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Zusammenfassung

In den letzten Jahren hat die Suche nach einer Kitaev-Quantenspinflüssigkeit in
realen Materialien für großes Interesse gesorgt. Solche Zustände beruhen auf
starken, anisotropen magnetischen Wechselwirkungen, welche für eine Reihe
von auf Ir und Ru basierenden Materialien vorgeschlagen wurden. Innerhalb
dieser Arbeit wird sich auf zwei Hauptziele konzentriert. Diese sind zum Einen
die Untersuchung der elektronischen und magnetischen Eigenschaften der für
Kitaev-Physik möglichen Materialien Na2IrO3, α-Li2IrO3, α-RuCl3, γ-Li2IrO3

und Ba3YIr2O9, in welchen sowohl Spin-Bahn-Kopplung als auch Korrelation-
seffekte eine wichtige Rolle spielen. Zum Anderen bildet die Entwicklung einer
Methode für die mikroskopische Beschreibung von korrelierten Materialien, unter
Kombination von Vielteilchen-Methoden mit Dichtefunktionaltheorie (DFT) einen
wichtigen Bestandteil dieser Arbeit.

Eine Quantenspinflüssigkeit ist ein ungeordneter Spinzustand, in welchem die
darin enthaltenen Spins stark korreliert sind, aber dennoch bis hin zu niedri-
gen Temperaturen fluktuieren. Es ist ein Superpositionszustand, in welchem die
Spins gleichzeitig in viele verschiedene Richtungen zeigen, und welcher Anre-
gungen mit fraktionalen Quantenzahlen möglich sind. In die Suche nach einem
Quantenspinflüssigkeits-Zustand in einem realen Material sind seitdem große
Anstrengungen eingegangen, insbesondere bei geometrisch frustrierten Antiferro-
magneten, wie es bei dem Kagome- oder dem Dreiecks-Gitter der Fall sein kann.
In solch frustrierten Antiferromagneten können sich die Spins nicht spontan in
ferromagnetische oder antiferromagnetische Zustände ordnen, dies führt selbst
bei sehr tiefen Temperaturen zu einer Unordnung der Spins. Die dominanten
Wechselwirkungen sind im Spinraum isotrop und werden durch den Heisenberg-
Hamiltonian beschrieben. Da im Fall von isotroper Heisenberg-Wechselwirkung
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aber nicht alle Wechselwirkungen gleichzeitig minimiert werden können, wird
jede klassische Ordnungsstruktur destabilisiert. Vor einigen Jahren wurde ein
weiterer Weg, ohne geometrische Frustration, zur Realisierung einer Spinflüs-
sigkeit im Zuge von Kitaevs exakt lösbarem Honigwaben-Modell vorgeschlagen.
Dieses Modell beinhaltet ausschließlich kurzreichweitige Korrelationen auf dem
Honigwaben-Gitter. Im Gegensatz zum Heisenberg-Modell unterliegt dort jede
Gitter-Bindung einer Ising-ähnlichen Wechselwirkung, welche von der Richtung
der Bindung abhängig ist. Der Grundzustand ist dann eine Quantenspinflüssigkeit,
mit entweder lückenlosen Anregungen, oder Majorana-Fermion-Anregungen, je
nachdem welche relativen Wechselwirkungen vorliegen. Die exakte Lösung des
Modells kann auf das Problem von Majorana-Fermion-Hüpfen im Hintergrund
eines emergenten statischen Z2 Eichfelds reduziert werden.

Nichtsdestotrotz bleibt es eine Herausforderung, Materialien zu finden, welche
tatsächlich eine Kitaev-Spinflüssigkeit realisieren. Das fragliche System sollte von
der Kitaev-Wechselwirkung dominiert werden, während andere Wechselwirkungen
unterdrückt sind. Jackeli und Khaliullin [Phys.Rev.Lett 102, 017205 (2009)] schlu-
gen eine Struktur mit 90◦ Bindungsgeometrie (an den Kanten verbundene Oktaeder
aus schweren d5 Metallen mit Winkeln nahe 90◦) vor, welche auf natürliche Weise
zu bindungsabhängigen Wechselwirkungen führen. Es gibt verschiedene Materi-
alien, bei denen solche Wechselwirkungen auf dem Honigwaben-Gitter möglich
sind, beispielsweise Na2IrO3, α-Li2IrO3 und α-RuCl3, oder auf anderen dreidi-
mensionalen Gittern β -Li2IrO3 und γ-Li2IrO3. Sie alle besitzen eine oktaedrische
Struktur und sind Mott-Isolatoren. Allerdings haben diese Materialien magnetisch
geordnete Grundzustände anstelle einer Spinflüssigkeit. Wie ein Kitaev-Zustand
in einem realen System konstruiert werden könnte, ist eine der Fragen mit der
sich diese Arbeit beschäftigt. Schließlich untersuchen wir ein System bei dem
Ir4.5+ eine d4.5 Füllung besitzt, welches durch zweifach geschichtete Dreiecksgitter
geformt wird und ein antiferromagnetischer Isolator ist. Die Details dieses Systems
werden in den entsprechenden Kapiteln erörtert.

Vielteilchensysteme können mit Hilfe des sogenannten Hubbard-Modells
beschrieben werden, dieses beinhaltet die kinetische Energie der Elektro-
nen, welche zwischen den Atomrümpfen hüpfen, die Coulomb-Abstoßung der
Elektronen U und die intra-atomare Hundskopplung JH . Wenn die Elektro-
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nengeschwindigkeit von der gleichen Größenordnung wie die Lichtgeschwindigkeit
ist, dies ist bei schweren Atomen der Fall, dann ist es notwendig, relativistische
Effekte in der Beschreibung der elektronischen Struktur zu berücksichtigen. Die
Spin-Bahn-Wechselwirkung mischt ”up“ und ”down“ Spinzustände, so dass der
totale Drehimpuls j = l + s eine gute Quantenzahl wird, im Gegensatz zu l oder
s. Man allgemein kann sagen, dass die Bedeutung von relativistischen Effekten in
der Regel mit der Atomnummer zunimmt. Diese relativistischen Effekte wurden in
schwach korrelierten Materialien, wie beispielsweise Halbleitern, bereits intensiv
untersucht. In solchen Materialien verbindet die Spin-Bahn-Wechselwirkung die
Bahndrehimpuls- mit den Spin-Freiheitsgraden, was zu Phänomenen wie dem
anormalen Hall-Effekt, der Bildung von topologischen Isolatoren oder Spintronik-
Physik führen kann.

Im Gegensatz zu schwach korrelierten Materialien, bei denen U klein ist, und im
Gegensatz zu 3d Übergangsmetallen, bei denen Spin-Bahn-Effekte klein sind, sind
in den untersuchten 4d Ru3+ und 5d Ir4+ Verbindungen die ”on-site“ Hubbard-
Wechselwirkung U , die Hunds-Kopplung JH , die Spin-Bahn-Kopplung λ , das
Kristallfeld ∆ und die kinetische Energie der Elektronen alle von derselben
Größenordnung. Dies erschwert die Beschreibung ihrer Eigenschaften, da in
der Regel keinerlei kleine Parameter vorhanden sind. Obwohl die Beschreibung
dieser komplexen Materialien herausfordernd ist, bleibt zu bedenken, dass die
Untersuchung von schweren 4d und 5d d-Block-Materialien erst seinen Anfang
genommen hat. Dies impliziert aber, dass wir bisher über keinerlei Intuition
bezüglich ihrer Eigenschaften verfügen. Daher ist es von Bedeutung, zunächst eine
Vorstellung von ihrer elektronischen Struktur, ihren optischen Eigenschaften und
ihren magnetischen Eigenschaften, beeinflusst von Korrelationen und Spin-Bahn-
Kopplung, zu erlangen. Das niederenergetische t2g Triplett in diesen Materialien
ist aufgespalten in ein jeff = 1/2 Doublet und ein jeff = 3/2 Quartett. Im Fall von
d5 Füllung (fünf Elektronen in der äußeren d-Schale), sind di jeff = 3/2 Zustände
gefüllt und di jeff = 1/2 werden von einem Elektron besetzt.

Diese Materialien wurden mit einer Reihe von Verfahren untersucht, welche in
den entsprechenden Kapiteln zusammen gefasst werden. Dichtefunktionaltheorie
(DFT) wird immer mehr verwendet um die Natur von existierenden Materialien
zu beschreiben, um neue Materialien zu designen und um Verlässlichkeit und
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Genauigkeit von anderen Theorien zu verifizieren. Allerdings funktioniert das
nicht immer einwandfrei in Materialien mit stark korrelierten Wechselwirkungen.
Hinzu kommt, dass Modelle, basierend auf Vielteilchen-Methoden, ebenso wichtig
sind, um die Wechselwirkungen besser untersuchen zu können.

Im Fall der Honigwaben-Gitter-Materialien Na2IrO3, α-Li2IrO3 und α-RuCl3 kon-
nten wir eine Abhängigkeit der Qualität des Quasimolekular-Orbital-Bilds (QMO-
Bilds) von den Hüpfamplituden, beeinflusst von den verschieden stark ausgeprägten
trigonalen Verzerrungen, beobachten. Na2IrO3 besitzt die größte Verzerrung und
in diesem Fall wird die nicht-relativistische Einteilchen-Elektronen-Struktur gut
mit der QMO Basis beschrieben. Das QMO-Bild wird jedoch im P3112 α-RuCl3
zerstört, in welchem die nur kleinen Verzerrungen die Metall-Metall Hüpfamplitu-
den verstärken. In α-Li2IrO3 und C2/m α-RuCl3 führt die mittlere Verzerrung zu
signifikant gemischten QMOs.

Bezüglich der optischen Leitfähigkeit haben wir die zweidimensionalen Na2IrO3

und α-Li2IrO3, sowie das dreidimensionale γ-Li2IrO3 untersucht, wobei wir sowohl
die relativistische DFT Methode inklusive Coulomb-Abstoßung, als auch exakte
Diagonalisierung des gesamten wechselwirkenden Hamiltonians auf endlichen
Clustern, mit Hüpfamplituden aus DFT-Rechnungen, verwendet haben. Beide
Methoden reproduzieren sowohl den Haupt-Peak der ”in-plane“ Komponente der
optischen Leitfähigkeit σc, als auch die experimentell beobachtete Lücke. Das
isolierende Verhalten kann ebenfalls erklärt werden, indem Spin-Bahn-Kopplung
und Coulomb-Abstoßung für die d5 Füllung berücksichtigt werden. Unter Verwen-
dung der Tatsache, dass die schmalen Bänder von Na2IrO3 sehr gut mit QMOs
beschrieben werden können, haben wir gezeigt, dass die Stärke der verschiedenen
Inter-Band-Beiträge zur optischen Leitfähigkeit gut mit Hilfe der Parität der quasi-
molekularen Orbitale beschrieben werden können, insbesondere die Unterdrückung
der Gewichte in Übergängen gleicher Parität und die Verstärkung der Gewichte in
Übergängen ungleicher Parität. Wir sind außerdem in der Lage, den Verlauf der
optischen Leitfähigeit in α-Li2IrO3 vorauszusagen. Es scheint jedoch so, dass
DFT den Beitrag des j1/2→ j1/2 Übergangs bei niedrigen Energien in σa und σb

überschätzt.



IX

Im Gegensatz dazu bestätigen die Ergebnisse der exakten Diagonalisierung (ED)
die Modell-Parameter (U , JH , λ ) und legen die Vermutung nahe, dass hochener-
getische Anregungen mit einem lokalisierten Bild in γ-Li2IrO3 gut erfasst werden
können. Der Vergleich mit der Analyse der optischen Leitfähigkeit von Na2IrO3

zeigt, dass der Peak nahe 1,5 eV sowohl in Na2IrO3, als auch in γ-Li2IrO3 im
Sinne von ”inter-site“ j3/2 → j1/2 Anregungen interpretiert werden können. Der
Vergleich von σ(ω) für die verschiedenen Materialien legt nahe, dass das rela-
tive Spektralgewicht der Übergänge einen Einblick in die Größenordnungen der
verschiedenen Hüpfamplituden, und damit der lokalen magnetischen Wechsel-
wirkungen, gewähren kann.

Obwohl die Materialien, die mögliche Kandidaten für Kitaev-Physik darstellen,
in den letzten Jahren intensiv untersucht wurden, ist kein Konsens bezüglich ihrer
magnetischen Wechselwirkungen erreicht worden. Dies erschwert es erheblich,
ihre Eigenschaften zu verstehen und heraus zu finden wie sie chemisch oder auf
andere Weise verändert werden sollten. Um die gegenwärtigen Materialien im
Phasendiagramm richtig einzuordnen und um zu wissen wie die Materialien mod-
ifiziert werden werden müssen, um ein Spinflüssigkeits-Verhalten zu erreichen, ist
ein mikroskopisches Verständnis unbedingt notwendig. Im Zuge dessen haben wir
unter anderem Störungstheorie zweiter Ordnung angewandt. Die Hüpfparameter
wurden mit Hilfe der Projektormethode aus nicht-relativistischen DFT Rechnun-
gen ermittelt. Auf diesen Hüpfparametern basierend, wird das Hubbard-Modell,
unter Berücksichtigung von Spin-Bahn-Kopplung und Korrelationseffekten, kon-
struiert. Nach exakter Diagonalisierung des Hamiltonoperators ermitteln wir die
Austausch-Wechselwirkungen und konstruieren ein mikroskopisches, effektives
Modell, welches in der Lage ist, die experimentell ermittelten magnetischen Kon-
figurationen zu erklären. Der wichtige Beitrag dieser Arbeit zur wissenschaftlichen
Gemeinschaft ist die Entwicklung einer Methode um Austauschparameter zu ex-
trahieren, welche mit den bekannten experimentellen Details konsistent sind.

Alle in dieser Arbeit untersuchten Strukturen besitzen jedoch magnetisch geordnete
Grundzustände anstelle einer Spinflüssigkeit. Kombiniert man die Heisenberg-
Wechselwirkung mit der Kitaev-Wechselwirkung zum Heisenberg-Kitaev-Modell,
und berücksichtigt zudem außerdiagonale Terme, sowie langreichweitige Wechsel-
wirkungen, so entstehen reichhaltige Phasen. Die beobachtete Zickzack-Ordnung
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in Na2IrO3 und α-RuCl3 kann, unter Berücksichtigung von großer Heisenberg-
Wechelwirkung zwischen dritten Nachbarn J3, natürlich erklärt werden. Diese tritt
als dominanter Term in Störungstheorie höherer Ordnung auf, daher wurde sie
in den meisten bisherigen Studien vernachlässigt oder unterschätzt. Im Falle von
α-Li2IrO3 lassen die berechneten Wechselwirkungen vermuten, dass eine große
Bindungs-Anisotropie und signifikante Terme zwischen ersten, zweiten und drit-
ten Nachbarn vorliegen. Wir haben insbesondere gezeigt, dass eine Kombination
von Zweiter-Nachbar-Wechselwirkung die beobachtete Ordnung erklären kann.
Die Komplexität der Wechselwirkungen könnte im Falle von den weniger sym-
metrischen β - und γ-Li2IrO3 sogar noch größer sein, da in diesen für bestimmte
Nächste-Nachbar-Bindungen die Dzyaloshinskii-Moriya-Wechselwirkung erlaubt
ist. Es bleibt zu bestimmen, welche Modelle effektiv zu den realen Materialien
in Relation gebracht werden können, reine Nächste-Nachbar-Modelle scheinen
jedoch unrealistisch zu sein.

Bedenkt man diese Beobachtungen, so erscheint die Realisierung einer Kitaev-
Spinflüssigkeit als Grundzustand in d5 Materialien als eine erhebliche synthetische
Herausforderung. Aufgrund des hoch komplexen Phasendiagramms und der zahlre-
ichen Möglichkeiten klassischer Entartung in dem erweiterten Wechselwirkungs-
Bereich, ist es nichtsdestotrotz äußerst wahrscheinlich, dass diese Systeme andere
exotische Phasen und Phasenübergange aufweisen.

Zusammenfassend kann man sagen, dass die untersuchten Materialien sowohl große
Spin-Bahn-Kopplung als auch starke Korrelationseffekte besitzen, welche mit einer
Kombination von DFT und Vielteilchen-Methoden untersucht werden können. Die
Methode der exakten Diagonalisierung auf dem Honigwaben-Gitter ermöglicht eine
genaueren Ermittlung der magnetischen Wechselwirkungen, welche auch auf weit-
ere Systeme angewandt werden kann. Sie stellt ein mächtiges Mittel für Studien von
magnetischen Systemen in stark korrelierten Systemen mit Spin-Bahn-Kopplung
dar. Auf der Basis der in dieser Arbeit angewandten Berechnungen sind wir in
der Lage die wichtigsten synthetischen Herausforderungen zur Realisierung eines
Spinflüssigkeits-Zustands innerhalb der Kitaev Kandidaten zu identifizieren. Die
verwendeten und entwickelten Methoden dieser Arbeit werden zweifelsohne bei
künftigen Arbeiten zur Konstruktion von Kitaev-Spinflüssigkeiten in realen Mate-
rialien hilfreich sein.



Abstract

Great interest has emerged recently in the search for Kitaev spin liquid states in real
materials. Such states rely on strongly anisotropic magnetic interactions, which
have been suggested to exist in a number of candidate materials based on Ir and
Ru. This thesis concentrates on two priority purposes. The first is the investigation
of electronic and magnetic properties of candidate materials Na2IrO3, α-Li2IrO3,
α-RuCl3, γ-Li2IrO3, and Ba3YIr2O9 for Kitaev physics where both spin-orbit cou-
pling and correlation effects are important. The second is the method development
for the microscopic description of correlated materials combining many-body meth-
ods and density functional theory (DFT).

A quantum spin liquid is a spin disordered state, in which the constituent spins
are highly correlated but still fluctuate strongly down to low temperatures. It is a
superposition state in which the spins simultaneously point in many different di-
rections that support excitations with fractional quantum numbers. A great amount
of effort has been made in the search for quantum spin liquid states in real mate-
rials, particularly in geometrically frustrated antiferromagnets such as kagome and
triangular lattices. Recently, another way to realize the spin liquid without geomet-
ric frustration was suggested by Kitaev’s exactly solvable honeycomb model. This
model including only short range correlations on the honeycomb lattice. Different
from the Heisenberg model, each bond has an Ising-like bond-directed interactions.
The ground state is a quantum spin liquid, with either gapless or gapped Majorana
fermion excitations, depending on the relative interaction. The exact solution can
be reduced to the problem of Majorana fermions hopping in the background of an
emergent static Z2 gauge field.

However, to find materials to realize the Kitaev spin liquid is a challenge. The sys-
tems should be dominated by the Kitaev exchange while other interactions must be
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suppressed. Jackeli and Khaliullin [Phys. Rev. Lett. 102, 017205 (2009)] suggested
a structure of 90◦ bonding geometry (edge-sharing octahedra of heavy d5 metals,
with close to 90◦ bond angles), which can naturally generate bond-dependent in-
teractions. There are several candidate materials to obtain such interactions on the
honeycomb lattice Na2IrO3, α-Li2IrO3, α-RuCl3 and other 3D lattices β -Li2IrO3

and γ-Li2IrO3. They all have octahedral structure and are Mott insulators. In these
materials, the spin-orbit coupling, crystal field, band width, and Coulomb repulsion
energy scales are all of similar order of magnitude. This makes the description of
their properties difficult, since there are no relative small parameters. This difficulty
is generally found in correlated 4d and 5d transition metal-based materials, which
are now beginning to be explored in detail. Ab initio-based studies of such materials
will help to build intuition about their electronic structure, optical properties, mag-
netic properties, and how these properties are affected by correlations and spin-orbit
couplings.

The optical conductivity for Na2IrO3 and α-Li2IrO3 was calculated using density
functional theory (DFT) and exact diagonalization of finite clusters. With the DFT
method, we construct newly developed quasi-molecular orbitals for different mate-
rials and find sensitive dependences on the trigonal distortions. By making use of
the parity of the quasi-molecular orbitals, optical conductivity intensities can be ex-
plained. We also analyze the excitation properties for the three dimensional material
γ-Li2IrO3 to compare the similarities and differences.

While the Kitaev candidate materials have been intensively studied in the past years,
there is no consensus about their magnetic interactions. This makes it difficult to
understand their properties and to know how to change them chemically or by other
means. In order to place the current materials in the phase diagram of interactions,
and how the materials should be modified to reach a spin-liquid behavior, we need
to get a microscopic understanding of the interactions. We have also considered
second-order perturbation theory. The hopping parameters were calculated using
the projector method from the non-relativistic DFT calculations. Based on these
hopping parameters, Hubbard model is constructed including spin-orbit coupling
and correlation effects. After exact diagonalization of the Hamiltonian, we extract
the exchange interactions and construct the microscopic effective models which can
explain the experimental magnetic configurations of these materials. The important
contribution of this thesis to the community is the development of a method to ex-
tract exchange parameters that are consistent with the known experimental details.



Contents

1 Introduction 1

2 Kitaev honeycomb model 9
2.1 Conserved quantities . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Majorana fermions . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Exact solution and phase diagram . . . . . . . . . . . . . . . . . . 12
2.4 Quantum spin liquid states . . . . . . . . . . . . . . . . . . . . . . 14

3 Methods for describing electronic properties 15
3.1 Density functional theory . . . . . . . . . . . . . . . . . . . . . . . 16

3.1.1 Basic theory . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1.2 Extensions of DFT for spin-orbit coupling . . . . . . . . . . 20
3.1.3 LDA+U . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Extraction of hopping integrals from DFT . . . . . . . . . . . . . . 21
3.3 Theory of optical conductivity . . . . . . . . . . . . . . . . . . . . 24

3.3.1 Fundamental relations for optical phenomena . . . . . . . . 25
3.3.2 Interband transitions . . . . . . . . . . . . . . . . . . . . . 27
3.3.3 Optical conductivity in LAPW . . . . . . . . . . . . . . . . 30
3.3.4 Optical conductivity from exact diagonalization method . . 32

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4 Methods for magnetic properties 35
4.1 Effective magnetic Hamiltonians from perturbation theory . . . . . 35

4.1.1 From the single-band Hubbard model to Heisenberg model . 35
4.1.2 From the multi-band Hubbard model to the Heisenberg -

Kitaev model . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.1.3 Exact perturbation method . . . . . . . . . . . . . . . . . . 42

4.2 Effective model from exact diagonalization . . . . . . . . . . . . . 46

XIII



XIV CONTENTS

4.2.1 General form . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2.2 Comparison to exact second order perturbation . . . . . . . 48
4.2.3 Long-range interactions . . . . . . . . . . . . . . . . . . . 50

4.3 Comparison to experiment . . . . . . . . . . . . . . . . . . . . . . 51
4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5 Analysis of the electronic properties and optical conductivity for
A2IrO3 from first principles 53
5.1 Properties of Na2IrO3 and α-Li2IrO3 . . . . . . . . . . . . . . . . . 53
5.2 Electronic structures and optical conductivity for Na2IrO3 . . . . . . 55

5.2.1 Quasi-molecular orbitals . . . . . . . . . . . . . . . . . . . 55
5.2.2 Electronic structures with GGA+SO+U . . . . . . . . . . . 58
5.2.3 Optical conductivity . . . . . . . . . . . . . . . . . . . . . 59
5.2.4 Broadening . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.2.5 Different d−d transitions . . . . . . . . . . . . . . . . . . 61

5.3 Electronic structures and optical conductivity for α-Li2IrO3 . . . . 64
5.3.1 Electronic structure . . . . . . . . . . . . . . . . . . . . . . 64
5.3.2 Optical conductivity . . . . . . . . . . . . . . . . . . . . . 65
5.3.3 Different d−d transitions . . . . . . . . . . . . . . . . . . 65

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6 Electronic excitations in γ-Li2IrO3 69
6.1 Properties of γ-Li2IrO3 . . . . . . . . . . . . . . . . . . . . . . . . 69
6.2 Electronic properties of γ-Li2IrO3 . . . . . . . . . . . . . . . . . . 71

6.2.1 Density functional theory calculations . . . . . . . . . . . . 71
6.2.2 Exact diagonalization of finite clusters . . . . . . . . . . . . 75

6.3 Comparison to Na2IrO3 and α-Li2IrO3 . . . . . . . . . . . . . . . . 82
6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7 Electronic properties of α-RuCl3 87
7.1 Properties of α-RuCl3 . . . . . . . . . . . . . . . . . . . . . . . . 88
7.2 Electronic structure . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7.2.1 Density of states with quasi-molecular orbitals . . . . . . . 90
7.2.2 Electronic structure with GGA+SO+U . . . . . . . . . . . . 91

7.3 Electrostatic potential . . . . . . . . . . . . . . . . . . . . . . . . . 91
7.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93



CONTENTS XV

8 Challenges in design of Kitaev materials: magnetic interactions from
competing energy scales 95
8.1 Hopping parameters for the hexagonal materials: Na2IrO3, α-

Li2IrO3 and α-RuCl3 . . . . . . . . . . . . . . . . . . . . . . . . . 95
8.2 Exchange interactions for specific materials from exact diagonal-

ization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
8.2.1 Na2IrO3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
8.2.2 α-RuCl3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
8.2.3 α-Li2IrO3 . . . . . . . . . . . . . . . . . . . . . . . . . . 108

8.3 Realization of the spin liquid in real materials . . . . . . . . . . . . 115
8.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

9 Contributed work: electronic structure and spin-orbit driven novel
magnetism in d4.5 insulator Ba3YIr2O9 121
9.1 Magnetic properties . . . . . . . . . . . . . . . . . . . . . . . . . . 122
9.2 Electronic structure . . . . . . . . . . . . . . . . . . . . . . . . . . 124
9.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

10 Summary and outlook 127

A Spin-orbital coupling and relativistic basis 129

Bibliography 133

Acknowledgements 145

Curriculum Vitae 147



XVI CONTENTS



Chapter 1

Introduction

This thesis is devoted to understanding the electronic and magnetic properties of a
series of materials that have emerged as candidates for displaying spin-liquid behav-
ior. In a quantum spin liquid state, spin are disordered and fluctuate strongly down
to low temperatures. The spins are simultaneously point in many different directions
and support fractional excitations [1–3]. It was first proposed as the ground state
for antiferromagnetic spins on triangular lattice by Anderson [2]. The dominant in-
teractions are the nearest neighbor interactions that are described by the Heisenberg
Hamiltonian

H = J ∑
〈i, j〉

Ŝi · Ŝ j. (1.1)

Two of the spins can be antiparallel but the third one cannot, leading to several
orientations of spins. For isotropic Heisenberg magnetic interactions, not all inter-
actions can be minimized simultaneously. This enhances the fluctuations and sup-
presses magnetic ordering. A quantum spin liquid state has been discovered in such
geometrically frustrated antiferromagnets, for instance, organic Mott insulator with
triangular lattice [4] and herbertsmithite with kagome lattice [5]. Recently, another
way to realize the spin liquid without geometric frustration was suggested by Ki-
taev’s exactly solvable honeycomb model [6]. In this model, the spin Hamiltonian
is

H = ∑
γ,〈i, j〉

Kγ

i j
ˆ̃

Sγ

i
ˆ̃

Sγ

j , (1.2)

where γ indicate the three different X, Y, Z bonds shown in Fig. 1.1. It’s the model
including only the short range correlations on the honeycomb lattice [6]. Different

1



2 1. Introduction

(c) (d)

(a) (b)

Zigzag Neel

Stripy

X

Y

Z

Figure 1.1: (a) Honeycomb lattice with three different bonds X, Y and Z. Different
collinear magnetic configurations (b) Stripy, (c) Zigzag and (d) Neel. The orange
(green) solid circles are the atoms with spin up (down).

from the Heisenberg model, the interactions between nearest neighbours are of XX,
YY or ZZ type. The ground state is a quantum spin liquid, with either gapless or
gapped Majorana fermion excitations, depending on the relative interaction. The
exact solution can be reduced to the problem of Majorana fermions hopping in the
background of an emergent static Z2 gauge field [6].

However, to find materials to realize the Kitaev spin liquid is a challenge. The sys-
tems should be dominated by the Kitaev exchange while other interactions must be
suppressed. Jackeli and Khaliullin [7] suggested a structure of 90◦ bonding geom-
etry (edge-sharing octahedra of heavy d5 metals, with close to 90◦ bond angles),
which can naturally generate the bond-dependent interactions [8].

There are three candidate materials to obtain such interactions on the honeycomb
lattice Na2IrO3, α-Li2IrO3, α-RuCl3 and other 3D lattices β -Li2IrO3 [9, 10] and
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γ-Li2IrO3 [11, 12]. They all have the octahedral structure shown in Fig. 1.2 (a) with
a cage of O2− in Na2IrO3, α-Li2IrO3, β -Li2IrO3, γ-Li2IrO3 or Cl− in α-RuCl3.
As shown in Fig. 1.3, Ir in Na2IrO3, α-Li2IrO3 and Ru in α-RuCl3 display such
2D honeycomb layers. The β -Li2IrO3 structure has zigzag chains linked in the c
direction while γ-Li2IrO3 has Ir hexagonal chains which are connected along the c
direction.

(a) (b)

d−orbitals

eg

t2g

∆CF

∆SOC

j1/2

j3/2

Figure 1.2: (a) IrO6 octahedra. (b) Energy level diagram for the Ir4+ and Ru3+

honeycomb systems.

All the structures have magnetic ordered ground state instead of a spin liquid. How
to engineer the Kitaev state in real systems is one of the questions we investigate
in the thesis. Combining the Heisenberg interaction with Kitaev interaction into

α β
γ

Figure 1.3: Structures of the honeycomb and 3D lattices.
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the Heisenberg-Kitaev model, rich phases arise. Depending on the exchange pa-
rameters, the model can show collinear FM, Stripy, Zigzag, Neel order displayed
in Fig. 1.1, noncollinear spin spiral, or spin liquid [13]. For the honeycomb struc-
ture, we show the magnetic zigzag order in Fig. 1.1. Na2IrO3 and α-RuCl3 were
found to have zigzag magnetic order by the neutron scattering and resonant x-ray
experiments [14–19] while α-Li2IrO3 shows incommensurate spiral order [20]. Ex-
perimentally, it has been observed that Na2IrO3, α-Li2IrO3, α-RuCl3 are insula-
tors [21–25]. Their electronic structure can be described in terms of a relativistic
basis [7, 26, 27] from a localized point of view or by using quasi-molecular orbitals
(QMO) [18, 28–30] from the itinerant view. The 3D structure γ-Li2IrO3 also show
spiral magnetic order, with wave vector 0.57 [12]. Finally, we investigate a system
where Ir4.5+ has a d4.5 filling, which is formed by double layer triangular lattice
and is an AFM insulator [31]. The details of these systems will be introduced in the
corresponding chapters.

The many-body systems can be described by the Hubbard model

Ĥ =− ∑
〈i, j〉

m,m′,σ

(tmm′
i j ĉ+imσ

ĉ jm′σ +h.c.)+ ∑
j,σ ,σ ′

m,m′

Umm′

2
n̂ jmσ n̂ jm′σ ′(1−δmm′δσσ ′)

− JH

2 ∑
j,σ ,σ ′

m,m′

ĉ+jmσ
ĉ jmσ ′ ĉ

+
jm′σ ′ ĉ jm′σ (1−δmm′)

+
JH

2 ∑
j,σ ,σ ′

m,m′

ĉ+jmσ
ĉ+jmσ ′ ĉ jm′σ ′ ĉ jm′σ (1−δmm′)(1−δσσ ′).

(1.3)

where indices i and j represent the nearest neighbour lattice sites, and i < j. σ

and σ ′ are spin index, while m and m′ denote the different orbitals. The first term
describes the hopping of the electrons from site to site with integrals tmm′

i j . Um,m′

denotes Coulomb repulsion of the electrons, the third term stands for the intra-
atomic Hund’s coupling exchange, and the last term denotes the pair hopping.

If the electron velocity is of the same order of magnitude as the velocity of light, we
need to consider relativistic effects in the description of the electronic structure. The
materials with strong relativistic effects are described by the Dirac Hamiltonian:

Ĥ = cαp̂+(β −1)mc2 +V̂ (r), (1.4)

where ,

α =

(
0 σ

σ 0

)
,β=

(
I 0
0 −I

)
. (1.5)
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The eigenvectors Ψ are expressed as the large component Φ , and small component
χ . The equation for the large component is given by:

[(1− ε−V
2mc2 )

p2

2m
+V ] Φ− h̄2

4m2c2 (OVOΦ)+
h̄2

4m2c2 (σ [OV,p]Φ) = εΦ. (1.6)

If the potential has the spherical symmetry, as in an isolated atom,

[
p̂2

2m
+V − p2

8m3c2 −
h̄2

4m2c2
dV
dr

∂

∂r
+

1
2m2c2

1
r

dV
dr

(ls)]Φ = εΦ. (1.7)

The first and second term give the non relativistic Schrödinger equation. The third
and fourth term correspond to the Darwin correction. The last term is the spin-
orbit (SO) coupling, which couples the orbital and spin angular momentum of the
electron. The SO interaction mixes up and down spin states, so that only the total
angular momentum j = l + s is a good quantum number rather than l or s. Writing
λ = 1

2m2c2
1
r

dV
dr we obtain:

ĤSO = λL ·S. (1.8)

For a hydrogen-like atom (one electron), V (r) =− 1
4πε0

Ze2

r ,

λ =
1

2m2c2
1

4πε0

Ze2

r3 . (1.9)

The average value of 〈 1
r3 〉 is proportional to Z3, thus λ ∝ Z4. Therefore the im-

portance of relativistic effects tends to increase with the atomic number. These
relativistic effects have been investigated in weakly correlated materials such as
semiconductors. In these materials, the spin-orbit interaction links the orbital and
spin degree of freedom, leading to such phenomena as anomalous Hall effect, topo-
logical insulators and the spintronic physics [32].

Different from weakly correlated materials where U is small and from 3d transition
metals where SO effects are small, in the investigated 4d Ru3+ and 5d Ir4+ com-
pounds, the on-site Hubbard interaction U , Hund’s coupling JH , SO interaction λ ,
crystal field ∆ and electron kinetic energy are all of the same order of magnitude.
This can make the material properties sensitive to the details. For the case of an
octahedral crystal field, the d orbitals are split into t2g triplet and eg doublet shown
in Fig. 1.2 (b). The low level t2g triplet includes three orbitals dxy, dxz, and dyz. The
SO interaction between these three orbitals has similar behavior as in pz, py, and px

orbitals with leff = 1 and -λ [7]. The relativistic states include a jeff = 1/2 doublet
with energy E = +λ and a jeff = 3/2 quartet with energy E = −λ/2 displayed in
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Figure 1.2 (b). The derivation of this result is in Appendix A; the relativistic states
include jeff = 1/2 doublet with energy E =+λ :∣∣∣∣12 , 1

2

〉
=

1√
3
(−|xy ↑〉− i |xz ↓〉− |yz ↓〉) ,∣∣∣∣12 ,−1

2

〉
=

1√
3
(|xy ↓〉+ i |xz ↑〉− |yz ↑〉) ,

(1.10)

and jeff = 3/2 quartet with energy E =−λ/2:∣∣∣∣32 , 3
2

〉
=

1√
2
(−i |xz ↑〉− |yz ↑〉) ,∣∣∣∣32 , 1

2

〉
=

1√
6
(2 |xy ↑〉− i |xz ↓〉− |yz ↓〉) ,∣∣∣∣32 ,−1

2

〉
=

1√
6
(2 |xy ↓〉− i |xz ↑〉+ |yz ↑〉) ,∣∣∣∣32 ,−3

2

〉
=

1√
2
(−i |xz ↓〉+ |yz ↓〉) .

(1.11)

Where states are written in terms of
∣∣J,m j

〉
. For the case of d5 filling (five electrons

in the outer d - shell), the jeff = 3/2 states are filled and the jeff = 1/2 is occupied
by one electron.

These materials have been studied by a range of techniques which are summarized
in the respective chapters. Density functional theory (DFT) is more and more widely
used to explain the nature of the existing materials, to design new materials and to
verify the reliability and accuracy of the theory. However it does not always work
well in the materials with strong correlated interaction. On top of that, many-body
methods based on models are also necessary to investigate the interactions better.

In short, in this thesis, combining DFT and many-body methods, we investigate
the properties of Kitaev spin liquid candidates. The purpose of this thesis is to
investigate the interplay between SO, Coulomb interaction and structural details on
the electronic and magnetic properties. We try to answer the following questions
in this thesis: i) How to understand insulating behavior despite heavy elements.
ii) How close are these materials to the spin liquid? What are Heisenberg-Kitaev
interactions? iii) How do we engineer the spin liquid? iv) How are the electronic
and magnetic properties related? The structure of the thesis is as follows:

• We present Kitaev honeycomb model in Chapter 2 and methods for elec-
tronic properties and magnetic properties in Chapter 3 and Chapter 4 re-
spectively.



7

• Results of the optical conductivities are discussed in Chapter 5 for Na2IrO3

and α-Li2IrO3 [33].

• In Chapter 6, we present the electronic properties and optical conductivity
for the 3D structure γ-Li2IrO3 and compare it with the 2D results [34].

• The properties of α-RuCl3 including the quasi-molecular orbital representa-
tion [18] and the electrostatic potential [35] are discussed in Chapter 7.

• We discuss the magnetic properties for Na2IrO3, α-Li2IrO3 and α-RuCl3 in
Chapter 8 using the exact diagonalization method [36].

• In Chapter 9, we present analysis of the triangular lattice Ba3YIr2O9 [37].

• In Chapter 10, we summarize the results and point out the possible directions
of future research.
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Chapter 2

Kitaev honeycomb model

The Kitaev model on the honeycomb lattice in the introduction can be written for
X, Y, Z bonds:

Ĥ =− ∑
X−bonds

KX σ̂ x
i σ̂ x

j − ∑
Y−bonds

KY σ̂
y
i σ̂

y
j − ∑

Z−bonds
KZσ̂

z
i σ̂

z
j , (2.1)

where KX , KY , and KZ describe the interaction for X bonds, Y bonds, and Z bonds,
respectively (see Fig. 2.1). σ̂ γ (γ = x,y,z) is the Pauli operator to describe spin
Ŝγ = h̄

2 σ̂ γ , and
σ̂ xσ̂ y = 2iσ̂ z, σ̂ yσ̂ z = 2iσ̂ x, σ̂ zσ̂ x = 2iσ̂ y. (2.2)

This model can be exactly solved by rewriting the spin operators in terms of non-
interacting Majorana fermions [6]. In this chapter, the Kitaev honeycomb lattice
model will be explained in detail and we will derive the exact solution in terms of
Majorana fermions. We will also show the gapped and gapless phases and discuss
the spin-liquid behavior.

2.1 Conserved quantities

The first step to understand Kitaev’s exact solution is to see that for each hexagon,
the model has a conserved quantity. We label different hexagons with "p". In each

9
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Wp
2

3
4

5
6

1

XY

Z

n
1

n
2

A

B

Figure 2.1: Three types of links (X, Y, Z) in honeycomb lattice. Ŵp is the flux
operator for hexagon p. n1 and n2 are the vectors for the unit cell and A, B are the
two sites in each unit cell.

hexagon p, the Z2 flux operator is

Ŵp = σ̂ x
1 σ̂

y
2 σ̂

z
3σ̂ x

4 σ̂
y
5 σ̂

z
6. (2.3)

Flux free is defined as the eigenvalues wp = 1 for Ŵp, while wp = -1 indicates a flux
at hexagon p. The flux operators commute with the Hamitonian and also commute
with each other:

[Ŵp,Ŵp′] = 0, [Ŵp, Ĥ] = 0. (2.4)

The total Hilbert space can therefore be divided into sectors with eigenstates of Ŵp.
A convenient way is to represent this Hilbert space using Majorana fermions as
suggested by Kitaev [6]. This simplifies the problem and makes an exact solution
possible.
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2.2 Majorana fermions

First, I will introduce the properties of Majorana fermions. The Majorana fermions
are their own anti-particle b̂†

α = b̂α and have the following anticommutation rule

{b̂α , b̂β}= 2δi j. (2.5)

Therefore the Majorana fermions square to a constant

b̂2
α = b̂α b̂α =

1
2
{b̂α , b̂α}= 1. (2.6)

A single complex fermion can be built by two Majorana fermions

ĉ j =
1
2
(b̂ j1 + ib̂ j2), ĉ†

j =
1
2
(b̂ j1− ib̂ j2). (2.7)

The Dirac fermions follow the anticommutation rule

{ĉi, ĉ
†
j}=

1
4
{b̂i1 + ib̂i2, b̂ j1− ib̂ j2}

=
1
4
({b̂i1, b̂ j1}+{ib̂i2, b̂ j1}+{b̂i1,−ib̂ j2}+{ib̂i2,−ib̂ j2})

=
1
4
(2δi j +2δi j) = δi j.

(2.8)

The Pauli operator σ̂ x, σ̂ y, and σ̂ z can be written by Majorana fermions. There are
many different ways. One of these ways is proposed by Kitaev using the following
representation:

σ̂
x
j = ib̂ jb̂x

j,

σ̂
y
j = ib̂ jb̂

y
j,

σ̂
z
j = ib̂ jb̂z

j,

b̂ jb̂x
jb̂

y
jb̂

z
j = 1.

(2.9)

There are four Majorana fermions and satisfy the anticommutation relations

{b̂γ

i , b̂
γ ′

j }= 2δi jδγ,γ ′, {b̂i, b̂ j}= 2δi j. (2.10)

Therefore for Pauli matrix:

[σ̂ x
i , σ̂

y
j ] = [ib̂ib̂x

i , ib̂ jb̂
y
j]

=−(b̂ib̂x
i b̂ jb̂

y
j− b̂ jb̂

y
jb̂ib̂x

i )

= b̂ib̂ jb̂x
i b̂y

j−hatb jb̂ib̂
y
jb̂

x
i

= 2δi jb̂x
i b̂y

j

= 2iσ z
j δi j.

(2.11)
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Using the same methods, we can obtain

[σ̂ y
i , σ̂

z
j ] = 2iσ x

j δi j,

[σ̂ z
i , σ̂

x
j ] = 2iσ y

j δi j.
(2.12)

2.3 Exact solution and phase diagram

In the Majorana fermions representation, the Kitaev Hamiltonian is

H =
i
4 ∑

i, j
Ai jb̂ib̂ j, (2.13)

where
Ai j = 2Kγi jui j, (2.14)

i, j are connected, and u〈i j〉γ = ib̂a
i b̂a

j . This Hamiltoinan includes the flux sector ui j

and the matter fermions b̂i. The flux operator Ŵp = u12u23u43u45u65u61, and ui j

is also conserved. It can be shown that wp = 1 represents the (flux free) ground
state |F0〉. One choice of ui j that satisfies this condition is ui j = 1. We use s,α to
represent the i position, where s is the unit cell and α is a position type inside the
cell to indicate A site or B site (see Fig. 2.1), while t,β correspond to j site. Using
the Fourier transformation:

Ãαβ (q) = ∑
t

eiq·rtA0α,tβ ,

âq,α =
1√
2N ∑

s
e−iq·rs b̂sα ,

(2.15)

the Hamiltonian is written as:

Ĥ =
1
2 ∑

q,α,β

iÃαβ (q)â−q,α âq,β . (2.16)

The Hamiltonian is expressed in two sublattices with the vectors for the unit cell
n1,n2 shown in Fig. 2.1:

iÃ(q) =

(
0 i f (q)

−i f (q)∗ 0

)
(2.17)

where
f (q) = 2(KX ei(q,n1)+KY ei(q,n2)+KZ). (2.18)
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After diagonalized Eq. (2.17), two eigenstates are obtained:

ε1(q) = | f (q)| ,
∣∣d1,q

〉
=

1√
2
| f (q)|

∣∣a−q,A
〉
− i f ∗(q)

∣∣aq,B
〉
,

ε2(q) =−| f (q)| ,
∣∣d2,q

〉
=

1√
2
| f (q)|

∣∣a−q,A
〉
+ i f ∗(q)

∣∣aq,B
〉
.

(2.19)

Therefore, the Hamiltonian can be expressed as:

Ĥ =
1
2 ∑

q
{| f (q)| d̂†

1,qd̂1,q−| f (q)| d̂†
2,qd̂2,q}, (2.20)

where

d̂†
1,q = â−q,A− i f ∗(q)âq,B,

d̂1,q = âq,A + i f (q)â−q,B,

d̂†
2,q = â−q,A + i f ∗(q)âq,B,

d̂2,q = âq,A− i f (q)â−q,B.

(2.21)

Since d̂†
2,−q = d̂1,q, d̂2,−q = d̂†

1,q and {d̂†
1 , d̂1}= 1, the Hamiltonian becomes

Ĥ = ∑
q
| f (q)|{d̂†

1,qd̂1,q−
1
2
}. (2.22)

The ground state |S0〉 = |F0〉 |M0〉 is constructed by the flux ground state |F0〉
and matter fermion ground state |M0〉, which is a state without matter fermions
d̂1 |M0〉 = 0 with the energy ε = −∑q | f (q)|. The excitation spectrum ε(q) =
2 | f (q)| can be zero (gapless) or nonzero (gapped) depending on the values of KX ,
KY , KZ . The phases are displayed in a ternary plot in Fig. 2.2.

• The gapless B phase appears when KX < KY +KZ , KY < KX +KZ and KZ <

KX +KY . At KX = KY = KZ , the Majorana fermions have a Dirac spectrum.

• It is gapped for all other (KX ,KY ,KZ) values with Ax for KX > KY +KZ , Ay

for Ky > Kx +Kz, and Az for Kz > Kx +Ky.

The particles in the gapped A phase have Abelian statistics, which means under
exchange of two particles, the wave function acquires +1 or -1. In contrast, Ki-
taev showed that in the presence of an external magnetic field, the B phase which
is gapless capture a gap and obey non-Abelian statistics. These properties are im-
portant for topological quantum computation because of their stability against local
perturbation that could lead to decoherence [6, 38].
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KX
01

KY

0

1

KZ

0

1

gapless

B
Ax

gapped

Ay

gapped

Az

gapped

Figure 2.2: Phase diagram of the honeycomb Kitaev model [6].

2.4 Quantum spin liquid states

We already showed the exact solution of the lowest flux section, here we explain
why the ground state is a quantum spin liquid (QSL). QSL is a state which does not
show long range magnetic order even at low temperature. The important properties
for Kitaev spin liquid is that it has fractionalization of the excitations and the spin
correlations are short ranged even at zero temperature. The fractionalization of spins
into Majorana fermions and static fluxes in the ground state denote the quantum spin
liquid properties. Beyond the nearest neighbour, the spin correlation function is zero
because of selection rules from the flux sector [39, 40].



Chapter 3

Methods for describing electronic
properties

In this chapter, we will introduce different methods for the microscopic descrip-
tion of the electronic properties of materials including the electronic densities of
states and optical response such as the dielectric function. The first method is den-
sity functional theory (DFT), which may be used to directly estimate properties, by
including electronic correlations at a mean-field level. For materials where corre-
lations are expected to have significant effects beyond this mean field level, DFT
can also be used as a tool to parameterize alternative methods, such as diagonaliza-
tion. This second method treats all correlations exactly, but is very computationally
expensive, so its use is limited to small systems. We nevertheless show that this
technique can be useful for insulators, where the important effects are local in na-
ture.

DFT is one of the most successful method to describe the electronic properties. DFT
uses the electron density ρ(r) to describe the properties of the system. It is a "First-
principles" or "ab initio" method since it doesn’t depend on parametrization of a
given model. One position dependent scalar function determines all the information
in the many-body wave functions for the ground state.

The study of the optical properties of correlated materials is important both for fun-
damental research and industrial applications. It is one of the most general methods

15
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to investigate the electronic structure, impurity levels, excitons, localized defects,
lattice vibrations, and various magnetic excitations [41].

3.1 Density functional theory

The DFT theory description here follows Ref. [42].

3.1.1 Basic theory

Hohenberg and Kohn formulated the density functional theory as an exact theory of
many-body systems [43]. Further, Kohn and Sham simplified the many-body equa-
tions to auxiliary independent particle equations, called Kohn-Sham equations [44]

ĤKSψi(r) = εiψi(r), (3.1)

with

ĤKS = [− h2

2me
52 +V̂eff(r)]. (3.2)

The effective potential include:

V̂eff(r) = V̂ext(r)+V̂H(r)+V̂xc(r), (3.3)

where V̂ext is the external potential, while V̂H denote the Hartree potential, describ-
ing the Coulomb interaction between a single electron and the total electron density,
and V̂xc is the exchange-correlation potential. The external Hartree (Coulomb) and
exchange correlation potential is given by

V̂H(r) =
e2

4πε0

∫
d3r′

ρ(r′)
|r− r′|

, (3.4)

V̂xc(r)=
δExc[ρ(r)]

δρ(r)
. (3.5)

The exchange correlation potential includes all the exchange and correlation effects.
In the local-density approximation (LDA), the exchange-correlation function has
the form:

ELDA
xc [ρ] =

∫
ρ(r)εxc(ρ)dr, (3.6)
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where εxc is the exchange and correlation energy per particle in a uniform electron
gas. Its exchange part has an analytical form while the correlation part is numer-
ically calculated (i.e. quantum Monte Carlo [45] and subsequently parameterized
in Ref. [46, 47]). Improvements for LDA are for instance including the non-local
dependence of the exchange-correlation potential on electron densities, as it is the
case for the generalized gradient approximation (GGA) [48–52]:

EGGA
xc [ρ] =

∫
ρ(r)F(ρ,∇ρ)dr. (3.7)

In order to solve the equation, the potential is calculated from the electron density

ρ(r)=
Ne

∑
i
|ψi(r)|2 , (3.8)

the electron wave functions are obtained by solving the Kohn-Sham equation. Thus,
the Kohn-Sham equation can be solved by iteration, with self-consistency achieved
when no further modification of ρ is made by successive updates, shown in Fig. 3.1.

So far, the above equation did not consider the electron spin. With spin, the spin
polarized density functional theory can be defined, in which the exchange correla-
tion functional Exc = f (ρ,σ) is not only a function of electron density but also the
magnetization density. If the magnetic structure is assumed to be collinear, the total
energy is:

E = E[ρ(r),m(r)] = E[ρ↑(r),ρ↓(r)], (3.9)

ρ(r) = ρ↑(r)+ρ↓(r), m(r) = ρ↑(r)−ρ↓(r). (3.10)

Where σ labels the spin

ρσ (r) = ∑
occ

ψ
∗
iσ (r)ψiσ (r), (3.11)

and the spin polarized Kohn-Sham equation is

ĤKSψiσ (r) = εiσ ψiσ (r). (3.12)

The spin polarized Kohn-Sham equations are solved using the same method as the
non spin polarized Kohn-Sham equations. In a solid with a periodic potential, the
single electron wave-functions are Bloch wave-functions ψik(r) with the periodic
function uik(r) [53]

ψik(r) = eik·ruik(r). (3.13)
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We expand the function ψik(r) in the basis φnk(r) up to n = P with the coefficient
cn

i ,

ψik(r) =
P

∑
n

cn
i φnk(r). (3.14)

In this basis, the Kohn-Sham equations in Eq. 3.1 for the solids become

HC = ESC, (3.15)

where H is a matrix of ĤKS in this basis, S denotes the overlap matrix of the basis,
and C is the coefficient matrix

H =
〈φ1k(r)| ĤKS |φ1k(r)〉 〈φ1k(r)| ĤKS |φ2k(r)〉 · · ·
〈φ2k(r)| ĤKS |φ1k(r)〉 〈φ2k(r)| ĤKS |φ2k(r)〉 · · ·

...
... . . .

〈φPk(r)| ĤKS |φPk(r)〉

 ,

(3.16)

S =


〈φ1k(r)|φ1k(r)〉 〈φ1k(r)|φ2k(r)〉 · · ·
〈φ2k(r)|φ1k(r)〉 〈φ2k(r)|φ2k(r)〉 · · ·

...
... . . .

〈φPk(r)|φPk(r)〉

 , (3.17)

E = εi(k), C =


c1

i

c2
i
...

cP
i

 . (3.18)

There are several basis sets used in different DFT codes for the solution of the Kohn-
Sham equations. Plane waves are very simple but not able to describe strongly
varying potentials. To overcome this problem, the projector augmented waves
(PAW) [54] and localized orbitals are used. The basis we used in this thesis are
the Augmented functions (APW) method and linearized augmented plane wave
(LAPW) [55, 56], which treat the mixed basis sets as two parts: the non-overlapping
atomic spheres and the interstitial region between the atomic spheres.
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In the interstitial region, with the weakly varying potentials, the basis is expanded
as a sum of plane waves with the reciprocal lattice vectors G, and wave vector k
inside the first Brillouin zone:

φ
G
k (r) =

1√
V

ei(k+G)·r. (3.19)

The atomic region where the potential is similar to a single atom, the APW basis
employs

φ
G
k (r) = ∑

l,m

[
Aα,k+G

l,m uα
l (r,E

α
1,l)
]

Yl,m(θ ,ϕ), (3.20)

where uα
l (r,E

α
1,l) is the solution of the radial Schrödinger equation for the energy

Eα
1,l and the spherical potential inside the sphere. The coefficients Aα,k+G

lm are found
by requiring that the basis functions in the atomic region matches each plane wave
in the interstitial region. An improvement on this basis is to add a linearization term
with the derivative u̇α

l (r,E
α
1l) to produce the LAPW basis

φ
G
k (r) = ∑

l,m

[
Aα,k+G

l,m uα
l (r,E

α
1,l)+Bα,k+G

l,m u̇α
l (r,E

α
1,l)
]

Yl,m(θ ,ϕ). (3.21)

In the atomic sphere, the core states, not participating in the chemical bonding, are
well treated. Local orbitals (LO) are added to the LAPW basis to treat semicore and
valence states in one energy window:

φ
α,LO
l,m (r) =

[
Aα,LO

l,m uα
l (r,E

α
1,l)+Bα,LO

l,m u̇α
l (r,E

α
1,l)+Cα,LO

lm uα
l (r,E

α
2,l)
]

Yl,m(θ ,ϕ).

(3.22)
The third term with the energy Eα

1,l 6= Eα
2l , represents the semicore states for the

atom α with angular momentum quantum number l. The coefficients are obtained
by considering the normalization and zero value and slope at the sphere boundary
for φ LO

lm,α(r). A further improvement of APW is the APW+lo basis, which also has
a linearization term:

φ
α,lo
l,m (r) =

[
Aα,lo

l,m uα
l (r,E

α
1,l)+Bα,lo

l,m u̇α
l (r,E

α
1,l)
]

Yl,m(θ ,ϕ). (3.23)

Different from the LAPW method, the coefficients Aα,lo
l,m , Bα,lo

l,m do not depend on
the k and G vector. Similar to LAPW+LO, APW+lo can also add an additional LO
term at different energy to simultaneously investigate semicore and valence states:

φ
α,LO
l,m (r) =

[
Aα,LO

l,m uα
l (r,E

α
1,l)+Bα,LO

l,m u̇α
l (r,E

α
2,l)
]

Yl,m(θ ,ϕ) . (3.24)

In our calculation with the code WIEN2k [57], the LAPW or APW+lo basis is used
for different atoms or different l values for the same atom. The APW+lo is used
for the orbitals converging slowly or atoms with small sphere size. The RmtKmax

(RKmax) controls the convergence of the basis set with Rmt being the smallest atomic
sphere radius, and Kmax the magnitude of the largest G vector.
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3.1.2 Extensions of DFT for spin-orbit coupling

The effects of spin-orbit coupling are important for the systems studied in this the-
sis. This section discusses the implementation of the SO interaction in DFT. For
the interstitial region, the relativistic correction is not considered since the electron
velocity is limited by the cut off in k-space Kmax. While for the atomic region,
with the increase of the atomic number, the relativistic effects arise as described in
Chapter 1:

ĤSO = λL ·S. (3.25)

An approximation used by various implementations of DFT (like WIEN2k, VASP,
Elk etc.) to treat the spin-orbit coupling is the second variational method [58]. This
method has two steps:

• First is to solve the non-relativistic spin up and spin down equation and obtain
the eigenvalues and eigenfunctions separately, ψ

↑
nk, E↑nk, ψ

↓
nk, E↓nk.

• Within the above basis, the total Hamiltonian with spin-orbit coupling is cal-
culated and diagonalized.

3.1.3 LDA+U

In addition to spin-orbit coupling, the on-site Coulomb interaction between two
localized electrons is strong in the systems studied in this thesis. LDA can not cap-
ture this effect well. To overcome this problem, LDA is modified by adding an
orbital-dependent correction (LDA+U) [59]. This method divides the electrons into
two parts: the delocalized s and p electrons are described by one-electron potential
(LDA), while the localized d or f electrons are described including the Coulomb
d− d interaction in a mean-field way (LDA+U). We use the Self-interaction cor-
rected (SIC) method [60] in our calculations:

E =ELDA− [UN(N−1)/2− JN(N−2)/4]

+
1
2 ∑

m,m′,σ
Umm′nmσ nm′−σ

+
1
2 ∑

m,m′,σ
m 6=m′

(Umm′− Jmm′)nmσ nm′σ ,

(3.26)
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where N is the number of d electrons. The second term is the Coulomb energy of
d−d interactions as a function of N given by the LDA which is subtracted from the
LDA energy. A Hubbard like term is then added to the total energy.

3.2 Extraction of hopping integrals from DFT

Following Ref. [29, 61], we first construct the projectors from the LAPW basis to
Wannier basis, then extract the hopping parameters from the band structure and
the projectors. In solids, the single particle wave functions can be described using
Bloch states [53]:

Ĥ |ψσ
kν〉= ε

σ
kν |ψσ

kν〉 . (3.27)

The corresponding Wannier function is defined by

|wσ
Rν〉=

V
(2π)3

∫
1.BZ

dke−ik·R |ψσ
kν〉 . (3.28)

We choose the localized trial orbitals χ̃ and project the Bloch function on them [61]:∣∣χ̃α,σ
km

〉
= ∑

ν∈W
|ψσ

kν〉
〈
ψ

σ
kν |χ

α,σ
km

〉
. (3.29)

The bands ν are all in the energy window W

P̃α,σ
mν (k) =

〈
ψ

σ
kν |χ

α,σ
km

〉
. (3.30)

The Wannier function is:

∣∣wα,σ
km

〉
= ∑

ν∈W
|ψσ

kν〉∑
n.β

P̃β ,σ
nν (k)√

O(k,σ)
αβ
mn

, (3.31)

where O(k)αβ
mn is for orthonormalizing the basis

O(k,σ)αβ
mn = ∑

ν∈W
P̃∗α,σ

mν (k)P̃β ,σ
νn (k). (3.32)

Then, it is diagonalized1, yielding eigenvalues Oi. 1√
O

is constructed from the diag-
onal matrix Di j,

(Di j) = (
δi j√
Oi

), (3.33)

1for each (k,σ), so this dependency is dropped here.
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using
1√
O

=UDU†, (3.34)

where U is the matrix of eigenvectors of O, and U† is its Hermitian conjugate. The
projector that maps the Bloch function to Wannier function is

Pα,σ
nν (k) = ∑

n.β

P̃β ,σ
nν (k)√

O(k,σ)
αβ
mn

. (3.35)

In WIEN2k, the Bloch state in LAPW/APW+lo (+LO) basis in the atomic part is:

ψ
σ
k,ν(r) =∑

l,m
[Aν ,α

l,m (k)uα,σ
l (r,Eα

1,l)+Bν ,α
l,m (k)u̇α,σ

l (r,Eα
1,l)

+Cν ,α
lm (k)uα,σ

l (r,Eα
2,l)]Yl,m(θ ,ϕ).

(3.36)

We choose the localized trial orbitals

|χα,σ
m 〉=

∣∣∣uα,σ
l (Eα

1,l)Ylm

〉
. (3.37)

The projectors are

P̃α,σ
mν (k) =

〈
ψkν |uα,σ

l (Eα
1l)Ylm

〉
=Aν ,α

lm (k,σ)+Cν ,α
lm (k,σ)Õ(k)lm,l′m′,

(3.38)

with 〈
uα,σ

l (Eα
1,l)Yl,m|uα,σ

l (Eα

1,l′)Yl,′m′
〉
= δll′,mm′,αα ′, (3.39)〈

uα,σ
l (Eα

1,l)Yl,m|u̇α ′,σ
l (Eα

1,l′)Yl,′m′
〉
= 0, (3.40)〈

uα,σ
l (Eα

1,l)Yl,m|uα,σ
l (Eα

2,l′)Yl,′m′
〉
= Õ(k)lm,l′m′ . (3.41)

The projectors P̃α,σ
mν (k) are obtained in terms of quantum numbers m (e.g., m =

−2,−1,0,1,2 for l = 2) in the global cartesian coordinates. After transforming the
projectors P̃α,σ

mν (k) to the irreducible representation orbitals by the transformation
matrix R and rotating the direction to the local coordinates with the matrix S, we
can obtain the projectors from the Bloch basis to the local orbital Wannier basis
(d3z2−r2 , dx2−y2 , dxy, dxz, dyz)

P̃′α,σ
mν (k) = ∑

m′
Umm′P̃

α,σ
m′ν (k), (3.42)

where the unitary transformation Umm′ is

Umm′ = ∑
p

SmpRpm′. (3.43)
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For instance, for d-orbitals,

S =



0 0 1 0 0
1√
2

0 0 0 1√
2

i√
2

0 0 0 − i√
2

0 1√
2

0 − 1√
2

0

0 i√
2

0 i√
2

0


. (3.44)

With the constructed projectors and the eigenvalues, we can determine the TB
model parameters, including the hopping integrals ti j and onsite energies µi. The
Wannier functions are obtained from the projector and the Bloch function with the
translational vector R

wα,σ
m (r−R) =∑

k
e−ik·R

∑
ν∈W

Pα,σ
mν (k)φ

σ
kν(r),

=∑
k

e−ik·R wα,σ
km (r).

The energy window W is set to be the energy window including the bands ν con-
sidered in the systems. The method can only be used for the number of bands equal
to the number of correlated orbitals Nν = NM. The kinetic energy matrix operator
T̂ is diagonal in the basis of φ σ

kν
(r)

(
φ

σ∗
k,1(r) φ

σ∗
k,2(r) · · · φ

σ∗
k,Nν

(r)
)

T̂


φ σ

k,1(r)
φ σ

k,2(r)
...

φ σ
k,Nν

(r)



=


εσ

1 (k) 0 · · · 0
0 εσ

2 (k) · · · 0
...

... . . .

0 0 εσ
Nν
(k)

 ,

(3.45)

with the transformation:

wα,σ
mk (r) = ∑

ν∈W
Pα,σ

mν (k)φ
σ
kν(r), (3.46)
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(
wσ∗

k,1(r) wσ∗
k,2(r) · · · wσ∗

k,NM
(r)
)

T̂


wσ

k,1(r)
wσ

k,2(r)
...

wσ
k,NM

(r)



= P̂σ†(k)


εσ

1 (k) 0 · · · 0
0 εσ

2 (k) · · · 0
...

... . . .

0 0 εσ
Nν
(k)

 P̂σ (k),

(3.47)

where

P̂σ (k) =


Pσ

1,1(k) Pσ
1,2(k) · · ·

Pσ
2,1(k) Pσ

2,2(k) · · ·
...

... . . .

Pσ
NM ,Nν

(k)

 . (3.48)

After this transformation, we have the overlap matrix
〈wσ

k,1|T̂ |wσ
k,1〉 〈wσ

k,1|T̂ |wσ
k,2〉 · · ·

〈wσ
k,2|T̂ |wσ

k,1〉 〈wσ
k,2|T̂ |wσ

k,2〉 · · ·
...

... . . .

〈wσ
k,NM
|T̂ |wσ

k,NM
〉

 (3.49)

as a function of k. By Fourier transforming 〈wσ
k,M|T̂ |wσ

k,M′〉, one obtains the hopping
integrals ti j and onsite energies µi as

ti−ri, j−r j =
1

Nk
∑
k
〈wσ

k,Mi
|T̂ |wσ

k,M j
〉e−ik·(r j−ri), (3.50)

µi =
1

Nk
∑
k
〈wσ

k,Mi
|T̂ |wσ

k,Mi
〉. (3.51)

3.3 Theory of optical conductivity

In the optical experiment, observables like reflectivity, transmission, absorption are
measured. From these measurements, the dielectric function ε(ω) and optical con-
ductivity σ(ω) are obtained and can be related to the band structure. This section
details how to calculate such observables from ab initio methods.
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3.3.1 Fundamental relations for optical phenomena

The electromagnetic field is described by the Maxwell’s equations [41]:

∇×H− 1
c

∂D
∂ t

=
4π

c
j,

∇×E+
1
c

∂B
∂ t

= 0,

∇ ·D = 0,

∇ ·B = 0.

(3.52)

Here the charge density is zero, j is the current density, E,D describe the electric
field, H,B is corresponding to the magnetic field. The first two equations relate the
electric field and the magnetic field. Since in the linear materials

D = εE, (3.53)

j = σE, (3.54)

B = µH, (3.55)

we have

∇
2E =

εµ

c2
∂ 2E
∂ t2 +

4πσ µ

c2
∂E
∂ t

. (3.56)

With the form of the solution:

E = E0ei(K·r−ωt), (3.57)

we obtain

E(r, t) = E0e−iωtei ωr
c
√

εµ

√
1+ 4πiσ

εω . (3.58)

We write
E(r, t) = E0e−iωtei ωr

c
√

εcomplexµ , (3.59)

where

εcomplex =ε +
4πiσ

ω

=
4πi
ω

(
εω

4πi
+σ).

(3.60)

We define the complex conductivity as

σcomplex =
εω

4πi
+σ , (3.61)
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and therefore deduce the relation of the complex dielectric function and complex
conductivity

εcomplex =
4πi
ω

σcomplex. (3.62)

We divide√εcomplexµ as the real part ñ(ω) and imaginary part ĩk(ω), and therefore
the wavefunction become

E(r, t) = E0e−iωtei ωr
c ñ(ω)e−

ωr
c k̃(ω). (3.63)

The amplitude of the wavefunction exponentially decays in the material over a dis-
tance, the optical skin depth c

ω k̃(ω)
,which means the intensity of the electric field,

|E(r, t)|2, decrease to 1/e of its value in a distance c
2ω k̃(ω)

, connecting to the absorp-
tion coefficient by

1
αabs

=
c

2ω k̃(ω)
. (3.64)

As we know, light is a transverse wave, thus there are two possible orthogonal direc-
tions for E in the plane normal to the propagation direction. The optical properties,
taking optical conductivity as example in cubic materials has the same value in the
three transverse directions, while anisotropic media may have different values in the
three polarization directions.

For the measurements of the optical properties, the wave inside the solid for the
one-dimensional system is:

Ex = E0e−iωtei ωz
c ñ(ω)e−

ωz
c k̃(ω). (3.65)

In free space, the electric field including the incident and reflected waves:

Ex = E1e−iωtei ωz
c +E2e−iωte−i ωz

c . (3.66)

The continuity of the Ex requires

E0 = E1 +E2. (3.67)

Because of
∂Ex

∂ z
=

iµω

c
Hy, (3.68)

∂Ex
∂ z also continue at the surface, resulting in

E0(ñ(ω)+ ĩk(ω)) = E1−E2. (3.69)



3.3 Theory of optical conductivity 27

The reflection coefficient r and the normal incident reflectivity R are

r =
E2

E1
=

1− ñ(ω)− ĩk(ω)

1+ ñ(ω)+ ĩk(ω)
, (3.70)

R =

∣∣∣∣E2

E1

∣∣∣∣2 =
∣∣∣∣∣1− ñ(ω)− ĩk(ω)

1+ ñ(ω)+ ĩk(ω)

∣∣∣∣∣
2

=
(1− ñ(ω))2 + k̃(ω)2

(1+ ñ(ω))2 + k̃(ω)2
.

(3.71)

From experiment, the reflectivity can be measured, and the real and imaginary parts
of the function are connected by the Kramers-Kronig relation:

Re[ε(ω)]−1 =
2
π
P
∫

∞

0

ω ′ Im[ε(ω ′)]

ω ′2−ω2 dω
′, (3.72)

Im[ε(ω)] =− 2
π
P
∫

∞

0

ω ′Re[ε(ω ′)]
ω ′2−ω2 dω

′, (3.73)

by
Re[ε(ω)] = ñ2− k̃2, (3.74)

Im[ε(ω)] = 2ñk̃. (3.75)

The optical constants ñ(ω), k̃(ω) are obtained from the experiment, and therefore
the dielectric function and optical conductivity can be given. In the real materi-
als, there are two contributions from different band processes. One is the intraband
transitions of the electrons in the conducting materials. Another is the interband
transitions of an electron from an occupied valence states below the Fermi level to
an unoccupied conduction states in the higher band. The materials we will inves-
tigate are insulators, and hence we only consider the contribution of the interband
process. This process is a quantum mechanical process and should be considered
using the corresponding concepts.

3.3.2 Interband transitions

The optical conductivity for an anisotropic material is defined by:

jµ(q,ω) = ∑
ν

σµν(q,ω)Eν(q,ω), (3.76)

where µ , ν indicate cartesian direction, q, ω denote the wave vector and energy of
the photon, respectively. Since photons have a linear dispersion relation εµν(q) =
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cq, typical transition energies in solids correspond to very small photon momenta
q. Thus we assume the transition is in the long-wavelength limit q→ 0. That means
an absorption emission of photons may cause electrons to transition at the same k
point, that is a direct transition. The system can be described by the Hamiltonian

Ĥ =
(p− e

cA)2

2m
+V (r)

=
p2

2m
+V (r)− e

2mc
(A ·p+p ·A)+

e2A2

2mc2

=Ĥ0 + Ĥ ′,

(3.77)

where Ĥ0 is the one-electron Hamiltonian without optical fields, and Ĥ ′ is the opti-
cal field terms

Ĥ0 =
p2

2m
+V (r), (3.78)

Ĥ ′ =− e
2mc

(A ·p+p ·A)+
e2A2

2mc2 . (3.79)

With p̂ = m
e Ĵ and the µ direction electric field, the perturbation can be expressed

as [62]:

Ĥ ′ =− 1
c

∫
d3r ĵµ(r)Aµ(r, t)

=
i
ω

∫
d3r ĵµ(r)Eµ(r, t).

(3.80)

The current is:

Jµ(r, t) =
e
V

Ne

∑
i=1

〈
v̂iµ
〉
, (3.81)

where V is the volume, v̂i is the velocity for particle i.

v̂i = ∇piĤ =
1
m

Ne

∑
i=1

(p̂i−
e
c

A(ri, t)), (3.82)

Jµ(r, t) =
e

mV

Ne

∑
i=1

〈
p̂iµ
〉
+ i

n0e2

mω
Eµ(r, t), (3.83)

here n0 is the particle density. We label the second term as J(1)µ (r, t), which is propor-
tional to the electric field. The first term is labelled as J(2)µ (r, t). At zero temperature,
in Heisenberg representation,

J(2)µ (r, t) =
〈

ψ

∣∣∣ei(Ĥ0+Ĥ ′)t ĵµ(r)e−i(Ĥ0+Ĥ ′)t
∣∣∣ψ〉 , (3.84)

where |ψ〉 is the Schrödinger wave function at t = 0 for the Hamiltonian Ĥ0 + Ĥ ′
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and |ψ0〉 is the function for Ĥ0. The relation is

|ψ〉= T̃ e−i
∫ 0
−∞

dt ′Ĥ ′(t ′) |ψ0〉 , (3.85)

where T̃ is the time ordering operator. Then we assume

U(t) = T̃ e−i
∫ t

0 dt ′Ĥ ′(t ′), (3.86)

and transform the operator into the interaction representation

Ĥ ′(t) = eiĤ0tĤ ′e−iĤ0t , (3.87)

ĵµ(r, t) = eiĤ0t jµ(r)e−iĤ0t , (3.88)

J(2)µ (r, t) =
〈
ψ0
∣∣S+(t,−∞) ĵµ(r, t)S(t,−∞)

∣∣ψ0
〉
, (3.89)

here
S(t,−∞) = T̃ e−i

∫ t
−∞

dt ′Ĥ ′(t ′). (3.90)

For linear response, we only keep up to first order of Ĥ ′(t ′)

S(t,−∞) = Te−i
∫ t
−∞

dt ′Ĥ ′(t ′) = 1− i
∫ t

−∞

dt ′Ĥ ′(t ′)+O(Ĥ ′)2, (3.91)

J(2)µ (r, t) =
〈

ψ0

∣∣∣∣ ĵµ(r, t)− i
∫ t

−∞

dt ′[ ĵµ(r, t), Ĥ ′(t ′)]
∣∣∣∣ψ0

〉
. (3.92)

Without electric field, there is no current, thus〈
ψ0
∣∣ ĵµ(r, t)∣∣ψ0

〉
= 0, (3.93)

J(2)µ =−i
〈

ψ0

∣∣∣∣∫ t

−∞

dt ′[ ĵµ(r, t), Ĥ ′(t ′)]
∣∣∣∣ψ0

〉
, (3.94)

Ĥ ′ =
i
ω

∫
d3r ĵν(r)Eν(r, t), (3.95)

J(2)µ =
1

ωV
Eν(r, t)e−iq·r

∫ t

−∞

dt ′eiω(t−t ′) 〈
ψ0
∣∣[ ĵµ(r, t), ĵν(q, t ′)]

∣∣ψ0
〉
. (3.96)

Comparing it to Eq. 3.76 and averaging over the space variable r we obtain the
Kubo formula:

σµν(ω) =
1

ωV

∫
∞

0
dteiωt 〈

ψ0
∣∣[ ĵµ(t), ĵν(0)]

∣∣ψ0
〉
+ i

n0e2

mω
δµν . (3.97)

We took En,Em as eigenvalues and |n〉, |m〉 as the corresponding eigenstates.〈
ĵµ(t) ĵν(0)

〉
=

1
Tre−βH

Tre−βH ĵµ(t) ĵν(0)

=
1

Tre−βH ∑
n

〈
n|e−βH ĵµ(t) ĵν(0)|n

〉
=

1
Tre−βH ∑

nm
〈n| ĵµ |m〉

〈
m| ĵν |n

〉
e−βEne−

i
h̄ (En−Em)t

(3.98)
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The definition of the delta function is

δ (ω) =
1

2π

∫
∞

−∞

dte−iωt . (3.99)

In the spectral representation, the real part of the optical conductivity is

Reσµν(ω) =
π(1− e−ω/(kBT ))

ωV ∑n′ e−En′ω/(kBT )

∑
nm

e−En/(kBT ) 〈n ∣∣ ĵµ ∣∣m〉〈m ∣∣ ĵν ∣∣n〉δ (ω +En−Em).
(3.100)

The current operator is [63]

ĵµ =
ie
h̄ ∑

i< j,µ,ν
(ĉ†

iµ ĉ jν − ĉ†
jν ĉiµ)t

µ,ν
i, j rµ

i j, (3.101)

where µ and ν denote orbitals, tµ,ν
i, j label the corresponding hopping parameters and

rµ

i j indicate the µ component of the vector from site j to site i.

3.3.3 Optical conductivity in LAPW

In the LAPW basis, we calculate the eigenvalues and eigenvectors in k space, and
obtain the imaginary part of the interband contribution to the dielectric function
given by [64, 65] in the zero temperature as:

Imεµν(ω) ∝
1

ω2 ∑
c,v

∫
dk〈ck|p̂µ |vk〉〈vk|p̂ν |ck〉

×δ (εck− εvk−ω).

(3.102)

Here, µ and ν indicate directional components, p̂ is the momentum operator, and
ω corresponds to the energy of the photon. ck denotes a state in the conduction
band with the energy εck and vk is a state in the valence band with the energy εvk .
By absorbing photon energy, the electrons transit from vk to ck. The real part of
the dielectric function can be evaluated from the imaginary part using the Kramers-
Kronig relation. In this work we focus on the analysis of the real part of the optical
conductivity

Reσµν(ω) =
ω

4π
Im εµν(ω). (3.103)

In what follows we will describe how to calculate the momentum matrix element
in the LAPW basis. We already described the LAPW basis in section 3.1. The
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matrix elements are also analyzed in two parts: the muffin-tin spheres and interstitial
region: 〈

n′k |p̂|nk
〉
= ∑

µ

〈
n′k |p̂|nk

〉
MTµ

+
〈
n′k |p|nk

〉
I . (3.104)

The function
ψnk(r) = ∑

G
Cnk(G)φk+G(r), (3.105)

G indicate the reciprocal lattice vector. In the interstitial region,

φk+G(r) =
1√
Ωc

ei(k+G)r, (3.106)

while in the atomic region,

φk+G(Sα + r) = ∑
lm
[Aα

lm(k+G)uα
l (r,El)+Bα

lm(k+G)u̇α
l (r,El)]Yl,m, (3.107)

For the atomic part, LAPW use spherical harmonics to do the calculation, thus we
can only calculate the combination of ∂x± i∂y and ∂z:

Φ
x+iy
k+G′,k+G ≡

〈
Φk+G′(Sα + r)

∣∣∂x + i∂y
∣∣Φk+G(Sα + r)

〉
,

Φ
x−iy
k+G′,k+G ≡

〈
Φk+G′(Sα + r)

∣∣∂x− i∂y
∣∣Φk+G(Sα + r)

〉
,

Φ
z
k+G′,k+G ≡ 〈Φk+G′(Sα + r) |∂z|Φk+G(Sα + r)〉 .

(3.108)

In spherical coordinates:

∂x± i∂y = sinθe±iφ ∂

∂ r
+

1
r

e±iφ (cosθ
∂

∂θ
± i

sinθ

∂

∂φ
),

∂z = cosθ
∂

∂ r
− 1

r
sinθ

∂

∂θ
.

(3.109)

After evaluating the matrix element of the above operator in the basis, we obtain:〈
n′k |∂x|nk

〉
MTµ

=
1
2 ∑

G′,G
C∗n′k(G

′)(µ
Φ

x+iy
k+G′,k+G + µ

Φ
x−iy
k+G′,k+G)Cnk(G),

〈
n′k
∣∣∂y
∣∣nk
〉

MTµ
=

1
2i ∑

G′,G
C∗n′k(G

′)(µ
Φ

x+iy
k+G′,k+G−

µ
Φ

x−iy
k+G′,k+G)Cnk(G),〈

n′k |∂z|nk
〉

MTµ
= ∑

G′,G
C∗n′k(G

′)µ
Φ

z
k+G′,k+GCnk(G).

(3.110)

and in the interstitial region,〈
n′k |∇|nk

〉
I =

1
Ωc

∑
G′,G

(k+G)C∗n′k(G
′)Cnk(G)

∫
I
ei(G′−G·r)dr. (3.111)
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3.3.4 Optical conductivity from exact diagonalization method

Hubbard model for finite cluster was written and diagonalized. Then the eigenstates
were transformed to relativistic basis to construct states n and m in Eq. (3.101).
Finally, real part of the optical conductivity for finite clusters can be calculated
using Eq. (3.100).

3.4 Summary

In summary, in this chapter, an overview of describing the electronic properties
were given. We started from the density functional theory and discussed the exten-
sions of it when including spin-orbit coupling with second-variational method and
Coulomb repulsion using the mean-field approach. All procedures are summarized
in Figure 3.1, showing the DFT cycle.

This method is typically applicable for describing the electronic properties of
weakly correlated materials, and magnetic insulators deep in the ordered state.
However, DFT neglects some aspects of dynamical correlations, which can be im-
portant for describing correlated materials. Therefore, one may gain further insight
by exactly diagonalizing small clusters using model Hubbard Hamiltonians. In or-
der to parameterize such models, we described how to estimate hopping integrals
from the projectors projecting the eigenstates of DFT calculations from the LAPW
basis to the Wannier basis.

Finally, we introduced the fundamental relations for optical phenomena and the
spectral representation formula of optical conductivity for interband transitions in
the linear response theory. The calculation details in the LAPW basis were also
discussed. For simplification, we will use σ(ω) to represent the real part of the
optical conductivity in this thesis.
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Figure 3.1: DFT cycle.
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Chapter 4

Methods for magnetic properties

In this chapter, we will introduce the perturbative and nonperturbative to construct
the effective spin models. In particular, we focus on magnetic interactions between
local J = 1/2 magnetic moments in the presence of strong spin-orbit coupling,
which is relevant for the materials Na2IrO3, α-Li2IrO3, α-RuCl3 that are the fo-
cus of this thesis. We will therefore start by introducing the relativistic local ba-
sis to describe such strongly spin-orbitally coupled moments. Then the effective
magnetic Hamiltonians from second order perturbation theory expressions exact in
U,JH , and λ will be discussed. Further, we introduce nonperturbative exact di-
agonalization (ED) techniques to estimate higher order corrections and long range
interactions up to third neighbors. These methods are relevant to Chapter 8.

4.1 Effective magnetic Hamiltonians from perturba-
tion theory

4.1.1 From the single-band Hubbard model to Heisenberg
model

We first demonstrate how to derive magnetic interactions for the simple case of a
one-band model without spin-orbit coupling. The one-band Hubbard Hamiltonian

35
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can be written as:

Ĥ =−t ∑
〈i j〉σ

(ĉ+iσ ĉ jσ +h.c.)+U ∑
i

n̂i↑n̂i↓, (4.1)

where the first term is the kinetic term and the second term is the Coulomb interac-
tion of the electrons with opposite spin on the same site. Indices i and j represent
lattice sites, while σ is the spin index. The operator ĉ+iσ (ĉiσ ) creates (destroys) an
electron of spin σ on site i. The operator n̂iσ is defined by

n̂iσ = ĉ+iσ ĉiσ , (4.2)

and counts the number of electrons of spin σ on site i. In the limit U� t, ∑σ 〈niσ 〉∼
1, there is approximately one electron at each site. In this case, we may divide the
Hamiltonian into

Ĥ = Ĥ0 + Ĥ1, (4.3)

where the unperturbed Hamiltonian Ĥ0 is given by

Ĥ0 =U ∑
i

n̂i↑n̂i↓, (4.4)

and the perturbation is

Ĥ1 =−t ∑
〈i j〉σ

(ĉ+iσ ĉ jσ +h.c.). (4.5)

The effective Hamiltonian to second order in H1 is

Ĥeff =−P̂
Ĥ1(1− P̂)Ĥ1

Ĥ0−E(0)
P̂, (4.6)

where the operator P̂ projects on the ground state manifold

|α1σ1, · · ·,αNσN〉 . (4.7)

Ĥeff =−t2
∑
〈i j〉

P̂
(ĉ+i↑ĉ j↑+ ĉ+i↓ĉ j↓)(1− P̂)(ĉ+j↑ĉi↑+ ĉ+j↓ĉi↓)

E(0)
p −E(0)

0

P̂

=
2t2

U ∑
〈i j〉σ

(ĉ+iσ ĉiσ ĉ+j−σ
ĉ j−σ − ĉ+iσ ĉi−σ ĉ+j−σ

ĉ jσ ).

(4.8)

The spin operators Ŝi have three components Ŝx
i , Ŝ

y
i , Ŝ

z
i . The relations between the

spin operator and creation and annihilation operator are given by

Ŝz
i =

1
2
(ĉ+i↑ĉi↑− ĉ+i↓ĉi↓)

Ŝ+i = Ŝx
i + iŜy

i = ĉ+i↑ĉi↓

Ŝ−i = Ŝx
i − iŜy

i = ĉ+i↓ĉi↑.

(4.9)
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With these relations, Ĥeff becomes

Ĥeff =
2t2

U ∑
〈i j〉

(
1
2
−2Ŝz

i Ŝ
z
j− Ŝ+i Ŝ−j − Ŝ−i Ŝ+j )

=−2t2

U ∑
〈i j〉

(2Ŝi · Ŝj−
1
2
).

(4.10)

This final effective Hamiltonian is the Heisenberg interaction.

4.1.2 From the multi-band Hubbard model to the Heisenberg -
Kitaev model

We follow the derivation from Ref. [7], which was the first to point out the possi-
bility of realizing Kitaev interactions in edge-sharing d5 materials with strong spin
orbit coupling. This derivation is presented for historical purpose, as it yields ex-
pressions that are only approximate, exact results up to O(t2) are given in the next
section, following our derivation. The model considered is a three-orbital variant
of the Hubbard model with the intra-atomic exchange taken into account. We write
the Hamiltonian for the t2g electrons in the form of Eq. 1.3. The second order
perturbation theory is used to derive the effective Hamiltonian. The unperturbed
Hamiltonian Ĥ0 is chosen to be

Ĥ0 = ∑
j,σ ,σ ′

m,m′

Umm′

2
n̂ jmσ n̂ jm′σ ′(1−δmm′δσσ ′)−

JH

2 ∑
j,σ ,σ ′

m,m′

ĉ+jmσ
ĉ jmσ ′ ĉ

+
jm′σ ′ ĉ jm′σ (1−δmm′)

+
JH

2 ∑
j,σ ,σ ′

m,m′

ĉ+jmσ
ĉ+jmσ ′ ĉ jm′σ ′ ĉ jm′σ (1−δmm′)(1−δσσ ′),

(4.11)

and the perturbation is

Ĥ1 =− ∑
〈i, j〉

m,m′,σ

(tmm′
i j ĉ+imσ

ĉ jm′σ +h.c.). (4.12)
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We use Umm =U , and Umm′ =U−2JH (m 6= m′) to diagonalize the above Hamilto-
nian and obtain the eigenvalues and eigenvectors:

−3JH +U : |yz ↑ xz ↑〉 , |yz ↓ xz ↓〉 , |xy ↑ yz ↑〉 ,
|xy ↓ yz ↓〉 , |xz ↑ xy ↑〉 , |xz ↓ xy ↓〉 ,
|yz ↑ xz ↓〉+ |xz ↑ yz ↓〉 , |xy ↑ yz ↓〉+ |yz ↑ xy ↓〉 ,
|xz ↑ xy ↓〉+ |xy ↑ xz ↓〉 ;

−JH +U : −|yz ↑ xz ↓〉+ |xz ↑ yz ↓〉 , −|xy ↑ yz ↓〉+ |yz ↑ xy ↓〉 ,
−|xz ↑ xy ↓〉+ |xy ↑ xz ↓〉 ,
|xy ↑↓〉− |yz ↑↓〉 , |xz ↑↓〉− |yz ↑↓〉 ;

2JH +U : |yz ↑↓〉+ |xz ↑↓〉+ |xy ↑↓〉 .

(4.13)

In the second order perturbation theory,

Ĥeff =−P̂Ĥ1
1− P̂

Ĥ0−E0
Ĥ1P̂, (4.14)

The effective interaction is written as

Ĥeff =−P̂ ∑
〈i, j〉

m,m′,σ

(tmm′
i j ĉ+imσ

ĉ jm′σ +h.c.)
(1− P̂)
Ĥ0−E0

∑
〈i, j〉

m,m′,σ

(tmm′
i j ĉ+imσ

ĉ jm′σ +h.c.)P̂

= ∑
〈i, j〉

Ĥ<i, j>
eff ,

(4.15)

where

Ĥ<i, j>
eff =−P̂ ∑

m1,m2,
m3,m4,

σ ,η

(tm1m2
i j ĉ+im1σ

ĉ jm2σ +h.c.)
(1− P̂)
Ĥ0−E0

(tm3m4
i j ĉ+jm3η

ĉim4η +h.c.)P̂.

(4.16)
We consider two kinds of bonding geometries shown in Fig. 4.1. For z direction of
the 180◦ bond structure (see Fig. 4.1 (a)), the hopping parameter tyz,yz

i j = txz,xz
i j = t,

tyz,xz
i j = tyz,xy

i j = txz,xy
i j = 0, txy,xy = 0. Substituting the hopping parameter, we obtain

Ĥ<i, j>(z)
eff =−t2P̂i j ∑

m,m′,σ ,η

(ĉ+imσ
ĉ jmσ +h.c.)

(1− P̂)i j

Ĥ0−E0
(ĉ+jm′η ĉim′η +h.c.)P̂i j (4.17)

with m,m′ = dxz,dyz. We introduce

ĉ+im↑ĉim′↑→ (ĉ+imĉim′)(
1
2
+ Ŝz

i ), ĉ+im↓ĉim′↓→ (ĉ+imĉim′)(
1
2
− Ŝz

i ),

ĉ+im↑ĉim′↓→ (ĉ+imĉim′)Ŝ
+
i , ĉ+im↓ĉim′↑→ (ĉ+imĉim′)Ŝ

−
i ,

(4.18)
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Figure 4.1: Two possible geometries of bond with corresponding orbitals active
along these bonds. The large (small) circles are the transition metal (ligand) ions.
(a) A 180◦-bond and (b) a 90◦-bond.

which is similar as the notation defined by Kugel and Khomskii in Ref. [66]. For
180◦ bond structure along z direction, the effective Hamiltonian is then:

H(z)
eff =

2t2

U−3JH
(Ŝi · Ŝj +

3
4
)[n̂i,yzn̂ j,yz + n̂i,xzn̂ j,xz + ĉ+i,yzĉi,xzĉ+j,xzĉ j,yz + ĉ+i,xzĉi,yzĉ+j,yzĉ j,xz

− 1
2
(n̂i,yz + n̂i,xz)−

1
2
(n̂ j,yz + n̂ j,xz)]+

2t2

U− JH
(Ŝi · Ŝj−

1
4
)

[n̂i,yzn̂ j,yz + n̂i,xzn̂ j,xz + ĉ+i,yzĉi,xzĉ+j,xzĉ j,yz + ĉ+i,xzĉi,yzĉ+j,yzĉ j,xz

+
1
2
(n̂i,yz + n̂i,xz)+

1
2
(n̂ j,yz + n̂ j,xz)]

(
2t2

U +2JH
− 2t2

U− JH
)(Ŝi · Ŝj−

1
4
)
2
3

(n̂i,yzn̂ j,yz + n̂i,xzn̂ j,xz + ĉ+i,yzĉi,xzĉ+j,yzĉ j,xz + ĉ+i,xzĉi,yzĉ+j,xzĉ j,yz).

(4.19)
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We introduce

n̂(z)i = n̂i,yz + n̂i,xz,

ĉ+i,yzĉi,yz→
1
2

n̂(z)i + τ̂
(z)z
i , ĉ+i,xzĉi,xz→

1
2

n̂(z)i − τ̂
(z)z
i ,

ĉ+i,yzĉi,xz→ τ̂
(z)+
i , ĉ+i,xzĉi,yz→ τ̂

(z)−
i ,

(4.20)

Â(z)
i j = n̂i,yzn̂ j,yz + n̂i,xzn̂ j,xz + ĉ+i,yzĉi,xzĉ+j,xzĉ j,yz + ĉ+i,xzĉi,yzĉ+j,yzĉ j,xz

= 2τ̂
(z)
i · τ̂

(z)
j +

1
2

n̂(z)i n̂(z)j ,
(4.21)

and

B̂(z)
i j = n̂i,yzn̂ j,yz + n̂i,xzn̂ j,xz + ĉ+i,yzĉi,xzĉ+j,yzĉ j,xz + ĉ+i,xzĉi,yzĉ+j,xzĉ j,yz

= 2τ̂
(z)
i ⊗ τ̂

(z)
j +

1
2

n̂(z)i n̂(z)j .
(4.22)

The Hamiltonian for x and y direction is gained by changing x, y and z. Finally, we
get the effective Hamiltonian for the γ direction of the 180◦-bond structure:

Ĥ(γ)
eff =

2t2

U−3JH
(Ŝi · Ŝj +

3
4
)(Â(γ)

i j −
1
2

n̂(γ)i −
1
2

n̂(γ)j )

+
2t2

U− JH
(Ŝi · Ŝj−

1
4
)(Â(γ)

i j +
1
2

n̂(γ)i +
1
2

n̂(γ)j )

(
2t2

U +2JH
− 2t2

U− JH
)(Ŝi · Ŝj−

1
4
)
2
3

B̂(γ)
i j .

(4.23)

The results coincide with those of Ref. [8]. If JH <<U,

Ĥ(γ)
eff =

2t2

U
(1−3

JH

U
)(Ŝi · Ŝj +

3
4
)(2τ̂

(γ)
i · τ̂

(γ)
j +

1
2

n̂(γ)i n̂(γ)j −
1
2

n̂(γ)i −
1
2

n̂(γ)j )

+
2t2

U
(1− JH

U
)(Ŝi · Ŝj−

1
4
)(2τ̂

(γ)
i · τ̂

(γ)
j +

1
2

n̂(γ)i n̂(γ)j +
1
2

n̂(γ)i +
1
2

n̂(γ)j )

+
4t2

U
JH

U
(Ŝi · Ŝj−

1
4
)(2τ̂

(γ)
i ⊗ τ̂

(γ)
j +

1
2

n̂(γ)i n̂(γ)j ).

(4.24)

The super-exchange (SE) Hamiltonian can be expressed as

Ĥ(γ)
i j =

2t2

U
[(

3
4

r1−
1
4

r2)Â
(γ)
i j +(r1 + r2)Ŝi · ŜjÂ

(γ)
i j −

1
6
(r3− r2)B̂

(γ)
i j

+
2
3
(r3− r2)Ŝi · ŜjB̂

(γ)
i j − (

3
4

r1 +
1
4

r2)(
1
2

n̂(γ)i +
1
2

n̂(γ)j )

+(r2− r1)Ŝi · Ŝj(
1
2

n̂(γ)i +
1
2

n̂(γ)j )],

(4.25)
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where r1 =U/(U−3JH),r2 =U/(U−JH), and r3 =U/(U +2JH). The SE Hamil-
tonian in z direction is

Ĥ(z)
i j =

2t2

U
[(

3
4

r1−
1
4

r2)Â
(z)
i j +(r1 + r2)Ŝi · ŜjÂ

(z)
i j −

1
6
(r3− r2)B̂

(z)
i j

+
2
3
(r3− r2)Ŝi · ŜjB̂

(z)
i j −

1
2
(
3
4

r1 +
1
4

r2)(n̂
(z)
i + n̂(z)j )

+
1
2
(r2− r1)Ŝi · Ŝj(n̂

(z)
i + n̂(z)j )],

(4.26)

where

Â(z)
i j = n̂i,yzn̂ j,yz + n̂i,xzn̂ j,xz + ĉ+i,yzĉi,xzĉ+j,xzĉ j,yz + ĉ+i,xzĉi,yzĉ+j,yzĉ j,xz

B̂(z)
i j = n̂i,yzn̂ j,yz + n̂i,xzn̂ j,xz + ĉ+i,yzĉi,xzĉ+j,yzĉ j,xz + ĉ+i,xzĉi,yzĉ+j,xzĉ j,yz

n̂(z)i = n̂i,yz + n̂i,xz.

(4.27)

In order to account for SO interaction, we project every term of Ĥ(z)
i j into the rela-

tivistic basis. The Â(z)
i j term in the relativistic basis is then:

Â(z)
i j =

4
9
[ ˆ̃c
+
i↑

ˆ̃ci↑ ˆ̃c
+
j↑

ˆ̃c j↑+ ˆ̃c
+
i↓

ˆ̃ci↓ ˆ̃c
+
j↓

ˆ̃c j↓]

=
2
9
+

8
9

ˆ̃Sz
i

ˆ̃Sz
j.

(4.28)

Analogously we find

Ŝi · ŜjÂ
(z)
i j =

4
9

ˆ̃Si · ˆ̃S j−
2
9

ˆ̃Sz
i

ˆ̃Sz
j +

1
18

, (4.29)

B̂(z)
i j =

2
9
− 8

9
ˆ̃Sz
i

ˆ̃Sz
j, (4.30)

Ŝi · ŜjB̂
(z)
i j =

4
9

ˆ̃Si · ˆ̃S j−
2
9

ˆ̃Sz
i

ˆ̃Sz
j−

1
18

, (4.31)

(n̂(z)i + n̂(z)j ) =
4
3
, (4.32)

Ŝi · Ŝj(n̂
(z)
i + n̂(z)j ) =

4
9

ˆ̃Sz
i

ˆ̃Sz
j. (4.33)

We use Ŝ to indicate the Pseudospin ˆ̃S, the effective Hamiltonian becomes

Ĥ(z)
i j =

4t2

U
4
9

[(
3r1 + r2 +2r3

6
)Ŝi · Ŝ j +

(r1− r2)

4
Ŝz

i Ŝ
z
j]

+
t2

27U
(−15r1−5r2−4r3),

(4.34)
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Ĥ(z)
i j =

4t2

U
4
9
[(

3r1 + r2 +2r3

6
)Ŝi · Ŝ j +

(r1− r2)

4
Ŝz

i Ŝ
z
j]. (4.35)

For x and y direction, we use the same method and obtain the same formula. From
the above result, the effective Hamiltonian for Pseudospins is:

Ĥ(γ)
i j = J1Ŝi · Ŝ j +K1Ŝγ

i Ŝγ

j , (4.36)

with

J1 =
4t2

U
4
9
(
3r1 + r2 +2r3

6
), (4.37)

K1 =
4t2

U
4
9
(r1− r2)

4
. (4.38)

These results agree well with the findings of Khaliullin et al. [7]. When JH <<

U,r1 = 1/(1−3 JH
U )= 1−3 JH

U ,r2 = 1/(1− JH
U )= 1− JH

U ,r3 = 1/(1+2 JH
U )= 1+2 JH

U

J1 =
4t2

U
4
9
(1− JH

U
), (4.39)

K1 =−
4t2

U
2
9

JH

U
. (4.40)

If we do not consider the Hund’s coupling,

J1 =
4t2

U
4
9
, (4.41)

K1 = 0. (4.42)

The model reduces to the Heisenberg Hamiltonian.

For Z bond (in xy plane) of the 900 bond structure (see Fig. 4.1 (b)), the hopping
parameter tyz,yz

i j = txz,xz
i j = txy,xy = tyz,xy

i j = txz,xy
i j = 0, tyz,xz

i j = t. The exchange cou-
plings [7].

J1 ∼ 0, K1 ∼−
8
3

t2

U
JH

U
. (4.43)

When including other hoppings, the effective spin model may contain the Heisen-
berg term, Kitaev term and other off diagonal terms [67].

4.1.3 Exact perturbation method

The summary of this section appeared in the supplemental section of Ref. [36].
Here, we present the details of derivation. The above analytical expressions are
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based on the projection of the λ = 0 Hamiltonian for the t2g orbitals onto the rel-
ativistic jeff = 1/2 basis. This is only valid in the limit U � λ � t which is not
generally satisfied in real materials. An improvement are the expressions using the
second order perturbation theory in the limit U � t and otherwise the exact expres-
sions to all orders of JH ,U,λ in the absence of crystal field splitting (∆n = 0) [36].
We first transform the Hamiltonian into a basis that exact diagonalizes spin-orbit
coupling at the single electron level, and then the spin Hamiltonians in this basis are
computed.

The Hamiltonian is divided into H = H0+H1 where H1 contains all hopping terms,
and H0 = HSO+HU . In the limit U/t→∞ and λ > 0. The effective Hamiltonian in
the second order is

Heff(ω) = ∑
i, j

P̂ĉ†
i Ti jĉ j(1− P̂)(ω− Ĥ0)

−1(1− P̂)ĉ†
jT jiĉiP̂. (4.44)

In the low order within perturbation theory, we take ω =< H0 >, which is the
energy of the ground state. For convenience, this perturbation is performed in the
relativistic basis labeled | j,m j〉:

ĉi =

(
ĉi, 1

2

ĉi, 3
2

)
, (4.45)

where

ĉi, 1
2
=

(
ĉi,| 12 ,

1
2 〉

ĉi,| 12 ,−
1
2 〉

)
, ĉi, 3

2
=


ĉi,| 32 ,

1
2 〉

ĉi,| 32 ,−
1
2 〉

ĉi,| 32 ,
3
2 〉

ĉi,| 32 ,−
3
2 〉

 . (4.46)

The hopping matrix Ti j is expressed as

Ti j =

 Θ
1
2

1
2

i j Θ
1
2

3
2

i j

Θ
3
2

1
2

i j Θ
3
2

3
2

i j

 , (4.47)

where
Θ

1
2

1
2

i j = t
1
2

1
2

i j I2×2 + iλ
1
2

1
2

i j ·σ , (4.48)

Θ
1
2

3
2

i j =(t
1
2

3
2 ,a

i j I2×2 + iλ
1
2

3
2 ,a

i j ·σ)

(
1 0 0 0
0 1 0 0

)

+(t
1
2

3
2 ,b

i j I2×2 + iλ
1
2

3
2 ,b

i j ·σ)

(
0 0 1 0
0 0 0 1

)
.

(4.49)
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The hopping parameters from the kinetic term and the spin-orbit term are

t
1
2

1
2

i j =
1
3
(txy,xy

i, j + txz,xz
i, j + tyz,yz

i, j ),

λ
1
2

i j =
1
3
(txy,xz

i j − txz,xy
i j , txy,yz

i j − tyz,xy
i j , tyz,xz

i j − txz,yz
i j ),

(4.50)

t
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2 ,a

i j =
1

3
√

2
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i, j − tyz,yz

i, j ),

λ
1
2

3
2 ,a

i j =
1

3
√

2
(−txy,xz

i j −2txz,xy
i j ,2txy,yz

i j + tyz,xy
i j ,−tyz,xz

i j + txz,yz
i j ),

(4.51)

t
1
2

3
2 ,b

i j =
1√
6

tyz,xy
i, j ,

λ
1
2

2
3 ,b

i j =
1√
6
(−txy,xz

i j − txz,xy
i j , tyz,yz

i j − txz,xz
i j , txy,xz

i j ).

(4.52)

For Z bond, we use tyz,yz
i j = txz,xz

i j ≡ t1, tyz,xz
i j = txz,yz

i j ≡ t2, txy,xy
i j ≡ t3, and txy,xz

i j =

txz,xy
i j = txy,yz

i j = tyz,xy
i j ≡ 0 which gives:

Θ
1
2 ,

1
2

i j =
1
3
(2t1 + t3)I2×2,

Θ
1
2 ,

3
2

i j =

√
2

3
(t3− t1)


1 0
0 1
0 0
0 0

− i

√
2
3

t2


0 0
0 0
0 1
1 0

 .
(4.53)

Without the crystal field splitting, the projection operator in the low energy space is

P̂ = ∏
i

ĉ†
i, 1

2
ĉi, 1

2
. (4.54)

The magnetic spin operators are written in the j1/2 basis

Ŝi =
1
2

ĉ†
i, 1

2
σ̂ ĉi, 1

2
. (4.55)

where σ is the Pauli vector:

σ̂x =

(
0 1
1 0

)
, σ̂y =

(
0 −i
i 0

)
, σ̂z =

(
1 0
0 −1

)
. (4.56)

The effective Hamitonian is

Ĥeff = ∑
i j

A Ŝ j ·
(

c†
i, 1

2
Θ

1
2

1
2

i j σΘ
1
2

1
2

ji ci, 1
2

)
(4.57)

+BŜ j ·
(

c†
i, 1

2
Θ

1
2

3
2

i j τΘ
3
2

1
2

ji ci, 1
2

)
+(i↔ j).
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The final effective Hamiltonian is

Ĥspin = ∑
〈i j〉

Ji j Ŝi · Ŝ j +Di j · Ŝi× Ŝ j + Ŝi ·Γi j · Ŝ j, (4.58)

where Di j is the Dzyalloshinskii-Moriya (DM) vector, which is zero when tm,m′ =

tm′,m. Other exchange paramters are [36]:

J =
4A
9
(2t1 + t3)2− 8B

9
{

9t2
4 +2(t1− t3)2}

K =
8B
3
{
(t1− t3)2 +3t2

4 −3t2
2
}

Γ =
8B
3
{

3t2
4 +2t2(t1− t3)

}
Γ
′ =

8B
3
{t4(3t2 + t3− t1)} ,

(4.59)

where

A= − 1
3

{
JH +3(U +3λ )

6J2
H−U(U +3λ )+ JH(U +4λ )

}
,

B=
4
3

{
(3JH−U−3λ )

(6JH−2U−3λ )
η

}
,

C=
6
8

{
1

2U−6JH +3λ
+

5
9
(3U−7JH−9λ )

JH
η

}
,

η =
JH

6J2
H− JH(8U +17λ )+(2U +3λ )(U +3λ )

.

(4.60)

In the limit of JH � λ and JH �U , it is the formula in Ref. [68]:

J =
4

27
(2t1 + t3)2(4JH +3U)

U2 − 16JH(t1− t3)2

(2U +3λ )2 ,

K =
32JH

9
(t1− t3)2−3t2

2
(2U +3λ )2 ,

Γ =
64JH

9
t2(t1− t3)
(2U +3λ )2 .

(4.61)

When t1 = t3 = 0, λ = 0, it is similar as Eq. (4.43).
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4.2 Effective model from exact diagonalization

4.2.1 General form

In order to improve on the determination of parameters, we have also performed
exact diagonalization of finite clusters and we will compare both procedures further
below. The clusters used in the exact diagonalization to obtain the exchange param-

(a) (b) (c)

(d)

Figure 4.2: Clusters employed in exact diagonalization studies for the extraction of
magnetic parameters: (a) two-site cluster, (b) “bridge” cluster, and (c) “hexagon”
cluster. The 16-site cluster (d) has been used for ED studies of the resulting mag-
netic models.

eters are shown in Fig. 4.2 (a), (b), and (c). (a) is the two-site cluster, (b) include
the center bond of X1, Y1, or Z1 bond. (c) can account for second and third nearest
neighbors. We diagonalize the total Hamiltonian to obtain the eigenvalues En and
eigenstates {|n〉}. For N site clusters, we only use the lowest Nl = 2N energy and
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project the corresponding eigenstates on the low energy subspace (pure jeff = 1/2)

|n′〉=
Nl

∑
nl

|nl〉〈nl|n〉 ≡ R|n〉 , n,n′ = 1 ... Nl. (4.62)

The lower Hilbert space is not the complete set of states and therefore not orthonor-
mal. We use the intermediate basis in terms of overlap matrix to define a total
unitary transformation

U = RS−1/2 , Smn = 〈m′|n′〉. (4.63)

And finally, we write the effective Hamiltonian in the spin subspace as:

Ĥspin = U†

(
Nl

∑
n

En|n〉〈n|

)
U. (4.64)

From it, we can obtain the exchange parameters. When spin-orbit coupling is im-
portant, the jeff =1/2 is the pseudo-spin as discussed in [67, 69–71]. The effective
spin Hamiltonian is expressed as:

Ĥspin = ∑
〈i j〉

Ŝi ·Ji j · Ŝ j + Ô(S4), (4.65)

where 〈i j〉 is the sum over all pairs of sites up to third nearest neighbors. The
interactions can also be expressed as:

Ĥspin = ∑
〈i j〉

Ji j Ŝi · Ŝ j + Ŝi ·Γi j · Ŝ j +Di j · Ŝi× Ŝ j, (4.66)

where the first term is the Heisenberg interaction, while the second term is the
pseudo-dipolar interaction which include the Kitaev term, and the last term is the
Dzyaloshinskii-Moriya (DM) couplings. The first and second terms are symmetric
and the last term is antisymmetric. The parameters are:

Ji j,s =

 Ji j +Γaa
i j Γab

i j Γac
i j

Γab
i j Ji j +Γbb

i j Γbc
1

Γac
1 Γbc

1 Ji j +Γcc
i j

 , (4.67)

Ji j,a =

 0 Dc
i j −Db

i j

−Dc
i j 0 Da

i j

Db
i j −Da

i j 0

 . (4.68)

For the symmetric part, there are three different bonds (Xn, Yn, Zn). The formulas
are given by:

JZ
n,s =

 Jz
1 Γz

n Γ′zn
Γz

n Jz
n Γ′zn

Γ′zn Γ′zn Jz
n +Kz

n

 , (4.69)
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JX
n,s =

 Jxy
1 +Kxy

1 Γ
′xy
1 +ζ1 Γ

′xy
1 −ζ1

Γ
′xy
1 +ζ1 Jxy

1 +ξ1 Γ
xy
1

Γ
′xy
1 −ζ1 Γ

xy
1 Jxy

1 −ξ1

 , (4.70)

JY
n,s =

 Jxy
1 +ξ1 Γ

′xy
1 +ζ1 Γ

xy
1

Γ
′xy
1 +ζ1 Jxy

1 +Kxy
1 Γ

′xy
1 −ζ1

Γ
xy
1 Γ

′xy
1 −ζ1 Jxy

1 −ξ1

 , (4.71)

with the convention introduced in Ref. [67, 72].
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Figure 4.3: Nearest neighbour interactions for the Z1-bond in Na2IrO3 in the ab-
sence of crystal-field splitting, employing hopping parameters described in Chap-
ter 8. The results of 2-site exact diagonalization (black solid line) are compared
with approximate projective expressions (red dashed line, Ref. [67]) and second or-
der perturbation theory exact in λ ,U,JH (blue dotted line). (a) U-dependence, with
constant JH/U ratio of 0.3/1.7, and λ = 0.4 eV. (b) λ -dependence, with JH = 0.3
eV, and U = 1.7 eV.

4.2.2 Comparison to exact second order perturbation

For the exact perturbation formula in Eq. 4.59, atO(t2), magnetic interactions result
from a combination of i) “intraband” terms (∝ A> 0) arising from virtual hopping
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of holes between jeff = 1/2 states, and ii) “interband” terms (∝ B > 0) arising
from hopping between jeff = 1/2 and lower-lying jeff = 3/2 states. Both processes
contribute to the isotropic exchange J1, but with opposite sign, while the anisotropic
terms arise only from interband processes (∝ B). The values of these constants can
be estimated for the real materials; for 5d Ir4+ ions (as in A2IrO3, A = Na, Li), we
take U = 1.7, JH = 0.3, and λ = 0.4 eV, suggesting:

A5d ∼ 0.9 eV−1 , B5d ∼ 0.04 eV−1, (4.72)

while for 4d Ru3+ ions (as in α-RuCl3), we take U = 3.0, JH = 0.6, and λ = 0.15
eV, suggesting:

A4d ∼ 0.6 eV−1 , B4d ∼ 0.05 eV−1. (4.73)

The second order expressions may be compared with the results of exact diagonal-
ization (ED) of the full Hamiltonian on two sites (for ∆n = 0). In the latter case, the
interaction parameters Jz

1,K
z
1, etc. for Z1 bond were extracted via projection of the

exact low-energy states onto the jeff = 1/2 states. We show in Fig. 4.3 the depen-
dence of the interactions on λ and U for Hamiltonian parameters suitable for the
Z1-bond of Na2IrO3. For the λ -dependence plots, U = 1.7,JH = 0.3 eV are fixed,
while U-dependence is considered with fixed λ = 0.4 eV and JH/U ratio. One
can see that the exact second order expressions (4.59) agree with the ED results
over a wide range of U-values, and break down only in the weak λ limit. Interest-
ingly, large λ tends to suppress the anisotropic terms, due to enhancement of the
gap between the jeff = 1/2 and jeff = 3/2 states. The close agreement between
the perturbative and ED results validates both approaches. In contrast, the projec-
tive expressions of Ref. [67] seem to overestimate the magnitude of the anisotropic
terms over a large region of parameters, and fail to capture any λ -dependence by
construction.

In real materials, A� B, so that the anisotropic interactions typically represent
subleading terms. For materials close to the Kitaev limit (K1 � J1), the leading
term J1 must therefore be suppressed to an order of magnitude below its natural
scale [7], which opens the possibility that other subleading interactions such as
second and third neighbour terms may also be relevant. These are considered in the
next section.
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+

+

Figure 4.4: Hopping paths associated with contributions O(t2) and O(t3) to the
long-range second neighbour (top) and third neighbour (bottom) interactions. The
many higher order corrections to these terms must be included to produce accurate
estimates.

4.2.3 Long-range interactions

Various previous works have considered long-range terms for the honeycomb mate-
rials, either for interpretation of experimental data[15, 73–76], or from an ab-initio
perspective[25, 27, 69, 70]. In the latter reports, such interactions where estimated
only at the level of second order perturbation theory in the direct second or third
neighbour hopping. Here we consider the validity of this approach. For second
neighbour interactions, we consider three adjacent sites i, j,k. The lowest order
contributions to the second neighbour interactions arise from direct hopping asso-
ciated with virtual hopping processes such as i→ k→ i:

J(2)2 ∼
|TikTki|

Ueff
(4.74)

where Ueff(U,JH ,λ )∼ A−1 ∼ 1.0−1.5 eV gives the rough energy cost for double
occupancy of a given site. Such contributions have been previously considered in
the literature. As shown in Fig. 4.4, several virtual hopping paths contribute to
O(t3) terms, the largest of which provides:

J(3)2 ∼
|Ti jT jkTki|

U2
eff

(4.75)

This corresponds to the three site ring exchange i→ j → k→ i process. Strong
convergence of the perturbation expansion would require J(2)2 � J(3)2 . However,
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for conservative estimates of Ueff ∼ 1 eV, and |Ti j/|Tik| ∼ 10, the second order
J(2)2 and third order J(3)2 contributions can be of similar magnitude. On this basis,
we conclude that perturbation theory for the long-range interactions may not be
strongly convergent, questioning the reliability of previous estimates. This finding
is consistent with previous suggestions that long-range interactions on the scale of
n = 2,3 would emerge naturally from a semi-itinerant picture of the holes within
the hexagonal plaquettes [28, 29]. In order to bridge these two perspectives, we
have applied nonperturbative exact diagonalization methods to the real materials in
Chapter 8, which allow for accurate estimation of all terms up to third neighbour.
We have also considered 4-spin and 6-spin ring-exchange interactions that similarly
emerge at high orders in perturbation theory, but we find them to be negligible in
calculations below, implying sufficient convergence at third order.

4.3 Comparison to experiment

On the basis of the above calculations to extract the parameters (perturbation or
small clusters), we therefore suggest the minimal model for each material and con-
struct the spin model of larger clusters (sixteen-site in Fig. 4.2 (d)) with ED method
or classical method to calculated the phase diagram. Phase boundaries were iden-
tified from extrema of ∂ 2E/(∂Jn)

2 in the ED model, where E is the ground state
energy. Then the orientations of the ordered moments were calculated by using all
the parameters in a classical simulation. We further estimate the Weiss constant
given a particular orientation of the magnetic field ĥ(θ ,φ) via:

Θ(θ ,φ) = −S(S+1)
3kb

∑
j

ĥ ·Ji j · ĥ, (4.76)

where ĥ(θ ,φ) is the magnetic field. The summation is for all the nearest neighbors
of site i. The isotropic Weiss constant is estimated by the average value:

Θiso ∼
∫

Θ(θ ,φ)sinθ dθ dφ (4.77)

∼ − 1
4kb

(3J1 +6J2 +3J3 +K1 +2K2) , (4.78)

which is independent of all off-diagonal Γ1,Γ
′
1 terms.
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4.4 Summary

In this chapter, a general overview of methods for magnetic properties was pre-
sented.

The relativistic effects are important in the Kitaev spin-liquid candidate materials.
With the relativistic basis, we constructing the effective spin Hamiltonian. Two
methods were outlined. One is the second-order perturbation theory which was
already studied by various investigations. However, previous treatments were not
exact in λ , U , JH . A revised perturbation theory calculation was therefore intro-
duced.

The second method introduced was exact diagonalization in finite clusters. In this
method, we treated all interactions up to third neighbors on equal footing and there-
fore allow estimation of all parameters. This method therefore provides us with
a numerical tool to investigate the significant long-range coupling including high
order perturbation, which is neglected in the second-order perturbation theory.

Finally, we introduced parameters obtained by the small cluster to construct the spin
Hamiltonian of the larger cluster to calculate the magnetic phase and Curie-Weiss
constant to compared with experimental observations.



Chapter 5

Analysis of the electronic properties
and optical conductivity for A2IrO3

from first principles

Ying Li, Kateryna Foyevtsova, Harald O. Jeschke, Roser Valentí
Phys. Rev. B 91, 161101 (R) (2015) [33]

With the aim of unveiling the origin of different behavior in Na2IrO3 and α-Li2IrO3,
in this chapter, we compute the optical conductivity in Na2IrO3 with density func-
tional theory calculations using the method described in Chapter 3 and analyze the
multi-peaks by the parity of the underlying quasi molecular orbital (QMO) descrip-
tion. We also predict the optical conductivity for α-Li2IrO3 and compare the simi-
larities and differences with α-Li2IrO3.

5.1 Properties of Na2IrO3 and α-Li2IrO3

Na2IrO3 and α-Li2IrO3 crystallize in the monoclinic space group C2/m shown in
Fig. 5.1 [15, 22]. The IrO6 octahedra discussed in Chapter 1 share the edges and
form honeycomb layers within the ab-plane. The experimental structures have the
following distortions: (i) orthorhombic distortions along the preferred axis, lead-
ing to different Ir-Ir bond lengths, and (ii) trigonal distortion compressing the IrO6

octahedra along the direction perpendicular to the honeycomb plane that leads to a

53
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departure from 90◦ Ir-O-Ir angles. Na and Li ions occupy interlayer positions as
well as the centers of Ir hexagons in the layer. The α-Li2IrO3 structure is known
from powder x-ray diffraction [22] and from a careful DFT structure prediction us-
ing a spin-polarized GGA+SO+U exchange correlation functional [77]. These two
structures differ slightly.

Na2IrO3 was found to have zigzag magnetic order below TN = 14 K by neutron scat-
tering and resonant x-ray experiments [14–16]. In the zigzag magnetic structure, the
spins are ferromagnetic (FM) along the zigzag chain, and antiferromagnetic (AFM)
between different chains shown in Figure 5.5. The material has a large Weiss con-
stant Θiso ∼-116 K, while the anisotropy χab < χc suggests bond-anisotropy or off-
diagonal terms [78]. Recently, the moments’ direction were found to be ordered at
45◦ with a axis in the ac plane [79]. This order was obtained by Heisenberg-Kitaev
models with more terms [69, 80, 81], which we will discuss in Chapter 8. The sec-

A=(Li, Na)

b

c

a

O

Ir

A

Figure 5.1: A2IrO3 crystal structure.

ond material of interest, α-Li2IrO3 also order magnetically with TN = 15 K, but with
a smaller Curie-Weiss temperature of CW∼ 33 K [75]. The magnetic order was re-
cently shown to be an incommensurate phase with q||a, and |q|= q∼ 0.3 in the first
Brillouin zone given by the x-ray and neutron experiments [20]. The spiral phase
has been discussed in terms of three different models [67, 69, 72, 74, 80, 82, 83].
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Photoemission and optical conductivity measurements [21] for Na2IrO3 indicate
that it is an insulator with an optical gap of 340 meV. The gap of α-Li2IrO3 has
been reported to be of the same order of magnitude as in Na2IrO3 [22] or a little
bit smaller [23]. The different properties through the series (Na1−xLix)2IrO3 were
investigated in Ref. [77, 84]. Manni et al. [77] find that with x ≤ 0.25 the system
forms uniform solid solutions and otherwise the system shows a miscibility gap and
phase separates. In contrast, Cao et al. [84] find a homogeneous phase at x ∼ 0.7
with a disappearance of long range magnetic order.

From Chapter 1 we know that these materials are candidates to realize the bond-
dependent anisotropic Heisenberg-Kitaev model [7, 26, 67, 69, 70, 74, 81]. The
electronic structure can be interpreted in terms of the localized jeff = 1/2 and jeff =

3/2 relativistic orbitals. Alternatively, from an itinerant point of view, the electronic
structure can also be described in terms of the quasi-molecular orbitals (QMO) [28,
29] explained in the next section. Further, since the contributing energy scales in
these systems are of the same order of magnitude, both the localized description of
relativistic basis and itinerant description of QMO may be equally compatible [29].

The optical conductivity σ(ω) measurements for Na2IrO3 [21, 85] show that there
is a broad peak around 1.5 eV [21] (1.66 eV in Ref. [85]) and smaller peaks around
0.52 eV, 0.72 eV, 1.32 eV, 1.98 eV [85]. These properties have been suggested to
be dominated by jeff= 3/2 and jeff= 1/2 transitions [85, 86].

5.2 Electronic structures and optical conductivity for
Na2IrO3

5.2.1 Quasi-molecular orbitals

In Na2IrO3, for each bond, only the O-assisted hopping between unlike orbitals
(t1O) are large. There are three kinds of bonds in this system: for X bond, there
are only hoppings between dxy and dxz; dxy and dyz for Y bond, and dxz and dyz for
Z bond. As shown in Fig. 5.2 (a), one electron on one Ir site dxy can only hop to
the neighboring state dyz along Y bond with a magnitude of t1O. From there, the
electron can hop further to dxz through the Z bond. At each site, only the electron
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on one special orbital can hop along a particular bond. After hopping six times from
the original site, the electron comes back to the position where it started. Therefore,
each electron is localized in one hexagon with Ir1(dxy)-Ir2(dxz)-Ir3(dyz)-Ir4(dxy)-
Ir5(dxz)-Ir6(dyz), which can be called a quasi-molecular orbital (QMO). Each Ir
contribute to three different QMOs with three t2g orbitals. Six QMOs on a hexagon
form six levels: highest A1g and lowest B1u singlet, and E2u, E1g doublets.
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Figure 5.2: (a) Most relevant O-assisted hopping paths in Na2IrO3 structure which
form the quasi-molecular orbitals. Ir-Ir bonds are shown in different colors: Z
bonds by blue lines, Y bonds by green, and X bonds by red ones. (b) Density of
states of Na2IrO3 projected onto the six quasi-molecular orbitals for a nonrelativistic
calculation [29].

Based on the above discussions, the QMO can be constructed from the t2g orbitals.
There are two sublattices in each primitive unitcell A and B. For the QMOs Q =

A1g,E2u,E1g,B1u,E1g,E2u and t2g orbitals M = dA
xy,d

A
xz,d

A
yz,d

B
xy,d

B
xz,d

B
yz, the relation

of this two basis is
Q =UQ,MTMM, (5.1)

with

UQ,M =



1 1 1 1 1 1
1 ω4 ω2 −1 ω ω5

1 ω2 ω4 1 ω2 ω4

1 1 1 −1 −1 −1
1 ω4 ω2 1 ω4 ω2

1 ω2 ω4 −1 ω5 ω


, (5.2)
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here TM are the Bloch factors transforming the A, B sites to the corresponding unit
cell for the six-site hexagon. After multiplying the projectors from bands to t2g

orbitals, the projectors to the QMOs from the bands can be obtained:

PQv(k) = ∑
M

UQ,MTM(k)PMv(k). (5.3)

The density of states is calculated within DFT and also through local Green’s func-
tions. The Green’s function is obtained from the KS eigenvalues as:

Gν ,ν ′(k,ω) = [ω− (Eν ,ν ′−EF)+ iη ]−1. (5.4)

With the Green’s function and projectors Pα(s)
mν projecting the states from the band

ν to the QMOs m, we calculated the local orbital Green’s function:

Gmm′(ω) =
1BZ

∑
k

∑
ν ,ν ′

Pα(s)
mν (k)Gν ,ν ′(k,ω)Pα(s)

ν ′m′ (k). (5.5)

Finally, the density of states for QMO m can be obtained using the the local Green’s
function:

Dm(ω) =− 1
π

ImGmm(ω). (5.6)

The density of states projected to QMOs for Na2IrO3 are shown in Fig. 5.2 (b) [28].
In principle, when we sum up the QMO density, we should obtain the same DOS
as directly calculated from DFT. In DFT, usually one uses the tetrahedron method
to calculate the DOS. With QMOs, we directly add up the contribution from each k
point, thus we need more k points to reproduce the DFT’s DOS using the tetrahe-
dron method. We consider Na2IrO3 as the example to compare the differences. We
show the DOS with different number of k points Nk in Fig. 5.3 calculated within (a)
the tetrahedron and (b) Green’s function. The result shows that with 8000 k points,
we can almost obtain the shape. However, in order to reproduce the tetrahedron
result, we also need to be careful about the energy step δE and parameter η in the
Green’s function. We choose δE = 10 meV and show the DOS with different η val-
ues in Fig. 5.4 (a). With the decrease of η , the nonzero DOS around -1 and -0.5 eV
decreases to the result obtained from the tetrahedron method in the DFT calculation
0. Thus, we choose η = 0.1 meV. With such small η , the DOS curve is not smooth,
we therefore broaden and display the DOS from QMO and tetrahedron in Fig. 5.4
(b). With these settings, the QMO and DFT DOS are almost the same.
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Figure 5.3: Density of states with different number of k points using (a) tetrahedron
and (b) Green’s function method.

5.2.2 Electronic structures with GGA+SO+U

The DFT calculations were performed using the LAPW basis with the GGA
exchange-correlation functional in WIEN2k. The energy cut off for the basis RKmax

was chosen to be 8. We used 450 k points in the first Brillouin zone (FBZ) for the
self-consistency cycle and 1568 k points for the density of states and optical con-
ductivity. Both magnetism and Ueff as implemented in GGA+U [60] were required
to reproduce the experimentally observed optical gap. Spin-orbit coupling was con-
sidered with the second variational approximation (GGA+SO+U). For the zigzag
antiferromagnetic (AFM) structure of Na2IrO3 (see Fig. 5.5) with the magnetization
parallel to the a direction [14] we performed GGA+SO+U (U = 3 eV, JH = 0.6 eV,
Ueff = U − JH = 2.4 eV) calculations1. Figure 5.6 shows the band structures and
density of states (DOS) of Na2IrO3 with GGA, GGA+SO and GGA+SO+U for the

1Please note that the U value used in density functional theory calculations depends on how the
U term is implemented in the calculation. For example, FPLO (full potential local orbital code) can
reproduce the experimental gap of 340 meV with U = 1.1 eV and J = 0.5 eV while WIEN2k needs
Ueff = 2.4 eV.
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Figure 5.4: Density of states using Green’s function (QMO) method (a) with differ-
ent η values and (b) compared with tetrahedron result.

zigzag magnetic configuration. There are four Iridium in each unit cell, thus there
are twelve t2g bands for GGA. With spin-orbit coupling, the bands are split and a
suppression of the DOS at EF is clearly visible. This suppression is enhanced and
opened to a 341 meV gap with GGA+SO+U, which is consistent with the experi-
mental results [21].

5.2.3 Optical conductivity

Using the methods described in Chapter 3, we calculated the optical conductivity
in LAPW with 1568 k points in the FBZ from the eigenstates of the GGA+SO+U
calculations within the zigzag magnetic configurations. Because of the monoclinic
symmetry, the optical conductivity tensor has four independent elements σxx, σyy,
σzz, σxy: (

Jx
Jy
Jz

)
=

(
σxx σxy 0
σxy σyy 0
0 0 σzz

)(
Ex
Ey
Ez

)
. (5.7)
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Figure 5.5: Ir honeycomb layers of Na2IrO3. The black axis a, b, and c are the
vectors of the unit cell, while the dark blue axes x, y, z are the Cartesian axes. The
red and green arrows show the zigzag AFM phase.

Where x, y, and z are the cartesian coordinates, as displayed in Fig. 5.5. z takes the b
direction, which is in the Ir hexagonal plane, while x and y lie in the ac plane. Spin-
orbit coupling also introduces tiny non-zero σxz and σyz components. We show,
in Fig. 5.7 (a), the four optical conductivity tensor elements of Na2IrO3 in the t2g

region. All the components are different, which means the optical conductivity
is anisotropic and depends on the direction. Only the component σzz is in the Ir
hexagonal plane. We therefore compare σzz with the experimental results [21, 85]
and a theory calculation using four-site iridium cluster by Kim et al. [86]. Both
our DFT calculations and the cluster calculations [86] reproduce the experimental
dominant peak at ω = 1.5 eV.

5.2.4 Broadening

In order to compare with the experimental data, a Lorentzian broadening procedure
was used in the calculations. We use different values of the Lorentzian broadening
γ and show the corresponding optical conductivity σzz in Fig. 5.8. We choose γ =

0.1 eV as the broadening for all the components.
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Figure 5.6: Ir 5d t2g DOS and band structures for Na2IrO3 in zigzag magnetic order,
obtained with (a) GGA, (b) GGA+SO, and (c) GGA+SO+U (U = 3 eV, JH = 0.6 eV,
Ueff = U-JH = 2.4 eV).

5.2.5 Different d−d transitions

The dominant peak was suggested to be due to the jeff= 3/2 and jeff= 1/2 transi-
tions [85, 86] from the localized view. From the itinerant point of view, with the
aim of disentangling the origin of the various peaks of the optical conductivity in
Fig. 5.7, we show in Fig 5.9 the different interband processes. For that purpose, we
label in Fig. 5.9 (a) the valence states vs as a, b, c, d and the conduction states cs as
e. Note that the states denoted by c include twice the number of bands compared to
the rest of the states. We identify four peaks in σ(ω) (Fig. 5.9 (b)); peaks A, B, C, D
correspond to the transitions from a, b, c, d to e states, respectively. The analysis of
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Figure 5.7: (a) Optical conductivity tensor components σxx, σyy, σzz, σxy and (b)
DFT σzz for Na2IrO3 compared with experiment A [21], B [85] and theory data
[86].

the electronic structure in terms of quasi-molecular orbitals [28, 29] predicts a clear
odd/even parity related to the symmetry of the quasi-molecular orbitals, i.e., odd
B1u, even E1g, odd E2u and even A1g. Even though the zigzag magnetic order used
for the calculations mixes states of different parities, we find in our analysis of the
magnetic quasi-molecular orbitals that the dominating parity contribution to a given
state matches the parity of this state’s counterpart in the paramagnetic phase. This,
in particular, allows us to compare our spin-polarized calculations with the measure-
ments performed above the magnetic transition temperature. In the GGA+SO+U
calculations we find that the states a, b, c, d, and e are predominantly of even, odd,
even, odd, and odd parity, respectively. Since c contains twice the number of bands,
we have an equal number of (predominantly) even and odd states, as expected for a
parity conserving system; note that in the presence of spin-orbit coupling the states
from the upper triad cannot be identified in terms of quasimolecular orbitals, how-
ever, we can still discern the dominant parity. Since the dielectric tensor matrix
elements involved in the optical interband transitions are of the form 〈vs|E · r|cs〉,
with E · r being an odd parity operator, clearly, transitions between states of the
same parity will be strongly suppressed whereas transitions between states of dif-
ferent parity will dominate. This is reflected in the large peak at 1.5 eV (peak C)
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Figure 5.8: Optical conductivity for Na2IrO3 without and with different broadenings
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that corresponds to a predominantly even to odd parity transition, followed by peak
A (predominantly even to odd), while peaks B and D are of transitions between
predominantly equal (odd) parity states and are strongly suppressed. The optical
conductivity is therefore an important measure of the underlying molecular-orbital
structure in Na2IrO3. Before dealing with α-Li2IrO3, we would like to discuss the
possible origin of the experimentally observed suppressed intensity of the peak cen-
tered at A with respect to the calculations. Possible sources of discrepancy could be
(i) the fact that the optical conductivity was measured in the ab plane and σ tensor
components other than σzz could influence the results. However, we estimated this
contribution by averaging over the nonzero tensor components and found the effect
to be very small. Another source of discrepancy may be (ii) effects not accounted
for in the present DFT calculations, such as high-order contributions not included in
linear response theory or vertex correction in Kubo formula or correlation effects,
which will be addressed further below in the Chapter 6.
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Figure 5.9: GGA+SO+U density of states (a) and contributions from different d-d
transitions (b). The a, b, c, d, e label the 5 states.

5.3 Electronic structures and optical conductivity for
α-Li2IrO3

5.3.1 Electronic structure

We project the nonmagnetic GGA density of states to the quasi-molecular orbitals
in Fig. 5.10 for α-Li2IrO3. The QMO picture for this system is still valid, but
shows significant QMO mixing, similar to Li2RhO3 [87]. As with Na2IrO3, for
the experimental structure, the gap of 318 meV is opened with the inclusion of the
magnetism as well as Ueff = 2.4 eV, while for theoretical structure which has less
distortion, a gap of 307 meV is opened with Ueff = 2.0 eV. We present the electronic
structure with GGA, GGA+SO, and GGA+SO+U for the experimental structure in
Figure 5.11 (left) and for the relaxed structure in Figure 5.11 (right). The Zigzag
GGA+SO calculations for the theoretical structure converges to the nonmagnetic
phase and the DOS is suppressed at EF, similar as Na2IrO3.
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Figure 5.10: Nonrelativistic nonmagnetic band structure and density of states of the
theoretically predicted α-Li2IrO3 structure, projected onto quasi-molecular orbitals.

5.3.2 Optical conductivity

Using the same method as Na2IrO3, we compare the optical conductivities of
Na2IrO3 and α-Li2IrO3 in Fig. 5.12. The energy integral of the optical conductivity
in both cases is proportional to the effective number density of electrons. While the
dominant peak in the Na2IrO3 optical conductivity is at 1.5 eV, we find it at 1.17
eV for the experimental structure and at 1.33 eV for the theoretical structure of α-
Li2IrO3 . Also, we observe an increase of the optical conductivity weight between
0.66 and 1.48 eV with respect to Na2IrO3.

5.3.3 Different d−d transitions

We display different d− d transitions in Fig. 5.13. In order to analyze this behav-
ior, we project the nonmagnetic GGA electronic structure of α-Li2IrO3 onto the
quasimolecular-orbital basis (see Fig. 5.10). We observe that the separation of the
density of states into isolated narrow bands of unique quasimolecular-orbital char-
acters is much less clean than in Na2IrO3 and resembles the case of Li2RhO3 [87].
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Figure 5.11: Ir 5d t2g density of states and band structures for experimental α-
Li2IrO3 structure in zigzag magnetic order (left) and for the theoretical α-Li2IrO3

structure in zigzag magnetic order (right), obtained with (a) GGA, (b) GGA+SO,
and (c) GGA+SO+U.

In α-Li2IrO3, there is overlapping between B1u and E1g states and between E1g and
A1g/E2u states, as shown in Fig. 5.10. This strong mixing of character, which re-
mains in the magnetic calculations, explains why the B peak in α-Li2IrO3 is much
stronger than in Na2IrO3; the suppressed odd to odd transition in Na2IrO3 evolves
into a mixture of enhanced and suppressed transitions in α-Li2IrO3.

5.4 Summary

In this chapter, we have investigated the electronic structure and optical conductiv-
ity in Na2IrO3 and α-Li2IrO3 by performing magnetic GGA+SO+U calculations.
Magnetism and a nonzero U were necessary in order to reproduce the experimental
insulating gap in both systems. Using the fact that the narrow bands of Na2IrO3 are
well described in terms of quasi-molecular orbitals, we showed that the strength of
the various interband contributions to the optical conductivity can be well described
in terms of the parity of the quasi-molecular orbitals, namely, weight suppression in
like-parity transitions and weight enhancement in unlike-parity transitions.

We also predict the shape of the optical conductivity for α-Li2IrO3. Contrary to
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Na2IrO3, in α-Li2IrO3 the quasi-molecular orbitals strongly overlap and parities
mix. This explains the relative weight differences in the optical conductivity be-
tween α-Li2IrO3 and Na2IrO3. We would like to emphasize that all the above
DFT calculations have been performed with the inclusion of spin-orbit effects, and,
strictly speaking, neither the t2g (or the linear combination of t2g states forming
quasimolecular orbitals) nor spin are well-defined entities. Nevertheless, we have
shown that the main features observed in optical conductivity are related to the un-
derlying symmetries of the molecular-orbital basis, which is a manifestation of the
fact that spin-orbit coupling is not the only determining interaction in these materi-
als. We show the optical conductivity of these materials from a localized picture in
Section 6.3 of the following chapter.



Chapter 6

Electronic excitations in γ-Li2IrO3

Ying Li, Stephen M. Winter, Harald O. Jeschke, Roser Valentí
Phys. Rev. B 95, 045129 (2017) [34]

In the previous chapter, we have discussed the two-dimensional (2D) honeycomb
lattice. In this chapter, we focus on the stripy-honeycomb γ-Li2IrO3. In order to
gain microscopic insight on the electronic properties of γ-Li2IrO3 in comparison
to its 2D counterparts, we present results on its electronic structure and optical
conductivity within density functional theory (DFT) and the exact diagonalization
(ED) method. In these 3D systems, the QMO picture is not valid because of the
absence of well defined hexagon loops. For this reason, the j1/2→ j1/2 and j1/2→
j3/2 transitions are used to identify the main peaks. We also employ ED to study
the 2D materials, and compare the results to those of γ-Li2IrO3.

6.1 Properties of γ-Li2IrO3

The γ-Li2IrO3 structure [11, 12], shown in Fig. 6.1 (a), has two Ir hexagonal chains
in the directions of a ± b, which are connected along the c-direction. Like α-
Li2IrO3, Ir has an octahedral local environment with O. In figure 6.1 (b), we show
the structure for γ-Li2IrO3 system with different bond definitions. The cartesian
coordinates x, y, z for the orbitals are displayed in Fig. 6.1 (b). We define the two
hexagonal chains as hexagonal A and hexagonal B. In A, the corresponding bonds
are XA, YA and ZA while for B are XB, YB, ZB. An additional ZC bond links the two

69
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Table 6.1: Nearest neighbour distances (in Å) and Ir-O-Ir angles for the different
bond types, determined in the experimental γ-Li2IrO3 structure (see Fig. 6.1 (b) for
bond notation).

γ-Li2IrO3 XA, YA YB, XB ZA, ZB ZC

Ir-Ir distance 2.976 2.982 2.96

Ir-O1 distance 1.99,2.14 2.10 1.97

Ir-O2 distance 2.01,2.01 2.10 1.97

Ir-O1-Ir angle 92.00◦ 90.37◦ 97.40◦

Ir-O2-Ir angle 95.52◦ 90.37◦ 97.40◦

hexagons. There are two nonequivalent Ir atoms in each unit cell: ZA and ZB links
the Ir(1) atoms while ZC link Ir(2) atoms. Details of the crystal structure are given
in Table. 6.1.

Similar with α-Li2IrO3, it also shows the spiral magnetic order, with wave vec-
tor 0.57 along the orthorhombic a axis [12]. In order to obtain this spin spiral
states, the Kitaev interactions has been suggested to be dominant over the Heisen-
berg terms [12, 74, 83, 88–90]. The projection of the magnetic structure on the ac
plane is the zigzag chain in the a direction. Since we cannot employ a non-collinear
magnetic structure in the DFT calculations, we approximate the magnetic configu-
ration with the zigzag state shown in Fig. 6.1 (c).

For the optical conductivity, the measurements for γ-Li2IrO3 [91] show the
anisotropy for a and b direction and they both have a broad peak around 1.5 eV.
Compared with Na2IrO3, the magnitude of σ(ω) in γ-Li2IrO3 is decreased, which
has been attributed to the inherently 3D versus 2D structure rather than the replace-
ment of Na by Li. However, a clear understanding of this behavior is still missing.
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Figure 6.1: (a) Crystal structure of stripyhoneycomb γ-Li2IrO3 [11, 12]. Honey-
comb rows alternating in orientation along c. The black axis a, b, and c are the
vectors of the unit cell. (b) Crystal structure showing only Ir atoms. The red, green
and blue bonds show the seven different types of bonds XA, XB, YA, YB, ZA, ZB,
ZC. x, y, z are the cartesian coordinates for the d orbitals. (c) The zigzag magnetic
configurations used in our GGA+SO+U calculations.

6.2 Electronic properties of γ-Li2IrO3

6.2.1 Density functional theory calculations

We performed linearized augmented plane-wave (LAPW) calculations with the gen-
eralized gradient approximation (GGA) [51]. We chose the basis-size controlling
parameter RKmax = 8 and a mesh of 432 k points in the first Brillouin zone (FBZ)
of the primitive unit cell. Relativistic effects were taken into account within the
second variational approximation. The hopping parameters between Ir 5d orbitals
in γ-Li2IrO3 were computed via the Wannier function projection method and op-
tical conductivity calculations with DFT described in Chapter 3. The density of
states and optical properties were computed with 10 × 10 × 10 k points in the full
Brillouin zone while the hopping parameters were evaluated using 12 × 12 × 12 k
points. The non-relativistic GGA density of states (DOS) for γ-Li2IrO3 is displayed
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Figure 6.2: Density of states (DOS) for γ-Li2IrO3 in nonmagnetic configuration
obtained with GGA (a-c) and GGA+SO (d).

in Fig. 6.2 (a) - (c). The Iridium 5d states are split into eg (2.2 eV to 3.6 eV) and
t2g (-1.6 eV to 0.2 eV) states (Fig. 6.2 (b)) due to the octahedral crystal field of IrO6

with the Fermi level lying within the t2g manifold. The t2g band is further slightly
split into lower dxy and higher dxz, dyz (Fig. 6.2 (c)), arising from an additional weak
trigonal field. The band structures are shown in Fig. 6.3 (a). There are 24 bands in
each unit cell, arising from the 3 t2g bands of the 8 Ir.

By using the projection method described in Chapter 3, we obtained the hopping
parameters from the GGA bandstructure. Table 6.2 displays the crystal field split-
ting compared with Na2IrO3. Full hopping integral tables are given in Appendix A.
The t2g crystal fields ∆1, ∆2 denote the on-site hopping between dxz and dyz orbitals,
and between dxy and dyz/xz orbitals, respectively (Table 6.2). ∆3 is the on-site energy
of dxy minus that of dyz/xz [36]. ∆3 is -213.5 meV for Ir(1) and -110.9 meV for Ir(2)
(see Fig. 6.1), which is much larger in magnitude than in Na2IrO3 (-27.2 meV) [36].
This means that in the 3D γ-Li2IrO3 structure, the t2g crystal field is of the same or-
der of magnitude as the spin-orbit coupling λ and this likely has significant effects
on the local magnetic interactions.
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Figure 6.3: Ir 5d t2g Band structures for γ-Li2IrO3 in nonmagnetic configuration,
obtained with (a) GGA, (b) GGA+SO.

Table 6.3 shows the nearest neighbour hopping parameters where t1‖, t1O and t1σ

are defined as in Ref. [29] while t1, t2, and t3 are given in Ref. [36, 67] (see Fig. 8.7).
There are three significant differences in the nearest neighbour hoppings of the 3D
γ-Li2IrO3 (see Table 6.3) when compared with α-Li2IrO3:

• the direct metal-metal hopping t1σ (dxy → dxy) along the ZA and ZB bonds
(Fig. 6.1 (b)) is larger than the oxygen-assisted hopping t1O (dxz→ dyz, dyz→
dxz) due to the nearly 90◦ Ir-O-Ir angle (Table 6.1),

• the t1O in the XA (YA), XB (YB) bonds have opposite signs, as a result of dif-
ferent local environments. The negative value corresponds to type 1 bonds in
Fig. 6.4, while the positive values are type 2 bonds.

• Finally, the absence of inversion symmetry for the majority of nearest neigh-
bour bonds allows for some asymmetry in the t1O hopping, e.g. for the XA

bond, dxy→ dxz and dxz→ dxy hoppings are unequal. For this reason, a finite
Dzyaloshinskii-Moriya (DM) interaction is both allowed and expected to ap-
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Figure 6.4: Local octahedral environment of type 1 and type 2 in γ-Li2IrO3.

Table 6.2: Crystal field splitting compared with Na2IrO3. The t2g crystal fields ∆1,
∆2 denote, respectively, the onsite hopping between dxz and dyz orbitals, dxy and
dyz/xz orbitals. ∆3 is the on-site energy of dxy minus dyz/xz [36].

Crystal field Na2IrO3 [36] γ-Li2IrO3 Ir(1) Ir(2)

∆1 -22.9 -24.4 -29.9

|∆2| 27.6 4.2 37.4

∆3 -27.2 -213.5 -110.9

pear for the majority of first-neighbour bonds: XA, XB, YA, YB, and ZC. This
result is in contrast with α-Li2IrO3, for which a weaker DM interaction only
exists for the second nearest neighbour bonds [36]. Since these antisymmet-
ric interactions are likely to strongly stabilize the observed incommensurate
magnetic order [12], one may question the completeness of previous inter-
action models for γ-Li2IrO3 including only symmetric exchange interactions
[83, 88].

The full table of the onsite and nearest neighbour hopping parameters are shown in
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Table 6.3: Nearest neighbour hopping integrals in meV between Ir t2g orbitals for
the experimental γ-Li2IrO3 structure (see Fig. 6.1 (b) for bond notation). The labels
t1‖, t1O and t1σ are the same as in Ref. [29], and the notations t1, t2 and t3 are given
in Ref. [36, 67].

γ-Li2IrO3 XA, YA YB, XB ZA, ZB ZC

t1‖ (t1) 91.4 91.4 91.8 77.4

69.2 69.2 91.8 77.4

t1O (t2) -262.5 262.5 132.8 294.1

-240.5 240.5 132.8 294.1

t1σ (t3) -168.3 -168.3 -319.7 -17.1

Table 6.4 and Table 6.5. Unlike the 2D Na2IrO3 and α-Li2IrO3, the 3D γ-Li2IrO3

does not allow a clear description of the DFT electronic structure in terms of QMOs.
As in the P3112 structure of α-RuCl3 [18], the oxygen assisted hopping t1O, which
is crucial for the formation of the QMOs, is smaller than t1σ [18, 29]. In addition,
since not all local Ir 5d orbitals can be attributed to a single hexagon, the QMO
basis is incomplete. We therefore choose to work with the jeff basis. Fig. 6.2 (d)
shows the projection of the GGA+SO DOS onto the jeff basis. At the Fermi level,
the DOS is dominantly jeff = 1/2 with a small contribution from jeff = 3/2.

Inclusion of U within the GGA+SO+U approach in the zigzag magnetic configu-
ration (Fig. 6.1(c)) opens a gap of 242 meV (Fig. 6.5) which is smaller than the
experimentally measured value of 0.5 eV [91]. We note that the size of the gap is
influenced by the choice of U . We however decided here to use the same U param-
eter as for previous calculations for Na2IrO3 and α-Li2IrO3 [33] in order to allow
a better comparison further below. The magnetic moment converged to 0.58 µB for
Ir(1) and 0.44 µB for Ir(2).

6.2.2 Exact diagonalization of finite clusters

While the GGA+SO+U calculations are able to describe many significant aspects
of the electronic structure of γ-Li2IrO3 they do not fully capture effects originat-



76 6. Electronic excitations in γ-Li2IrO3

Table 6.4: Hopping parameters for the on-site terms (meV). A is for hexagon in-
cluding XA, YA, ZA bonds while B is for hexagon including XB, YB, ZB.

0 Ir(1) xy→ xy -592.6

Ir(1) xz→ xz -379.1

Ir(1) yz→ yz -379.1

Ir(2) xy→ xy -651.3

Ir(2) xz→ xz -540.4

Ir(2) yz→ yz -540.4

Ir(1)

xy→ xz 4.2 (A), -4.2 (B)

xy→ yz 4.2 (A), -4.2 (B)

xz→ yz -24.4

Ir(2)

xy→ xz 37.4 (A), -37.4 (B)

xy→ yz 37.4 (A), -37.4 (B)

xz→ yz -29.9

Table 6.5: Nearest neighbor tight-binding hopping matrix elements (meV) for
γ−Li2IrO3.

γ−Li2IrO3 XA XB YA YB ZA ZB ZC

xy→ xy 91.4 91.4 91.4 91.4 -319.7 -319.7 -17.1

xz→ xz 69.2 69.2 -168.3 -168.3 91.8 91.8 77.4

yz→ yz -168.3 -168.3 69.2 69.2 91.8 91.8 77.4

xy→ xz -262.5 262.5 4.2 -4.2 63.9 -63.9 -18.7

xz→ xy -240.5 240.6 76.5 -76.5 63.9 -63.9 18.7

xy→ yz 4.2 -4.2 -262.5 262.5 63.9 -63.9 -18.7

yz→ xy 76.5 -76.5 -240.5 240.6 63.9 -63.9 18.7

xz→ yz -60.2 -60.2 -10.6 -10.6 132.8 132.8 294.1

yz→ xz -10.6 -10.6 -60.2 -60.2 132.8 132.8 294.1
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Figure 6.5: Ir 5d t2g DOS and band structures for γ-Li2IrO3 in zigzag magnetic
order, obtained with GGA+SO+U (Ueff = U-JH = 2.4 eV).

ing from correlations beyond GGA+SO+U, which are expected to be relevant when
analyzing electronic excitations. Therefore, we consider here a complementary ap-
proach to DFT, namely exact diagonalization of the fully interacting Hamiltonian
on finite clusters [86] described in Chapter 3 and compare with DFT results. There
are four symmetry inequivalent clusters constructed from bonds (XA, YA, ZA), (XB,
YB, ZB), (XA, YA, ZC), and (XB, YB, ZC). The results presented correspond to an
average over these four clusters.

In each four-site cluster, we consider states with a total of four holes in the t2g

orbitals; each Ir site contains six relativistic orbitals including two jeff = 1/2 and
four jeff = 3/2 levels. As in Ref. [86], the states of the cluster can be divided into
several subspaces based on the occupancy of the various orbitals and sites.

• States with site occupancy d5−d5−d5−d5 are included in subspaces S1−
S3,

• states with site occupancy d4−d6−d5−d5 belong to S4−S7,

• S8 contains all higher excitations.
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Figure 6.6: Schematic diagrams of cluster for the ground state S1 and one particle
excitation S2, S4, and S5. The solid circles are the electrons while the empty circles
indicate the hole. S1 are all the states with ( j3/2)

4( j1/2)
1, S2 are the states with

from S1, promotion of an electron j3/2→ j1/2 on the same site. S4 are the states
from S1, promotion of an electron j1/2→ j1/2 to another site, and S5 are the states
with promotion of an electron j3/2→ j1/2.

We show the diagrams of cluster for the ground state S1 and one particle excitation
S2, S4, and S5 in Fig. 6.6.

• Subspace S1 contains all states with ( j3/2)
4( j1/2)

1 occupancy at every site,
and form a significant contribution to the ground state and low-lying magnon-
like spin excitations.

• From these configurations, promotion of an electron via onsite j3/2 → j1/2

generates S2, containing all states with a single spin-orbital exciton; the char-
acteristic excitation energy is given by ∆E2 ∼ 3λ/2 ∼ 0.6 eV. States with
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an electron j3/2→ j1/2 (S5). P6 is for states contain two-particle excited states for
which the d4 site contains occupancies ( j3/2)

2( j1/2)
2 (S6), while P7 are for all other

excitations with occupancy of d4−d6−d5−d5 (S7). ∆E2 ∼ 0.6 eV, ∆E4 ∼ 1.1 eV,
∆E5 ∼ 1.6 eV are the excitation energy for P2, P4 and P5 respectively.

multiple excitons are grouped into S3, and represent n-particle excitations
from the ground state, with energies ∆E3 ∼ 3nλ/2∼ 1.2, 1.8, ... eV.

• Starting from S1, promotion of an electron via intersite j1/2 → j1/2 yields
S4, with characteristic energy ∆E4 ∼ A−1, where A is in Eq. (4.60). Taking
U = 1.7 eV, JH = 0.3 eV, and λ = 0.4 eV suggests ∆E4 ∼ 1.1 eV.

• Starting from S1, promotion of an electron via intersite j3/2→ j1/2 yields S5,
with characteristic energy ∆E5 ∼ C−1 ∼ 1.6 eV, where C is in Eq. (4.60).

• Subspace S6 contains two-particle excited states for which the d4 site contains
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occupancies ( j3/2)
2( j1/2)

2, while subspace S7 contains all other excitations
with occupancy of d4−d6−d5−d5.

Single particle excitations most relevant for the optical conductivity are contained
in S1, S4, S5. We project the cluster eigenstates φm on different subspaces:

Γ
m
i = ∑

s∈Si

|〈φm|s〉|2 , (6.1)

and take the spectral weight (SW) of the projected excitation spectra Pi [92]:

Pi (ω) = ∑
m

Γ
m
i δ (ω−Em) . (6.2)

P1 to P7 are shown in Fig. 6.7. As expected, the ground state and low-lying magnon-
like spin excitations (ω ∼ 0 eV) have the dominant S1 character (large P1), while
intersite hopping weakly mixes in some S2, S4, S5 character. Indeed, intersite
j3/2 → j1/2 mixing as in S5 is the origin of the anisotropic Kitaev exchange cou-
plings in the localized picture.

Centered at ω = ∆E2 ∼ 0.6 eV are the single exciton-like states, with dominant
S2 character, but weakly mixing with the single-particle S4 and S5 and multi-
particle S6 and S7 excitations via intersite hopping. As expected, excitations with
dominant S4 character (i.e. j1/2 → j1/2) are centered around ω = ∆E4 ∼ 1.1 eV,
and excitations with dominant S5 character (i.e. j3/2→ j1/2) are centered around
ω = ∆E5 ∼ 1.6 eV. The widths of these bands are approximately 1 eV and 2 eV,
respectively. It is worth noting that the total spectral weight

∫
Pi dω is much larger

for S5 than S4, such that j3/2→ j1/2 excitations dominate the projected excitation
spectra. Similar results were obtained in Ref. [86] in the analysis of the excitation
spectrum of Na2IrO3. The real part of the optical conductivity is calculated using
Eq. (3.100) in Chapter 3.

Note that the expression of the optical conductivity considered in DFT is defined at
zero temperature and in k space while in ED we consider the definition in real space
and at finite temperature kBT = 30 meV (room temperature). We observe that the
finite temperature modifies the zero temperature results only slightly. The optical
conductivity is normalized by the sum-rule that the energy integral of the optical
conductivity in both ED and DFT methods is proportional to the effective density
of electrons.

For γ-Li2IrO3, the orthorhombic symmetry of the space group allows the optical
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Figure 6.8: Optical conductivity components for γ-Li2IrO3 in (a) DFT, (b) ED
method and (c) Experiment [91]. ∆E2 ∼ 0.6 eV, ∆E4 ∼ 1.1 eV, ∆E5 ∼ 1.6 eV are
the excitation energy for P2, P4 and P5 respectively. The inset of (b) is the crystal
structure projected in ab plane.
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conductivity tensor to be defined in terms of the three independent components σa,
σb, σc (σa= σx′x′ , σb= σy′y′ , σc= σz′z′):

Ja

Jb

Jc

=

σa 0 0
0 σb 0
0 0 σc


Ea

Eb

Ec

 . (6.3)

In Fig. 6.8, we compare the DFT (GGA+U+SO), ED and experimental optical con-
ductivity tensor components for γ-Li2IrO3 in the low-frequency region. Both DFT
and ED capture correctly the anisotropy σa < σb, which is due to the structural ori-
entation of the planes shown in the inset of Fig. 6.8 (b). In Eq. 3.101, for the same
ri j, the b component ry′

i j (contributing to σb) is larger than the a component rx′
i j (con-

tributing to σa), and therefore σb > σa. While ED calculations show a dominant
peak around ω = 1.5 eV for all polarizations, the DFT results suggest also signif-
icant spectral weight at lower frequencies, particularly within the ab plane, which
doesn’t seem to agree with the experimental results. The origin of this anomalous
spectral weight can be found in Fig. 6.9. For the DFT calculations, we show the
decomposition of σ(ω) into intraband j1/2→ j1/2 and interband j3/2→ j1/2 exci-
tations, while for the ED calculations, we plot the projection of σ(ω) onto S5→S2,
S1→S4 (i.e. j1/2→ j1/2), and S1→S5 (i.e. j3/2→ j1/2) excitations. Both meth-
ods suggest that the peak around 1.5 eV is dominated by interband j3/2 → j1/2

contributions. However, the DFT calculations don’t have a proper partition of the
j1/2→ j1/2 transitions into magnon-like (ω ∼ 0) and charge-transfer (ω ∼A−1) ex-
citations, resulting in a dramatic overestimation of the j1/2→ j1/2 spectral weight
in the mid-energy region ∼ 0.5 eV.

6.3 Comparison to Na2IrO3 and α-Li2IrO3

In the previous chapter, we analyzed the excitation spectrum of the 2D honeycomb
systems in terms of the QMO basis and we showed that the parity of the quasi-
molecular orbitals is largely responsible for the strength of the optical transitions
in these systems. Here we investigate the excitation spectrum via ED calculations.
Despite differences in crystal architecture, the experimental optical conductivity of
γ-Li2IrO3, Na2IrO3 and α-Li2IrO3 share a very similar profile that we will ana-
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Figure 6.9: (a) Optical conductivity component σa for γ-Li2IrO3 and different d−d
transitions in relativistic basis using (a) DFT method and (b) ED method compared
with experiment [91].

lyze in what follows. As stated in the previous section, σ(ω) should therefore be
dominated by intersite j3/2→ j1/2 excitations, at ω ∼ C−1 ∼ 1.6 eV, as observed.
The soft shoulder observed at lower energies results from a combination of low
spectral weight from intersite j1/2 → j1/2 excitations centered at ω ∼ A−1 ∼ 1.1
eV, and weak mixing with optically forbidden local j3/2→ j1/2 excitons near ω ∼
0.6 eV. These assignments are consistent with the fitting of σ(ω) in Ref. [85] for
Na2IrO3, which suggested peaks in the vicinity of 0.72, 1.32, and 1.66 eV. How-
ever, the ”band gap” reported to be 0.32 eV may be significantly contaminated by
low-lying excitonic states, and may therefore not represent the natural charge gap
of the material.

There are two noticeable differences between the optical conductivity of Na2IrO3

and γ-Li2IrO3 observed experimentally. The first one is that σ(ω) tends to have
smaller values for the latter material due to geometric considerations mentioned
above. For the 2D structure, the experimental polarization is exactly within the
honeycomb plane, maximizing σ(ω), while for the 3D structure, light is polarized
along a and b, capturing both in-plane and out-of-plane components.

In Fig. 6.10 we display the DFT and ED results for the in-plane σc component for
Na2IrO3, α-Li2IrO3 (which was labeled as σzz in Ref. [33]) and γ-Li2IrO3. For
α-Li2IrO3, we employed the recently obtained single-crystal structure[93]. Both
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calculations give a stronger main peak in α-Li2IrO3 and γ-Li2IrO3 than Na2IrO3

for σc. Further, both DFT and ED calculations show an enhanced spectral weight at
lower energies in γ-Li2IrO3 with respect to Na2IrO3, which has also been observed
experimentally. A possible origin of this enhancement can be seen by writing the
hopping integrals in the relativistic basis for the Z bond:

ti j( j1/2→ j1/2) ∝ (2t1 + t3), (6.4)

ti j( j3/2;m±1/2→ j1/2) ∝ (t3− t1), (6.5)

ti j( j3/2;m±3/2→ j1/2) ∝ t2. (6.6)

For materials dominated by oxygen-assisted hopping such as Na2IrO3, t2 � t1, t3
means that hopping is dominated by ti j( j3/2;m±3/2→ j1/2), suggesting negligible
spectral weight for j1/2→ j1/2 excitations in σ(ω). In contrast, for significant t1,
t3, additional spectral weight may appear in the mid-energy region due to enhanced
ti j( j1/2→ j1/2). The Kitaev limit of the magnetic interactions will therefore be most
closely approached, at the level of nearest neighbour interactions, by materials with
the lowest spectral weight near ω ∼ 1.1 eV. This identifies Na2IrO3 as the closest
material from all three investigated here, in agreement with Ref. [36]. The origin
of the peaks for Na2IrO3 in the relativistic basis are shown in Fig. 6.11 for both
calculations.
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Figure 6.10: Optical conductivity σc for Na2IrO3, α-Li2IrO3, and γ-Li2IrO3 using
(a) DFT and (b) ED method. σc of Na2IrO3 and α-Li2IrO3 corresponds to the σzz

component in Ref. [33].

6.4 Summary

In summary, we have investigated the electronic structure, hopping parameters and
optical excitation spectrum of the three-dimensional γ-Li2IrO3. Due to the lower
symmetry of the local Ir-O-Ir environment, the hopping integrals display signifi-
cant deviations from the ideal case, suggesting e.g. large metal-metal hoppings and
departures from inversion symmetric values. This situation likely leads to highly
complex magnetic interactions in this system.

We computed the optical conductivity by two methods; (i) relativistic DFT cal-
culations within GGA+SO+U and (ii) exact diagonalization of the full interacting
Hamiltonian on finite clusters where the hopping integrals were obtained from DFT.
Both methods reproduce the main peak of the in-plane component of the optical
conductivity σc. However, GGA+SO+U seems to overestimate the contribution of
the j1/2→ j1/2 transition at low energies in σa and σb. The ED results, in contrast,
validate the model parameters (U,JH ,λ ) and suggest that the high-lying excitations
seem to be well captured within a localized picure in γ-Li2IrO3. The comparison
with the optical conductivity analysis of Na2IrO3 shows that the peak near 1.5 eV
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Figure 6.11: Optical conductivity component σc for Na2IrO3 and different d− d
transitions in relativistic basis using (a) DFT and (b) ED method compared with
experiment A in Ref. [21] and B in Ref. [85]. σc of Na2IrO3 for DFT corresponds
to the σzz component in Ref. [33].

in both Na2IrO3 and γ-Li2IrO3 can be identified in terms of intersite j3/2 → j1/2

excitations. The comparison of σ(ω) for the various materials suggests that the
relative spectral weight of the transitions may provide insight into the magnitudes
of various hopping integrals, and therefore the local magnetic interactions.
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Electronic properties of α-RuCl3
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P. Manuel, I. I. Mazin, Y. Li , H. O. Jeschke, R. Valentí, R. Coldea

Phys. Rev. B 92, 235119 (2015) [18]
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R. Valentí, S. J. Blundell
Phys. Rev. B 94, 020407 (R) (2016) [35]

In Chapter 5, we discussed the 5d honeycomb materials A2IrO3 (A = Na, Li). In
these materials, the combined effect of strong spin-orbit coupling at the Ir4+, crystal
field, and correlation effects are both important. They can be understood as the rel-
ativistic jeff =1/2 and jeff = 3/2 states, which is described by the Kitaev model from
the localized view, while also be described as the QMO picture from the itinerant
view. Recently, the 4d Ru honeycomb lattice has been also proposed as a candidate
of Kitaev material [25]. Due to the smaller atomic number, Ru is expected to have
weaker spin-orbit coupling, however, the correlation effects in a narrow band could
potentially enhance the effects of spin-orbit coupling [25, 27].

In this chapter, we will discuss the structure of α-RuCl3, magnetic order, and the
ab initio electronic-structure [18]. Further, we will also calculate the electrostatic
potential in α-RuCl3 for the muon spin rotation experiment [35].
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7.1 Properties of α-RuCl3

The Ru3+ ion in α-RuCl3 also has a d5 configuration but with an octahedral cage
of Cl− instead of O2− in Na2IrO3. These octahedra are also arranged in a layered,
edge-shared honeycomb network with space group that has been experimentally de-
termined as P3112 [94] or C2/m [18] shown in Fig. 7.1. The α-RuCl3 structure has
stacking faults because of weak bonding between the honeycomb layers. The three-
layer stacking periodicity with the space group of P3112 was proposed in an early
study [94]. The C2/m structure both at room temperature and the lowest tempera-
ture measured (80 K) consists of a single layer in each unit cell. This structure was
obtained from the experimentally determined space group and lattice parameters,
with in DFT to relax the positions of the atoms. This constrained structural model
was then checked with the intensities in the X-ray diffraction data. There are also
other possibilities to have a stacking faults shown in Fig. 7.2.

(a) (b) (c)

Ru Cl

Figure 7.1: Crystal structure of α-RuCl3, Ru as gray balls, and Cl as green. (a)
Honeycomb layers. (b) P3112 structure. (c) C2/m structure.

Many experimental and theoretical investigations have been devoted to the magnetic
properties of α-RuCl3 [17, 19, 25, 96–100]. The spectroscopic studies found α-
RuCl3 is a Mott insulator [24, 25]. The magnetic susceptibility and specific heat
indicate it to have AFM order near ∼ 7 K [17, 96, 97]. Further, neutron scattering
experiments [17–19] found this order is zigzag below TN ∼ 7− 14 K, similar as
Na2IrO3. However, α-RuCl3 has a FM Weiss constant Θiso∼+40 K and the reverse
susceptibility anisotropy χab > χc [17, 101], compared to Na2IrO3, suggesting a
different character of the magnetic interactions.

Because of the similar structure as the honeycomb iridates, it is also considered to
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Figure 7.2: Structures and stacking orders proposed for α-RuCl3. Grey and green
spheres represent Ru and Cl atoms, respectively. Panel (a) shows the C2/m structure
with panel (b) highlighting that the A and A′ layers almost overlap when viewed
along the c∗ direction. The angle between direction AA′ and the a axis is 89.523◦.
Panel (c) presents the ABC stacking proposed in Ref. [95] (see Fig. 1 (b) there),
which is almost identical to the C2/m structure since a/3 ≈ −c ∗ cosβ . Panel (d)
shows the AB stacking proposed in Ref. [95] (see Fig. 1 (c) there) with panel (e)
representing a unit cell for this AB stacking within the C2/m symmetry obtained by
allowing bond length differences of up to 10−4 .

be a candidate to display Kitaev physics. Although the SO interaction for 4d Ru3+

is small [98] (λRu ∼ 0.15 eV [27]), its effects can be enhanced by the electronic
correlation effects [27], which introduce a splitting of the jeff = 1/2 and jeff = 3/2
states. The structure in the space group of C2/m has a small distortion. Several
theoretical investigations have been done to explain the magnetic response [19, 27,
96].
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7.2 Electronic structure

7.2.1 Density of states with quasi-molecular orbitals
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Figure 7.3: GGA density of states projected onto the quasi-molecular orbital basis
of (a) α-RuCl3 in the C2/m structure, (b) α-RuCl3 in the P3112 structure and (c)
Na2IrO3.

The electronic structure was calculated within LAPW method, the basis-size con-
trolling parameter RKmax was 8 and a mesh of 8× 6× 8 k points in the FBZ for
the self-consistency cycle considered and a 12×12×12 k points were used for the
density of states. Structurally, the difference of the P3112 [94] and C2/m for one
layer seems to be very small. However, the small structural differences make the
electronic properties change sharply. The P3112 structure has shorter Ru-Ru bonds,
and less trigonal distortion. As a result, the dominant hopping for P3112 is the di-
rect metal-metal hopping t1σ while in C2/m structure, the dominant hopping is the
Cl p orbital assisted t1O . Similar as Na2IrO3 [28, 29, 33], if t1O is dominant, it leads
to formation of quasi-molecular orbitals that consist of a linear combination of t2g

states of the six Ru atoms in each hexagon. We present the nonrelativistic density
of states within GGA projected onto the QMO basis for α-RuCl3 in the C2/m and
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P3112 structures as well as for Na2IrO3 in Fig. 7.3. From the figure, it is clear that
α-RuCl3 (C2/m) and α-Na2IrO3 are nearly diagonal in the QMO basis. However,
for α-RuCl3 (P3112), the QMO states are strongly mixed.

7.2.2 Electronic structure with GGA+SO+U

Since in this structure, the spin-orbit and correlation effects are important, we fur-
ther calculated the electronic structure of α-RuCl3 including the spin-orbit effects
(GGA+SO) and including both spin-orbit and onsite Coulomb repulsion together
(GGA+SO+U). We display the results in Fig. 7.4. For Na2IrO3 [28, 29], the strong
spin-orbit coupling lifts the near-degeneracy of the two highest QMO, A1g and E2u,
in order to form the relativistic jeff = 1/2 states. In contrast, the QMOs picture is
still valid in the relativistic case because of the weaker spin-orbit coupling in 4d Ru
than 5d Ir (see Fig. 7.4 (b)). What’s more, U has strong effect on the electronic
structure, as shown in Fig. 7.4 (c). This is due to the increase of the effective spin-
orbit coupling compared to the renormalized hoppings by a factor of t/U . As a
result, the electronic structure including both spin-orbit coupling and Coulomb re-
pulsion surprisingly agrees with the results for Na2IrO3 [28, 29, 33] of the jeff = 1/2
and jeff = 3/2 projection. We project the GGA+SO+U band structure for α-RuCl3
into the jeff basis as presented in Fig. 7.4. Although there is some mixing between
the jeff = 1/2 and jeff = 3/2, the dominant contribution to the Fermi level is still jeff

= 1/2 states. Thus, we can still describe this system in the basis of jeff = 1/2 orbitals,
which is similar as P3112 structure [27].

7.3 Electrostatic potential

F. Lang et al. [35] performed muon spin rotation experiments on α-RuCl3 to probe
the magnetic configurations. In this experiment, spin polarized muons are implanted
into the sample, and decay after some time to produce positrons. In order to predict
the muon stopping sites, we performed DFT calculations to compute the Electro-
static potential. We used the DFT method to plot the electrostatic Coulomb poten-
tials of α-RuCl3. In the potential map, the local maximal values give the possible
positions of the muon stopping sites. We employed DFT calculations in LAPW with
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Figure 7.4: Band structure and density of states of α-RuCl3 in the C2/m structure
obtained within (a) GGA, (b) GGA+SO, and (c) GGA+SO+U (Ueff = 3 eV). The
right panel shows the projected nonmagnetic GGA and GGA+SO density of states
onto the quasi-molecular orbital basis [28, 29] and the GGA+SO+U density of states
onto the relativistic jeff basis.

RKmax = 9 and 800 k points in the FBZ with GGA exchange-correlation function.
From the converged electron density, the 3D electrostatic potential was computed
with the combination of XCrySDen package [102] and WIEN2k, and then visual-
ized by the VESTA software [103].

We set the maximal of the potential to zero and present the Coulomb potential map
in Fig 7.5. It is possible for the muon to stop in any local maxima region. This sug-
gests four possible muon stopping sites presented in Fig. 7.5 and Table 7.1. The site
labeled Mu1 has the smallest energy cost and largest Coulomb potential 0 eV, while
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the site labeled Mu4 has a potential energy lower than Mu1 by 0.4 eV. When a moun
stops at such potential positions, it may also perturb its local environment, through
short-ranged interactions important only for the nearest neighbour ions [104, 105].
Thus, a small displacement of Cl− ion is also considered.

Figure 7.5: Coulomb potential of α-RuCl3 calculated via DFT. The blue isosurface
plotted is at -0.4 eV below the maximum. The purple spheres indicate the muon site
candidates we identified. Their labels are placed next to the color scale to indicate
the approximate value of the potential at the sites.

We identify, with the help of density functional theory calculations, likely muon
stopping sites and combine these with dipolar field calculations to show that the
two measured muon rotation frequencies are consistent with two inequivalent muon
sites within a zigzag antiferromagnetic structure proposed previously.

Then the experimental group Lang et al [35] used muon stop positions from our
DFT and combined these with dipolar field calculations to show that the two mea-
sured muon rotation frequencies are consist with two inequivalent muon sites within
a zigzag antiferromagnetic structure proposed previously.

7.4 Summary

Summarizing the analysis, we investigated the different structures of α-RuCl3 in
P3112 and C2/m, finding C2/m have more distortion which reduces the t1σ , result-
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Table 7.1: Fractional coordinates of atoms and muon site candidates determined
through DFT calculations. Abbreviations stand for Wyckoff position (WP) and site
symmetry (SS). The fractional coordinates of α-RuCl3 originate from DFT calcu-
lations and are compatible with x-ray diffraction characterization.

Atom WP SS x y z

Ru 4g 2 0 0.33441 0
Cl 4i m 0.73023 0 0.23895
Cl 8j 1 0.75138 0.17350 0.76619

Mu1 2a 2/m 0 0 0
Mu2 4i m 0.14 0 0.36
Mu3 4g 2 0 0.2 0.5
Mu4 2d 2/m 0.5 0 0.5

ing in a more consistent description in terms of QMOs. More interesting, the QMOs
are still effective in the relativistic calculations.

Further, we performed a GGA+SO+U calculation and analyzed the states in the
relativistic basis. Finally, the electrostatic potentials were calculated in DFT to give
the muon stopping position in the experiment. With the muon stop position, the
magnetic configuration was investigated.
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Challenges in design of Kitaev
materials: magnetic interactions
from competing energy scales

Stephen M. Winter, Ying Li, Harald O. Jeschke, Roser Valentí
Phys. Rev. B 93, 214431 (2016) [36]

In the Chapter 5 and Chapter 7, we analyzed the electronic properties of the hon-
eycomb materials Na2IrO3, α-Li2IrO3, and α-RuCl3. The purpose of this chapter
is to review and refine the current understanding of magnetic interactions in these
materials using both perturbative and nonperturbative methods introduced in Chap-
ter 4, and to critically evaluate the potential for engineering the Kitaev spin liquid
in real materials.

8.1 Hopping parameters for the hexagonal materi-
als: Na2IrO3, α-Li2IrO3 and α-RuCl3

For the honeycomb candidates of Na2IrO3, α-Li2IrO3, α-RuCl3 we discussed in the
previous two chapters, we plot the GGA bands in Figure 8.2. Further we performed
the method described in Chapter 3 to calculate the hopping parameters. We use a
mesh of 12× 12× 12 k points in the first Brillouin zone for the energy range which
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only includes the 6 t2g bands. We put the onsite and nearest hopping parameters
in Table 8.1, and then summarize the resulting crystal-field splitting and nearest
neighbour hoppings in Table 8.2. The hopping integrals for Na2IrO3 agree with, but
are slightly different from Ref. [29, 87] due to a finer k-point mesh employed in this
work.

(b) (c)

(a)

Figure 8.1: Cartoon of the honeycomb structure showing bond labels for (a) first
neighbors, (b) second neighbors, and (c) third neighbors. Sites within a given
hexagon are labeled 1− 6; a,b refer to the crystallographic axes, while x,y,z are
the cubic axes of the local metal octahedra.

We label the hopping matrix for the nth nearest neighbour bond of γ ∈ {X, Y, Z} as
Tγ

n. The C2/m symmetry gives two kinds of inequivalent nearest neighbour bonds:
the Z1 bonds, along the crystallographic b-axis, has the local C2h symmetry. Fol-
lowing the definition in Ref. [67], we write the hopping matrix for Z1 bond in the
basis (dxy, dxz, dyz) as:

TZ
1 =

 t3 t4 t4
t4 t1 t2
t4 t2 t1

 . (8.1)

Here we used the notation from Ref. [67], which is different from the notation in
previous chapters defined in Ref. [29]. The relations are shown in Table. 8.2.

While the X1- and Y1-bonds, in the ab-plane, have lower local Ci symmetry, and
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Figure 8.2: Comparison of DFT computed band structures (blue circles) and tight-
binding interpolations employing hopping integrals up to 16 Å (TB1, dashed pink
line), and 3rd neighbors (TB2, solid blue line).

hence have more unique or symmetry inequivalent hopping parameters

TX
1 =

 t ′1b t ′2 t ′4b

t ′2 t ′1a t ′4a

t ′4b t ′4a t ′3

 , TY
1 =

 t ′1b t ′4b t ′2
t ′4b t ′3 t ′4a

t ′2 t ′4a t ′1a

 . (8.2)

Without distortions, the nearly C3 symmetry of the hopping suggests such that
tn ≈ t ′na ≈ t ′nb. However, this symmetry is not found in the real materials, caus-
ing significant differences in hopping integrals. The crystal field splitting matrix
is

Ei =

 ∆3 ∆2 ∆2

∆2 0 ∆1

∆2 ∆1 0

 . (8.3)

The corresponding result for the three experimental structures is shown in Ta-
ble. 8.2. In each case, CFS is small such that λ & 10∆n. For the nearest neighbour
hoppings, the largest one is the oxygen assisted inter-orbital t2 ≈ t ′2 or direct metal-
metal intra-orbital t3 ≈ t ′3. In the absence of distortion, the IrO6 octahedra have 90◦

Ir-O-Ir bond angles. In Na2IrO3, the distortion of IrO6 octahedra elongates Ir-Ir
distances to 3.13− 3.14 Å, and Ir-O-Ir bond angles are as large as 100◦ [15]. The
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Table 8.1: Hopping parameters for onsite and nearest neighbors (meV).

Bond Na2IrO3 α-Li2IrO3 α-RuCl3
Exp. Theory C2/m

0 xy→ xy -448.8 -477.8 -475.0 -334.1
xz→ xz, yz→ yz -421.5 -472.3 -469.6 -321.6
xy→ xz, xz→ yz -27.8 -35.0 -28.6 -17.5
xz→ yz -23.1 -37.5 -24.0 -19.8

X1: xy→ xy 47.7 72.3 75.0 45.8
xz→ xz 30.0 80.2 77.1 44.9
xy→ xz, xz→ xy 269.6 252.7 247.1 162.2
yz→ yz -20.7 -108.8 -153.1 -103.1
xy→ yz, yz→ xy -25.6 -1.9 -12.0 -10.9
xz→ yz, yz→ xz -21.4 -16.7 -9.9 -15.1

Y1: xy→ xy 47.7 72.3 75.0 45.8
yz→ yz 30.0 80.2 77.1 44.9
yz→ xy, xy→ yz 269.4 252.7 247.1 162.2
xz→ xz -20.7 -108.8 -153.1 -103.1
xy→ xz, xz→ xy -25.6 -1.9 -12.0 -10.9
yz→ xz, xz→ yz -21.4 -16.7 -9.9 -15.1

Z1: xz→ xz, yz→ yz 33.1 55.0 78.8 50.9
xz→ yz, yz→ xz 264.4 219.0 230.0 158.2
xy→ xy 25.4 -175.1 -178.7 -154.0
xz→ xy, xy→ xz -11.9 -124.5 -18.9 -20.2
yz→ xy, xy→ yz -11.9 -124.5 -18.9 -20.2

bond-anisotropy for Na2IrO3 is small, suggesting only a small bond-dependence of
the magnetic interactions. The distortion does not enhance the crystal field a lot,
however, it does suppress t3 and enhance the t2, and therefore t2 becomes dominant
(|t2/t3| ∼ 10). Compared with Na+ ion in Na2IrO3, for experimental structure of
α-Li2IrO3, smaller Li+ ion is more easily incorporated, reducing the distances of
Ir-Ir to 2.98− 2.99, and the Ir-O-Ir bond angles becomes ∼ 94◦ [22]. The lower
distortion lead to larger t3 (|t2/t3| ∼ 1). The bond anisotropy in this material also
becomes significant, in particular t4� t ′4a, t

′
4b. Similarly, α-RuCl3 also has similar

Ru-Cl-Ru bond angles ∼ 94◦ [18], introducing similar t3, t ′3 as α-Li2IrO3.

We display the second nearest neighbour bonds in Figure 8.1 (b). Second neighbors
linked by the X1, Y1 bonds are labeled as Z2. Those bonds connected by (Y1,
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Table 8.2: Parameters for crystal field splitting and nearest neighbour hopping
(meV) for experimental C2/m structures of Na2IrO3 [15], α-Li2IrO3, [22] and
α-RuCl3 [18]. Hopping integrals are labeled according to Ref. [67]; in brackets are
given the corresponding labels from Ref. [29].

Term Na2IrO3 α-Li2IrO3 α-RuCl3

∆1 -22.9 -37.5 -19.8
∆2 -27.6 -35.0 -17.5
∆3 -27.2 -5.5 -12.5

t1 (t1̄||) +33.1 +55.0 +50.9
t ′1a (t1||) +29.9 +80.2 +44.9
t ′1b (t1||) +47.6 +72.3 +45.8

t2 (t1̄O) +264.3 +219.0 +158.2
t ′2 (t1O) +269.3 +252.7 +162.2

t3 (t1̄σ ) +26.6 -175.1 -154.0
t ′3 (t1σ ) -19.4 -108.8 -103.1

t4 (t1̄⊥) -11.8 -124.5 -20.2
t ′4a (t1⊥) -21.4 -16.7 -15.1
t ′4b (t1⊥) -25.4 -1.9 -10.9

Z1) bonds and (Z1, X1) are X2 and Y2, respectively. The corresponding hoppings
are in Table 8.3. The largest one, with the magnitude of ∼ 50− 70 meV, are the
inter-orbital hopping sharing a label with the bond-type. Taking the X2 bond as
an example, dxz→ dxy is the largest one. The third nearest neighbors, as shown in
Figure 8.1 (c), have the same symmetry as the parallel first nearest neighbour bond,
and are labeled from the corresponding first nearest neighbour bonds. The largest
hopping parameters are between orbitals not sharing a label with the bond-type,
e.g. dyz→ dyz for the X3 bond are 30 ∼ 40 meV. Both the largest second and third
neighbour hoppings are from the M-L-L-M paths (M = metal, L = ligand). In all the
materials, the distortions make the M-L-M angle differ from 90◦, causing freedom
of choice for coordinates x,y,z. We choose the same coordinates for the projectors
as Ref. [29]: the local z-axis is e ẑ⊥ (a+ c), and the x,y are set to be perpendicular
to z and have a 45◦ angle with the b-axis.
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Table 8.3: Hopping parameters for second nearest neighbors (meV).

Bond Na2IrO3 α-Li2IrO3 α-RuCl3
Exp. Theory C2/m

X2: xz→ xz -0.8 -0.6 -3.7 -4.5
yz→ yz -1.6 3.6 0.2 -0.4
xy→ xy -3.6 1.2 -2.3 -3.2
xy→ xz -75.8 -56.9 -70.5 -59.1
xz→ xy -36.4 -23.8 -38.6 -24.3
xy→ yz 12.7 15.2 11.0 8.3
yz→ xy -21.3 -10.4 -10.2 1.3
xz→ yz -18.4 -16.4 -11.6 -1.2
yz→ xz 10.3 28.9 11.8 11.8

Y2: yz→ yz -0.8 -0.6 -3.7 -4.5
xz→ xz -1.6 3.6 0.2 -0.4
xy→ xy -3.6 1.2 -2.3 -3.2
yz→ xy -75.8 -56.9 -70.5 -59.1
xy→ yz -36.4 -23.8 -38.6 -24.3
xz→ xy 12.7 15.2 11.0 8.3
xy→ xz -21.3 -10.4 -10.2 1.3
xz→ yz -18.4 -16.4 -11.6 -1.2
yz→ xz 10.3 28.9 11.8 11.8

Z2: xy→ xy -1.5 1.0 0.6 -0.4
xz→ xz -1.6 -1.2 -2.9 -4.7
yz→ yz -1.6 -1.2 -2.9 -4.7
xz→ yz -77.0 -56.7 -73.2 -60.7
yz→ xz -30.3 -51.4 -39.6 -23.9
xy→ xz, yz→ xy -18.8 -12.5 -11.3 -1.7
xy→ yz, xz→ xy 9.4 5.3 11.6 11.6
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Table 8.4: Hopping parameters for third nearest neighbors (meV).

Bond Na2IrO3 α-Li2IrO3 α-RuCl3
Exp. Theory C2/m

X3: yz→ yz -35.3 -40.0 -33.0 -41.4
xy→ xy -8.5 -3.5 -5.8 -7.5
xz→ xz -8.2 -11.2 -6.8 -7.9
xy→ xz, xz→ xy -12.7 -13.0 -13.4 -7.8
xy→ yz, yz→ xy 17.0 9.5 15.3 10.7
xz→ yz, yz→ xz 14.9 13.1 16.3 12.7

Y3: xz→ xz -35.3 -40.0 -33.0 -41.4
xy→ xy -8.5 -3.5 -5.8 -7.5
yz→ yz -8.2 -11.2 -6.8 -7.9
yz→ xy, xy→ yz -12.7 -13.0 -13.4 -7.8
xy→ xz, xz→ xy 17.0 9.5 15.3 10.7
yz→ xz, xz→ yz 14.9 13.1 16.3 12.7

Z3: xy→ xy -36.8 -40.8 -33.3 -39.5
xz→ xz, yz→ yz -9.3 -8.1 -6.4 -8.2
xz→ yz, yz→ xz -13.8 -13.6 -13.5 -7.4
xz→ xy, xy→ xz 16.6 15.8 16.6 11.7
yz→ xy, xy→ yz 16.6 15.8 16.6 11.7
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8.2 Exchange interactions for specific materials from
exact diagonalization

8.2.1 Na2IrO3

As described in Chapter 5, this material is found to be zigzag magnetic order [14–
16] with moments ordered at 45◦ with a axis in the ac plane [79] below TN = 14 K.
This order can be obtained by the nearest neighbour Heisenberg-Kitaev model with
large Γ1,Γ

′
1 [80], or second neighbour Kitaev coupling K2 [69], or second and third

neighbour Heisenberg couplings (J2,J3) [73, 75]. For the nearest neighbour param-
eters, a large t2 generates the dominant ferromagnetic K1 < 0 term and subdominant
antiferromagnetic J1 > 0. Katukuri et al. [81] estimated the interactions from the
energy of Ir dimers by using the MRCI (MultiReference Configuration Interaction)
method and suggested J1 = +5.0, K1 = −20.5, Γ1 = +0.5 meV. They also found
the small anisotropy between X1 (Y1) and Z1 bond. Based on ab-initio hopping
integrals, there were two calculations. From numerical second order perturbation
theory (N2OPT), Yamaji et al. [70] found a very large |Γ′xy

1 + ζ1| term > 8 meV
for the X1,Y1-bonds, which can introduce the observed zigzag order. However,
this result may suffer from "double-counting" the SO interaction, since they use
the spin-dependent hopping integrals from relativistic DFT calculations and also
include the SO coupling in the perturbation theory. In contrast, Sizyuk et al [69]
also used perturbation theory without "double-counting" and only found the largest
nearest neighbour terms J1 =+5.8, K1 =−14.8 meV consistent with MRCI result.
Beyond nearest neighbors, they also suggested the large J2 =−4.4, K2 =+7.9 meV
terms. The values for the third nearest neighbors are still not clear. In order to have
more accurate values for the magnetic exchange parameters, it is worth to calculate
the magnetic interactions with nonperturbative methods.

The resulting parameters for the first nearest neighbors are shown in Table 8.5. The
t2g−eg mixing is not included, which is suggested to shift the computed values∼ 2
meV [29, 70]. We compare the nearest neighbour interactions of the ED method
and second order perturbation theory without and with crystal field (Ex. 2OPT) in
Table 8.5. All the methods suggest a large nearest neighbour Kitaev interaction K1

around -20 meV, with an order of magnitude smaller Heisenberg coupling J1 and
off-diagonal anisotropic exchange Γ1,Γ

′
1. For the nearest bond, the second order
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perturbation theory can already give the correct result. Comparing the results of the
two-site ED without and with CFS, the CFS affect the results by less than 2 meV,
and seems to slightly enhance K1 and suppress J1, which is similar as Ref. [70].
The influence of CFS is smaller than the renormalization of the nearest neighbour
terms by multi-site corrections, shown in the different results from two sites to six
sites. There are only small anisotropy between X1,Y1, and Z1-bonds, which was
suggested to be larger in a previous study [70]. The results presented here are
more in agreement with the experimental observation of near C3 symmetry of the
magnetic fluctuations above TN [79]. In addition, the large Γ

′xy
1 or ζ1 were proposed

to accounting for the zigzag order do not appear in our calculations. All the off
diagonal terms are in the magnitude of 2 meV or smaller.

From the six-site ED calculations for the clusters in Fig. 4.2 (c), we compute the sec-
ond and third neighbour exchange couplings. The results are presented in Table 8.6.
Different with Ref. [69], we find small second neighbour interactions, which arise
from the suppression of the various second and third order hopping processes (see
Fig. 4.4). Most importantly, we find the large third neighbour Heisenberg interac-
tion J3 = 6.8 meV, which is greater than the N2OPT value of 1.3 meV [70]. The
high order terms beyond the second order perturbation strongly affect the results.

Based on above parameters, we suggest of Na2IrO3 has the minimal model for
understanding the magnetic properties J1 ∼ 0, J3 > 0, K1 < 0, and |J3/K1| ∼ 0.4:

Ĥ = ∑
1st nn

(
J1Si ·S j +K1Sγ

i Sγ

j

)
+ ∑

3rd nn
J3Si ·S j. (8.4)

We plot the phase diagram varying J1 and J3 in Figure 8.3 with K1 = -1 meV using
the method descried in Chapter 4. The experimental zigzag order appears in the
large J3/J1 region, consistent with the predictions that J3 is large [73, 81]. In fact,
J3 provides a large region to get the zigzag state. That means the zigzag ground state
properties will not change for different choices of JH ,U,λ . The J1-K1-J3 model can
not determine the magnetic direction n, which is determined by the off-diagonal
interactions and bond anisotropies. We use all the calculated parameters from the
real material and find the wave vector q parallel to Z1-bond, and n is along 45◦ with
the cubic x axis, consistent with the experiment [79] (see Fig. 8.3 (b),(c)). The Weiss
temperature computed by Eq. (4.77) are same as the experiment observations [78]:
Θiso < 0, and Θb < Θa < Θc, (i.e. χab < χc). If in the nearest neighbour level,
Na2IrO3 is close to the FM Kitaev limit, the AFM Θiso ∼ −116 K can only be
explained by the long-range AFM term like J3, which is similar as the explanation
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Table 8.5: Nearest neighbour magnetic interactions in meV for Na2IrO3 obtained
from various methods employing U = 1.7 eV, JH = 0.3 eV, λ = 0.4 eV. For CFS
(Crystal Field Splitting) = “no”, ∆n = 0. The most accurate method theoretically is
6-site ED, highlighted in bold.

Z1-bonds:

Method CFS J1 K1 Γ1 Γ′1

exact 2OPT no +3.2 -20.5 +0.4 -0.9
ED (2-site) no +4.2 -23.7 +0.3 -1.0
ED (2-site) full +1.8 -25.5 -0.4 -2.8
ED (6-site) full +1.6 -17.9 -0.1 -1.8

Literature Values

2-site MRCI [81] approx. +5.0 -20.5 +0.5 −
N2OPT [70] full +4.4 -35.1 -0.4 +1.1

X1,Y1-bonds:

Method CFS Jxy
1 Kxy

1 ξ
xy
1 Γ

xy
1 Γ

′xy
1 ζ

xy
1

exact 2OPT no +0.9 -20.9 -0.1 +3.3 -1.7 -0.1
ED(2-site) no +1.7 -24.1 -0.2 +3.0 -2.0 -0.1
ED(2-site) full 0.0 -23.3 +0.1 +2.0 -3.4 +0.1
ED(6-site) full -0.1 -16.2 -0.1 +2.1 -2.3 +0.1

Literature Values

2-site MRCI [81] approx. +1.5 -15.2 − +1.2 − −
N2OPT [70] full +2.6 -27.9 +0.6 +1.8 -5.8 +2.7
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Figure 8.3: (a) Phase diagram for the minimal model of Eq. (8.4) obtained by ED
on 16-site cluster in the parameter region relevant to the Na2IrO3; SL = Kitaev Spin
Liquid. The white dashed lines indicate classical phase boundaries. (b,c) Predicted
zigzag ground state and orientation of the ordered moments for Na2IrO3, viewed
(b) along the cubic [111] direction, and (c) the cubic [1̄10] direction. The moments
are found to be ⊥ b-axis, nearly directly along the x̂+ ŷ direction.
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Table 8.6: Complete magnetic interactions in meV for Na2IrO3 obtained by exact
diagonalization on six-site bridge and hexagon clusters employing U = 1.7 eV, JH

= 0.3 eV, λ = 0.4 eV, and full crystal field terms ∆n. The largest terms are bolded.
Site labels for Di j refer to Fig. 8.1 (a).

Bond Jn Kn ξn Γn Γ′n ζn

X1, Y1 -0.1 -16.2 +0.1 +2.1 -2.3 -0.1
Z1 +1.6 -17.9 − -0.1 -1.8 −

X2, Y2 +0.2 -1.6 -0.1 +0.9 0.0 0.0
Z2 +0.1 -1.2 − +0.6 -0.3 −

X3,Y3 +6.7 0.0 0.0 -0.1 0.0 -0.1
Z3 +6.8 +0.3 − -0.2 -0.1 −

Bond Sites (i, j) Di j

X2 (1, 3) , (4, 6) (-0.1, -0.5, -0.5)
Y2 (5, 1) , (2, 4) (-0.5, -0.1, -0.5)
Z2 (6, 2) , (3, 5) (-0.2, -0.2, -0.1)

of χ [73]. Therefore, the computed magnetic interactions are consistent with the
known experimental properties of Na2IrO3.

8.2.2 α-RuCl3

As described in Chapter 7, the honeycomb structure α-RuCl3 (include P3112 and
C2/m) also has the zigzag order below TN ∼ 7−14 K [18]. Different from Na2IrO3,
it has a FM Weiss constant Θiso ∼+40 K, and a reversed susceptibility anisotropy,
(i.e. χab > χc), which suggests a different magnetic character [17, 101]. As shown
in the previous chapter, the C2/m structure has enhanced distortion of RuCl6 com-
pared with P3112. The magnetic interactions of P3112 structure was previously an-
alyzed using hopping integrals from ab initio [27] and the second order perturbation
theory formula of Ref. [67]. The authors of Ref. [27] found J1 ∼ −12, K1 ∼ +17,
and Γ1 ∼ +12 meV, suggesting the material to have zigzag order. They also did
the analysis for C2/m structure and found the FM Kitaev coupling K1 < 0. How-
ever, these calculations may have ignored Coulomb interactions between t2g and
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eg orbitals, strongly modifying the results. In this section, we revisit the magnetic
interactions including the long range terms for both P3112 and experimental C2/m
structure.

Table 8.7: Complete magnetic interactions in meV for the C2/m structure of α-
RuCl3 from Ref. [18] obtained by exact diagonalization on six-site bridge and
hexagon clusters employing U = 3.0, JH = 0.6, λ = 0.15 eV, and full crystal field
terms ∆n. The largest terms are bolded. Site labels for Di j refer to Fig. 8.1 (a).

Bond Jn Kn ξn Γn Γ′n ζn

X1, Y1 -1.4 -7.5 +0.2 +5.9 -0.8 +0.2
Z1 -2.2 -5.0 − +8.0 -1.0 −

X2, Y2 -0.1 -0.6 +0.1 +0.6 +0.6 +0.1
Z2 +0.1 -0.9 − +0.6 +0.3 −

X3,Y3 +3.0 -0.1 0.0 -0.1 -0.1 -0.1
Z3 +2.4 +0.3 − -0.1 -0.1 −

Bond Sites (i, j) Di j

X2 (1, 3) , (4, 6) (-0.3, -0.5, -0.5)
Y2 (5, 1) , (2, 4) (-0.5, -0.3, -0.5)
Z2 (6, 2) , (3, 5) (-0.4, -0.4, -0.1)

In P3112 structure, we give the bond-averaged values (J1,K1,Γ1,Γ
′
1) = (-5.5, +7.6,

+8.4, +0.2) meV. Contrary to this, the C2/m structure has bond anisotropy, and
therefore we give the result of the nearest neighbour interactions for C2/m structure
in Table 8.7. This structure still has the FM Heisenberg coupling and AFM large
Γ1 term due to the large hopping t1, t3 [27, 106]. However, compared to P3112
structure, the C2/m structure has a smaller Heisenberg coupling and FM Kitaev
term, with the bond averaged values: (J1,K1,Γ1,Γ

′
1) = (-1.7, -6.7, +6.6, -0.9) meV.

Because of the anisotropy of the structure and the hopping integrals of t3 shown in
the previous chapter, there exist the anisotropy for the magnetic interaction Kxy

1 <Kz
1

and Γ
xy
1 < Γ

z
1.

Like Na2IrO3, the second neighbour interactions are small and the third neighbour
interactions are significant J3 ∼ 2.3 meV for P3112 and ∼ 2.7 for C2/m. These
are smaller than Na2IrO3 because of the enhanced U in Ru. We also consider the
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C2/m structure of Ref. [95], where the bond has less anisotropy, but found similar
interactions. Based on the above analysis, we construct the minimal model with
Γ1 =−K1:

Ĥ = ∑
1st nn

J1 Si ·S j +K1(S
γ

i Sγ

j −Sα
i Sβ

j −Sβ

i Sα
j )

+ ∑
3rd nn

J3 Si ·S j. (8.5)

For Z1 bond, {α,β ,γ} is the cubic axis {x,y,z}. After rotation by 45◦ around the
local z axis, this Hamiltonian can be transformed to a Heisenberg-Kitaev formula
without the off-diagonal term:

Ĥ = ∑
1st nn

A1Si ·S j +B1Sδ
i Sδ

j + ∑
3rd nn

J3Si ·S j, (8.6)

with A1 = J1 +K1 ∼ −8.4 meV, B1 = −2K1 ∼ +13.4 meV. For different bonds,
δ̂ -axis is:

δ̂ =


1√
2
(0,1,1) X1 bond,

1√
2
(1,0,1) Y1 bond,

1√
2
(1,1,0) Z1 bond.

(8.7)

For each bond, δ̂ is parallel to a vector joining the two bridging Cl atoms and the δ̂

axes are no longer 90◦ from each other. Therefore, even though the Hamiltonian is
written in Kitaev form, it does not allow a spin liquid state. From the interactions,
we calculated the Weiss constant as Θiso ∼−(3A1+B1+3J3)/4kb > 0, Θc < 0 and
Θa,Θb > 0, consistent with experiment [17, 101].

8.2.3 α-Li2IrO3

The last honeycomb material we investigate in this chapter is α-Li2IrO3. It also
has magnetic order below TN = 15 K [75], that is incommensurate with q||a, and
|q| = q ∼ 0.3 in the first Brillouin zone, as suggested by the x-ray and neutron
experiments [20]. Three different models have been discussed to explain this or-
der: (J1,K1,J2,K2) model [69, 74, 82], nearest neighbour with off-diagonal terms
(J1,K1,Γ1,Γ

′
1) models [67, 72, 80], nearest neighbors with bond-anisotropy with

(Jz
1,K

z
1,Γ

z
1,J

xy
1 ,Kxy

1 ) ∼ (−2,−10,+2,+1,−12) meV [83]. For the exchange pa-
rameters, calculations from a MRCI state energies on a 2-site cluster show there is
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Figure 8.4: (a) Phase diagram of the minimal model of Eq. (8.5) obtained by ED
on 16-site cluster in the parameter region relevant to the C2/m structure of α-
RuCl3; F = bulk ferromagnetic order. The white dashed line indicates the classical
phase boundary. (b,c) Predicted zigzag ground state and orientation of the ordered
moments for the C2/m structure of α-RuCl3, viewed (b) along the cubic [111]
direction, and (c) the cubic [1̄10] direction. The moments are found to be ⊥ b-axis,
nearly directly along the x̂+ ŷ direction, but tilted 106◦ from the cubic z-axis.
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large anisotropy for this structure with (Jz
1,K

z
1) = (−19,−6) meV and (Jxy

1 ,Kxy
1 ) =

(+1,−12) meV [76]. They also show that with a large J2, a spiral phase can be
obtained. However, this suggested different phase from the spiral order identified
in recent experiments [20]. Therefore, the magnetic interactions are currently un-
known in α-Li2IrO3. In order to address the exchange parameters and magnetic
configurations in this material, we performed the ED calculations for both the ex-
perimental structure [22] and relaxed one [77].

The parameters from our calculations for both structures are displayed in Table 8.8.
They all show the FM Heisenberg and Kitaev nearest neighbour interactions. Con-
sistent with Ref. [76], the experimental structure shows significant bond anisotropy.
Further, the relation Kz

1 >Kxy
1 , Jz

1 < Jxy
1 , and Γ

z
1 >Γ

xy
1 agree with the dipolar coupling

model [83] even though Ref. [83] only include simplified interactions compared of
the computed interactions. Like α-RuCl3, the large direct hopping t3 leads to the
large off-diagonal Γ

z
1,Γ

xy
1 terms. In addition, the large t4 = −124.5 meV for the

experimental structure introduces Γ
′z
1 = −4.3 meV along the Z1 bond. Even with

different anisotropy features, these two structures have similar bond-average values
J1 ∼ −3,K1 ∼ −8,Γ1 ∼ +9 meV, which is consistent with the values of Ref. [80].
In contrast with the predictions in Ref. [75], with these parameters, α-Li2IrO3 is far
away from the Kitaev limit.

For the second and third nearest neighbour interactions, we give the results in Ta-
ble 8.8. Different from Na2IrO3 and α-RuCl3, we obtain significant second neigh-
bour interactions. Surprisingly, a significant Dzyaloshinskii-Moriya term |Dxy

2 |> 4
meV for the experimental structure is found. The relaxed structure also has large
second neighbour terms, but both off-diagonal term and DM terms are reduced.
The off-diagonal term of ΓX

2 can not be decomposed into (J2,K2) as considered in
Ref. [69, 74], which means we need more terms for the minimal model beyond the
previous simplified models. For the third nearest neighbour interaction, we find a
little bit smaller values (J3 = +4.6 and +5.9 meV) than Na2IrO3.

We therefore consider a minimal model that includes (J1,K1,Γ1,K2,Γ2, |D2|,J3) =

(−3,−8,+9,−4,+3,+3,+6) meV with K1 ≈ −Γ1 and K2 ≈ −Γ2. Similar to α-
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Table 8.8: Complete magnetic interactions in meV for α-Li2IrO3 obtained by exact
diagonalization on six-site bridge and hexagon clusters employing U = 1.7 eV, JH

= 0.3 eV, λ = 0.4 eV, and full crystal field terms ∆n. The largest terms are bolded.
Site labels for Di j refer to Fig. 8.1 (a).

Experimental Structure

Bond Jn Kn ξn Γn Γ′n ζn

X1, Y1 -1.0 -13.0 -0.1 +6.6 -0.4 +0.6
Z1 -4.6 -4.2 − +11.6 -4.3 −

X2, Y2 +0.9 -2.9 +1.3 +3.0 +1.3 +0.4
Z2 -0.9 +0.1 − +1.5 -1.6 −

X3,Y3 +4.7 -0.2 -0.1 0.0 0.0 -0.1
Z3 +4.4 +0.4 − -0.1 -0.1 −

Bond Sites (i, j) Di j

X2 (1, 3) , (4, 6) (-1.5, -3.2, -2.3)
Y2 (5, 1) , (2, 4) (-3.2, -1.5, -2.3)
Z2 (6, 2) , (3, 5) (-0.2, -0.2, 0.0)

Relaxed Structure

Bond Jn Kn ξn Γn Γ′n ζn

X1, Y1 -2.5 -9.8 0.0 +8.7 -0.8 +0.1
Z1 -3.1 -6.3 − +9.4 -0.1 −

X2, Y2 +0.5 -3.8 +1.0 +3.4 +0.5 +0.1
Z2 +0.2 -3.6 − +3.3 -0.6 −

X3,Y3 +6.0 -0.1 -0.1 0.0 -0.1 -0.1
Z3 +5.9 +0.2 − -0.1 -0.1 −

Bond Sites (i, j) Di j

X2 (1, 3) , (4, 6) (-0.3, -1.9, -1.4)
Y2 (5, 1) , (2, 4) (-1.9, -0.3, -1.4)
Z2 (6, 2) , (3, 5) (-1.2, -1.2, +0.1)
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Figure 8.5: Classical phase diagrams for model Eq. (8.8) for α-Li2IrO3 with in-
creasingly realistic interactions. IC = incommensurate spiral order. (a) Including
only first and third neighbour interactions; A2 = B2 = D = 0, and B1 = +2, i.e.
K1 = −Γ1 = −1. (b) With D = 0, and with the ratio of other interactions set to
reproduce the experimental q and Aa/Ac∗; (B1 = +2, B2/B1 = 0.3, A2/B2 = 0.5).
(c) With D = 0.15, and with the ratio of other interactions set to reproduce the
experimental q and Aa/Ac∗; (B1 =+2, B2/B1 = 0.2, A2/B2 = 0.5).



8.2 Exchange interactions for specific materials from exact diagonalization 113

(a) (b)

(c)

Figure 8.6: (a) Orientation of computed second neighbour DM vectors for the re-
laxed structure of α-Li2IrO3, with sense of each interaction indicated by dashed
arrows. (b) Network of interactions in the full lattice. Within a given sublat-
tice, the DM vectors are uniform, and will therefore tend to promote incommen-
surate states. (c) Classical ground state of the minimal model of Eq. (8.8) with
(A1,B1,A2,B2,J3) ∼ (-10.7, +24, -3.3,+7.0,+3.6) consistent with the experimental
structure of Ref. [20].
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RuCl3, we rotate the direction to the following formula:

Ĥ = ∑
1st nn

A1Si ·S j +B1Sδ
i Sδ

j + ∑
3rd nn

J3Si ·S j (8.8)

+ ∑
2nd nn

A2Si ·S j +B2Sδ
i Sδ

j +Di j ·Si×S j.

Due to so many interactions, discussion of the magnetic order in α-Li2IrO3 is diffi-
cult. First, we consider the model only including first nearest neighbour couplings
and J3 in Figure 8.5 (a). Further, we add the second neighbour couplings A2 and
B2, shifting the incommensurate(IC) region to larger J3, shown in Figure 8.5 (b).
Finally with DM vector |D2|, the Stripy region becomes very small, while the IC
region is extended to smaller J3 and larger J1 region.

If there is no anisotropy of the bond, a second neighbour DM-interaction of C3

symmetry would be DX
2 = (0,−D,−D), DY

2 = (−D,0,−D), and DZ
2 = (−D,−D,0).

With this, (A1,B1,A2,B2,D,J3) are (-11, +16, -3, +7, +1.5, +6) meV. The magnetic
configuration can be expressed in the two-site basis (see Fig. 8.6 (c)) [20],

S1(r) = ∑
k
(Fk +Ak)e−ik·r, (8.9)

S2(r) = ∑
k
(Fk−Ak)e−ik·r, (8.10)

where the magnetic configuration is described by a single q vector Fq = F∗−q, Aq =

A∗−q, and the cartesian coordinates corresponding to (a,b,c∗). Now we analyze the
parameters in Eq. (8.8). For large A1 < 0, B1 > 0, the classical ground state is FM
with q = 0, Fq = (Fa,Fb,0). With J3 > 0, the ground state is zigzag defined by
q = (π,0,0) and Aq = (Aa,0,Ac∗).

With the parameters (A1,B1,A2,B2,D,J3)∼ (-11, +16, -3, +7, +1.5, +6), the ground
state is zigzag because of the large J3. However, an incommensurate state appears
at intermediate J3, which has the same components as the experimental magnetic
structure Fq =(0,Fb,0),Aq =(−iAa,0,−iAc∗) [20]. The experimental q is obtained
when:

B2

B1
∼ 0.3−1.3

D
B1

,
A2

B1
∼−0.14+0.5

D
B1

. (8.11)

Then we manipulate the parameters to find the case.

• When D = 0, the above condition requires B2 > 0,A2 < 0, B2/B1 = 0.3,
and A2/B2 = 0.5, consistent with the bond-average value from our calcu-
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lations. The ground state is shown in Fig. 8.6 (c) with (A1,B1,A2,B2,J3) ∼
(−10.7,+24,−3.3,+7.0,+3.6) meV.

• The second-neighbour DM terms stabilize spiral order. Even a very small
value D/K1 ∼ 0.15, enlarges the region of the incommensurate phase (see
in Fig. 8.5 (c)). In C2/m symmetry, the honeycomb lattice has two sub-
lattices S1 and S2 related by inversion. The second neighbour interac-
tions couple the sites in the same sublattice. Therefore, there is only
one D2 in each sublattice (Fig. 8.6 (a,b)). Therefore, the DM-interaction
gives spiral states of opposite chirality for each sublattice. Example pa-
rameters that reproduce the experimental results are (A1,B1,A2,B2,D,J3) ∼
(−8.9,+20,−2.0,+3.9,+1.5,+3.0) meV.

With (A1,B1,A2,B2,D,J3) ∼ (−8.9,+20,−2.0,+3.9,+1.5,+3.0) meV, the Weiss
temperature is Θiso > 0, different with the experimental results Θiso ∼−33 K [75].
This result might be change with further refinement of the crystal structure. What’s
more, we predict a FM Θb &Θa > 0, and AFM Θc < 0, giving an inverse anisotropy
of Na2IrO3. This could be checked in future experiments.

These results show that models with bond averaged values of K2,Γ2,D2 can already
obtain the experimental magnetic state. Although the interactions for the real ma-
terial has the bond depending parameters, especially for the experimental structure,
we did not include the large number of terms because it is hard to discuss all the
details of all bond-anisotropic and long-range terms.

8.3 Realization of the spin liquid in real materials

This section is aimed at discussing the realization of the Kitaev spin liquid phase
in real materials. There is only a small region of parameter space from the phase
diagram that exhibits this phase, as suggested by the phase diagrams in this and
previous works [26, 67, 72, 75, 76, 81, 89]. In the pure Kitaev-Heisenberg model
with J1 > 0,K1 < 0, the spin liquid is realized in the region α = K1/(K1− 2J1) &

0.7− 0.8 [26, 89]. The long range magnetic interactions J2 and J3 can lift the
classical degeneracy to promote order but can also frustrate the order and extended
the Kitaev spin-liquid regions [75, 76, 81] (see Fig. 8.3). Without J1, we assume that



116
8. Challenges in design of Kitaev materials: magnetic interactions from

competing energy scales

order appears unless |J3/K1| . 0.1. The off-diagonal interactions Γ1,Γ
′
1 can also

drive the material away from the spin liquid, which would exist only for Γ1/K1 .

0.1 [67, 72]. The hopping integrals t1, t2, t3 can be calculated using Slater-Koster
parameters [107] from tddσ , tddπ , tpdπ (see Fig. 8.7) as Ref. [67]. 1

t1 ∼
1
2

tddπ +
t2
pdπ

∆pd
cosφ ,

t2 ∼ −
1
2

tddπ +
t2
pdπ

∆pd
,

t3 ∼
3
4

tddσ +
(tpdπ −

√
3tpdσ )

2

8∆pd
cos3φ

+
(
√

3tpdπ +9tpdσ )(
√

3tpdπ + tpdσ )

8∆pd
cosφ ,

(8.12)

where ∆pd is the charge transfer energy between the t2g orbitals and the chalcogen
or halogen p orbitals, and φ gives the angle of the metal-ligand-metal bond. In the
materials A2IrO3, the values are obtained for

tddπ ∼ 0.25 f (φ) eV , tddσ ∼−0.4 f (φ) eV,

t2
pdπ

∆pd
∼ 0.4 eV ,

t2
pdσ

∆pd
∼ 0.5 eV.

(8.13)

where f (φ) is an empirical damping factor (Fig. 8.8 (a)), which can describe the
decrease of the metal-metal hopping with increasing the distance of Ir-Ir bond. The
metal-ligand distances are assumed to be a constant, and the px, py and pz orbitals
are roughly degenerate. Without distortion (φ = 90◦), ligand assisted hopping only
contributes to t2, and t1, t3 only have the contribution from metal-metal hopping.
With distortion (φ > 90◦), the ligand assisted procedure also contributes to t1 and
t3 but with opposite sign, which leads to nearly zero t1 and t3 around φ ∼ 100◦

(see Fig. 8.8 (a)). These hoppings determine the exchange parameters and magnetic
interactions.

• Heisenberg coupling: The requirement for the spin liquid of α & 0.8 is sat-
isfied for a wide region 95◦ . φ . 100◦ shown in the red shaded region of
Fig. 8.8 (b).

• Off-diagonal terms: t2 >> t1, t3, t4 is the region where the pure Kitaev model
is realized. Off-diagonal couplings dominate the nearest neighbour magnetic

1Note that the expression for t2 in the supplemental of Ref. [67] seems to have different sign
notations.
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(a) (b) (c)

Figure 8.7: Geometry of nearest neighbour hopping integrals (a) t2, (b) t1, and (c) t3
for the Z1 bond, showing ligand mediated and direct hopping processes. These can
be decomposed in terms of Slater-Koster hopping integrals tddπ , tddσ , tpdπ , tpdσ

(top) as a function of metal-ligand-metal bond angle φ , as in Eq. (8.12).

interactions in α-RuCl3 and α-Li2IrO3. The condition of |Γ1/K1| < 0.1 for
the Kitaev spin liquid can only be realized in a narrow region near φ ∼ 100◦.
Na2IrO3 is close to this ideal region due to larger distortion. Thus, in contrast
to the initial assumptions, trigonal distortions are helpful to realize the spin-
liquid. However, large distortions can introduce large t4, which gives other
large contributions to Γ1,Γ

′
1 [8, 72, 80].

• Long-range interactions: Third nearest neighbour Heisenberg coupling J3 is
very robust for the d5 honeycomb materials, which explains the zigzag order
in both Na2IrO3 and α-RuCl3. Lattice expansion could suppress J3 in the
honeycomb materials if t/U could be decreased. Some of the perturbative
contributions to J3 are absent in the 3D β -Li2IrO3. Thus, long-range interac-
tions should be partially suppressed in the 3D systems.

8.4 Summary

In the C2/m honeycomb Ir4+ and Ru3+ systems, complexity arises from a combi-
nation of (i) competing Coulomb, hopping, and spin-orbit energy scales, (ii) rela-
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Figure 8.8: (a) Schematic dependence of hopping integrals t1−3 for A2IrO3 and
empirical damping factor f (φ) < 1 (grey line) on metal-ligand-metal bond angle
φ ; t4 is assumed to be zero. (b) Resulting magnetic interactions obtained using
the “Exact” 2OPT expressions. The red shaded region indicates the area where
|J1/K1|< 0.1, while the blue region denotes |Γ1/K1|< 0.1. For α-Li2IrO3,φ ∼ 95◦,
while Na2IrO3 falls nearly in ideal region φ ∼ 100◦.

tively low symmetry, (iii) suppression of dominant magnetic couplings, (iv) strongly
anisotropic interactions, and (v) significant long-range terms. The details of the in-
teractions in the real materials and their relationship to the experimental properties
have therefore been intensively debated in the literature. In this work, we have ad-
dressed this debate by employing nonperturbative exact diagonalization methods
that treat interactions at all scales on the same level, and therefore allow estimation
of all parameters. The salient conclusions are as follows:

• The observed zigzag order in Na2IrO3 and α-RuCl3 is explained naturally in
terms of a large third-neighbor Heisenberg coupling J3 that emerges as a dom-
inant term at high orders in perturbation theory, and was therefore neglected
or underestimated in most previous studies.
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• Off-diagonal couplings Γ1 ∼ K1 dominate the nearest-neighbor magnetic in-
teractions in α-RuCl3 and α-Li2IrO3 as a result of direct metal-metal (M-M)
hopping. These terms can be suppressed by increasing the M-M bond dis-
tance, through the distortion of the local ML6 octahedra to provide M-L-M
bond angles φ ∼ 100◦. In the known materials, this ideal region is most
closely approached by Na2IrO3, which is therefore the closest to the Kitaev
limit K1� J1, Γ1 at the nearest-neighbor level. Due to the effects of direct
metal-metal hopping, the ideal materials will therefore not be found with φ =
90◦, as originally proposed.

• Although the Kitaev spin liquid is thought to be stable for a finite region
of magnetic parameters, the design limitations in real materials are highly
restrictive due to a large sensitivity of the interactions to structural details.
This sensitivity allows for large variations in the magnitude of interactions
along the different nonequivalent bonds, which typically lifts the classical
degeneracy. The ideal region where the Kitaev interaction is dominant is
likely confined to a small width of M-L-M bond angle φ.1◦ , which may
be difficult to satisfy in real materials simultaneously for all nonequivalent
bonds.

• Given that Na2IrO3 was found to lie very close to the ideal region where
K1 � J1, the most significant interaction preventing realization of the spin-
liquid state in real materials is considered to be the unfrustrated long-range
J3 term. In the d5 materials, the complementary nature of spin-orbit coupling
and Coulomb repulsion in establishing the charge gap makes J3 largely insen-
sitive to choice of magnetic ions or other structural details. This observation
seriously complicates any synthetic strategies aimed at reducing long-range
couplings in edge-sharing octahedral systems.

• For α-Li2IrO3, the computed interactions suggest the possibility of large bond
anisotropy and significant terms at first, second, and third neighbor. While
several model Hamiltonians have been considered for the α−, β−, and γ−
phase materials, the true interactions are likely considerably more compli-
cated. We have shown, in particular, that a combination of K2, Γ2, and second-
neighbor DM interaction D2 may explain the observed order. The complexity
of the interactions may be even greater for the lower symmetry β− and γ-
Li2IrO3, where Dzyaloshinskii-Moriya interactions are allowed even for cer-
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tain first-neighbor bonds. It remains to be determined which models can be
effectively related to the real materials, but purely nearest-neighbor models
are probably unrealistic.

Given these observations, realization of the Kitaev spin liquid as a ground state
in edge-sharing d5 materials appears to represent a very significant synthetic chal-
lenge. However, given the highly complex phase diagrams, and possibility of many
points of classical degeneracy within the expanded range of interactions, these sys-
tems are likely to host other exotic phases and phase transitions. Furthermore, when
probed at high energies or temperatures T > TN , the combined fluctuations associ-
ated with all nearby orders may give rise to novel thermodynamic or spectral proper-
ties [108–111]. Given the potential for complex interactions, future studies of such
systems will benefit from comprehensive and nonperturbative ab initio estimates of
all relevant interactions.



Chapter 9

Contributed work: electronic
structure and spin-orbit driven novel
magnetism in d4.5 insulator
Ba3YIr2O9

S. K. Panda, S. Bhowal, Ying Li, S. Ganguly, Roser Valenti,
L. Nordström, and I. Dasgupta

Phys. Rev. B 92, 180403 (R) (2015) [37]

We have studied 5d and 4d systems which all have 5 electrons in the t2g orbitals.
In this chapter, we will consider materials with fractional charge state Ir4.5+ like
Ba3YIr2O9, which have 4.5 electrons in the t2g orbitals. There are two structures of
this material: at high-pressure (HP) and ambient pressure (AP). From the experi-
ment, it is found that at AP, the variation of the susceptibility shows a weak anomaly
around 4 K [112]. The susceptibility data [113] gives θCW ∼ 0 and effective mo-
ment 0.3 µB, while the HP structure does not order down to 2 K, and was suggested
to be a gapless QSL [31]. We will show the electronic structure calculations for the
AP phase using VASP, Elk, and WIEN2k. I performed the Wien2k calculations;
VASP and Elk calculations were performed by S. K. Panda et al [37].

In Figure 9.1, we show the AP structure of Ba3YIr2O9, which has four Ir in each
unit cell forming two dimers linked by the O-Y-O paths along c axis in the space
group P63/mmc. The Ir and O have an octahedral IrO6 structure, but different from

121



122
9. Contributed work: electronic structure and spin-orbit driven novel magnetism

in d4.5 insulator Ba3YIr2O9

Y

O

Ir−Ir dimer

Ir3

Ir4

Ba

Ir2

Ir1

Figure 9.1: The crystal structure for the hexagonal AP phase of Ba3YIr2O9.

the edge sharing in Na2IrO3. In Ba3YIr2O9, two IrO6 share the face, and therefore
form the Ir2O9 bioctahedra.

9.1 Magnetic properties

We calculated the total energy for four different magnetic configurations shown in
Figure 9.2.

(b) AFM1 (c) AFM2 (d) AFM3(a) FM

Figure 9.2: Magnetic phase of Ba3YIr2O9.

• FM, all couplings are ferromagnetic;

• AFM1, both the intra- and inter-dimer couplings are antiferromagnetic;
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• AFM2, intra-dimer coupling is ferromagnetic and inter-dimer coupling is an-
tiferromagnetic;

• AFM3, intra-dimer coupling is antiferromagnetic and inter-dimer coupling is
ferromagnetic.

The computed energy and magnetic moment using LDA+SO+U with U = 4 eV in
the Elk code are displayed in Fig. 9.3. The results indicate that AFM2 is the ground
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Figure 9.3: (a) The variation of spin and orbital moment at the Ir site for various
magnetic configurations in the AP phase. (b) Variation of onsite exchange energy
(in meV) associated with different order parameters (OP) with the variation of U in
eV.

state with the spin moment on Ir site of 0.55 µB and the orbital moment 0.34 µB,
which has smaller ration of ml

ms
(∼0.62) than Ir5+ iridates like Sr2IrO4 [114] with

∼2. The AFM2 ground state (FM interaction within each dimer) implies that Ir4.5+

iridates have strong effective Hund’s coupling (JH), which is larger than the crystal
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field and spin-orbit coupling than Ir5+ iridates. If λ is larger than JH, the intra-dimer
will have AFM interaction such as Ba5AlIr2O11 [115].

9.2 Electronic structure
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Figure 9.4: (a) Bandstructure and (b) Partial density of states (DOS) for Ir-d within
LDA+U+SOC for the AP phase. The inset shows the schematic diagram to explain
the insulating behavior of AP phase.

Similar to Na2IrO3, the electronic structure for the non magnetic phase without
SO has a metallic phase and t2g, eg are split. There are twelve t2g bands from the
four Ir atoms around the Fermi-level. In contrast to Na2IrO3 (around 1.5 eV band-
width), the bandwidth is enlarged to 2 eV in Ba3YIr2O9. This may explain why the
SO interaction becomes effectively smaller. The large bandwidth renormalizes the
strength of the atomic λ . In order to reproduce the experimental insulating prop-
erties, the LDA+SO+U calculations were performed for the AFM2 configuration.
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The computed DOS and bandstructure are displayed in Fig. 9.4. The insulating state
with a gap of 252 meV comes from the effect of JH , ∆CF , λ and tintra−dimer together.

9.3 Summary

In conclusion, our detailed study of electronic and magnetic properties of d4.5

Ba3YIr2O9 in the AP phase suggest that a competition between JH and SO coupling
decides the magnetic properties. The JH dominates over the SO coupling leading
to FM magnetic order intra-dimer. The relatively weak value of SO coupling in the
AP phase may be attributed to the large t2g bandwidth in Ba3YIr2O9.
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Chapter 10

Summary and outlook

In this thesis, we performed density functional theory (DFT) calculations for several
Kitaev spin-liquid candidates - 2D honeycomb Na2IrO3, α-Li2IrO3, α-RuCl3, 3D
γ-Li2IrO3, and double layer triangular Ba3YIr2O9 to calculate the electronic prop-
erties. We also derived the microscopic models for the 2D honeycomb lattice. From
the analysis of the derived models and calculations, we were able to draw impor-
tant conclusions regarding the compounds, microscopic behavior and the connec-
tion between their electronic structures and experimentally observed macroscopic
properties.

In the case of honeycomb lattice Na2IrO3, α-Li2IrO3, and α-RuCl3, we found the
quality of the Quasi-molecular orbital (QMO) picture depends on hoppings due to
different trigonal distortions. Na2IrO3 has the largest distortions and the nonrel-
ativistic single particle electronic structure is well described in terms of the QMO
basis. However, the QMO picture is destroyed in P3112 α-RuCl3 as small distortion
enhances metal-metal hopping. For α-Li2IrO3 and C2/m α-RuCl3, the intermedi-
ate distortion gives significantly mixed QMOs.

For the optical conductivity, we investigated the 2D Na2IrO3, α-Li2IrO3 and 3D
γ-Li2IrO3 using both relativistic DFT method within GGA+SO+U and exact diag-
onalization of the full interacting Hamiltonian on finite clusters where the hopping
integrals were obtained from DFT. Both methods reproduce the main peak of the
in-plane component of the optical conductivity σc and the experimental gap. The in-
sulating behavior can be explained by including of spin-orbit coupling and Coulomb
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repulsion for d5 filling. Using the fact that the narrow bands of Na2IrO3 are well
described in terms of QMOs, we showed that the strength of the various interband
contributions to the optical conductivity can be well described in terms of the par-
ity of the QMOs, namely, weight suppression in like-parity transitions and weight
enhancement in unlike-parity transitions. We also predict the shape of the optical
conductivity for α-Li2IrO3. However, GGA+SO+U seems to overestimate the con-
tribution of the j1/2→ j1/2 transition at low energies in σa and σb. The ED results,
in contrast, validate the model parameters (U,JH ,λ ) and suggest that the high-lying
excitations seem to be well captured within a localized picure in γ-Li2IrO3. The
comparison with the optical conductivity analysis of Na2IrO3 shows that the peak
near 1.5 eV in both Na2IrO3 and γ-Li2IrO3 can be identified in terms of intersite
j3/2→ j1/2 excitations. The comparison of σ(ω) for the various materials suggests
that the relative spectral weight of the transitions may provide insight into the mag-
nitudes of various hopping integrals, and therefore the local magnetic interactions.

All the structures show magnetic ordered ground states. Na2IrO3 and α-RuCl3 have
zigzag magnetic order, which can be reproduced by a large third-neighbor Heisen-
berg coupling J3. This term comes from high orders in perturbation theory, which
were neglected or underestimated in most previouis studies. α-Li2IrO3 has spin
spiral order and can be explained by a combination of second-neighbor anisotropy
interactions. With all these observations, realization of the Kitaev spin liquid as
a ground state in edge-sharing d5 materials appears to represent a very significant
synthetic challenge.

As a general conclusion, all the considered materials have both large spin-orbit and
strong correlation effects that need to be investigated by a combination of DFT
and many body methods. The hopping integrals based on the electronic structure
are used to calculate optical conductivity and magnetic interactions, which relate
the electronic and magnetic properties. The exact diagonalization method on the
honeycomb lattice provides a more accurate way to obtain the magnetic interactions.
It can be applied to other systems. This technique is a powerful computational tool
for studies of magnetic systems in strongly correlated and spin-orbit systems. On
the basis of the calculations performed in this thesis, we were able to identify the
main synthetic challenges for realizing a spin-liquid state in the Kitaev candidates.
The methods used and developed in this thesis will no doubt help guide future work
towards engineering the Kitaev spin liquid in real materials.



Appendix A

Spin-orbital coupling and relativistic
basis

The behavior of
∣∣dxy
〉
, |dxz〉 ,

∣∣dyz
〉

are like the orbital |pz〉 ,
∣∣py
〉
, |px〉 . We therefore

use effective |p̃z〉 ,
∣∣p̃y
〉
, |p̃x〉 to describe these three orbitals. With |p̃z〉 =

∣∣dxy
〉∣∣p̃y

〉
= |dxz〉 |p̃x〉 =

∣∣dyz
〉

leff = 1,mleff = −1,0,1. We define the eigenstates of(−→
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)
as φ11 φ10 φ1−1. The states of |l,ml〉 are

|1,0〉= |p̃z〉 ,

|1,1〉= 1√
2
(−i
∣∣p̃y
〉
−|p̃x〉),

|1,−1〉= 1√
2
(−i
∣∣p̃y
〉
+ |p̃x〉).

(A.1)

Here, the spin quantum number s = 1
2 ,ms =−1

2 ,
1
2 . Then we define the eigenstates

of
(−→

S 2,SZ

)
as χ 1

2−
1
2
, χ 1

2
1
2
. With the SO coupling, the total quantum number j =

|l+ s|, |l+ s−1|...|l− s|= 3
2 ,

1
2 . m j = ml +ms = j, j−1....− j. We define the state
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2 ,−
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3
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2 ,−
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2
. The relativistic states can be expressed as

ϕ j,m j = ∑
mlms

〈
lmlsms|ls jm j

〉
φlml χsms, (A.2)

where
〈
lmlsms|ls jm j

〉
are called Clebsch-Gordan coefficients. The states are cal-

culated as followings:
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Thus, the states of
∣∣ j,m j
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The operator
L+ = Lx + iLy L− = Lx− iLy, (A.12)

S+ = Sx + iSy S− = Sx− iSy, (A.13)

L+ |l,m〉=
√
(l +m+1)(l−m) |l,m+1〉 , (A.14)

L− |l,m〉=
√
(l−m+1)(l +m) |l,m−1〉 , (A.15)

S+ |↑〉= 0, S− |↑〉= |↓〉 , Sz |↑〉=
1
2
|↑〉 , (A.16)

S+ |↓〉= |↑〉 , S− |↓〉= 0, Sz |↓〉=−
1
2
|↓〉 . (A.17)

Spin-orbit coupling

Hso = λ (
L+S−+L−S+

2
+LzSz), (A.18)

in the matrix is 
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which acts on the basis states
∣∣dxy ↑

〉
, |dxz ↑〉 ,

∣∣dyz ↑
〉
,
∣∣dxy ↓

〉
, |dxz ↓〉 , and

∣∣dyz ↓
〉
.

If we change λ as−λ , it equivalent to using dxy, dxz, dyz as l = 2. The corresponding
eigenvalues are −λ ,−λ , λ

2 ,
λ

2 ,
λ

2 ,
λ

2 . The lower two relativistic basis are∣∣∣↑̃〉=
1√
3

∣∣dxy ↑
〉
+

i√
3
|dxz ↓〉+

1√
3

∣∣dyz ↓
〉

=
1√
3
|c ↑〉+ i√

3
|b ↓〉+ 1√

3
|a ↓〉 ,

(A.20)

∣∣∣↓̃〉=
i√
3
|dxz ↑〉−

1√
3

∣∣dyz ↑
〉
+

1√
3

∣∣dxy ↓
〉

=
i√
3
|b ↑〉− 1√

3
|a ↑〉+ 1√

3
|c ↓〉 .

(A.21)

After multiply the basis for i and j site, we obtain the basis
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∣∣∣↑̃i

〉∣∣∣↑̃ j

〉
=

1
3
|a ↓i〉

∣∣a ↓ j
〉
− 1

3
|b ↓i〉

∣∣b ↓ j
〉
+

1
3
|c ↑i〉

∣∣c ↑ j
〉

+
i
3
|a ↓i〉

∣∣b ↓ j
〉
+

i
3
|b ↓i〉

∣∣a ↓ j
〉

+
i
3
|c ↑i〉

∣∣b ↓ j
〉
+

i
3
|b ↓i〉

∣∣c ↑ j
〉

+
1
3
|c ↑i〉

∣∣a ↓ j
〉
+

1
3
|a ↓i〉

∣∣c ↑ j
〉
,

(A.22)

∣∣∣↑̃i

〉∣∣∣↓̃ j

〉
=−1

3
|a ↓i〉

∣∣a ↑ j
〉
− 1

3
|b ↓i〉

∣∣b ↑ j
〉
+

1
3
|c ↑i〉

∣∣c ↓ j
〉

+
i
3
|a ↓i〉

∣∣b ↑ j
〉
− i

3
|b ↓i〉

∣∣a ↑ j
〉

+
i
3
|c ↑i〉

∣∣b ↑ j
〉
+

i
3
|b ↓i〉

∣∣c ↓ j
〉

− 1
3
|c ↑i〉

∣∣a ↑ j
〉
+

1
3
|a ↓i〉

∣∣c ↓ j
〉
,

(A.23)

∣∣∣↓̃i

〉∣∣∣↑̃ j

〉
=−1

3
|a ↑i〉

∣∣a ↓ j
〉
− 1

3
|b ↑i〉

∣∣b ↓ j
〉
+

1
3
|c ↓i〉

∣∣c ↑ j
〉

− i
3
|a ↑i〉

∣∣b ↓ j
〉
+

i
3
|b ↑i〉

∣∣a ↓ j
〉

+
i
3
|c ↓i〉

∣∣b ↓ j
〉
+

i
3
|b ↑i〉

∣∣c ↑ j
〉

+
1
3
|c ↓i〉

∣∣a ↓ j
〉
− 1

3
|a ↑i〉

∣∣c ↑ j
〉
,

(A.24)

∣∣∣↓̃i

〉∣∣∣↓̃ j

〉
=

1
3
|a ↑i〉

∣∣a ↑ j
〉
− 1

3
|b ↑i〉

∣∣b ↑ j
〉
+

1
3
|c ↓i〉

∣∣c ↓ j
〉

− i
3
|a ↑i〉

∣∣b ↑ j
〉
− i

3
|b ↑i〉

∣∣a ↑ j
〉

+
i
3
|c ↓i〉

∣∣b ↑ j
〉
+

i
3
|b ↑i〉

∣∣c ↓ j
〉

− 1
3
|c ↓i〉

∣∣a ↑ j
〉
− 1

3
|a ↑i〉

∣∣c ↓ j
〉
.

(A.25)
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