
LμL
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ν
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(
RμR
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ν
)]

+ g5 Tr
(
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μ
)
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(
RνR

ν
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μ) Tr(LνL
ν)

+ Tr(RμR
μ) Tr(RνR

ν)]. (3)

In Eq. (3), the matrices 
, Lμ, and Rμ represent the scalar
and vector nonets:


 =
8∑

i=0

(Si + i Pi )Ti = 1√
2

×

⎛
⎜⎜⎝

(σN+a0
0 )+i(ηN+π0)√

2
a+

0 + iπ+ K �+
0 + i K+

a−
0 + iπ− (σN−a0

0 )+i(ηN−π0)√
2

K �0
0 + i K 0

K �−
0 + i K− K̄ �0

0 + i K̄ 0 σS + iηS

⎞
⎟⎟⎠ ,

(4)

Lμ =
8∑

i=0

(Vμ
i + Aμ

i )Ti = 1√
2

×

⎛
⎜⎜⎝

ωN+ρ0√
2

+ f1N+a0
1√

2
ρ+ + a+

1 K �+ + K+
1

ρ− + a−
1

ωN−ρ0√
2

+ f1N−a0
1√

2
K �0 + K 0

1

K �− + K−
1 K̄ �0 + K̄ 0

1 ωS + f1S

⎞
⎟⎟⎠

μ

,

(5)
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Rμ =
8∑

i=0

(Vμ
i − Aμ

i )Ti = 1√
2

×

⎛
⎜⎜⎝

ωN+ρ0√
2

− f1N+a0
1√

2
ρ+ − a+

1 K �+ − K+
1

ρ− − a−
1

ωN−ρ0√
2

− f1N−a0
1√

2
K �0 − K 0

1

K �− − K−
1 K̄ �0 − K̄ 0

1 ωS − f1S

⎞
⎟⎟⎠

μ

,

(6)

where Ti (i = 0, . . . , 8) denote the generators of U (3),
while Si represents the scalar, Pi the pseudoscalar, Vμ

i the
vector, Aμ

i the axial-vector meson fields. (Note that we
are using the non-strange–strange basis defined as ϕN =

1√
3

(√
2 ϕ0 + ϕ8

)
and ϕS = 1√

3

(
ϕ0 − √

2 ϕ8

)
with ϕ ∈

(Si , Pi , V
μ
i , Aμ

i ).)
Furthermore,

Dμ
 ≡ ∂μ
 − ig1(L
μ
 − 
Rμ) (7)

is the derivative of 
 transforming covariantly with regard
to the U (3)L ×U (3)R symmetry group; the left-handed and
right-handed field strength tensors Lμν and Rμν are, respec-
tively, defined as

Lμν ≡ ∂μLν − ∂νLμ, (8)

Rμν ≡ ∂μRν − ∂νRμ. (9)

The following symmetry-breaking mechanism is imple-
mented:

– The spontaneous breaking of theU (3)×U (3) chiral sym-
metry requires setting m2

0 < 0.
– The explicit breaking of theU (3)×U (3) chiral as well as

dilatation symmetries is implemented by terms describ-
ing non-vanishing quark masses: H = diag{hN , hN , hS},
� = diag{0, 0, δS} and E0 = diag{0, 0, εS}.

– TheU (1)A (chiral) anomaly is implemented by the deter-
minant term c1(det 
 − det 
†)2 [150,151].

We also note the following important points:

– All states present in the Lagrangian (3), except for the
dilaton, possess the q̄q structure [82,152]. The argu-
ment is essentially based on the large-Nc behaviour of
the model parameters and on the model construction in
terms of the underlying (constituent) quark fields. The
ground-state Lagrangian (3) contains a pseudoscalar field
assigned to the pion since it emerges from spontaneous
breaking of the (chiral) U (3)×U (3) symmetry. Further-
more, the vector meson decaying into 2π is identified
with the rho since the latter is experimentally known to
decay into pions with a branching ratio of slightly less

than 1. Pion and rho can be safely assumed to repre-
sent (very predominant) q̄q states and hence the large-Nc

behaviour of their mass terms has to be N 0
c . Addition-

ally, the rho-pion vertex has to scale as N−1/2
c since the

states are quarkonia. Then, as shown in Ref. [82], this
is sufficient to determine the large-Nc behaviour of all
ground-state model parameters and of the non-strange
and strange quark condensates. As a consequence, the
masses of all other ground states scale as N 0

c and their
decay widths scale as 1/Nc. For this reason, we identify
these degrees of freedom with q̄q states.
A further reason is that all states entering the matrix 


in Eq. (4) can be decomposed in terms of (constituent)
quark currents whose behaviour under chiral transfor-
mation is such that all terms in the Lagrangian (except
for symmetry-breaking or anomalous ones) are chirally
symmetric [152].
Note that our excited-state Lagrangian (16) will have
exactly the same structure as the ground-state one. Con-
sidering the above discussion, we conclude that its
degrees of freedom also have the q̄q structure.

– The number of terms entering Eq. (3) is finite under the
requirements that (i) all terms are dilatationally invariant
and hence have mass dimension equal to four, except
possibly for those that are explicitly symmetry breaking
or anomalous, and (ii) no term leads to singularities in
the potential in the limit G → 0 [153].

– Notwithstanding the above point, the glueball will not be
a subject of this work – hence G ≡ G0 is set through-
out this article. With regard to the ground-state mesons,
we will be relying on Ref. [94] since it contains the lat-
est results from the model without the glueball. (For the
model version with three-flavour q̄q states as well as the
scalar glueball; see Ref. [95].)

– There are two scalar isospin-0 fields in the Lagrangian
(3): σN ≡ n̄n (n: u and d quarks, assumed to be degen-
erate) and σS ≡ s̄s. Spontaneous breaking of the chiral
symmetry implies the existence of their respective vac-
uum expectation values φN and φS . As described in Ref.
[94], shifting of σN ,S by φN ,S leads to the mixing of spin-
1 and spin-0 fields. These mixing terms are removed by
suitable shifts of the spin-1 fields that have the following
general structure:

Vμ → Vμ + ZSwV ∂μS, (10)

where Vμ and S, respectively, denote the spin-1 and
spin-0 fields. The new constants ZS and wV are field-
dependent and read [94]

w f1N = wa1 = g1φN

m2
a1

w f1S =
√

2g1φS

m2
f1S
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wK � = ig1(φN − √
2φS)

2m2
K �

wK1 = g1(φN + √
2φS)

2m2
K1

,

(11)

Zπ = ZηN = ma1√
m2

a1
− g2

1φ2
N

ZK

= 2mK1√
4m2

K1
− g2

1(φN + √
2φS)2

, (12)

ZηS = m f1S√
m2

f1S
− 2g2

1φ2
S

ZK �
0

= 2mK �√
4m2

K � − g2
1(φN − √

2φS)2
. (13)

As demonstrated in Ref. [94], φN and φS are functions
of Zπ and ZK as follows:

φN = Zπ fπ (14)

φS = √
2ZK fK − φN/

√
2 (15)

where fπ and fK , respectively, denote the pion and kaon
decay constants.

The ground-state mass terms can be obtained from
Lagrangian (3); their explicit form can be found in Ref.
[94] where a comprehensive fit of the experimentally known
meson masses was performed. Fit results that will be used
in this article are collected in Table 1. The following is of
importance here:

– Table 1 contains no statement on masses and assign-
ment of the isoscalar states σN and σS . The reason is
that their identification in the meson spectrum is unclear
due to both theoretical and experimental uncertainties
[154,155]. In Ref. [94], the preferred assignment of
σN was to f0(1370), not least due to the best-fit result
mσN = 1363 MeV. The resonance σS was assigned to
f0(1710). Note that a subsequent analysis in Ref. [95],
which included the scalar glueball, found the assignment
of σS to f0(1500) more preferable; f0(1710) was found
to be compatible with the glueball. These issues will be
of secondary importance here since no mixing between
excited and ground states will be considered. (We also
note that decays of the excited states into f0(1500) and
f0(1710) would be kinematically forbidden. Excited-
state masses are discussed in Sect. 3).

– Table 1 also contains no statement on the axial-vector
kaon K1. Reference [94] obtained mK1 = 1282 MeV as
the best-fit result. One needs to note, however, that PDG
listings [5] contain two states to which our K1 resonance
could be assigned: K1(1270) and K1(1400). Both have

a significant mutual overlap [156–174]; analysis from
the Linear Sigma Model suggests that our K1 state has
a larger overlap with K1(1400) [89]. Nonetheless, we
will use mK1 = 1282 MeV for decays of excited states
involving K1 – this makes no significant difference to our
results since the decays with K1 final states are phase-
space suppressed for the mass range of excited mesons.

– The states η and η′ arise from mixing of ηN and ηS in
Lagrangian (3). The mixing angle is θη = −44.6◦ [94];
see also Refs. [175–183].

2.3 Excited scalars and pseudoscalars

2.3.1 Lagrangian

With the foundations laid in the previous section, the most
general Lagrangian for the excited scalar and pseudoscalar
quarkonia with terms up to order four in the naive scaling
can be constructed as follows:

LE = Tr[(Dμ
E )†(Dμ
E )] + α Tr[(Dμ
E )†(Dμ
)

+ (Dμ
)†(Dμ
E )] − (m∗
0)

2
(

G

G0

)2

Tr(
†
E
E )

− λ0

(
G

G0

)2

Tr(
†
E
 + 
†
E )

− λ∗
1 Tr(
†

E
E ) Tr(
†
)

− λ∗
2 Tr(
†

E
E
†
 + 
E

†
E

†)

− κ1 Tr(
†
E
 + 
†
E ) Tr(
†
)

− κ2[Tr(
†
E
 + 
†
E )]2

− κ3 Tr(
†
E
 + 
†
E ) Tr(
†

E
E )

− κ4[Tr(
†
E
E )]2

− ξ1 Tr(
†
E

†
 + 
E
†

†)

− ξ2 Tr(
†
E



†
E
 + 
†
E
†
E )

− ξ3 Tr(
†
E

†
E
E + 



†
E
E


†
E )

− ξ4 Tr(
†
E
E )2

+ Tr(
†
E
E E1 + 
E


†
E E1)

+ c∗
1[(det 
 − det 
†

E )2

+ (det 
† − det 
E )2] + c∗
1E (det 
E − det 
†

E )2

+ h∗
1

2
Tr(
†

E
 + 
†
E ) Tr(L2
μ + R2

μ)

+ h∗
1E

2
Tr(
†

E
E ) Tr(L2
μ + R2

μ)
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2 Tr(
†

E LμL
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 + 
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μ
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Rμ + Rμ
†
E R
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2E Tr[|Lμ
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Table 1 Best-fit results for
masses of ground-state mesons
and pseudoscalar decay
constants present in Eq. (3),
obtained in Ref. [94]. The values
in the third column will be used
in this article in order for us to
remain model-consistent. Note
that the errors in the fourth
column correspond either to the
experimental values or to 5% of
the respective central values
(whichever is larger)

Observable Model ground state assigned to Fit (MeV) Experiment (MeV)

mπ Pion 141.0 ± 5.8 137.3 ± 6.9

mK Kaon 485.6 ± 3.0 495.6 ± 24.8

mη η 509.4 ± 3.0 547.9 ± 27.4

mη′ η′(958) 962.5 ± 5.6 957.8 ± 47.9

mρ ≡ mωN ρ(770) 783.1 ± 7.0 775.5 ± 38.8

mK � K �(892) 885.1 ± 6.3 893.8 ± 44.7

mφ φ(1020) 975.1 ± 6.4 1019.5 ± 51.0

ma1 ≡ m f1N a1(1260) 1186 ± 6 1230 ± 62

m f1S f1(1420) 1372.5 ± 5.3 1426.4 ± 71.3

ma0 a0(1450) 1363 ± 1 1474 ± 74

mK �
0

K �
0 (1430) 1450 ± 1 1425 ± 71

fπ – 96.3 ± 0.7 92.2 ± 4.6

fK – 106.9 ± 0.6 110.4 ± 5.5

+ 2h∗
3 Tr(Lμ
E R

μ
† + Lμ
Rμ

†
E )

+ 2h∗
3E Tr(Lμ
E R

μ

†
E ). (16)

The particle content of the Lagrangian is the same as the
one in Eqs. (5) and (6) for spin-1 states and it is analogous
to Eq. (4) for (pseudo)scalars:


E = 1√
2

×

⎛
⎜⎜⎝

(σ E
N +a0E

0 )+i(ηE
N+π0E )√

2
a+E

0 + iπ+E K �+E
0 + i K+E

a−E
0 + iπ−E (σ E

N −a0E
0 )+i(ηE

N−π0E )√
2

K �0E
0 + i K 0E

K �−E
0 + i K−E K̄ �0E

0 + i K̄ 0E σ E
S + iηE

S

⎞
⎟⎟⎠ .

(17)

The covariant derivative Dμ
E is defined analogously to Eq.
(7):

Dμ
E ≡ ∂μ
E − igE1 (Lμ
E − 
E Rμ) (18)

and we also set E1 = diag{0, 0, εES }.
Spontaneous symmetry breaking in the Lagrangian for the

excited (pseudo)scalars will be implemented only by means
of condensation of ground-state quarkonia σN and σS , i.e., as
a first approximation, we assume that their excited counter-
parts σ E

N and σ E
S do not condense.1 As a consequence, there

is no need to shift spin-1 fields or renormalise the excited
pseudoscalars as described in Eqs. (10)–(11).

We now turn to the assignment of the excited states. Con-
sidering isospin multiplets as single degrees of freedom, there

1 There is a subtle point pertaining to the condensation of excited states
in σ -type models: as discussed in Ref. [184], it can be in agreement with
QCD constraints but may also, depending on parameter choice, spon-
taneously break parity in vacuum. Study of a model with condensation
of the excited states would go beyond the current work. (It would addi-
tionally imply that the excited pseudoscalars also represent Goldstone
bosons of QCD which is disputed in, e.g., Ref. [111].)

are 8 states in Eq. (17): σ E
N , σ E

S , aE0 and K �E
0 (scalar) and ηE

N ,
ηE
S , π E and K E (pseudoscalar); the experimental informa-

tion on states with these quantum numbers is at times limited
or their identification is unclear:

– Seven states are listed by the PDG in the scalar isosin-
glet (I J PC = 00++) channel in the energy region up
to � 2 GeV: f0(500)/σ , f0(980), f0(1370), f0(1500),
f0(1710), f0(2020) and f0(2100). The last two are
termed unestablished [5]; the others have been subject of
various studies in the last decades [10,11,15–52,82,94].
As mentioned in the Introduction, the general conclusion
is that the states up to and including f0(1710) are compat-
ible with having ground-state q̄q or q̄q̄qq structure; the
presence of the scalar glueball is also expected [42,53–
72,83,95]. However, none of these states is considered as
the first radial excitation of the scalar isosinglet q̄q state.
A decade ago, a new resonance named f0(1790) was
observed by the BES II Collaboration in the ππ final
states produced in J/� radiative decays [131]; there had
been evidence for this state in the earlier data of MARK
III [185] and BES [186]. Recently, LHCb has confirmed
this finding in a study of Bs → J/�ππ decays [132].
Since, as indicated, the spectrum of ground-state scalar
quarkonia appears to be contained in the already estab-
lished resonances, we will work here with the hypothesis
that f0(1790) is the first excitation of the n̄n ground state
(≡ σ E

N ). The assignment is further motivated by the pre-
dominant coupling of f0(1790) to pions [131].
The data of Ref. [131] will be used as follows:m f0(1790) =
(1790 ± 35) MeV and � f0(1790)→ππ = (270 ± 45)

MeV, with both errors made symmetric and given as
arithmetic means of those published by BES II. Addi-
tionally, Ref. [131] also reports the branching ratios
J/� → φ f0(1790) → φππ = (6.2 ± 1.4) · 10−4 and
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J/� → φ f0(1790) → φKK = (1.6 ± 0.8) · 10−4.
Using � f0(1790)→ππ = (270 ± 45) MeV and the quo-
tient of the mentioned branching ratios we estimate
� f0(1790)→KK = (70±40) MeV. These data will become
necessary in Sects. 3.2 and 3.3. We note, however, already
at this point that the large uncertainties in f0(1790)

decays – a direct consequence of uncertainties in the
J/� branching ratios amounting to ∼23% and 50% –
will lead to ambiguities in prediction of some decays
(see Sect. 3.3.1). These are nonetheless the most com-
prehensive data available at the moment, and more data
would obviously be of great importance.
The assignment of our excited isoscalar s̄s state σ E

S will
be discussed as a consequence of the model [particularly
in the context of f0(2020) and f0(2100)].

– Two resonances are denoted as established by the PDG
in the I J PC = 10++ channel: a0(980) and a0(1450)

[5]. Various interpretations of these two states in terms
of ground-state q̄q or q̄q̄qq structures or meson–meson
molecules have been proposed [20,23,24,26,28,30–32,
36–41,43,49,52,73,74,76].
Recently, the BABAR Collaboration [187] has claimed
the observation of a new resonance denoted a0(1950) in
the process γ γ → ηc(1S) → K̄ Kπ with significance
up to 4.2 σ . There was earlier evidence for this state in
the Crystal Barrel data [188,189]; see also Refs. [190,
191]. We will discuss the possible interpretation of this
resonance in terms of the first I J PC = 10++excitation
as a result of our calculations.

– Two resonances are candidates for the ground-state q̄q
resonance in the scalar-kaon channel (with alternative
interpretations – just as in the case of the a0 reso-
nances – in terms of q̄q̄qq structures or meson–meson
molecules): K �

0(800)/κ and K �
0(1430); controversy still

surrounds the first of these states [11,20,26,28,30–
32,34,35,37,39,49,74–76].
A possibility is that K �

0(1950), the highest-lying res-
onance in this channel, represents the first excitation,
although the state is (currently) unestablished [5]. This
will be discussed as a result of our calculations later on.

– The pseudoscalar isosinglet (I J PC = 00−+) channel has
six known resonances in the energy region below 2 GeV
according to the PDG [5]: η, η′(958), η(1295), η(1405),
η(1475) and η(1760).
Not all of them are without controversy: for example,
the observation of η(1405) and η(1475) as two different
states was reported by E769 [192], E852 [193], MARK
III [194], DM2 [195] and OBELIX [196,197], while they
were claimed to represent a single state named η(1440)

by the Crystal Ball [198] and BES [199,200] Collab-
orations. It is important to note that a clear identifica-
tion of pseudoscalar resonance(s) in the energy region
between 1.4 GeV and 1.5 GeV depends strongly on a

proper consideration, among other, of the K �K threshold
opening (mK � +mK = 1385 MeV) and of the existence
of the I J PC = 01++ state f1(1420) whose partial wave
is known to influence the pseudoscalar one in experi-
mental analyses (see, e.g., Ref. [193]). A comprehensive
study of BES II data in Ref. [201], which included an
energy-dependent Breit–Wigner amplitude as well as a
dispersive correction to the Breit–Wigner denominator
(made necessary by the proximity to the K �K thresh-
old), has observed only a marginal increase in fit quality
when two pseudoscalars are considered. In line with this,
our study will assume the existence of η(1440) to which
our ηE

S state will be assigned. We will use mη(1440) =
(1432 ± 10) MeV and �η(1440)→K �K = (26 ± 3) MeV
[199,200] in Sects. 3.2 and 3.3.2; the error in the decay
width is our estimate. We emphasise, however, that our
results are stable up to a �3% change when η(1475) is
considered instead of η(1440).2

Our state ηE
N will be assigned to η(1295) in order to test

the hypothesis whether an excited pseudoscalar isosin-
glet at � 1.3 GeV can be accommodated in eLSM (and
notwithstanding the experimental concerns raised in Ref.
[203]). We will use the PDG valuemη(1295) = (1294±4)

MeV for determination of mass parameters in Sect. 3.2.
The PDG also reports �total

η(1295) = (55 ± 5) MeV; the rel-
ative contributions of η(1295) decay channels are uncer-
tain. Nonetheless, we will use �total

η(1295) in Sect. 3.3.2.
– Two states have the quantum number of a pion excitation:

π(1300) and π(1800), with the latter being a candidate
for a non-q̄q state [5]. The remaining π(1300) resonance
may in principle be an excited q̄q isotriplet; however, due
to the experimental uncertainties reported by the PDG
[mπ(1300) = (1300±100) MeV but merely an interval for
�π(1300) = (200−600) MeV] this will only be discussed
as a possible result of our model.

– Two states are candidates for the excited kaon: K (1460)

and K (1830). Since other excited states of our model
have been assigned to resonances with energies �1.4
GeV, we will study the possibility that our I J P = 1

2 0−
state corresponds to K (1460). This will, however, only be
discussed as a possible result of the model since the exper-
imental data on this state is very limited: mK (1460) ∼
1460 MeV; �K (1460) ∼ 260 MeV [5].

As indicated in the above points, with regard to the use
of the above data for parameter determination we exclude as
input all states for which there are only scarce/unestablished
data and, additionally, those for which the PDG cites only
intervals for mass/decay width (since the latter lead to weak
parameter constraints). Then we are left with only three res-

2 The η(1405) resonance would then be a candidate for the pseudoscalar
glueball [202].
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Table 2 Assignment of the
states in Eq. (17) to physical
states. Every assignment implies
the hypothesis that the physical
state has the q̄q structure

Model state I J P Assignment We use

σ E
N 00+ f0(1790) m f0(1790) = (1790 ± 35)

MeV [131]
� f0(1790)→ππ =
(270 ± 45) MeV [131]
� f0(1790)→KK =
(70 ± 40) MeV

ηE
N 00− η(1295) mη(1295) = (1294 ± 4)

MeV [5]
�total

η(1295) = (55 ± 5)

MeV [5]

ηE
S 00− η(1440) mη(1440) = (1432 ± 10)

MeV [199,200]
�η(1440)→K �K =
(26 ± 3) MeV

σ E
S 00+ Possible overlap with

f0(2020)/ f0(2100) to
be discussed as a
model consequence

–

aE0 10+ Possible overlap with
a0(1950) to be
discussed as a model
consequence

–

π E 10− Possible overlap with
π(1300) to be
discussed as a model
consequence

–

K �E
0

1
2 0+ Possible overlap with

K �
0 (1950) to be

discussed as a model
consequence

–

K E 1
2 0− Possible overlap with

K (1460) to be
discussed as a model
consequence

–

onances whose experimental data shall be used: f0(1790),
η(1295) and η(1440). For clarity, we collect the assignment
of the model states (where possible), and also the data that
we will use, in Table 2. The data are used in Sect. 3.

2.3.2 Parameters

The following parameters are present in Eq. (16):

gE1 , α,m∗
0, λ0, λ

∗
1,2, κ1,2,3,4,

ξ1,2,3,4, ε
E
S , c∗

1, c∗E
1 , h∗

1,2,3, h
∗E
1,2,3. (19)

The number of parameters relevant for masses and decays
of the excited states is significantly smaller as apparent once
the following selection criteria are applied:

– All large-Nc suppressed parameters are set to zero since
their influence on the general phenomenology is expected
to be small and the current experimental uncertainties do

not permit their determination. Hence the parameters λ∗
1,

h∗
1 and κ1,2,3,4 are discarded.

– The parameter c∗
1 is set to zero since it contains a term

∼ (det 
)2, which would influence ground-state mass
terms after condensation of σN and σS . Such introduc-
tion of an additional parameter is not necessary since, as
demonstrated in Ref. [94], the ground states are very well
described by Lagrangian (3).

– As a first approximation, we will discard all parameters
that lead to particle mixing and study whether the assign-
ments described in Table 2 are compatible with experi-
ment. Hence we discard the parameters α, λ0 and ξ1; note
that mixing is also induced by κ1,2 and c∗

1 but these have
already been discarded for reasons stated above.3

3 However, there would be no mixing of pseudoscalar isosinglets ηE
N

and ηE
S in the model even if all discarded parameters were considered.

The reason is that there is no condensation of excited scalar states in
Lagrangian (16).
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– Parameters that lead to decays with two or more excited
final states are not of relevance for us: all states in the
model have masses between ∼ 1 GeV and ∼ 2 GeV and
hence such decays are kinematically forbidden. (Parame-
ters λ∗

2 and ξ2 that contribute to mass terms are obviously
relevant and excepted from this criterion.) Hence we can
discard ξ3,4, c∗E

1 and h∗E
1,2,3.

Note that the above criteria are not mutually exclusive:
some parameters may be set to zero on several grounds, such
as for example κ1.

Consequently we are left with the following undetermined
parameters:

gE1 ,m∗
0, λ

∗
2, ξ2, ε

E
S , h∗

2,3. (20)

The number of parameters that we will actually use is even
smaller, as we discuss in Sects. 2.3.3 and 2.3.4.

2.3.3 Mass terms

The following mass terms are obtained for the excited states
present in the model:

m2
σ E
N

= (m∗
0)

2 + λ∗
2 + ξ2

2
φ2
N , (21)

m2
aE0

= (m∗
0)

2 + λ∗
2 + ξ2

2
φ2
N , (22)

m2
π E = m2

ηE
N

= (m∗
0)

2 + λ∗
2 − ξ2

2
φ2
N , (23)

m2
ηE
S

= (m∗
0)

2 − 2εES + (
λ∗

2 − ξ2
)
φ2
S (24)

m2
σ E
S

= (m∗
0)

2 − 2εES + (
λ∗

2 + ξ2
)
φ2
S, (25)

m2
K E = (m∗

0)
2 − εES + λ∗

2

4
φ2
N

− ξ2√
2
φNφS + λ∗

2

2
φ2
S, (26)

m2
K �E

0
= (m∗

0)
2 − εES + λ∗

2

4
φ2
N

+ ξ2√
2
φNφS + λ∗

2

2
φ2
S . (27)

The mass terms (21)–(27) contain the same linear combina-
tion of m∗

0 and λ∗
2:

C∗
1 = (m∗

0)
2 + λ∗

2

2
φ2
N , (28)

and the mass terms (24)–(27) contain the same linear com-
bination of λ∗

2 and εES :

C∗
2 = λ∗

2ZK fK (ZK fK − φN ) − εES . (29)

This is obvious after substituting the strange condensate φS

by the non-strange condensate φN via Eq. (15). The modified
mass terms then read

m2
σ E
N

= C∗
1 + ξ2

2
φ2
N , (30)

m2
aE0

= C∗
1 + ξ2

2
φ2
N , (31)

m2
π E = m2

ηE
N

= C∗
1 − ξ2

2
φ2
N , (32)

m2
ηE
S

= C∗
1 + 2C∗

2 − ξ2

2
(φN − 2ZK fK )2, (33)

m2
σ E
S

= C∗
1 + 2C∗

2 + ξ2

2
(φN − 2ZK fK )2, (34)

m2
K E = C∗

1 + C∗
2 + ξ2

2
φN (φN − 2ZK fK ), (35)

m2
K � E

0
= C∗

1 + C∗
2 − ξ2

2
φN (φN − 2ZK fK ). (36)

Mass terms for all eight excited states can hence be described
in terms of only three parameters from Eq. (16): C∗

1 , C∗
2 and

ξ2.

2.3.4 Decay widths

Our objective is to perform a tree-level calculation of all kine-
matically allowed two- and three-body decays for all excited
states present in the model. The corresponding interaction
Lagrangians are presented in Appendix A. As we will see,
there are more than 35 decays that can be determined in this
way but all of them can be calculated using only a few for-
mulae.

The generic formula for the decay width of particle A into
particles B and C reads

�A→BC = I |k|
8πm2

A

|MA→BC |2 , (37)

where k is the three-momentum of one of the final states in
the rest frame of A and M is the decay amplitude (i.e., a
transition matrix element). I is a symmetry factor emerging
from the isospin symmetry – it is determined by the number
of sub-channels for a given set of final states (e.g., I = 2 if
B and C both correspond to kaons). Usual symmetry factors
are included if the final states are identical. As we will see in
Sect. 3.3, decay widths obtained in the model are generally
much smaller than resonance masses; for this reason, we do
not expect large unitarisation effects [96].

Depending on the final states, the interaction Lagrangians
presented in Appendix A can have one of the following gen-
eral structures:
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– For a decay of the form S → P1P2, where S is a scalar
and P1 and P2 are pseudoscalar particles, the generic
structure of the interaction Lagrangian is

LSP1P2 = DSP1P2 SP1P2 + ESP1P2 S∂μP1∂
μP2

+ FSP1P2 ∂μS∂μP1P2, (38)

where DSP1P2 , ESP1P2 and FSP1P2 are combinations
of (some of the) parameters entering Lagrangian (16).
According to Eq. (37), the decay width reads in this case

�S→P1P2 = I |k|
8πm2

S

|DSP1P2 − ESP1P2 K1 · K2

+ FSP1P2 K · K1|2, (39)

where K , K1 and K2 are respectively 4-momenta of S,
P1 and P2.

– For a decay of the form S → V P , where V is a vector
and P is a pseudoscalar particle, the generic structure of
the interaction Lagrangian is

LSV P = DSV P SVμ∂μP, (40)

where DSV P is a combination of (some of the) parameters
entering Lagrangian (16). The decay width reads in this
case

�S→V P = I |k|
8πm2

S

D2
SV P

×
[

(m2
S − m2

V − m2
P )2

4m2
V

− m2
P

]
. (41)

– For a decay of the form S → V1V2, where V1 and V2 are
vector particles, the generic structure of the interaction
Lagrangian is

LSV1V2 = DSV1V2 SV1μV
μ
2 , (42)

where DSV1V2 is a combination of (some of the) parame-
ters entering Lagrangian (16). Then the decay width reads

�S→V1V2 = I |k|
4πm2

S

D2
SV1V2

×
[

(m2
S − m2

V1
− m2

V2
)2

8m2
V1
m2

V2

+ 1

]
. (43)

As is evident from Appendix A, the most general interac-
tion Lagrangian for 3-body decays of the form S → S1S2S3

is

LSS1S2S3 = DSS1S2S3 SS1S2S3 + ESS1S2S3 S(∂μS1∂
μS2)S3

+ (analogous terms with derivative couplings

among final states only). (44)

The ensuing formula for the decay width reads

�S→S1S2S3 = I 1

32(2π)3m3
S

∫ (mS−mS3 )2

(mS1+mS2 )2

× dm2
12

∫ (m23)max .

(m23)min .

dm2
23

∣∣MS→S1S2S3

∣∣2 (45)

where m2
12 = (KS1 + KS2)

2, m2
23 = (KS2 + KS3)

2 and

(m23)min . = (E∗
2 + E∗

3 )2

−
[√

(E∗
2 )2 − m2

S2
+

√
(E∗

3 )2 − m2
S3

]2

, (46)

(m23)max . = (E∗
2 + E∗

3 )2

−
[√

(E∗
2 )2 − m2

S2
−

√
(E∗

3 )2 − m2
S3

]2

, (47)

with

E∗
2 = m2

12 − m2
S1

+ m2
S2

2m12
, E∗

3 = m2
S − m2

12 − m2
S3

2m12
. (48)

As is evident from Appendix A, our decay widths depend
on the following parameters: gE1 , λ∗

2, ξ2 and h∗
2,3. The first

three appear only in decays with an excited final state; since
such decays are experimentally unknown, it is not possible to
determine these parameters (and ξ2 can be determined from
the mass terms in any case; see Sect. 2.3.3). The remaining
two, h∗

2,3, can be calculated from decays with ground states
in the outgoing channels – we will discuss this in Sect. 3.3.

3 Masses and decays of the excited states: results and
consequences

3.1 Parameter determination: general remarks

Combining parameter discussion at the end of Sects. 2.3.3
and 2.3.4, the final conclusion is that the following parame-
ters need to be determined:

C∗
1 ,C∗

2 , ξ2, h
∗
2 and h∗

3 (49)

with C∗
1 and C∗

2 parameter combinations defined in Eqs. (28)
and (29).
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As is evident from mass terms (30)–(36) and Appendix
A, C∗

1 and C∗
2 influence only masses; ξ2 appears in decays

with one excited final state and in mass terms. Since, as indi-
cated at the end of Sect. 2.3.4, decays with excited final
states are experimentall unknown, ξ2 can only be deter-
mined from the masses. Contrarily, h∗

2 and h∗
3 appear only

in decay widths (with no excited final states). Hence our
parameters are divided in two sets, one determined by masses
(C∗

1 , C∗
2 and ξ2) and another determined by decays (h�

2 and
h�

3).
Parameter determination will ensue by means of a χ2 fit.

Scarcity of experimental data compels us to have an equal
number of parameters and experimental data entering the
fit; although in that case the equation systems can also be
solved exactly, an advantage of the χ2 fit is that error cal-
culation for parameters and observables is then straightfor-
ward.

The general structure of the fit function χ2 fit is as follows:

χ2(p1, . . . , pm) =
n∑

i=1

(
O th.
i (p1, . . . , pm) − Oexp.

i

�Oexp.
i

)2

(50)

for a set of n (theoretical) observables O th.
i determined by

m ≤ n parameters p j . In our case, m = n = 3 for
masses and m = n = 2 for decay widths. Central val-
ues and errors on the experimental side are, respectively,
denoted Oexp.

i and �Oexp.
i . Parameter errors �pi are cal-

culated as the square roots of the diagonal elements of the
inverse Hessian matrix obtained from χ2(p j ). Theoretical
errors �Oi for each observable Oi are calculated by diago-
nalising the Hesse matrix via a special orthogonal matrix M

MHMt ≡ diag{eigenvalues of H} (51)

and rotating parameters pi such that

q = M(p − pmin .) (52)

where p contains all parameters and pmin . realises the min-
imum of χ2(p1, . . . , pm). Then we can determine �Oi via

�Oi =

√√√√√
n∑
j=1

(
∂Oi (q1, . . . qm)

∂q j

∣∣∣∣
at fit value of Oi

�q j

)2

(53)

(see also Chapter 39 of the Particle Data Book [5]).

3.2 Masses of the excited states

Following the discussion of the experimental data on excited
states in Sect. 2.3.1 and particle assignment in Table 2, we
use the following masses for the χ2 fit of Eq. (50): mσ E

N
≡

m f0(1790) = (1790±35) MeV,mηE
N

≡ mη(1295) = (1294±4)

MeV and mηE
S

≡ mη(1440) = (1432 ± 10) MeV. Results for

C∗
1 , C∗

2 and ξ2 are

C∗
1 = (2.4 ± 0.6) · 106 [MeV2],
C∗

2 = (2.5 ± 0.2) · 105 [MeV2], ξ2 = 57 ± 5. (54)

With these parameters, the general discussion from Sect. 3.1
allows us to immediately predict the masses of σ E

S , aE0 , K �E
0 ,

π E and K E . They are presented in Table 3.

3.3 Decays of the excited states

3.3.1 Hypothesis: f0(1790) is an excited q̄q state

We have concluded in Sect. 3.1 that only two parameters are
of relevance for all decays predictable in the model: h∗

2 and
h∗

3. They can be determined from the data on the f0(1790)

resonance discussed in Sect. 2.3.1: � f0(1790)→ππ = (270 ±
45) MeV and � f0(1790)→KK = (70 ± 40) MeV [131]. Per-
forming the χ2 fit described in Sect. 3.1 we obtain the fol-
lowing parameter values:

h∗
2 = 67 ± 63, h∗

3 = 79 ± 63. (55)

Table 3 Masses of the excited
states present in the model.
Masses marked with an asterisk
are used as input. There is mass
degeneracy of σ E

N and aE0
because we have discarded
large-Nc suppressed parameters
in our excited-state Lagrangian
(16) – see Sect. 2.3.2. The
degeneracy of ηE

N and π E is a
feature of the model

Model state I J P Mass (MeV) Note

σ E
N 00+ 1790 ± 35* Assigned to f0(1790)

ηE
N 00− 1294 ± 4* Assigned to η(1295)

ηE
S 00− 1432 ± 10* Assigned to η(1440)

σ E
S 00+ 1961 ± 38 Possible overlap with f0(2020) or f0(2100)

aE0 10+ 1790 ± 35 Possible overlap with a0(1950)

K �E
0

1
2 0+ 1877 ± 36 Possible overlap with K �

0 (1950)

π E 10− 1294 ± 4 Possible overlap with π(1300)

K E 1
2 0− 1366 ± 6 Possible overlap with K (1460)
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Large uncertainties for parameters are a consequence of
propagation of the large errors for � f0(1790)→ππ and par-
ticularly for � f0(1790)→KK . As described in Sect. 2.3.1,
� f0(1790)→KK was obtained as our estimate relying upon
J/� branching ratios reported by BES II [131] that them-
selves had uncertainties between ∼23 and 50%. We empha-
sise, however, that such uncertainties do not necessarily
have to translate into large errors for the observables.
The reason is that error calculation involves derivatives

at central values of parameters [see Eq. (53)]; small val-
ues of derivatives may then compensate the large parame-
ter uncertainties. This is indeed what we observe for most
decays.

There is a large number of decays that can be calculated
using the interaction Lagrangians in Appendix A, parameter
values in Eq. (55), formulae for decay widths in Eqs. (39),
(41), (43) and (45) as well as Eq. (53) for the errors of observ-
ables. All results are presented in Table 4.

Table 4 Decays and masses of the excited q̄q states. Widths marked as “suppressed” depend only on large-Nc suppressed parameters that have
been set to zero. Widths marked with an asterisk are used as input; the others are predictions

Model state I J P Mass (MeV) Decay Width (MeV) Note

σ E
N 00+ 1790 ± 35 σ E

N → ππ 270 ± 45* Assigned to f0(1790); mass, ππ

and KK decay widths from Ref.
[131]. Other decays not (yet)
measured

σ E
N → KK 70 ± 40*

σ E
N → a1(1260)π 47 ± 8

σ E
N → ηη′ 10 ± 2

σ E
N → ηη 7 ± 1

σ E
N → f1(1285)η 1 ± 0

σ E
N → K1K 0

σ E
N → σNππ 0

Total 405 ± 96

ηE
N 00− 1294 ± 4 ηE

N → ηππ + η′ππ + πKK 7 ± 3 Assigned to η(1295); PDG mass
[5]

ηE
S 00− 1432 ± 10 ηE

S → K �K 128+204
−128 Assigned to η(1440); mass from

Refs. [199,200]. Full width ∼
100 MeV at this mass [200].
�η(1440)→ηππ suppressed [200]

ηE
S → KKπ 28+41

−28

ηE
S → ηππ and η′ππ Suppressed

Total 156+245
−156

σ E
S 00+ 1961 ± 38 σ E

S → KK 21+39
−21 Candidate states: f0(2020);

m f0(2020) = (1992 ± 16) MeV
and � f0(2020) = (442 ± 60) MeV
and f0(2100);
m f0(2100) = (2101 ± 7) MeV and
� f0(2101) = 224+23

−21 MeV. Both
require confirmation [5]

σ E
S → ηη′ 12 ± 2

σ E
S → ηη 6 ± 1

σ E
S → K1K 2+5

−2

σ E
S → η′η′ 1 ± 0

σ E
S → ππ , ρρ and ωω Suppressed

σ E
S → a1(1260)π and f1(1285)η Suppressed

σ E
S → π Eπ and ηE

Nη Suppressed

σ E
S → σSππ Suppressed

Total 42+47
−26
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Table 4 continued

Model state I J P Mass (MeV) Decay Width (MeV) Note

aE0 10+ 1790 ± 35 aE0 → ηπ 72 ± 12 Candidate state: a0(1950);
ma0(1950) = (1931 ± 26) MeV
and �a0(1950) = (271 ± 40) MeV
[187]. Requires confirmation [5]

aE0 → KK 70 ± 40

aE0 → η′π 32 ± 5

aE0 → f1(1285)π 16 ± 3

aE0 → a1(1260)η 1 ± 0

aE0 → K1K 0

aE0 → a0(1450)ππ 0

Total 191 ± 60

K �E
0

1
2 0+ 1877 ± 36 K �E

0 → Kπ 51 ± 35 Candidate state: K �
0 (1950);

mK �
0 (1950) = (1945 ± 22) MeV

and �K �
0 (1950) = (201 ± 90)

MeV. Requires confirmation [5]

K �E
0 → η′K 24±4

K �E
0 → K1π 6 ± 4

K �E
0 → ηK 4+7

−4

K �E
0 → a1(1260)K 3 ± 2

K �E
0 → f1(1285)K 1 ± 1

K �E
0 → K1η 0

K �E
0 → K �

0 (1430)ππ 0

Total 89+53
−50

π E 10− 1294 ± 4 – – Width badly defined due to large
errors of the experimental input
data

K E 1
2 0− 1366 ± 6 – – Width badly defined due to large

errors of the experimental input
data

The consequences of f0(1790) input data are then as fol-
lows:

• The excited states are generally rather narrow with the
exception of f0(1790) and η(1440) whose full decay
widths, considering the errors, are, respectively, between
∼300 and ∼500 MeV and up to ∼400 MeV. The result for
f0(1790) is congruent with the data published by LHCb
[132]; the large interval for the η(1440) width is a conse-
quence of parameter uncertainties, induced by ambigui-
ties in the experimental input data.

• The excited pion and kaon states are also very suscep-
tible to parameter uncertainties that lead to extremely
large errors for the π E and K E decay widths [O(1
GeV)]. A definitive statement on these states is there-
fore not possible. Contrarily, in the case of η(1295),
the three decay widths accessible to our model (for
ηE
N → ηππ + η′ππ + πKK ) amount to (7 ± 3) MeV

and hence contribute very little to the overall decay width
�total

η(1295) = (55 ± 5) MeV.
• Analogously to the above point, parameter uncertainties

also lead to extremely large width intervals for the decays
of scalars into vectors. These decays are therefore omitted
from Table 4, except for the large-Nc suppressed decays
σ E
S → ρρ and σ E

S → ωω.
• Notwithstanding the above two points, we are able to

predict more than 35 decay widths for all states in our
model except π E and K E . The overall correspondence of
the model states to the experimental (unconfirmed) ones
is generally rather good, although we note that our scalar
s̄s state appears to be too narrow to fully accommodate
either of the f0(2020) and f0(2100) states. The mass of
our isotriplet state aE0 is also somewhat smaller than that
of a0(1950) – we will come back to this point in Sect.
3.3.3.
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3.3.2 Hypothesis: η(1295) and η(1440) are excited q̄q
states

As indicated above, results presented in Table 4 do not allow
us to make a definitive statement on all excited pseudoscalars.
However, the situation changes if the parameters h∗

2 and h∗
3

are determined with the help of the η(1295) and η(1440)

decay widths.
Using �ηE

N→ηππ+η′ππ+πKK = (55 ± 5) MeV [5] and
�η(1440)→K �K = 26±3 MeV (from Ref. [199]; our estimate
for the error) we obtain

h∗
2 = 70 ± 2, h∗

3 = 35 ± 3. (56)

The parameters (56) are strongly constrained and there is a
very good correspondence of the pseudoscalar decays to the

experimental data in this case (see Table 5). Nonetheless,
there is a drawback: all scalar states become unobservable
due to very broad decays into vectors. Thus comparison of
Tables 4 and 5 suggests that there is tension between the
simultaneous interpretation of η(1295), π(1300), η(1440)

and K (1460) as well as the scalars as excited q̄q states.
A possible theoretical reason is that pseudoscalars above
1 GeV may have non-q̄q admixture. Indeed sigma-model
studies in Refs. [37,41,43,204–208] have concluded that
excited pseudoscalars with masses between 1 GeV and
1.5 GeV represent a mixture of q̄q and q̄q̄qq struc-
tures. In addition, the flux-tube model of Ref. [202] and
a mixing formalism based on the Ward identity in Ref.
[209] lead to the conclusion that the pseudoscalar channel
around 1.4 GeV is influenced by a glueball contribution.
Hence a more complete description of these states would

Table 5 Decays and masses for the case where η(1295) and η(1440)

are enforced as excited q̄q states. Widths marked with an asterisk were
used as input. Pseudoscalar observables compare fine with experiment

but the scalars are unobservable due to extremely broad decays into
vector mesons

Model state I J P Mass (MeV) Decay Width (MeV) Note

ηE
N 00− 1294 ± 4 ηE

N → ηππ + η′ππ + πKK 55 ± 5* Assigned to η(1295); PDG
mass [5]

ηE
S 00− 1432 ± 10 ηE

S → K �K 26 ± 3* Assigned to η(1440); mass and
K �K width from Refs.
[199,200]. Our estimate for
��η(1440)→K �K

ηE
S → KKπ 3 ± 0

ηE
S → ηππ and η′ππ Suppressed

Total 29 ± 3

π E 10− 1294 ± 4 π E → ρπ 368 ± 37 Assigned to π(1300);
degenerate in mass with
η(1295) according to Eq.
(32). Compares well with
�π(1300) = (200 − 600) MeV
[5]

π E → 3π 204 ± 15

π E → KKπ 2 ± 0

Total 574 ± 52

K E 1
2 0− 1366 ± 6 K E→ K �π 112 ± 11 Assigned to K (1460);

mK (1460) ∼ 1460 MeV;
�K (1460) ∼ 260 MeV [5]

K E → Kππ 35 ± 4

K E → ρK 20 ± 2

K E → ωK 7 ± 1

K E → Kπη 0

Total 174 ± 18

All scalars – As in Table 3 See Appendix A Calculated via Eqs.
(39), (41), (43),
(45) and Eq. (53)

Unobservable due to extremely
large decays into vectors
[O(1 GeV)]
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Fig. 1 Masses of excited q̄q states with isospin I , total spin J and par-
ity P from the Extended Linear Sigma Model (left) and masses from the
experimental data (right). Area thickness corresponds to mass uncer-
tainties on both panels. The lower 00+(≡ σ E

N ), both 00−(≡ ηE
N and ηE

S )

as well as the 10+(≡ aE0 ) states from the left panel were used as input.
Lightly shaded areas correspond to experimentally as yet unestablished
states. Table 6 contains the experimental assignment of the states on the
left panel and a brief overview of their dynamics

require implementation of mixing scenarios in this chan-
nel.4

Note, however, that the results of Table 5 depend on the
assumption that the total decay width of η(1295) is satu-
rated by the three decay channels accessible to our model
(ηππ , η′ππ and Kππ ). The level of justification for this
assumption is currently uncertain [5]. Consequently we will
not explore this scenario further.

3.3.3 Is a0(1950) of the BABAR Collaboration an excited
q̄q state?

Encouraging results obtained in Sect. 3.3.1, where f0(1790)

was assumed to be an excited q̄q state, can be used as a
motivation to explore them further. As discussed in Sect.
2.3.1, data analysis published recently by the BABAR Col-
laboration has found evidence of an isotriplet state a0(1950)

with mass ma0(1950) = (1931 ± 26) MeV and decay width
�a0(1950) = (271 ± 40) MeV [187].

Assuming that f0(1790) is an excited q̄q state (as already
done in Sect. 3.3.1), we can implement ma0(1950) obtained
by BABAR as a large-Nc suppressed effect in our model as
follows. Mass terms for excited states σ E

N and σ E
S , Eqs. (30)

and (34), can be modified by reintroduction of the large-Nc

suppressed parameter κ2 and now read

m2
σ E
N

= C∗
1 +

(
ξ2

2
+ 2κ2

)
φ2
N , (57)

4 A similar mixing scenario may (as a matter of principle) also exist
in the case of the scalars discussed here. However, the amount of the-
oretical studies is significantly smaller here: for example, a glueball
contribution to f0(1790) has been discussed in Refs. [210,211] while
– just as in our study – the same resonance was found to be compatible
with an excited q̄q state in Ref. [102].

m2
σ E
S

= C∗
1 + 2C∗

2 +
(

ξ2

2
+ 2κ2

)
(φN − 2ZK fK )2. (58)

The other mass terms [Eqs. (31)–(33), (35) and (36)]
remain exactly the same; κ2 does not influence any decay
widths. We can now repeat the calculations described in Sect.
3.2 with the addition that the mass of our stateaE0 corresponds
exactly to that of a0(1950). We obtain

C∗
1 = (2.4 ± 0.6) · 106 [MeV2], C∗

2

= (2.5 ± 0.2) · 105 [MeV2],
ξ2 = 57 ± 5, κ2 = −10 ± 3. (59)

Note that a non-vanishing value of κ2 introduces mixing of
σ E
N and σ E

S in our Lagrangian (16). Its effect is, however,
vanishingly small since the mixing angle is ∼ 11◦.

Using the mass parameters (59) and the decay parameters
(55) we can repeat the calculations of Sect. 3.3.1. Then our
final results for the mass spectrum are presented in Fig. 1
and for the decays in Table 6. The values of maE0

, mσ E
S

and
mK �E

0
have changed in comparison to Table 4 inducing an

increased phase space. For this reason, the decay widths of
the corresponding resonances have changed as well. All other
results from Table 4 have remained the same and are again
included for clarity and convenience of the reader.

The consequences are as follows:

• The decay width of aE0 is now �aE0
= (280 ± 90) MeV;

it overlaps fully with �a0(1950) = (271 ± 40) MeV mea-
sured by BABAR. Hence, if a0(1950) is confirmed in
future measurements, it will represent a very good can-
didate for the excited isotriplet n̄n state.
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Table 6 Final results: decays and masses of the excited q̄q states. Widths marked as “suppressed” depend only on large-Nc suppressed parameters
that have been set to zero. Masses/widths marked with (*) are used as input; others are predictions

Model state I J P Mass (MeV) Decay Width (MeV) Note

σ E
N 00+ 1790 ± 35* σ E

N → ππ 270 ± 45* Assigned to f0(1790); mass, ππ and
KK decay widths fixed to BES II
data [131]. Other decays not (yet)
measured

σ E
N → KK 70 ± 40*

σ E
N → a1(1260)π 47 ± 8

σ E
N → ηη′ 10 ± 2

σ E
N → ηη 7 ± 1

σ E
N → f1(1285)η 1 ± 0

σ E
N → K1K 0

σ E
N → σNππ 0

Total 405 ± 96

aE0 10+ 1931 ± 26* aE0 → ηπ 94 ± 16 Candidate state: a0(1950) recently
measured by BABAR;
ma0(1950) = (1931 ± 26) MeV and
�a0(1950) = (271 ± 40) MeV [187]
Requires confirmation [5]

aE0 → KK 94 ± 54

aE0 → η′π 48 ± 8

aE0 → f1(1285)π 28 ± 5

aE0 → K1K 9 ± 5

aE0 → a1(1260)η 6 ± 1

aE0 → a0(1450)ππ 1 ± 1

Total 280 ± 90

ηE
N 00− 1294 ± 4* ηE

N → ηππ + η′ππ + πKK 7 ± 3 Assigned to η(1295); PDG mass [5]

ηE
S 00− 1432 ± 10* ηE

S → K �K 128+204
−128 Assigned to η(1440); mass from BES

data [199,200]. Full width ∼ 100
MeV at this mass [200].
�η(1440)→ηππ suppressed [200]

ηE
S → KKπ 28+41

−28

ηE
S → ηππ and η′ππ Suppressed

Total 156+245
−156

σ E
S 00+ 2038 ± 24 σ E

S → KK 24+46
−24 Candidate states: f0(2020);

m f0(2020) = (1992 ± 16) MeV and
� f0(2020) = (442 ± 60) MeV and
f0(2100); m f0(2100) = (2101 ± 7)

MeV and � f0(2101) = 224+23
−21 MeV.

Both require confirmation [5]

σ E
S → ηη′ 16 ± 3

σ E
S → ηη 7 ± 1

σ E
S → K1K 4+8

−4

σ E
S → η′η′ 1 ± 0

σ E
S → ππ , ρρ and ωω Suppressed

σ E
S → a1(1260)π and f1(1285)η Suppressed

σ E
S → π Eπ and ηE

Nη Suppressed

σ E
S → σSππ Suppressed

Total 52+58
−32
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Table 6 continued

Model state I J P Mass (MeV) Decay Width (MeV) Note

K �E
0

1
2 0+ 2023 ± 27 K �E

0 → η′K 72 ± 12 Candidate state: K �
0 (1950);

mK �
0 (1950) = (1945 ± 22) MeV and

�K �
0 (1950) = (201 ± 90) MeV.

Requires confirmation [5]
K �E

0 → Kπ 66 ± 46

K �E
0 → K1π 10 ± 7

K �E
0 → a1(1260)K 6 ± 4

K �E
0 → ηK 6+9

−6

K �E
0 → f 1(1285)K 2 ± 1

K �E
0 → K1η 0

K �E
0 → K �

0 (1430)ππ 0

Total 162+79
−76

π E 10− 1294 ± 4 – – Width badly defined due to large
errors of the experimental input data

K E 1
2 0− 1366 ± 6 – – Width badly defined due to large

errors of the experimental input data

• The mass of σ E
S is between those of f0(2020) and

f0(2100). Judging by the quantum numbers, either of
these resonances could represent a (predominant) s̄s
state; an option is also that the excited s̄s state with
I J PC = 00++ has not yet been observed in this energy
region. However, one must also remember the possibil-
ity that q̄q–glueball mixing (neglected here) may change
masses as well as decay patterns. The decay width of σ E

S
is rather narrow (up to 110 MeV) but this may change if
mixing effects happen to be large.

• The mass of K �E
0 is qualitatively (within ∼ 100 MeV)

congruent with that of K �
0(1950); the widths overlap

within 1 σ . Hence, if K �
0(1950) is confirmed in future

measurements, it will represent a very good candidate
for the excited scalar kaon.

• Conclusions for all other states remain as in Sect. 3.3.1.

4 Conclusion

We have studied masses and decays of excited scalar and
pseudoscalar q̄q states (q = u, d, s quarks) in the Extended
Linear Sigma Model (eLSM) that, in addition, contains
ground-state scalar, pseudoscalar, vector and axial-vector
mesons.

Our main objective was to study the assumption that the
f0(1790) resonance is an excited n̄n state. This assignment
was motivated by the observation in BES [131] and LHCb
[132] data that the resonance couples mostly to pions and
by the theoretical statement that the n̄n ground state is con-
tained in the physical spectrum below f0(1790). Further-
more, the assumption was also tested that the a0(1950)

resonance, whose discovery was recently claimed by the
BABAR Collaboration [187], represents the isotriplet partner
of f0(1790).

Using the mass, 2π and 2K decay widths of f0(1790),
the mass of a0(1950) and the masses of the pseudoscalar
isosinglets η(1295) and η(1440) our model predicts more
than 35 decays for all excited states except for the excited pion
and kaon (where extremely large uncertainties are present
due to experimental ambiguities). All numbers are collected
in Table 6.

In essence: the f0(1790) resonance emerges as the broad-
est excited q̄q state in the scalar channel with � f0(1790)

= (405 ± 96) MeV; a0(1950), if confirmed, represents a
very good candidate for the excited q̄q state; K �

0(1950), if
confirmed, represents a very good candidate for the excited
scalar kaon.

Our excited isoscalar s̄s state has a mass of (2038 ± 24)

MeV, placed between the masses of the nearby f0(2020)

and f0(2100) resonances; also, its width is relatively small
(≤ 110 MeV). We conclude that, although any of these res-
onances may in principle represent a q̄q state, the intro-
duction of mixing effects (particularly with a glueball
state) may be necessary to further elucidate their struc-
ture.

Our results also imply a quite small contribution of the
ηππ , η′ππ and πKK decays to the overall width of η(1295).
For η(1440), the decay width is compatible with any value
up to ∼ 400 MeV (ambiguities due to uncertainty in experi-
mental input data).

It is also possible to implement �total
η(1295) ≡ �η(1295)→ηππ

+η′ππ+πKK and �η(1440)→K �K exactly as in the data of PDG
[5] and BES [199]. Then π(1300) and K (1460) are quite well
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described as excited q̄q states – but the scalars are unobserv-
ably broad (see Table 5). Hence, in this case, there appears to
be tension between the simultaneous description of η(1295),
π(1300), η(1440) and K (1460) and their scalar counterparts
as excited q̄q states. This scenario is, however, marred by
experimental uncertainties: for example, it is not at all clear
if the width of η(1295) is indeed saturated by the ηππ , η′ππ

and πKK decays. It could therefore only be explored further
when (very much needed) new experimental data arrives –
from BABAR, BES, LHCb or PANDA [81] and NICA [212].
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Appendix A: Interaction Lagrangians

Here we collect all interaction Lagrangians that are used for
calculations of decay widths throughout this article. Vertices
for large-Nc suppressed decays are not included but briefly
discussed after each Lagrangian in which they appear.

Appendix A.1: Lagrangian for σ E
N

The Lagrangian reads

Lσ E
N

= 1

2
(h�

2 − h�
3)w

2
a1
Z2

πφN σ E
N

[
(∂μηN )2 + (∂μπ)2]

+ 1

2

(
h�

2φN − √
2h�

3φS

)
w2

K1
Z2
K σ E

N

× (
∂μ K̄

0∂μK 0 + ∂μK
−∂μK+)

+ (h�
2 − h�

3)wa1 ZπφN σ E
N

(
f μ
1N ∂μηN + a1μ · ∂μπ

)
+ 1

2

(
h�

2φN − √
2h�

3φS

)
wK1 ZK σ E

N

×
(
K̄ 0

1μ∂μK 0 + K−
1μ∂μK+ + h.c.

)

+ 1

2
(h�

2 + h�
3)φN σ E

N

[
(ω

μ
N )2 + (ρμ)2]

+ 1

2

(
h�

2φN + √
2h�

3φS

)
σ E
N

(
K̄ �0

μ K �μ0 + K �−
μ K �μ+)

− ξ2ZπφN σ E
N π E · π − gE1 wa1 Zπ σ E

N ∂μπ E · ∂μπ

+ 1

2
(h�

2 − h�
3)w

2
a1
Z2

π σ E
N σN (∂μπ)2. (A.1)

Note: the decay σ E
N → ηSηS (∼ κ1, h�

1) is large-Nc sup-
pressed.

Appendix A.2: Lagrangian for σE
S

The Lagrangian reads

Lσ E
S

= (h�
2 − h�

3)w
2
f1S Z

2
ηS

φS σ E
S (∂μηS)

2

+
(
h�

2φS − h�
3√
2
φN

)

× w2
K1

Z2
K σ E

S

(
∂μ K̄

0∂μK 0 + ∂μK
−∂μK+)

+
(
h�

2φS − h�
3√
2
φN

)
wK1 ZK σ E

S

×
(
K̄ 0

1μ∂μK 0 + K−
1μ∂μK+ + h.c.

)

+
(
h�

2φS+ h�
3√
2
φN

)
σ E
S

(
K̄ �0

μ K �μ0+K �−
μ K �μ+)

.

(A.2)

Note: the decays σ E
S → ππ (∼ κ1, h�

1), σ E
S → ηNηN

(∼ κ1, h�
1), σ E

S → ρρ (∼ h�
1), σ E

S → ωNωN (∼ h�
1), σ E

S →
a1π (∼ h�

1), σ E
S → f1NηN (∼ h�

1), σ E
S → π Eπ (∼ κ2),

σ E
S → ηE

NηN (∼ κ2) and σ E
S → σSππ (∼ κ1, h�

1) are large-
Nc suppressed.

Appendix A.3: Lagrangian for aE0

The Lagrangian reads (only a0E
0 included; decays of a±E

0
follow from isospin symmetry):

LaE0
= (h�

2 − h�
3)w2

a1
Z2

πφN a0E
0 ∂μπ0∂μηN

− 1

2

(
h�

2φN − √
2h�

3φS

)
w2
K1

Z2
K a0E

0

×
(
∂μ K̄ 0∂μK 0 − ∂μK−∂μK+)

+ (h�
2 − h�

3)wa1 ZπφN a0E
0

(
f μ
1N ∂μπ0 + aμ0

1 ∂μηN

)

− 1

2

(
h�

2φN − √
2h�

3φS

)
wK1 ZK a0E

0

×
(
K̄ 0

1μ∂μK 0 − K−
1μ∂μK+ + h.c.

)

+ (h�
2 + h�

3)φN a0E
0 ρ0

μω
μ
N − 1

2

(
h�

2φN + √
2h�

3φS

)

× a0E
0

(
K̄ �0

μ K �μ0 − K �−
μ K �μ+)

− ξ2ZπφN a0E
0 ηENπ0 − gE1 wa1 Zπ a0E

0 ∂μηEN ∂μπ0

+ 1

2
(h�

2 + h�
3)w2

a1
Z2

π a0E
0 a0

0(∂μπ)2

− h�
3w2

a1
Z2

π a0E
0 ∂μπ0 (

a0 · ∂μπ
)
. (A.3)
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Appendix A.4: Lagrangian for K �E
0

The Lagrangian reads (only K �0E
0 included; decays of other

K �E
0 components follow from isospin symmetry):

LK �E
0

= 1

4

[
h�

2

(
φN + √

2φS

)
− 2h�

3φN

]
wa1wK1 Zπ ZK K �0E

0

×
(
∂μ K̄

0∂μηN − ∂μ K̄
0∂μπ0 + √

2∂μK
−∂μπ+)

+ 1

2
√

2

[
h�

2

(
φN + √

2φS

)
− 2

√
2h�

3φS

]

× w f1SwK1 ZηS ZK K �0E
0 ∂μ K̄

0∂μηS

+ 1

4

[
h�

2

(
φN + √

2φS

)
− 2h�

3φN

]
wK1 ZK K �0E

0

×
(
f μ
1N ∂μ K̄

0 − aμ0
1 ∂μ K̄

0 + √
2aμ+

1 ∂μK
−)

+ 1

4

[
h�

2

(
φN + √

2φS

)
− 2h�

3φN

]
wa1 Zπ K �0E

0

×
(
K̄ 0

1μ∂μηN − K̄ 0
1μ∂μπ0 + √

2K−
1μ∂μπ+)

+ 1

2
√

2

[
h�

2

(
φN + √

2φS

)
− 2

√
2h�

3φS

]

w f1S ZηS K
�0E
0 K̄ 0

1μ∂μηS

+ 1

4

[
h�

2

(
φN + √

2φS

)
+ 2h�

3φN

]
K �0E

0

×
(
K̄ �0

μ ω
μ
N − K̄ �0

μ ρμ0 + √
2K �−

μ ρμ+)

− 1

4

[
2ξ2φN − λ�

2

(
φN − √

2φS

)]
ZK K �0E

0

×
(
K̄ 0ηE

N − K̄ 0π0E + √
2K−π+E

)

− 1

2
gE1 wK1 ZK K �0E

0

×
(
∂μ K̄

0∂μηE
N − ∂μ K̄

0∂μπ0E + √
2∂μK

−∂μπ+E
)

+ 1

2
gE1 wK1 ZK ∂μK

�0E
0

×
(
∂μ K̄ 0ηE

N − ∂μ K̄ 0π0E + √
2∂μK−π+E

)

+ 1√
2
ξ2ZπφS K

�0E
0

(
K̄ 0Eπ0 − √

2K−Eπ+)

+ 1

2
gE1 wa1 Zπ K �0E

0

×
(
∂μ K̄

0E∂μπ0 − √
2∂μK

−E∂μπ+)

− 1

2
gE1 wa1 Zπ ∂μK

�0E
0

×
(
K̄ 0E∂μπ0 − √

2K−E∂μπ+)

+ 1

4
h�

2w
2
a1
Z2

π ZKS K
�0E
0 K̄ �0

0 (∂μπ)2

+ i

4
(h�

2 − 2h�
3)wa1w

∗
K � Z2

π ZKS K
�0E
0 π0∂μ K̄

�0
0 ∂μπ0

− ih�
3wa1w

∗
K � Z2

π ZKS K
�0E
0 π−∂μ K̄

�0
0 ∂μπ+

+ i

2
h�

2wa1w
∗
K � Z2

π ZKS K
�0E
0 π+∂μ K̄

�0
0 ∂μπ−

+ i

2
√

2
(h�

2 + 2h�
3)wa1w

∗
K � Z2

π ZKS K
�0E
0

× (
π+∂μK

�−
0 ∂μπ0 − π0∂μK

�−
0 ∂μπ+)

. (A.4)

Appendix A.5: Lagrangian for ηE
N

Only three-body decays into pseudoscalars are kinematically
allowed for this particle:

LηE
N

= 1

2
(h�

2 − h�
3)w

2
a1
Z3

π ηE
NηN (∂μπ)2

+ (h�
2 − h�

3)w
2
a1
Z3

π ηE
N

(
∂μηN ∂μπ

) · π

− 1

4
(h�

2 − 2h�
3)wa1wK1 Zπ Z

2
K ηE

N

×
(
K̄ 0∂μK

0∂μπ0 − √
2K̄ 0∂μK

+∂μπ−

− K−∂μK
+∂μπ0 − √

2K−∂μK
0∂μπ+ + h.c.

)

− 1

2
h�

2w
2
K1

Zπ Z
2
K ηE

N

×
(
π0∂μ K̄

0∂μK 0 − π0∂μK
−∂μK+

−√
2π−∂μK

+∂μ K̄ 0 + h.c.
)

. (A.5)

Appendix A.6: Lagrangian for ηE
S

The Lagrangian reads

LηE
S

= − i√
2
h�

3wK1 ZKφN ηE
S

(
∂μ K̄

0K �μ0 + ∂μK
−K �μ+ + h.c.

)

+ (h�
2 − h�

3)w
2
a1
Z3

π ηE
N

(
∂μηN ∂μπ

) · π

− 1

2
√

2
h�

2wa1wK1 Zπ Z
2
K ηE

S

(
K̄ 0∂μK

0∂μπ0

−√
2K̄ 0∂μK

+∂μπ−

− K−∂μK
+∂μπ0 − √

2K−∂μK
0∂μπ+ + h.c.

)

+ 1√
2
h�

3w
2
K1

Zπ Z
2
K ηE

S

×
(
π0∂μ K̄

0∂μK 0 + π0∂μK
−∂μK+

+√
2π−∂μK

+∂μ K̄ 0 + h.c.
)

. (A.6)

Note: the decay ηE
S → ηSππ (∼ κ1, h�

1) is large-Nc sup-
pressed.

Appendix A.7: Lagrangian for π E

The Lagrangian reads (only π0E included; decays of π±E

follow from isospin symmetry):

Lπ E = − ih�
3wa1 ZπφN π0E (

ρ−
μ ∂μπ+ − ρ+

μ ∂μπ−)

+ 1

4

(
h�

2 − 2h�
3

)
wa1wK1 Zπ Z

2
K π0E∂μπ0

×
(
K̄ 0∂μK 0 + K−∂μK+ + h.c.

)
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+ 1

2
h�

2w
2
K1

Zπ Z
2
K π0Eπ0

(
∂μ K̄

0∂μK 0 + ∂μK
−∂μK+)

− 1

2
√

2

(
h�

2 + 2h�
3

)
wa1wK1 Zπ Z

2
K π0E

×
[
∂μπ− (

K̄ 0∂μK+ − K+∂μ K̄ 0
)

+ h.c.
]

+ 1

2
(h�

2 + h�
3)w

2
a1
Z3

π π0Eπ0(∂μπ)2

− h�
3w

2
a1
Z3

π π0E∂μπ0 (
π · ∂μπ

)
. (A.7)

Appendix A.8: Lagrangian for K E

The Lagrangian reads (only K 0E included; decays of other
K E components follow from isospin symmetry):

LK E = − i

4

[
h�

2

(
φN − √

2φS

)
+ 2h�

3φN

]
wK1 ZK K 0E

×
(
ωNμ∂μ K̄ 0 − ρ0

μ∂μ K̄ 0 + √
2ρ+

μ ∂μK−)

− i

4

[
h�

2

(
φN − √

2φS

)
− 2h�

3φN

]
wa1 Zπ K 0E

×
(
K̄ �0

μ ∂μηN − K̄ �0
μ ∂μπ0 + √

2K �−
μ ∂μπ+)

− i

2
√

2

[
h�

2

(
φN − √

2φS

)
+ 2

√
2h�

3φS

]

× w f1S ZηS K
0E K̄ �0

μ ∂μηS

− 1

2
h�

2w
2
a1
Z2

π ZK K 0E
(
K̄ 0∂μηN ∂μπ0

−√
2K−∂μηN ∂μπ+)

− 1

4
(h�

2 − 2h�
3)wa1wK1 Z

2
π ZK K 0E

(
π0∂μηN ∂μ K̄ 0

−√
2π+∂μηN ∂μK− + ηN ∂μπ0∂μ K̄ 0

−√
2ηN ∂μπ+∂μK−)

+ 1√
2
h�

3wa1w f1S Zπ ZK ZηS K
0E

×
(
K̄ 0∂μηS∂

μπ0

−√
2K−∂μηS∂

μπ+)

− 1

2
√

2
h�

2wK1w f1S Zπ ZK ZηS K
0E

×
(
π0∂μηS∂

μ K̄ 0 − √
2π+∂μηS∂

μK−)

− 1

2
√

2
h�

2wa1wK1 Zπ ZK ZηS K
0E

×
(
ηS∂μπ0∂μ K̄ 0 − √

2ηS∂μπ+∂μK−)

+ 1

4
h�

2w
2
a1
Z2

π ZK K 0E K̄ 0(∂μπ)2 + 1

4
(h�

2 − 2h�
3)

× wa1wK1 Z
2
π ZK K 0Eπ0∂μ K̄

0∂μπ0

− h�
3wa1wK1 Z

2
π ZK K 0Eπ−∂μ K̄

0∂μπ+ + 1

2
h�

2

× wa1wK1 Z
2
π ZK K 0Eπ+∂μ K̄

0∂μπ−

+ 1

2
√

2
(h�

2 + 2h�
3)wa1wK1 Z

2
π ZK K 0E

×
(
π+∂μK

−∂μπ0 − π0∂μK
−∂μπ+)

. (A.8)
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