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1 Introduction 

 

One of the most important shifts in mathematics learning and instruction in the last decades has 

taken place in the conception of the subject matter, changing from a perspective of mathematics as 

composed of concepts and skills to be learned, to a new one emphasizing the mathematical 

modelling of the reality (De Corte, 2004). This shift has had, as it is to be expected, an impact on 

classroom processes, and changed instructional settings and practices. 

Instructional explanations, the object of study in the present work, are an interesting topic in that 

landscape, since they continue to be a typical form of classroom discourse, especially − but no 

exclusively− when new contents are introduced to the students (e.g. Leinhardt, 2001; Perry, 2000; 

Wittwer & Renkl, 2008). Consequently, good teachers are also supposed to be good explainers, 

independently whether they are the main speaker, or play the role of moderator in exchange between 

students (e.g. Charalambous, Hill, & Ball, 2011; Danielson, 1996; Inoue, 2009).  

 

Despite the central role that instructional explanations play in classroom practices, current 

instructional quality models, which describe how effective teaching practices should look like, do not 

consider instructional explanations as a key element (Danielson, 1996; Klieme, Lipowsky, Rakoczy, 

& Ratzka, 2006; Pianta & Hamre, 2009). Moreover, aside from a few notable exceptions (Duffy, 

Roehler, Meloth, & Vavrus, 1986; Leinhardt & Steele, 2005; Perry, 2000), instructional explanations 

have not been investigated empirically within other traditions either. Thus, there is scarce of empirical 

work about instructional explanations and their potential contribution to promote students’ learning.   

 

The purpose of the present work is to examine instructional explanations from a theoretical 

perspective as well as empirically, in order to characterize them and investigate their association 

with students’ learning outcomes. The underlying theoretical framework chosen to organize the study 

is the one proposed by Leinhardt (2001) with some adaptations according to pertinent 

complementary literature (Drollinger-Vetter & Lipowsky, 2006; Leinhardt & Steele, 2005). 

 

The empirical work of this dissertation was carried out in the context of the project “Analysis of 

mathematic lessons” (FONIDE 209) funded by the Chilean Ministry of Education during 2007. This 

study, in turn, was embedded in the international extension of the research project the ‘‘Quality of 

instruction, learning, and mathematical understanding’’ carried out between 2000 and 2006 by the 

German Institute for International Educational Research (DIPF) in Frankfurt, Germany, and the 

University of Zurich in Switzerland (e.g. Klieme & Reusser, 2003; Klieme et al., 2006). According to 

the design of the original project, the study considers the inclusion of different perspectives, namely, 
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teachers, students and external observers, by means of questionnaires, tests and classroom 

observation protocols.  

The examination of instructional explanations in this dissertation begins in chapter 2 with the review 

of relevant literature and introduction of the theoretical background underpinning the study of 

instructional explanations. This theoretical review comprises three subsections, the first one 

describing the evolution of the process-product-paradigm into the actual instructional quality models 

that are presented in a next step. The second subsection includes a detailed theoretical presentation 

of explanations and instructional explanations, addressing the main theoretical issues and giving 

examples of the few empirical works about instructional explanations found in the literature. Finally, 

the third subsection with the description of Chilean teaching practices in order to contextualize the 

study.  

Chapter 3 presents the research questions and lists the associated work hypotheses that are 

investigated throughout this work. Chapter 4 includes the methodological aspects of the work, 

indicating the description of the sample, design of the study, the methods used the gather the data 

and the analyses chosen to answer the proposed research questions.  

Chapter 5 contains the presentation of results, which are organized by research question, starting 

with the results from quantitative analyses and continuing with the results from qualitative analyses. 

This chapter closes with a general summary of the results organized according to the central themes 

of the study.  Finally, chapter 6 concludes with a discussion of the link between the results and the 

instructional explanations literature and research, or lack thereof, that originally motivated the 

research questions addressed in this study. This chapter finishes with a discussion of the limitations 

of the study and the implications of its results, as well as an examination of areas where the research 

on instructional explanations can be fruitfully expanded in the future.  
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2 Theoretical Background 

Since the purpose of the present work is to examine instructional explanations as a quality feature 

of instruction, the first section of the theoretical background describes the general context of the 

instructional quality research—that is, the broad research approach, theoretical issues, and main 

components of the current models of instructional quality.  

Next, a theoretical review of instructional explanations is presented, as well as evidence illustrating 

the way explanations were empirically investigated.  

Finally, the third section presents specific aspects regarding instructional culture and instructional 

quality research in Chile in order to give a complete picture of the antecedents in which the research 

questions were investigated. 

2.1 Instructional Quality and Instructional Effectiveness 

Since the 1960s, the American tradition of research on teaching has been carried out mainly within 

the process-product paradigm, “that attempted to identify teacher behaviors that were correlated with 

student gains in achievement” (Rosenshine, 2010, p. 728).  

According to the changes in the approaches of teaching over time, new perspectives in investigating 

teaching characteristics have emerged, in order to better understand their association with student 

learning (Floden, 2001). As can be seen in the Figure 2.1 extracted from Reusser (2001, p. 1), until 

the early 60s the research topic was not actually teaching but “teacher quality” emphasizing the 

teachers’ characteristics and even their personalities (Good, Wiley, & Florez, 2009). Afterwards the 

teacher professional profile became object of study, stressing teacher education, attendance to in-

service courses, or experience, among other variables (Cohen, 2010). Next, teaching practices 

became the focus, but since the predominant teaching approach was direct instruction based on 

behaviorism, the emphasis was still put mainly on teacher’s actions disregarding the importance of 

the role of the students.  According to Reusser (2001), this phase would correspond to the “Simple 

Process-Product Model.” In so far as cognitive student issues were getting more attention, the 

student-centered teaching approaches gained in importance, so that the emphasis was increasingly 

moved from teaching practices to teacher-student interaction and shared meanings of students and 

teachers (Floden, 2001). This shift implied the inclusion of further variables that could contribute to 

better understanding of how these interaction work, but also taking into account both individual and 

contextual levels. In other words, acknowledging the fact that teacher-student interactions are 

influenced by characteristics of both of them, such as teacher’s beliefs, knowledge, and expertise; 

students’ motivation or social background, among others; and also contextual elements, like 



 

8 

characteristics of the school management, climate, or the neighborhood where the school is located 

(Reusser, 2001). 

Still, the inclusion of context variables in detail in these modern approaches did not mean that the 

general focus of the research agenda changed; variables were considered relevant insofar as they 

played roles as potential factors associated, directly or indirectly, to learning. This search for 

association is based on the principle of modifying the teachers’ performance in order to improve 

learning outcomes, which assumes an underlying notion of causality  (Floden, 2001). Thus, 

instructional quality models keep the main goal, but in a complex multicriterial framework, the so-

called “Extended Process-Mediation-Product-Model” (e.g. Reusser, 2001). 

Figure 2.1:  Conceptual evolution of the link between learning and instruction according to Reusser (2001, p.1)  

 

The following section describes the transition from teaching effectiveness according to the process-

product paradigm to instructional quality according to the current models of teaching and learning 

processes. 
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2.1.1 The Process-product Paradigm 

Some of the most influential summaries in the context of the “Simple- Process- Product Paradigm,” 

are the chapters written by Brophy and Good; and Rosenshine, and Stevens, respectively, (1986) 

based on observational and experimental studies, respectively, in the 3rd edition of the Handbook 

of Research on Teaching. Interestingly, they mention some of the teacher actions or strategies that 

can be linked to student learning outcomes that prevail today, while others have become obsolete, 

mainly due to the changes in the underlying learning theories. We turn now to an overview of these 

“classic” findings. Since the findings of these both chapters correspond to different aggregation 

levels, the section will follow a thematic thread, using the presentation of Brophy and Good’s chapter 

as an overarching element within which the findings of Rosenshine and Stevens will be embedded. 

In their chapter, Brophy and Good (1986) did not intend to introduce a model, but they structured 

the summary of findings by grouping the variables into broader categories (see Figure 2.2 for a 

synthesis of this work). The first category is “Quantity and Pacing of Instruction” (QPI) which are 

stressed as the most consistently replicated findings related to student achievement. As a conceptual 

category, QPI considers curricular coverage—that is, the proportion of learning standards or amount 

of content taught along a school year, or even more broadly, also including the instructional time 

spent at school, defined as duration of school day and school year. The time spent in academic and 

curriculum-related activities within lessons would be a complementary way to assess this concept. 

Another variable included in this category since it contributes to maximizing the quantity of 

instruction, is classroom management, understood as the ability of the teacher to organize the 

learning environment in such a way that the lessons run smoothly, with brief transitions, and with 

clear disciplinary rules in order to avoid misbehavior and optimize the time the students are really 

engaged in the activities proposed by the teacher. 
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Figure 2.2: Summary of findings in the context of the Process-Product Paradigm Brophy & Good, and 
Rosenshine & Stevens (1986) 

 

In current instructional quality approaches, QPI seems to have been split into different categories: 

classroom management and quantity of instruction. On the one hand, classroom management has 

remained basically unchanged since it postulation by Kounin (1970), and is one of the main 

components in contemporary observation instruments used to rate classroom practice  (e.g. Pianta 

& Hamre, 2009; Rakoczy et al., 2007). On the other hand, quantity of instruction consists of other 

variables, such as time spent at school or curricular coverage. Such variables are, in principle, 

excluded from specific instructional quality approaches that focus on much more detailed teaching 

elements, by examining in depth smaller units of analysis, usually a lesson or a sequence of lessons 

(e.g. Pianta, Hamre, & Mintz, 2012; Rakoczy & Pauli, 2006). Nevertheless, quantity of instruction is 

often considered in the design of the studies or used as covariate when analyzing the data and 

interpreting the results. Additionally, in regard of the within the “Simple Process-product Paradigm,” 

Cohen (2010) claims that those “that did turn up consistent relationships between teaching and 

learning, and were stable indicators of teaching quality, focused on process measures of interaction 

between teachers and students," (p.382) in contrast to the amount of content that was discussed 

during the learning unit. 

Nowadays, variables about quantity of instruction are, basically, baseline measures that can be used 

as complementary inputs to understand the success of schools and, in global terms, can contribute 

to describe general characteristics of the school system (Organisation for Economic Co-operation 

and Development, 2014).  
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According to Brophy and Good (1986), the QPI category also considered that students need to 

experience a consistent success to learn efficiently, so the teachers should promote continuous 

progress, proposing activities that can be successfully accomplished by the majority of the students 

in a class, (e.g., breaking down complex topic into small steps in order to avoid frustration and 

confusion). It is very interesting to note, that even when such a strategy can be a positive way to 

deal with a practical problem when an activity does not work out as the teacher expected, actual 

instructional quality models emphasize the inclusion of challenging instructional settings. In this 

sense, the reduction of complexity should be carefully planned in advance in order to avoid severe 

frustration but still keep the students cognitively activated; otherwise, the challenge and opportunity 

for reflection is reduced as well, affecting an important aspect of the instructional quality (Rakoczy & 

Pauli, 2006). 

Finally, in this category, the role the teacher plays in a lesson is heavily emphasized; with the purpose 

of achieving the desired level of QPI, the time students spend being supervised or taught by the 

teacher should predominate over the independent work. The seatwork is conceived as follow-up 

work, once the contents are delivered by the teacher, and seatwork is considered the main 

opportunity in the lesson for students to obtain feedback from the teacher. Still, the authors also 

argue that the presentation of contents should be by means of posing questions and giving feedback 

instead of using a lecture format (Brophy & Good, 1986). It is interesting that, in retrospective, Brophy 

and Good’s chapter shows the first outlines of the consideration for students’ issues, but still from a 

very teacher-centered approach. The current models consider the students to have a crucial and 

active role in their learning processes and assume the presence of cumulative exchanges between 

the teacher and the students. These models also consider balanced classroom discourse in which 

the students have substantial participation, and students-led—in which they are protagonists—are 

used as components of high quality lessons (e.g. Pianta & Hamre, 2009; Rakoczy & Pauli, 2006). 

A second category mentioned by Brophy and Good (1986) is Lesson Form and Quality (LFQ). The 

main findings related to format aspects, understood as the choice of individualized instruction, small-

group or whole-class, are not very conclusive except by the fact that “small-group instruction is more 

complex to implement than whole-class instruction, but it may sometimes be necessary” (p.362). 

Additionally, the authors discourage the emphasis on unsupervised seatwork and individualized 

instruction, in support of direct instruction or supervised practice. On the contrary, contemporary 

instructional quality models are not prescriptive in this regard, since the choice of the lesson format 

depends on the resources and materials used, and the kind of interaction to be promoted with the 

instructional activity, but most of all, in order to serve the specific learning goals, set for the lesson. 

Nevertheless, the use of a variety of formats within a lesson is suggested (Pianta, Hamre, & Mintz 

2012)  
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In regard of the quality component of this second category, Brophy and Good (1986) indicate it that 

it can be divided into three elements, namely, Giving Information, Questioning the Students and 

Giving Feedback. In this regard, there is a considerable conceptual overlapping between the authors’ 

proposed quality components and the findings about “teacher functions” summarized by Rosenshine 

and Stevens (1986) in the so called “Model of Effective Instruction” (see Figure 2.2) that actually 

refers to a goal-oriented actions sequence to structure the teaching practice in general terms. This 

sequence includes six steps, namely, (1) Review, check of previous day’s work and homework, (2) 

Presentation of new contents and skills, (3) Guided Practice, (4) Correctives and Feedback, (5) 

Independent Practice and (6) Weekly and Monthly Review. Following, the main commons element 

will be described. 

The Presentation of Material is an important component defined in similar terms by all these authors, 

emphasizing elements related to its clarity and structuration. Rosenshine and Stevens (1986) add 

an explicit sequence of aspects that a clear presentation is expected to fulfill, namely, (1) Clarity of 

goals and main points: goals have to be stated, one thought at a time and avoiding ambiguity and 

digressions; (2) Step-by step presentations: small steps, mastering one before moving on to the 

next, explicit directions ending with an outline (if required by the complexity of the material); (3) 

specific and concrete proceedings that include modeling and providing detailed and redundant 

explanations and concrete and varied examples; (4) checking for students’ understanding by asking 

them comprehension questions or asking them to summarize the material using their own words. 

Complementarily, in regard to Questioning, Brophy & Good (1986) go beyond the use of questions 

for a specific purpose and discuss the difficulty and cognitive level that the questions posed by 

teacher should have. The authors explicitly indicate that findings in this regard yielded inconsistent 

results, still they suggest setting a difficulty level intending to elicit a wide majority of correct answers 

avoiding no response, so the difficulty is expected to vary according with the content, assuming that 

complex content may require posing questions that few students can answer correctly. Concerning 

the cognitive level, a greater frequency of high level questions is related with achievement, even 

when the absolute frequency of this kind of questions is always low for any teacher. Regarding 

Feedback all the mentioned authors explicitly distinguish the suggested reactions according to the 

correctness of the answer. Correct answers would require overt explicit and short feedback, so that 

everyone in the classroom knows the answer is right, but praise is not suggested. Process feedback, 

i.e., extended explanations about why an answer is correct or how it was obtained is suggested to 

be useful for partial correct or incorrect answers, in particular in the early learning periods of a topic 

(Brophy & Good, 1986; Rosenshine & Stevens, 1986). 

To sum up, the findings in the context of the “Simple-Process-Product Paradigm” highlight the 

importance of teaching elements that are empirically associated to student learning outcomes. These 
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teaching elements are following: the quantity and pacing of instruction, considering classroom 

management as a key element to maintain the flow of a lesson; the structure is highly emphasized, 

in terms of a specific sequence of elements to occur in the course of the lesson (Review- presentation 

of content- guided practice- feedback- independent practice- review), but also within the presentation 

of contents, that should begin with the delivery of information and followed by questioning. In 

addition, the findings stress the importance for the students to have a constant experience of success 

in the classroom, what implies for the teachers to pose questions that can be correctly answer by 

the majority of the students. Finally, feedback is identified as an important element, especially in 

order to distinguish what is correct from what is not by partial correct answers (Brophy & Good, 1986; 

Rosenshine & Stevens, 1986). 

2.1.2 Contemporary Instructional quality models 

As can be seen in the previous section, the process product paradigm approach yielded findings 

relating many variables of teaching performance with student achievement, it was based on direct 

instruction, and therefore criticized for its attempt to reduce complexity in an extreme manner, 

excluding elements that were getting more importance in the student centered approaches that were 

gaining acceptance (Floden, 2001).  Current instructional quality models have overcome this 

problem by incorporating many individual and contextual variables that are now considered important 

in teaching and learning processes. In addition, the notion of learning outcome that was used as 

synonym of academic achievement by the “Classic Process-Product Paradigm has been expanded 

and considers motivational and social aspects of the learner as well (Reusser, 2001).  

According to  Klieme et al. (2006) an important issue in order to better understand the development 

of instructional research is the lack of a strong theoretical base for conceptualizing in instructional 

quality in its origin, what is understandable considering the essentially functional nature that it has 

had from its very beginning. There is no conceptual definition of instructional quality, but as a broad 

category including any element that contributes to enhance student achievement in so far as there 

is empiric evidence supporting it. This extremely functional approach turns out to be too simple and 

failed in allowing the integration of elements that were important from a theoretical perspective, like 

elements from progressive education, didactics and motivation. For instance, subject matter 

didactics approach in science and mathematics promotes a complex problem solving and inquiry 

approach encouraging the building of knowledge and not the rote memorization of abstract and 

isolated pieces of information that have no potential use in the students’ everyday life. The authors 

claim that the only manner to overcome these inconsistencies is moving on from the functional 

orientation to a wider understanding of instructional quality considering other goals than exclusively 

achievement and centering the focus in the student as the protagonist of the learning process 
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(Klieme et al., 2006). This idea of the students as an active learner has implied also the inclusion of 

complementary theories regarding individual needs and prerequisites (Deci & Ryan, 1993), turning 

out in emphasizing the fit between students’ needs and affordances offered in the classroom 

experience. 

In the German speaking tradition, one of the most widely used approaches is the “Model of learning 

opportunities and uses of instruction” which was developed by Helmke (2003) based on the work of 

Fend (1981). This model assumes that the teaching-learning process offers the student an 

opportunity to learn, which development depends on how the opportunity is perceived and interpret 

by each student according to her/his own individual characteristics, (which in turn, can be shaped by 

the familiar, cultural or environmental aspects, among others). In order to precisely describe how 

this interaction between students’ characteristics and the learning opportunities work it is necessary 

a detailed and theory driven examination considering pedagogical and psychological frameworks 

(Lipowsky, Rakoczy, Drollinger-Vetter,  Pauli, & Klieme, 2009).  

Next, the model of instructional quality proposed by Klieme et al. (2006) will be presented in detail, 

since the one underlying the design of the study where this work is embedded.   

As can be seen in Figure 2.3, Klieme et al. (2006) addresses three basic instructional quality 

dimensions, i.e., “Supportive Climate”, “Classroom Management” and “Cognitive Activation”. The 

dimension of “Supportive climate” “covers features of teacher-learner interaction such as supportive 

teacher student relationships, positive and constructive teacher feedback, a positive approach to 

students’ errors and misconceptions, individual learner support, and caring teacher behavior” 

(Lipowsky et al., 2009, p.529). This dimension is intended to offer the students a learning 

environment in which the student can feel confident, that is the conditions to eventually lead to an 

experience of autonomy, competence and relatedness, according to the Self-determination Theory 

of Deci and Ryan (1993). 

In addition, the dimension of “Classroom management” is considered crucial prerequisite to allow 

opportunities to learn, since it maximizes time spent on academic tasks. The core of classroom 

management relies on the structuration of the lesson, including clear rules, routines, students 

monitoring and other actions that contribute to an appropriate learning atmosphere, allowing a 

smooth flow between instructional activities. The components of classroom management are quite 

similar as the ones proposed by Brophy and Good in the 80s (see 2.1.1).  
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Figure 2.3:  Dimensions of instructional quality and their supposed effects extracted from Klieme et al., 2006 
p.131 

 

Finally, the “Cognitive Activation” dimension seems to be a key feature, in order to foster conceptual 

understanding. The conceptualization proposed by Klieme et al. (2006) integrated challenging tasks, 

activation of prior knowledge and content-related discourse within this concept. Lipowsky et al. 

(2009) deepened the definition mentioning that: 

In cognitively activating instruction, the teacher stimulates the students to disclose, explain, 

share, and compare their thoughts, concepts, and solution methods by presenting them with 

challenging tasks, cognitive conflicts, and differing ideas, positions, interpretations, and 

solutions. The likelihood of cognitive activation increases when the teacher calls students’ 

attention to connections between different concepts and ideas, when students reflect on their 

learning and the underlying ideas, and when the teacher links new content with prior 

knowledge. Conversely, the likelihood of cognitive activation decreases when students are 

requested to solve mathematical problems and tasks in a standard manner previously 

demonstrated by the teacher, when many of the questions set are at a low cognitive level, 

and when the teacher merely expects students to apply known procedures (p.529). 

According to Lipowsky et al. (2009), and as can be seen in Figure 2.3, there are also differences 

whether the expected effects are supposed to be direct or rather indirect, that is, supportive 

climate might be an important precondition but not enough to promote students’ achievement or 

might have an effect in motivation and effort, rather than in achievement itself. However, the key 

in this model whether the opportunity (quality dimensions enacted in lessons) can meet the 

students’ need, since this fit is what would lead to the desired outcomes, either achievement or 

motivation (Klieme et al., 2006). 
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Shifting to current models developed in the U.S., one widely known is the Framework for Teaching 

(FFT), developed by Charlotte Danielson, which first version was published in 1996. This framework 

has evolved in order to be aligned with the changes in the teaching standards in the U.S., but always 

including 4 domains, namely, “Planning and Preparation”, “The Classroom Environment”, 

“Instruction”, and “Professional Responsibilities. As shown in Figure 2.4, each domain comprises 5 

or 6 components, which in turn encompasses a variable number of indicators, reaching 76 altogether 

(see Danielson, 2013 for details).  

Figure 2.4: Domains and components of Danielson’s Framework for teaching 2013 

 

It is important to stress, that the FFT, but a Roughly speaking, it can be argued that domains 2 

and 3 of the FFT (classroom environment and instruction) would conceptually match all the of 

Klieme and colleagues’ model. When looking in depth, it seems that classroom management of 

Klieme would correspond to a subset of components of domain 2 of the FFT, but the search for 

further correspondence would need to revise in detail not only the components, but the indicators 

and it subcomponents as well. Beyond the difference in the number of general quality dimensions, 

it is noteworthy the discrepancies in the underlying logic, since this framework is not actually an 

“instructional quality” model but a “teaching effectiveness” model. This is the reason why it scope 

goes beyond the classroom practices and includes a quality domain related to activities that occur 

previous to the curriculum implementation, but also the domain of professional responsibilities 

that even comprises elements that occur outside the school, like professional development. In 

other words, this framework is more comprehensive and this probably the reason why it has been 

used for teacher evaluation purposes in the U.S (statewide in New Jersey, Illinois, Arkansas, 

Delaware and Idaho, among others). Danielson’s framework has been adapted for teacher 

DOMAIN 1: Planning and Preparation 

1a Demonstrating Knowledge of Content and Pedagogy 

1b Demonstrating Knowledge of Students 

1c Setting Instructional Outcomes 

1d Demonstrating Knowledge of Resources 

1e Designing Coherent Instruction 

1f Designing Student Assessments 

DOMAIN 2:#The#Classroom#Environment#

2a Creating an Environment of Respect and Rapport 

2b Establishing a Culture for Learning 

2c Managing Classroom Procedures

2d Managing Student Behavior 

2e Organizing Physical Space 

DOMAIN 3: Instruction 

3a Communicating With Students 

3b Using Questioning and Discussion Techniques 

3c Engaging Students in Learning 

3d Using Assessment in Instruction 

3e Demonstrating Flexibility and Responsiveness 

DOMAIN 4: Professional Responsibilities 

4a Reflecting on Teaching 

4b Maintaining Accurate Records 

4c Communicating with Families 

4d Participating in a Professional Community 

4e Growing and Developing Professionally 

4f Showing Professionalism 
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evaluation purposes in countries outside the U.S as well, as is the case of Chile and its 

“Framework for good teaching” (see Ministerio de Educación, 2004a; Taut & Sun, 2014).  

Another popular model in the U.S is the one developed by Pianta and Hamre (2009) which 

resulted in the “Classroom Scoring System” (CLASS). Even when there are slight differences in 

the dimensions and their descriptions according to the school level (Pianta et al., 2012; Pianta, 

LaParo, & Hamre, 2007), the three core domains are the same for all of them, that is, “Emotional 

Support”, “Classroom Organization”, and “Instructional Support”. This model shows many 

similarities with the Klieme and colleagues’, on the one hand, both of them are circumscribed to 

classroom practices and on the other hand, because because have three dimensions which refer 

to a similar conceptual background. Nevertheless, when going in depth in the scoring protocols 

based on them, relevant differences arise. In the first place, there are some differences in the 

composition of the dimensions as well as in the operationalization of them, for instance, 

“feedback” in CLASS is part of instructional support, while in the German model it is part of 

supportive climate. In the second place, they differ in the specifications and process required to 

assign scores. More precisely, CLASS’ dimensions are composed by several indicators and each 

of them is operationalized in several behavioral markers, what implies a quite analytic scoring 

procedure. The observation protocol based on Klieme and colleagues’ model includes a key 

conceptual definition in each of its dimensions with their associated behavioral indicators and 

guidelines in order to obtain a score after a high inference process. In fact, this protocol is called 

“High Inference Rating: Assessment of the quality of instructional processes” (Rakoczy & Pauli, 

2006). 

As a final reflection, it is important to stress, that even when a model is not necessarily attached 

to a specific assessment instrument from its very beginning, in this case, both tridimensional 

models incorporate a related observation protocol. In contrast, Danielsons’ Framework (1996; 

2013), that comprises also teacher’s activities beyond the classroom requires the use of further 

methods to gather evidence regarding all the domains of the framework, since analysis of 

videotaped lessons or classroom observation is not sufficient to cover all the components of the 

model.  

 To sum up, there is a strong tradition of empirical research on teaching and learning, that has 

been evolved over time according to the changes in the underlying learning theories. Nowadays, 

there are many frameworks that address the complexity of teaching and learning processes 

(Bolhuis, 2003; Danielson, 1996; De Corte, 2004; Pianta & Hamre, 2009; Seidel & Shavelson, 

2007) allowing a better orientation of empirical research in this field and at the same time a better 

interpretation of the results. Three models were discussed in this section in order to show an 
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example of similarities and differences that can arise due to operationalization choices, but also 

in decisions related to how to deal with the complexity of teaching and learning processes.  

 

2.2 Explanations 

The purpose of this section is to introduce the notion of instructional explanations that will be the 

main object of study in the present work. Since explanations have many meanings and are used in 

different contexts, this section will start with a broader conceptualization, including those 

explanations occurring outside school, following with instructional explanations and afterwards 

focusing in their importance and their specific role in mathematics instruction, ending with some 

examples of empirical work on instructional explanations. 

Explanations are part of everyday life arise spontaneously due to curiosity and are central to the 

human sense of understanding. This is the reason why they have been studied from multiple 

perspectives, going back for example to the Aristotelian four “causes” or modes of explanation as 

possible answers to the question “why” in the philosophy (Lombrozo, 2006) Explanations occur in 

different ways depending on the kind of question that elicits them, that is, they can point to the basis 

or origin of a phenomenon when answering to the question “why”, they can be descriptions of a 

procedure or structure when answering to the question “how”, or they can be definitions of meaning 

of concepts, examples, or interpretations when answering the question “what” (Kiel, 1999). From a 

cognitive perspective, explanations are related to theories, mental representations and are 

considered to foster conceptual coherence (Lombrozo, 2006). Besides, because of their 

transactional nature in face-to-face contexts, they can be understood as exchanges intended to 

expand understanding in real time if they work out successfully (Keil, 2006).  Therefore, the idea of 

examining explanations in a classroom context appears natural from a pedagogical approach. 

Nevertheless, it is interesting that when going in depth into the models about teaching-learning 

processes and their underlying conceptual frameworks, instructional explanations are not explicitly 

addressed (e.g. Klieme et al., 2006) or are a minor element among many others (e.g. Pianta et al., 

2012; Danielson, 1996). 

One of the most important scholars devoted to instructional explanations is Gaea Leinhardt with her 

thorough theoretical work conceptualizing instructional explanations, approach that takes into 

account the particularities of the subject matter and is complemented with a pedagogical view 

including very precise examples from teaching practice (e.g. Leinhardt, 2001; Leinhardt & Steele, 

2005). She identifies elements that characterize explanations, proposes a taxonomy based on these 

elements and specifies conditions under which the different kinds of explanations take place. 
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According to her work, the definition of instructional explanations assumes the need to differentiate 

them from other kinds of explanations that appear in other contexts. Leinhardt (2001) distinguishes 

four types of explanations, namely:  

• Common explanations: are those emerged in the everyday life in response to the stimuli of 

the world. 

• Disciplinary explanations:  are embedded in a specific knowledge domain and defined and 

ruled according to it. 

• Self-explanations: based on the definition of Chi (2000), they are understood as a way to 

achieve meaning in the context of a cognitive impasse. 

• Instructional explanations (IE): emerge as responses to curriculum related questions that 

arise in a learning setting. 

All these kind of explanations share common structural elements that at the same time, distinguish 

one from another when expressed in specific contexts; they depend on a query, are defined by 

specific rules of completeness, are defined according to their recipients and they require different 

kinds of evidence to be considered fulfilled. In Table 2.1 you can see a synopsis of the different types 

of explanations in terms of the key element that define them. 

Common explanations are those that arise usually in response to questions embedded in everyday 

life situations; they operate as an invitation to discuss a topic in face-to-face or virtual contexts that 

allow immediacy; they are ruled by social norms and are considered appropriate insofar they satisfy 

the recipient, even when they are not necessarily logical, can be speculative and do not follow a 

specific form of reasoning. Still, they are important for pedagogical purposes because they can be 

consistent or inconsistent with content knowledge learned at school and because of that they “have 

the potential to support or collide with educational forms of explanatory discourse” (Leinhardt, 2001, 

p.339).  

In contrast, Leinhardt (2001) indicates that disciplinary explanations are responses to questions that 

are significant in the specific discipline in which they arise; they are intended to an anonymous 

audience with no time boundaries and stringently defined by the rules and conventions of the 

discipline in which they are embedded, according to which the explanation can be accepted or 

refuted. 
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Table 2.1: Characteristics of different types of explanations, adapted from Leinhardt, 2001.  

Characteristics Common Self-explanation Disciplinary Instructional 

Context of the 
question 

Everyday life Everyday life 
Instructional issues 

Specific domain of 
knowledge 

Instructional 
disciplines 

Audience Someone who can 
engage in producing 
the answer 

Self Anonymous Teacher and/ or 
students 

Link to the 
audience 

Live Dialog N/A Asynchronous Live Dialog 

Rational Speculative Idiosyncratic Conventions of the 
discipline 

Simplified version of 
the norms and 
conventions of the 
discipline 

Rules of closure Social norms 
Satisfaction of the 
audience 

Idiosyncratic Conventions of the 
discipline 

Hybrid between  
stringent disciplinary 
norms and the 
flexibility of the oral 
register 

Link to IE They set a baseline 
for IEs and the 
alignment with them 
in nature can 
promote learning 

They can be used 
for pedagogical 
purposes as a 
complement  of IEs 
in a broader 
instructional 
strategy  

They set the upper 
limit stage toward 
which the IEs are 
supposed to move 
progressively 

 

 

Self-explanations, as their name suggest, do not have an external audience and because of this 

reason, “the language used in a self-explanation tends to be highly colloquial, personally referential, 

fragmentary and idiosyncratic” (Leinhardt, 2001, p.340). Besides, they usually arise in the context of 

an impasse in reasoning during a learning process and operate as a way to revise, extend or improve 

understanding (Chi, 2000).  

Instructional explanations (IEs), the focus of this work, are characterized by Leinhardt (2001) as:  

 

designed to explicitly teach—(to specifically communicate a portion of subject matter to 

others, the learners. Instructional explanations can be given by a textbook, a computer, a 

teacher, or a student, or they can be jointly built through a coherent discourse surrounding a 

task or text that involves the entire class and the teacher working together. Instructional 

explanations are natural and frequent pedagogical actions that occur in response to implicit 

or explicit questions)—whether posed by students or teachers. (p.340)  
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In comparison to the other types of explanations indicated by the author, IEs in classrooms are 

usually ruled by norms of the social discourse and discipline particularities as well, what would situate 

them between common and disciplinary explanations, meaning that they are responses to legitimate 

questions of a domain but are developed in a less formal and more redundant way since they take 

place in a mainly conversational scene. IEs are supposed to “bridge the gap between common and 

disciplinary explanations” (Leinhardt, 2001, p.339) and thus, in order to properly develop IEs, 

teachers need to know the difference between these other two kinds of explanations, in other words 

they need to be aware that they are presenting to the students a simplified version of a discipline 

and not meeting, for example, stringent scientific conventions. Moreover, as students acquire deeper 

knowledge and move towards advanced levels in a domain, IEs could progressively integrate more 

disciplinary features and eventually reach the point of dealing with disciplinary explanations. This 

progression is expected to be led by the teacher and implies a deep disciplinary knowledge, in order 

to highlight formal elements that could have been remain unseen or even ignored in a more basic 

pedagogical approach1.  

 

2.2.1 Instructional Explanations 

Leinhardt (2001) claims that the two main locations in which IEs arise are instructional tasks and 

classroom discourse. The task may provide the conceptual input or link to prior knowledge or require 

an instructional explanation as a part of the justification of an answer or a particular argument, while 

the classroom discourse is the vehicle through which instructional explanations are finally developed 

in a classroom setting. As can be seen in Figure 2.5, from an interactional perspective, there are 

mainly two possible approaches to the development of an instructional explanation, that is (1) one 

student is individually engaged in a task that includes giving, requiring IEs or even promoting it 

development throughout it completion. This individual task demands the student to directly interact 

with the task, usually by means of instructional materials; or (2) two or more persons, either students 

or the teacher with the students are involved in an explanatory dialogue that may have been originally 

based on an instructional task with or without using materials. In a classroom setting the combination 

of both approaches is also possible, while the individual work is more typical of Computer-based 

learning Environments (CBLE) or other instructional settings outside school. 

 

                                                
1   This deep disciplinary knowledge that allows this kind of progression between instructional and disciplinary explanations 

would be similar to the concept of “fundamental mathematics” stressed by Ma (1999), referring to that deep 
mathematical understanding of teachers, that allows them to highlight big mathematical ideas from the very beginning 
of schooling, adapting their representation to the development stage of the children, but not compromising the 
conceptual accuracy. 
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Figure 2.5: Locations for Instructional explanations and related interaction (derived from Leinhardt, 2001).  

 

Even when instructional materials are not an indispensable component of IEs in every case, they 

are very frequently used in classroom settings and, in fact, Leinhardt’s quotation in the former section 

says IEs can be “given by a textbook” highlighting them as a source for IEs. When focusing in the 

material, they can be certainly examined as pieces of information, in terms of its accuracy, richness 

and completeness among other elements. The particular case of textbooks is especially relevant, 

since they are curricular tools, which are intended to be aligned to learning standards, and are crucial 

in carrying the contents clearly, including the corresponding intended teaching approach. 

Nevertheless, they are not meant as static objects but designed to be used in the classroom, and in 

these cases the instructional material operates as an input that eventually contributes to the quality 

of the explanation (see section 2.2.4), but the development of the IEs in a classroom setting 

becomes, ultimately, always part of the classroom discourse. At that moment, the approach of the 

analysis changes adopting the terms of the examination of teacher-student interaction in a classroom 

setting, allowing the identification of the characteristics specified above (see Table 2.1 as well as the 

quality features in  2.2.4). 

The other possible path presented in Figure 2.5 for an IE to exist considers the interaction between 

a single student and her learning material outside a classroom setting, like is the case in CBLE. In 

this perspective IEs have been examined mainly from a cognitive perspective, focusing on how the 



 

23 

students or persons interact with the environment and process the information conveyed by it 

considering the absence of face-to-face interaction and customized feedback. In that context, 

Wittwer and Renkl (2008) propose the conceptualization of IEs, under consideration of the stages of 

skill acquisition models (e.g. Anderson, 1982). In general terms, CBLEs are very suitable to carry 

out experimental designs, since they easily allow the control of many variables, such as exposition 

to information modules, reaction time, sequence of content, and amounts, among others. Because 

of this reason, this kind of studies has yielded interesting findings that seem complementary to the 

interactional approach. 

The present work will focus on the study of IEs as a form of classroom discourse involving the teacher 

and one or more students in order to answer a subject-matter related question (e.g. Leinhardt, 2001; 

Perry, 2000).  However, in order to complement the teaching and learning research tradition, some 

findings of studies carried out in CBLE will be taken into account insofar they are applicable to face-

to face learning situations, as well as the inclusion of general quality features of materials that can 

enhance the development of the IE in the classroom discourse. 

 

2.2.2 The importance of IEs in instruction 

Firstly, instructional explanations are very common; they appear in a daily basis in every lesson 

independently of the subject matter taught, but their use becomes even more frequent when new 

content is introduced (e.g. Perry, 2000; Leinhardt, 2001; Renkl et al., 2006). Since one of the primary 

purposes of the existence of schools is as places that allow students to learn new material, that at 

least partially would not be easily learned by themselves, instructional explanations are an essential 

component of everyday life in classrooms. Besides its ubiquity many authors mention that IEs are 

important pedagogical tools, because when they are well performed, IEs can foster learning while 

poor performed, they can hinder it (e.g. Leinhardt, 2001; Weiss & Parsley, 2004; Muijs, Campbell, 

Kyrikiades & Robinson, 2005) 

IEs can serve many purposes and that is why they can appear in different moments throughout a 

lesson, for instance, they can be a primary instructional strategy at the beginning of an introductory 

lesson, or they can work as scaffolding during seatwork phase or simply arise when answering 

students’ questions. They can be the core of a lesson, based on instructional dialogue or classroom 

discussion or when helping students understand their errors and misconceptions as well 

(Charalambous et al., 2011; Wittwer & Renkl, 2008). Perry (2000) argues that beyond the specific 

explanatory episodes, teachers provide explanations “when they received cues from students that 

they did not fully understand a concept” (p.187) or “as a way of extending or connecting information 
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or concepts or as a way to anticipate future uses or significances” (Leinhardt, 2001, p.340). 

Furthermore, even when IEs are associated to the introduction of new content in a superficial level, 

being conceptualized as a way to deliver information, they can be used to develop understanding 

related to principles or complex concepts within a domain (Wittwer & Renkl, 2008) and to enhance 

the construction of mental representations related to conceptual knowledge (Inoue, 2009; Sánchez, 

García-Rodicio, & Acuña, 2009) In fact, this extent in terms of the scope that an IE can reach allows 

them to be good mechanism to communicate the sense of a particular domain, for example, what 

questions are important in a particular subject matter, what kind of answers are considered pertinent, 

what lastly leads to understanding how a discipline works (Leinhardt, 2001).   

Finally, an important benefit of using IEs as part of classroom discourse is that they allow immediate 

check for understanding followed by feedback or clarification when needed. Nevertheless, this 

benefit would only work once the learners are aware of their lack of understanding and also willing 

show it to others, what is not always necessarily the case (Wittwer & Renkl, 2008).  

There are researchers that argue against the importance of IEs in instruction, arguing that even 

when frequent they are not per se effective and appear to be a limited way to promote learning, since 

the research has only focused in its benefits in introductory lessons (e.g. Wittwer & Renkl, 2008; 

Renkl, et al., 2006)  

These authors, that have studied IEs in the context of CBLE argue that IEs are useful when they are 

allocated during early and intermediate stages of cognitive skill acquisition, what would correspond 

to the introduction of new contents at school, becoming superfluous in a final phase where the 

acquisition of speed and accuracy are the target, IEs become superfluous and practice is the most 

important component. Consistently, in more general learning settings, they have argued that 

students that already possess some basic notion about some domain may improve their learning 

more effectively when they are engaged in activities in which they have to apply, transfer knowledge, 

or activities that imply any kind of active process of the information instead of receiving additional 

IEs in a passive way. Moreover, the authors emphasize self-explanations are supposed to be more 

effective than traditional IEs, in settings like learning through problem solving or tutoring, while in 

cooperative learning settings the explainer would be prime beneficiary of IEs instead of the recipient. 

In other words, according to these authors IEs would be only useful at very initial phases when a 

new content is introduced and hereafter, only when self-explanations do not seem to be enough to 

reach learning goals (Renkl et al., 2006).  

The polarity suggested by the idea of active processing instead of passively receiving would reflect 

somehow the discussion about the effectiveness of constructivist versus direct instruction approach 

(Wittwer & Renkl, 2008). Moreover, one possible reason for the lack of an extensive research body 
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about IEs could be the fact that they appear to be associated to teacher-centered teaching 

approaches. Nevertheless, the strong underlying association between IEs and direct instruction 

approach stated by Wittwer & Renkl (2008) can be understood as a conceptual choice related to 

their conceptualization and operationalization, but not considered as an inherent feature of IEs. In 

regard of the contextualization of IEs in the current scene of supremacy of constructivist theories 

they claim that: 

 

instead of purely communicating knowledge that learners might process only superficially, it 

is of particular importance to support learners in ways that make them more likely to attend 

to the learning material in a meaningful manner, thereby effectively building up new 

knowledge. Consequently, when providing instructional explanations, learners should, in 

addition to solely reading or listening to an explanation, rationally engage with the information 

provided or apply what has been described in the explanation. (Wittwer & Renkl, 2008, p.55) 

 

This conceptualization used by Wittwer & Renkl (2008), explicitly reduces the richness of the 

classroom discourse to communication of knowledge through passive listening and reading. This 

notion is clearly inconsistent with the broader approach proposed by Leinhardt (2001), that considers 

the classroom as a social system in which every participants both learn and teach, and specifically 

about the role of the teacher in instructional explanations, she argues that “teachers must be able to 

both design and deliver a coherent and meaningful explanation just as they must be able to 

participate in and facilitate a meaningful explanatory discussion that is being led by students” (p.334) 

This inconsistency reveals the risk to address the shift from teacher-centered approaches to 

students-centered approaches solely as an issue of balance between who plays the main role in a 

classroom setting, neglecting the broader redefinition of the roles of every participant that it implies. 

Researchers that have emphasized the importance of IEs in instruction explicitly claim that in 

student-centered approaches, the role of the teacher evidently changes in contrast to direct 

instruction but remains crucial, a point that can be illustrate in multiple ways. For instance, Inoue 

(2009) based on the work of Ball, Hill and Bass (2005) and Ma (1999) highlights the students’ sense-

making process in mathematics instruction that is characteristic from student-centered approaches 

and can be only achieved under the provision of high quality explanations and careful guidance of 

the teacher. Additionally, in more general terms, regarding the role of the teacher in mathematics 

instruction Lampert, Beasley, Ghousseini, Kazemi, and Franke (2010) claim that “the work of the 

teacher is to deliberately maintain focus and coherence as key mathematical concepts get 

“explained” in a way that is co-constructed rather than produced by the teacher alone” (p. 131).  This 
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idea of the teacher as the one responsible for keeping conceptual coherence and maintaining the 

focus on disciplinary core issues, put together with the principle of co-construction of knowledge in 

the classroom, would overcome the argument posed by authors like Wittwer & Renkl (2008) that 

throw into question the sense of using IEs in classrooms in general terms as well as its restricted 

usefulness to introductory lessons. 

Since the goal of the present work is to explore IEs as an instructional quality feature, and 

contemporary instructional quality models already endorse to the constructivist teaching approach 

to a greater or lesser extent (see section 2.1.2), it does not seem productive to dwell on debate 

regarding teacher versus student centered teaching approaches. However, some of the specific 

elements mentioned here as disadvantages of the use of IEs will be considered when going in detail 

into the quality dimensions of using IEs in classroom settings. Likewise would be proceeded with the 

elements stated here as those justifying the importance of IEs in teaching practices. 

2.2.3 IEs in mathematics instruction 

In the case of mathematics one important characteristic of IEs, in contrast to other subject matters, 

is that they can deal directly with the topic of interest, for example, an IE about the Pythagorean 

Theorem or can otherwise be embedded in a context that requires a disciplinary treatment, like 

everyday life situations, for example, Peter is late for dinner and needs to find out the shortest 

possible way home (Leinhardt, 2001). 

According to the nature of the subject matter, there are some occasions in which IEs appear more 

frequently than others. In the case of mathematics, these occasions are related to (1) procedural 

elements, like operations, functions, procedures and iterations, (2) representations or models, (3) 

principles and (4) metasystems of inquiry (Leinhardt, 2001). They usually shape the kind of IE to be 

developed, since they depend on the type of question they are answering. They are discussed below. 

(1) Procedural elements: IEs referred to these elements “can vary from a list of procedural steps 

and their justifications to complex systems of equivalent and parallel actions” (Leinhardt, 2001 

p.343). The IEs about procedural elements are answers to the question “how” and refer to 

mathematical principles but include the particularities of the entities on which they operate, that 

can be numbers (for example, fractions or decimal number), shapes or graphs (Leinhardt, 

2001). Schmidt-Thieme (2009) claims this kind of explanations is intended to allow someone 

to perform an action correctly from computing something in algebra to describing how to draw 

a figure in geometry. Whether the emphasis in these explanations is put on the automatization 

in performing a sequence of actions or on the understanding of the underlying mathematics 
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principles depends on the approach to mathematics education or on the specific instructional 

goal. 

(2) Representations or models: some mathematical topics often imply the use of specific 

representations or models, or it can be even the case that a representation can be the content 

and become themselves the goal of an instructional explanation (see details of the role of 

representations in IEs in the section 2.2.4). The choice of a representation can dramatically 

shape an IE and can have conceptual implications, emphasizing or deemphasizing certain 

properties. This is an especially sensible choice in mathematics since “mathematical entities 

bear a specific and definable relationship to each other” (Leinhardt, 2001, p.343). The work of 

Saxe, Diakow, and Gearhart (2013), about the results of the implementation of a pedagogical 

unit that uses the number line as main representation to teach integers and fractions, is a very 

interesting example of using a representation not only to foster conceptual understanding of 

these both topics, but to emphasize their common core principles, allowing the understanding 

of their conceptual relationships as well as avoiding ulterior misconceptions. 

(3) Principles: They define the discipline, it boundaries and affordances, providing numerous 

occasions for IEs. “Explanations of these principles involve the idea that some actions are 

consistent with previous assumptions of how things work in mathematics whereas others are 

not. Mathematical principles include among others, concepts such as associativity, 

commutivity, and the concept of proof” (p.343). According to Schmidt-Thieme (2009) IEs about 

principles are answers to the questions “what” or “why”, that is, they can refer to conceptual 

definitions, facts, reasons or associations. 

(4) Metasystems of inquiry: This broad category considers the tools of mathematical reasoning 

like “problem solving heuristics of simplification, extreme cases, and analogy construction. 

They also include an appreciation for sense making.” (Leinhardt, 2001, p.343) Mathematical 

notation is also considered part of metasystems in the sense that it helps to support 

mathematical reasoning. This category can be associated to the questions “what”, “how” or 

“why”, depending on the tool to be explained. 

To summarize, the appearance of instructional explanations in mathematics instruction is associated 

to the question in the background of the explanation (what, how or why) as well as to the core 

components of the subject (i.e. procedures, representations, core principles and metasystems). 

Following, the quality components of instructional explanations will be discussed. 

2.2.4 Characteristics of good IEs in mathematics instruction 

As stated previously, IEs are a very common element of instruction, but anyhow there is scarce 

research about them, especially in regard of what constitutes a good explanation (Renkl, et al., 2006; 
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Wittwer & Renkl, 2008). In fact, there is no broad tradition in studying instructional explanations at 

schools, still the main researcher in this field, Gaea Leinhardt, has proposed a model of instructional 

explanations, that is presented next. 

In her chapter “Instructional Explanations: A Commonplace for Teaching and Location for Contrast” 

Leinhardt (2001) presents a version of her model to conceptualize instructional explanations in the 

classroom (see Figure 2.6). The model of instructional explanations proposed by Leinhardt is generic 

to any school subject and is conceived as a system of interrelated goals; assuming that when all of 

them are met an explanation is produced. These goals or criteria, which need to be fulfilled in order 

to succeed in developing the instructional explanation, are represented by the hexagons in the figure. 

The actions that occur within the classroom in order to carry out an instructional explanation are 

represented as rectangles and vary among the subjects insofar the instruction differs according to 

the subject’s nature. The small network icons represent “the knowledge required to meet the goal 

successfully” (p.344).  Since the present work is focused on instructional explanations in 

mathematics instruction, all the specifications and particular examples will refer exclusively to this 

subject matter. 

It is important to highlight that, even when Leinhardt (2001) proposes that once these goals are met 

an instructional explanation is produced; the goals actually operate as criteria that imply certain 

quality, in other words, they do not work as a logic chain, so that in the absence of one of them, the 

result would be a pedagogical action different from an instructional explanation; instead, the absence 

or partial fulfillment of one of these criteria impacts in the quality of the instructional explanation.  

As can be seen in the Figure 2.6, there are ten goals included in the model that can be clustered in 

the following core elements: (1) the query, (2) the examples, (3) the representations, (4) prior 

knowledge, (5) core principles, (6) conditions of use, and (7) nature of errors.  
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Figure 2.6: Leinhardt’s model of instructional Explanations (extracted from Leinhardt 2001 p.345) 

 

(1) The query: As stated before, the query is the essence of an instructional explanation and it 

can be explicit or implicit and can be posed by the teacher as start-up activity or emerge from 

the classroom discussion as a question or even derived from comments of the participants. In 

the former case, the teacher has to establish his own queries or select them from the textbook 

or pedagogical materials. In the latter case, the teacher has the choice to highlight or ignore a 
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potential query, according to what he wants to emphasize or deepen in the lesson. Any query 

has to fulfill the condition of requiring an authentic explanation, that is, an explanation that 

makes sense in the discipline in which it is embedded and/or in its application to an everyday 

life situation. In the particular case of mathematics an explanation is often a way of solving 

problems admitting many approaches and representations but recognizing the existence of 

right and wrong ones. “The explicit recognition of the query or problem to be addressed 

establishes a benchmark against which progress in terms of understanding can be measured 

in the discussion” (Leinhardt, 2001, p.346). Moreover, making the query explicit to the students 

can work as a concrete tool to be used to highlight the conceptual thread and to organize the 

content.  The selection of a good query for instructional purposes assumes the teacher to have 

a “sophisticated knowledge of the discipline” (Leinhardt, 2001, p.346), otherwise an IE can be 

coherent but disconnected from the core disciplinary ideas. As shown in the model, even when 

the query could remain implicit during a lesson, it needs to be understood by all the participants 

in the classroom to allow the instructional explanation to be productive. The teacher needs to 

identify it problematic features and select appropriate examples to promote this understanding. 

 

(2) The examples: Leinhardt (2001) defines examples as instances and stresses the importance 

to having a set of examples for an explanation and not only one, in order to show how the 

critical features of a concept are met or not under several different circumstances. “By 

providing a useful set of examples, an effective instructional explanation helps to map the 

conceptual landscape as well as providing tangible examples of how the concept can be 

applied” (Leinhardt & Steel, 2005, p.136). In addition, the use of a variety of examples instead 

of only a few may be used to promote the search for regularities, fostering inductive thinking, 

that can be considered as mathematical reasoning and precursor of formal proofs (Niss, 2003). 

Thus, the use of a variety of examples can be interpreted as a way to transmit an important 

part of the sense of domain in mathematics education.  

As we have seen, examples are an extremely important component of good explanations and 

at the same time their selection or generation has been stressed as a difficult task (Zaslavsky 

& Peled, 1996). In Leinhardt’s model (2001), examples appear related to different criteria in 

addition to their consideration as an independent criterion, that is, they appear again in 

connection to prior knowledge, conditions of use, core principles and errors and related to the 

query as well. One reason of this recurrent appearance is because, in fact, they play different 

roles in an explanation. “In the discussions that produce an explanation, examples can make 

connections to prior knowledge and conclusions, they can point out under which conditions a 

particular form of an argument can or should be used, and they can clarify the features of a 

fundamental query that are themselves problematic” (Leinhardt, 2001, p.348). Consequently, 
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the teacher needs to keep always in mind, why she is choosing a specific example and not 

another and what is the specific feature intended to be illustrated, clarifying whether its 

importance relies, for example on a disciplinary value or rather on the students’ perspective 

towards a specific content, for instance to avoid misunderstandings. Zaslawsky (2010) argues, 

there are many reasons why examples can fail, such as, because they are irrelevant, confusing 

or so complex that the focus gets lost. Moreover, the teachers must be able to evaluate and 

frequently, refine, modify or clarify examples given by the students. This refinement implies the 

need to highlight which attributes are important and which irrelevant for the particular case that 

is intended to be exemplified in order to focus the students’ attention properly (Zaslavsky, 

2010). This means clearly identifying which are the key features in order to generalize the 

example and which features are less important and modifiable keeping the essence of the 

example unaffected (Zaslavsky, 2010).  

(3) The representations: the use of representations is very common in mathematics education, 

and as mentioned in the former section, they can be an important component or even become 

the object of the IE itself. Representations include an ample spectrum of elements, from 

manipulative materials like Diennes blocks to diagrams or computer simulations. They are 

tools that can foster the development of explanations insofar as they connect to them in a 

relevant and explicit way (Leinhardt, 2001). Similarly, as examples, representations must be 

carefully used, in order to avoid misunderstandings: 

  

For example, a representation such as the pie chart or hundreds square for percent 

admirably develops the concept of part of a whole. Although a percent can be 

considered a part of a whole, it is fundamentally a privileged proportion (Parker & 

Leinhardt, 1995). Percent shows how one ratio relates to a target ratio based on one 

hundred. Thus, although having 113% makes sense under some circumstances, 

thinking of 113% as a part of a whole does not make sense. Such a relationship can 

be shown, but is not an explanation supported by a representation (Leinhardt, 2001, 

p.348). 

  

In addition, it is important to take into account the students’ characteristics and prior knowledge 

when choosing a representation in order to assure it can be interpreted as expected and does 

not turn out to be confusing for them. If a representation is too complex, the teacher might 

need to invest too much time presenting it and lose the focus of the explanation. Similarly, to 

examples, representations can be selected from textbooks, elaborated by the teacher or 
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refined from those given by the students. Any of these activities requires the teacher to possess 

deep subject matter knowledge as well as knowledge of the students’ experiences. 

Furthermore, it is important to emphasize that according to Leinhardt (2001) even when 

representations are very important tools that can enrich explanations, they do not explain 

something themselves and they solely use is not synonymous of students’ learning, unless 

they are explicitly linked to their correspondent core conceptual elements. Activities using 

hands-on material are a common example of this situation and even when a manipulative 

experience can be a good instructional approach; it requires a clear conceptual association in 

order to be successful. Additionally, as claimed by Ball (1993):  

No representational context is perfect. A particular representation may be skewed 

toward one meaning of a mathematical idea, obscuring other, equally important ones. 

For example, the number line as a context for exploring negative numbers highlights 

the positional or absolute value aspect of integers: that -5 and 5 are each five units 

away from 0. It does not necessarily help students come to grips with the idea that -5 

is less than 5 (pp.162-163). 

 

Finally, it is important that everybody in the classroom is aware why the representation is being 

used; which of its elements is subject of generalization and which are particular cases and 

need to be considered as such (Leinhardt & Steel, 2005). 

(4) Connection to Prior knowledge: A good instructional explanation needs to connect properly 

the new mathematical ideas with students’ prior knowledge (Leinhardt, 2001; Leinhardt & 

Steele, 2005; Renkl et al., 2006). Establishing this connection requires specific prior knowledge 

to be in place and, consequently, it cannot be simply assumed based on curricular sequence, 

instead, it is the teacher’s task to assess students’ competencies and move forward once it is 

assured the prerequisites are well accomplished (Leinhardt & Steele, 2005). The activities 

carried out by the teacher with this purpose vary depending on the kind of knowledge or 

competencies addressed as prerequisites, comprising activities such as classroom review or 

discussion or even explicit rehearsal and practice (Leinhardt & Steele, 2005). The new 

knowledge often appears as isolated pieces of information ant it takes time to really connect it 

with more established knowledge (Leinhardt & Steele, 2005) Findings from CBLE address the 

importance of customizing instructional explanations once particular competencies of the 

learner have been assessed, in other words, instructional explanations need to be adjusted 

according to the learner’s specific needs defined in terms of his prior knowledge (Wittwer, 

Renkl, & Nückles, 2010). 
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(5) The core principles: an instructional explanation as a whole requires clearly distinguishing 

between the central main ideas of the concept and the secondary elements (Leinhardt & 

Steele, 2005). Just as mentioned above as a characteristic of the representations and the 

examples used, the critical conceptual features and those suitable of generalization must be 

emphasized at the same time as those less relevant need to be addressed as less important 

end eventually modifiable.  

In this regard, findings from the CBLE suggest that effective instructional explanations should 

be minimalistic, that is, they should focus in a few main elements and avoid any unnecessary 

details. This idea implies the possibility to complement these main concepts with details when 

required by the student.  And in addition, it is addressed that effective IEs have to focus on 

principles and functions. In the case of mathematics, that would mean that instead of a 

procedure-oriented instruction, the underlying mathematical understanding should be 

emphasize, in order to promote transfer to new learning situations (Renkl et al., 2006). 

(6) Conditions of use: One important element in a good instructional explanation is the 

examination of the uses of an idea or procedure (Leinhardt & Steele, 2005). This examination 

can be related to the use of a variety of examples and representations, since they can serve 

to this aim by showing the relevant conceptual restrictions and the allowed transfers as well.  

For example, the Pythagorean Theorem works for right triangles and not any kind of triangle, 

while the surfaces equivalence is usually shown by adding squares on their sides, 

underpinning it algebraic representation (a2+b2 =c2); nevertheless, this equivalence can be 

shown by any regular figure built on the right triangle sides. These two elements are examples 

of boundaries and extensions of the Theorem that could be shown by the teacher. In addition, 

the conditions of use of a certain concept refers to the possibility to use some idea in a different 

context, for instance, in another school subject or even outside school, regarding everyday life.  

 

(7) Nature of errors: To anticipate students’ errors in the classroom has been stressed as one 

key teaching competence (Shepard, 2000) and is considered as a core component in the 

development of a good instructional explanations as well as the use of errors to promote further 

understanding (Leinhardt & Steele, 2005). “These include errors in reasoning and errors that 

result from misapplication of some set of actions”, (Leinhardt & Steele, 2005, p.140), which 

would correspond to conceptual and procedural aspects, respectively, that usually coexist in 

mathematics instruction. These both kind of explanations needs to be carefully distinguished 

from each other, since the conceptual explanation answers the question why, while the 

procedural explanation corresponds to the question how. In both cases, the common errors 
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are expected to be related to the instruction and can be, eventually related to broader cultural 

issues in regard of specific traditions how some contents are usually taught. For example, Ma 

(1999) addressed the problem of using the term “borrowing” instead of “decomposing” when 

teaching subtraction with regrouping in 2nd grade, since this notion can lead to 

misunderstanding or at least to a restricted comprehension, that turns out to be understandable 

in some particular cases, but will ultimately always be inaccurate to some extent, compelling 

the teachers to amend the conceptualization in latter grades.  

In addition, the use of errors as a pedagogical tool to foster understanding has been also 

stressed as a general instructional quality feature (see Pianta, et al., 2012; Rakoczy & Pauli, 

2006). Leinhardt argues that independently of whether a teacher chooses to explicit correct 

upon a students’ answer or to avoid this kind of interventions, “errors are invitations to 

thoughtful discussions that gradually allow both corrections and an expansion of everyone’s 

understanding (2001, p.350). Moreover, working with errors, not only allows the students to 

become aware of their own trains of thought, but also develop ways to correct the errors 

(Leinhardt & Steele, 2005). 

To sum up, instructional explanations can be described in terms on these seven core elements 

proposed by Leinhardt (2001) in her model: (1) the query, (2) the examples, (3) the representations, 

(4) prior knowledge, (5) core principles, (6) conditions of use, and (7) nature of errors.  These 

elements can serve at the same time as quality criteria in order to assess instructional explanations 

in classroom settings. It is important to take into account that such an assessment requires a deep 

analysis of teaching practices and further operationalization of these elements to operate properly 

in an empirical approach (see sections 11.1 and 11.2). 
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2.2.5 Examples of empirical work on IE in mathematics instruction 

As stressed in the prior sections, there is not much literature focusing on empirical examination of 

IEs. Thus, four relevant empirical papers will be described in order to understand the conceptual 

treatment of IEs in different contexts. On the one hand, Perry (2000) and Leinhardt & Steele (2005) 

investigated frequency and quality of IEs, respectively, in mathematics lessons in primary school. 

On the other hand, Inoue (2009) and Charalambous et al. (2011) explored the enactment of IEs from 

the perspective of the teachers, more specifically, in activities designed for pre-service teachers in 

order to learn how to provide effective IEs to their future students. 

Michelle Perry (2000) examined instructional explanations as essential component of the classroom 

discourse in Chinese, Japanese and U.S classrooms. Her cross-national approach comparing first- 

and fifth-grade mathematics lessons intended to shed light into differential classroom practices that 

could contribute to understand the differences that students from these countries show in their 

performance in large scale assessments, assuming that there is an association between quality of 

mathematics instruction and student learning outcomes. In Perry’s study summaries based on 

classroom transcripts were coded in one-minute segments, identifying topic, activity and materials 

used for each of them. An explanation was considered a type of activity and there was a distinction 

between brief and extended explanations, that is, explanations that were carried out briefly 

embedded in other instructional activities from those that lasted more than one minute, were not 

embedded in other instructional activities and had a main explanatory purpose. The definition of an 

explanatory activity was those in which “the teacher or student explains. This included explanation 

of how to do something and/or of why to do something. The specific explanation (or at least the type 

of explanation) should be included in the summary of the segment” (Perry 2000, p.185).  

The sample included the observation of 160 lessons in Japan, 158 in China and 298 in the United 

States, that is, 617 lessons altogether for all grades and countries. The study yielded following 

results: In first-grade lessons, the most common activities in all three countries were question-and-

answer activity, seatwork or a combination of them.  When examining within these three types of 

activities the results show that seatwork segments rarely included explanations, while being more 

frequent in question-and-answer and question-and-answer with seatwork phases. In comparative 

terms, embedded explanations were clearly more frequent in Japan than in the other two countries. 

Because extended explanations were conceived as more important than brief explanations, in terms 

of the quantity of mathematical content offer to the students and the consequent impact their amount 

could produce in students’ understanding, the analyses for both types were conducted separately. 

However, it is important to highlight, that there were no big differences in the kind of information 

conveyed through brief or extended explanations in lessons in which both types of explanations 

arouse. When examining the general frequency of extended explanations, it was clearly higher in 
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Japan (n=73) than in the other countries, reaching 22 in The United Sates and 1 in Taiwan. Besides, 

Japanese lessons contained significantly more explanations than the lessons in other countries, with 

47 lessons including extended explanations vs.18 in the United States and only 1 in Taiwan. Finally, 

when examining the differences between classrooms within each country, Japanese classrooms 

were found to be similar, showing at least one explanation in 3 out of the 4 observed lessons, 

compared to U.S. classrooms that showed significantly more variation. In regard of the duration of 

the extended explanations, there were no differences between the three countries reaching between 

5 and 6 minutes average. When examining the topics covered by the explanations, it is interesting 

that the U.S. students heard a greater variety of contents than children in Japan and Taiwan, while 

when focusing in addition and subtraction (the most common topic in the three sites), Japanese 

lessons included more multidigit addition and subtraction explanations in comparison to Chinese and 

U.S. lessons that focused in single-digit addition and subtraction. In other words, Japanese children 

were exposed to more complex explanations than the children in the other countries. It is interesting 

to add, that further examination of the content extent along the two weeks of classroom observation 

showed that Japanese teachers were moving at a relative slower pace than their colleagues and, 

consequently, covering significantly fewer topics in the same period of time. 

The results obtained in fifth-grade classrooms show that the frequency of the instructional activities 

observed in the lessons was similar to first-grade, namely the predominance of question-and-

answer, seatwork and a combination of them. In terms of frequency, these activities were followed 

by extended explanations and the evaluation activities that were rather unusual in first graders. The 

general amount of extended explanations was much higher in fifth-graders than in first-graders, 

allowing to restrict the further analyses to these explanations disregarding the brief ones. The 

average number of explanations heard in the three countries differed significantly, between 3.35 in 

Japan, 2.9 in Taiwan and 1.5 in the United States, to be precise, Japan and Taiwan had significantly 

more explanations than the U.S, but no significant difference were found between the two Asian 

countries. The duration was similar in general terms, reaching between 4 and 5 minutes average. 

More than half of the explanations observed in the three countries were about fractions, so these 

explanations were analyzed further, using specific codes, namely “(a) explaining alternate solution 

methods, (b) explaining the relations among component parts of a problem (including their 

definitions), (c) working through an example problem, or (d) providing a rule or directive (Perry 2000, 

p.200). This further analysis yielded that Japanese classrooms focused on the relations between 

components of the problems, while in Taiwan there was not a clear trend and it appeared to be a 

combination of categories, and in the U.S. there was a predominance of the provision of a rule or 

directive. Perry (2000) claimed that the frequency of explanations in mathematics lessons is very 

important, because there is no way to transmit to the students that explanations are an important 

form of classroom discourse in mathematics but by making them participating in such an activity. 
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This practice will allow them to realize and recognize the sense of using it and to understand why 

they are useful. Besides, they are more prone to expand their understanding when there is more 

mathematics being discussed or presented in the lessons. The fact that Japanese students are 

exposed to more explanations and to more complex ones probably fosters understanding since in 

mathematics some pieces of content are prerequisite of the other, like the one-digit and multi-digit 

addition and subtraction example. Nevertheless, it is interesting that Chinese children were not 

exposed to that complexity in the first-grade and still show a similar performance as Japanese when 

reaching fifth-grade. Furthermore, the outperformance of the Asian over the U.S students can be 

also traced back to the slow pace in mathematics lessons allowing the deep understanding of core 

mathematic concepts as it was argued by Ma (1999) in her famous book.  

Even when, the focus of Perry’s (2000) work was in frequency, content and type of IEs that are 

developed in the studied countries, she highlights the importance of paying attention to the quality 

of explanations in further research. The author acknowledges the difficulty of it assessment and 

stresses initial conclusions, indicating that Explanations in Asian countries seemed to be more 

generalizable than those performed in the U.S classrooms. However, in the three countries, there 

were many explanations about how to solve a problem; while explanations about principles or main 

concepts were rather limited to the children in Asian classrooms (Perry, 2000).  

In the paper of Leinhardt & Steele (2005) analyzing high quality IEs in mathematics lessons 

performed by Magdalene Lampert with a 4th grade, they identified a number of instructional elements 

that were found to contribute to set up a rich learning environment that facilitated the enactment of 

IEs. These elements that were summarized as different kind of routines, i.e. “management routines”, 

“exchange routines” and “support routines”, are considered critical to allow complex instructional 

episodes to happen, that is, establishing clear habits and norms in the classroom, so that the 

students know what is expected of them and what they are supposed to do. In terms of Yackel & 

Cobb (1996), an especially remarkable element is the use of “exchange routines”, that is, the 

students were engaged in extended pedagogical dialogues organized in formats that were familiar 

to them. For example, there was an exchange-routine named “call-on routine” composed of the 

following sequence of interventions: (1) teacher asks a student to discuss something; (2) the student 

answers; (3) teacher asks for a comment or justification. According to Leinhardt & Steele (2005) in 

the observed lessons, this sequence would replace the typical classroom discourse pattern (1) 

teacher poses a question/problem to the students; (2) the student answers; (3) the teacher evaluates 

the answer. Another “exchange routine” used in the lessons was the “revise routine” responding to 

the principle that ideas proposed in the classroom are not taken for granted automatically, but need 

to be revised by the students in order to achieve some consensus first. This routine required students 

to revise their own previous ideas and answers, giving space to modify them or expand them in some 
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way. The value of these routines, which are a particular case of sociomathematical norms using the 

terms of Yackel & Cobb (1996), is that they offer opportunities for higher-order thinking activities 

such as analysis, reflection, argumentation and discussion as a regular way to learn mathematics. 

Since these activities belong to a routine work as a sort of game the students are permanently invited 

to play, no one is surprised when this kind of discussion begins, which can help the children to feel 

more confident when they get their turn. These routines correspond to what Schoenfeld (2010) was 

referring to when claiming that a potential expansion of Leinhardt’s model could include “the 

establishment of classroom norms and attempts to foster the development of productive habits of 

mind” (p.102).  

It is noteworthy that “management” and “support routines”, the other two types of routines mentioned 

by Leinhardt & Steele (2005), were drastically less frequent than exchange routines, reaching a ratio 

of 10 exchange routines to 1 management or support routine. “Management routines” appeared 

rarely and included calls for attention or redirection of misbehavior, while “support routines” were 

those related to the positive emotional atmosphere in the classroom, fostering respect among all the 

students, so they can feel safe speaking and giving their opinion. “Support routines” included the 

idea that any question is a potential opportunity to open a discussion, the promotion of a shared 

sense of humor, instances of genuine apology, and also directing the dialogue in the cases in which 

it was not resulting productive or did not work out as intended.  

It is remarkable, that even when neither theory nor research on IEs have been explicitly situated in 

the frame of the instructional quality approach previously presented (section 2.1), in the Leinhardt & 

Steele’s (2005) paper, there is an explicit mention of classroom management and supportive climate 

elements, that are not mentioned in reference to any instructional model, but match conceptually to 

them (see 2.1.2) 

In regard of the research on instructional explanations in teacher training programs, Inoue (2009) 

reports the experience of pre-service teachers (PSTs) rehearsing how to provide instructional 

explanations in mathematics content courses.  More specifically, each student had to make a 30-

minutes presentation about a proportional reasoning problem two times along the course. The 

instructors chose this content because it was considered challenging but also very important. The 

students had to present the problem to their fellow students, how to solve it, and the rationale behind 

it as they were explaining it to elementary school students. After the explanation the peers filled out 

a questionnaire evaluating it. The analysis of the presentations was performed in first pass in terms 

of the mathematical correctness of the problem solving, the use of visual representations and 

whether they convince the audience about the problem solving rational used. After that, there was a 

second pass, in which the instructional explanations were analyzed in depth, taking into account: the 

presentation of the rational, presentation of visual representations, the appropriateness of the 
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assumptions behind the two former elements, and the use of the elements in order to support sense-

making. The findings yielded that, all the PSTs could solve the problem in a mathematical correct 

manner, but the majority “did not necessarily involve pedagogically meaningful representation or 

rationale that would support elementary school student’s understanding of the concepts. Most of the 

presenters failed to consider possible confusions and misconceptions that elementary school 

students may have” (Inoue 2009, p.51). This indicates a lack of consideration regarding how children 

learn and construct mental representations. The weakness was highly dependent on the specific 

content of the problem and related to the beliefs PSTs held about how a mathematical content can 

be presented. Inoue (2009) argues that the rehearsal of IEs and getting feedback would be an 

effective way how to improve them, since the difficulty I providing good IEs “seems to be rooted in 

their pedagogical understanding of the ways that children construct the content knowledge, rather 

than in their problem-solving skills” (p.57). Nevertheless, a follow up study will be necessary in order 

to provide evidence whether this assumption really works out the way Inoue suggests.  

Still in the context of teacher education, the paper by Charalambous et al. (2011) is especially 

interesting, since they compared the quality of instructional explanations delivered by PSTs before 

and after taking two courses especially designed to support them in this activity. The underlying 

research questions in the work were whether PSTs can learn how to provide instructional 

explanations during their training program, and which characteristics such a learning process would 

have. The course was composed of 16 PSTs, 4 cases of which were analyzed in depth in order to 

answer the proposed research questions. Even when the aim of the coursework was to improve how 

to provide IEs, there was extensive preparatory work. The PSTs had to firstly solve a problem 

individually including a representation that would support the corresponding IE, next they shared 

their individual work with their peers (every student was solving the same problem) and after that, 

the group’s work was shared with the whole group. This sequence was repeated in several sessions. 

It is noteworthy that the criteria used to evaluate the IEs, when the practice actually began, (see 

Table 2.2) were developed among the PSTs, by including criteria reported in the literature by 

suggestion of the instructor. According to the framework on IEs presented in the previous sections 

(see 2.2.4), Criteria 2, 3, 7 and 8 are directly related to Leinhardt’s model (2001), while the other 

criteria, are related to logical sequence and general clarity elements. 
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Table 2.2:   Criteria for evaluating an instructional explanation in PSTs course. Extracted from Charalambous, 
Hill & Ball, 2011, p.447 

A good mathematical explanation… 

1. Is meaningful and easy to understand 
2. Defines key terms and concepts appropriately 
3. Draws on and highlights key mathematical ideas 
4. Explains the thought process step-by-steps without skipping steps 
5. Makes the transitions between successive steps clear 
6. Has the audience in mind; uses appropriate language for the audience 
7. Uses suitable examples and representations, if possible, and uses them appropriately (e.g., when explaining 
a mathematical procedure, each step in this procedure is clearly mapped on to the visual representation used) 
8. Clarifies the question under consideration and shows how it is answered 

 

In addition to the evaluation of the IEs performed in the context of the course (that were videotaped), 

the researchers analyzed the classroom/homework notes, collected comments on reflection cards 

that are usually used in those teacher courses, and interviewed the participants at the beginning and 

the end of the course (Charalambous et al., 2011).  

The results suggest that the improvement in providing IEs shown by the PSTs was associated with 

some specific issues that, according to the researchers, can be generalized as following ideas 

regarding the learning process of providing IEs: (1) since the improvement in content understanding 

of the PSTs was clearly reflected in the IEs quality, the subject matter knowledge hold by the PSTs 

is considered a critic feature to provide a good IE in the corresponding subject or even specific 

content. (2) The promotion of the habit of reflection on practice is crucial as an important source of 

information to improve teaching. The results showed that the students that did not consider reflection 

or peer discussion useful, or were reluctant to participate in such instances, did not show as high 

improvement in providing IEs as the students that did. Reflection is important because it sets the 

context to self-monitoring practices based on performance feedback. (3) The development of 

confidence and autonomy in providing explanations probably gained through the practice but also 

through the reflection activities (Charalambous et al., 2011).   

This last hypothesis seems to be a kind a synthesis of the third previous ones, since the improvement 

in self-confidence and autonomy can be probably understood as a result of the strengthening of the 

understanding content knowledge, the subsequent teaching approach and the reflection practice, 

that in turn, focuses on the first dimensions. 

The experience of learning and rehearsing to provide instructional explanations is very inspiring 

because it explicitly situates the PSTs simultaneously as teachers and learners, allowing them, 

roughly speaking, to refine their explanations insofar as they are able to connect to the way students 
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learn. It is very important to have such an experience while attending to a teacher education program, 

because it will probably be the first experience of something that should constantly be happening in 

their classrooms, every time they ask a student “why did you do that?” or “how did you get to that 

answer?” 

According to the results obtained in both studies presented in regard of instructional explanation in 

teacher education programs, it is important that students practice and learn how to provide good 

instructional explanations, but that the sole practice and reflection on them is not enough to assure 

learning, since there is also a need to deeply understand the disciplinary content to be explained 

and the to know hay students think and build their mental representations in order to meet them 

properly (Charalambous et al., 2011; Inoue, 2009). 

 

2.3 Instructional Quality and Instructional Explanations 

Until here, instructional quality models and instructional explanations have been discussed 

separately. It has been argued in previous sections that many instructional quality models do not 

consider instructional explanations at all, or that they do not play a central role in those models. This 

disconnection between instructional models and IE literatures is mutual, as conceptualization of IEs 

do not feature an explicit connection between them and any specific instructional quality model, 

despite touching on instructional components. 

 The goal of this section is discuss in detail the intersection points between these two approaches in 

order to better contextualize the present work. 

 

Firstly, it is important to highlight the fact that instructional quality models or teaching effectiveness 

models differ considerably in their depth and scope (see section 2.1.2), while some models 

emphasize the conceptualization of global factors, others instead describe very precise teaching 

practices or combined both levels (Decristan et al., 2015). These distinctions are relevant because 

they reveal the relative importance that each component has in a model, as well as the specificity of 

its formulation. 

 

As stated previously (see 2.1.2) The Framework for Teaching (FFT; Danielson, 2013) is 

comprehensive, describing 76 components, clustered in 22 dimensions, which are, in turn, grouped 

into the 4 central domains. Two of these domains are related to classroom practices (i.e., domain 2 

“The Classroom Environment” and domain 3 “Instruction”). As can be seen in Figure 2.7, the 

dimension 3a “communicating with students” includes 4 components and Explanations of Content is 

one of them. For the FFT  the quality of an explanations relies on: 
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… [the] use [of] vivid language and imaginative analogies and metaphors, connecting 

explanations to students’ interests and lives beyond school. The explanations are clear, 

with appropriate scaffolding, and, where appropriate, anticipate possible student 

misconceptions. These teachers invite students to be engaged intellectually and to 

formulate hypotheses regarding the concepts or strategies being presented (Danielson, 

2013; p. 59) 

 

This description is consistent in general terms with the perspective presented by Leinhardt (2001), 

where the use of analogies and metaphors would correspond to the use of representations and 

examples in Leinhardt’s theory; similarly, the anticipation to misconceptions and the connection with 

student’s interest would respectively parallel Leinhardt’s ideas of addressing the nature of errors and 

considering the conditions of use. 

Figure 2.7: Extract of the Framework for Teaching (Danielson, 2013) 

 
 

Another instructional quality model mentioned before is the one underlying the CLASS Manual2, 

which includes three general domains (i.e., “Emotional Support”, “Classroom Support” and 

“Instructional Support”) which are composed by dimensions, which in turn are divided into indicators. 

Each indicator is operationalized in terms of precise behavioral markers. The general structure with 

domains and dimensions is presented below (see Figure 2.8). 

                                                
2  The CLASS underlying model shows some variations according to the school level and offer, consequently different 

versions, for preschool, elementary, upper elementary and secondary. The description here is based in the CLASS 
for secondary, known as CLASS-S (Pianta et al., 2012) 
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Figure 2.8: The CLASS Framework for Secondary (Domains and dimensions)3 

 
 

In this model, there is no specific indicator including explanations, but the word explanation appears 

in many occasions in the “content understanding” dimension and when taking a deeper look to this 

dimension, it is interesting to note that the indicators and behavioral markers included in CLASS are 

quite clearly a conceptual match to the conceptualization proposed by Leinhardt (2001). For 

instance, CLASS contains explicit mentions to the use of variety of examples, identification of core 

components, link to prior knowledge, attention to misconceptions, and variety of perspectives, all of 

which are arguably related to conditions of use and the use of representations in Leinhardt’s model. 

However, CLASS includes all this quality features in the discussion of content in the classroom, 

which can occur by means of IEs but not exclusively, since the way this dimension is formulated in 

CLASS refers to classroom discourse in general terms. 

 

Finally, the instructional quality model of Klieme and colleagues (2006) includes three general 

domains (i.e., supportive climate, classroom management and cognitive activation), which are 

composed by several dimensions (see Figure 2.9). Though this model does not incorporate an 

explicit reference to IEs, there are some intersections, like Prior Knowledge Exploration, that are 

clearly shared by both approaches. Leinhardts’ (2001) “Nature of errors” and “Conditions of use” can 

be considered as related to the description of the “Conceptual refinement”4 and “Explorations of 

ways of thought” dimensions in Klieme’s model. Despite these similarities, there is not a straight or 

explicit connection linking Klieme’s framework to instructional explanations.  

It is worth considering when comparing these three models of instructional quality that a difference 

between Klieme’s model, in contrast to the FFT and CLASS, is much more focused on the 

interactional nature of the classroom discourse, consequently, there is more emphasis in examining 

in depth the pedagogical dialogue between teacher and students (or students), than in components 

that would corresponded to the way how the teacher structures the lesson or presents the content. 

This distinction is important because the main intersections with IEs and the FFT and CLASS are in 

those dimensions or components that describe how the teacher deals with content.  

                                                
3  Due to strict copyright policies the reproduction of full dimensions is not permitted. 
4  Conceptual refinement touches on the pedagogical dialogue that starts with naïve representations of students and 

evolves to a more accurate disciplinary treatment of content. 
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Figure 2.9: Model of instructional Quality (Klieme et al., 2006) 

 
 

To summarize, even though IEs have been addressed separately from the instructional quality 

research tradition, they share important features with instructional quality models, especially in what 

refers to the way how teachers communicate or delivery content to their pupils. 

 

2.4 Instructional Culture and Research on instruction in Chile 

This section will present some basic facts regarding the Chilean scholar system and relevant political 

aspects that will help to better understand the instructional culture in which the data used for this 

work are embedded, and finally to contextualize the meaning of the present work to Chilean research 

on instruction. 

With the return to the democracy in 1990 started in Chile an extensive educational reform that 

encompassed many strategies to improve equity and quality in the Chilean school system (García-

Huidobro & Cox, 1999). There was a specific set of actions focused on the promotion of the teaching 

profession, including improvement of their work conditions and professional development, while 

there were other programs, focusing specific group of students like the P-900, “program of the nine 

hundreds schools”, so called because it was aimed to give comprehensive support to the 900 most 

vulnerable schools in the country (Ministerio de Educación, 2000; Sotomayor, 1999) while others 

had a transversal nature and had all schools in scope with a particular purpose such as the program 

for improvement of quality and equity (Mejoramiento de la Calidad y Equidad de la Educación, MECE 

[Improvement of Educations’ Quality and Equity) in elementary, middle and high-school (Ministerio 

de Educación 2004b) 

In addition, a comprehensive curricular reform started in 1996 5, aiming to adjust the national 

Curriculum to the requirements of a knowledge-based and globalized society and the international 

trends in education. This curricular reform considered shifting from encyclopedic knowledge to an 

approach based on the development of skills and competencies (Cox, 2006). Once the official 

                                                
5  Further curricular updates have been implemented in 2002 and 2009. 
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curricular documents were delivered, several actions were carried out from the Ministry of Education 

to transfer the new curriculum into the classrooms, including professional development on new 

content and didactic approaches as well as the distribution of textbooks and further materials for 

teachers and students (Cox, 2003). Nevertheless, because of the strong tradition of large scale 

assessment in the country, the results offered by the national student learning outcomes assessment 

(SIMCE)6 were expected to reflect the curricular implementation. Consequently, the assessment of 

teaching practices was not promoted⎯at least at the beginning⎯ from the public policy perspective. 

Furthermore, major research efforts were invested into the analyses of data already available instead 

of gathering data concerning teaching practices especially for research purposes. Still, there were 

some exceptions, and some information in this regard was collected in the context of the evaluation 

of the specific programs that encompassed the educational reform commissioned by the Ministry of 

Education to universities or external entities (Cox, 2003). 

Later on, this situation dramatically changed with the launch of the “Program for Teacher Excellency 

Certification” (AEP) and the “National Teacher Evaluation System”(Docentemás) in 2002 and 2003, 

respectively. Since both programs assessed teacher competencies by means of a portfolio including 

a videotaped lesson, they have yielded valuable information about teaching practices and are at the 

same time an important data source to researchers interested in instructional quality. 

The aim of the next section is to characterize Chilean instructional culture and research on 

instruction, specifically in mathematics in order to contextualize the present work. This 

characterization is based on (1) reports of the evaluation of programs conducted by the Ministry of 

education, (2) results of the teacher evaluations programs carried out by the Ministry itself and (3) 

educational research that has arisen based on the aforementioned programs. 

As mentioned above, the educational reform that started in 1990 comprised many several lines of 

action with the general objective of improving the quality of the education in Chilean schools. The 

quality of the teaching practices was not addressed directly as an issue, but rather targeted indirectly, 

by modifying components that would be reflected in them, like the update of the national curriculum 

and the change of didactic approaches which were supposed to reach the classroom practices after 

the teachers had attended professional development trainings. Many other measures were taken at 

broad school level, from the improvement of infrastructure and raise of the salaries, to promotion of 

the school management in order to better support the work of the teachers (García-Huidobro & Cox, 

                                                
6  The national student learning outcomes assessment was launched in 1988 and has been conducted in all schools every 

year in 4th and 8th or 10th grade. For an overview of the system in English, see Meckes & Carrasco (2010) or detailed 
information in Spanish in the official site http://simce.cl  



 

46 

1999). Consequently, evaluation reports on these public policies 7  include sections regarding 

classroom practices, based on information that was mostly  gathered by using classroom observation 

protocols. One emblematic program in the context of the reform was the implementation of the 

extended school day, which started in 1997 in order to boost the learning opportunities of the 

students in a context of pedagogical innovation (Martinic & Vergara, 2007). Every school entering 

the program had to present a pedagogical project to be implemented in this extended school time, 

including time for the teachers to reflect, analyze and organize their own work towards more student-

centered teaching approaches (Jara, Concha, Miranda & Baza, 1999). Thus, though being a 

Program mainly about investment in infrastructure, economical and human resources, considered 

the indirect improvement of instructional quality among one of its goals. The evaluation of this 

program showed important accomplishments in regard of the coverage of the policy, infrastructure 

and augment of the time devoted to instruction. Nevertheless, regarding the modernization of the 

pedagogical approach, the results showed that teaching practices still remain highly directive and 

teacher-centered (CIDE-PUC, 2000; DESUC, 2001). 

The “Program for Teacher Excellency Certification” started in 2002 with the aim of rewarding the 

best teachers that work in public schools and private schools granted by the state8. Since there was 

a tendency of good teachers to progress in their profession by applying for directive or similar 

positions and leaving the classrooms frequently, the main goal of the program was to keep good 

teachers in the classrooms by giving them a financial incentive and the acknowledgment of the 

scholar community (Rodríguez, 2015). The participation in the program was voluntary and implied 

taking a test about disciplinary and pedagogical knowledge and the elaboration of a portfolio giving 

written evidence of the teaching practices as well as a videotaped lesson. The development of the 

assessment instruments was based on the Chilean Teaching Standards, the so called “Framework 

for Good Teaching” (Ministerio de Educación, 2004a)  that are an adaptation of Charlotte Danielson’s 

Framework for teaching (1996) 

The evidence was scored by trained teachers using a rubric. Following dimensions were assessed 

through the observation of a videotaped lesson: (1) the structure of the lesson; (2) teaching of 

contents that was composed of three indicators: link with prior knowledge, explanations of the 

contents, and monitoring of students’ work; and (3) teacher-student interaction that was composed 

of participation of the students and feedback. 

                                                
7   Some of the critics to the educational reform are concerned to the fact that the public expenditure in the implementation 

of the strategies was too high in contrast to the modest efforts in evaluating their effectiveness (Beyer, Eyzaguirre & 
Fontaine, 2001).  

8  Altogether, private schools and private schools granted by the state with in Chile are in charge of around 60% of the 
students’ population (Ministerio de Educación, 2015) 
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In the Following,  the results9on these dimensions obtained from the videotaped lessons of the AEP 

Program, based on a total sample of 9534 applicants between 2007 and 2012, and mathematics 

teacher subsamples of middle school and high school will be presented (Mahias, Maray, Maira, 

Serrano & Uribe, 2015).  

As can be seen in the Table 2.3, 48% of the applicants obtained the highest proficiency level in the 

beginning of the lesson, that is, they succeeded in communicating to students the learning goals of 

the lesson and focusing their attention on these goals. Forty-five percent of them begin the lesson 

with a motivational activity without mentioning the lesson goals or just mentioned the learning goals 

without drawing the students’ attention to them.  

Table 2.3:   Results of the dimension “Structure of the lesson” obtained by the applicants of the “program for 
Teacher Excellency Accreditation 

Group Achieved Partially achieved Not achieved N 

Structure of the lesson (Beginning)     

Total 48% 45% 7% 9534 

Math 5th-8th grade 50% 45% 5% 662 

Math High school 43% 48% 8% 376 

Structure of the lesson (End) 10     

Total 14% 49% 37% 6619 

Math 5th-8th grade 7% 61% 32% 422 

Math High school 4% 55% 41% 254 

 

The results obtained by the mathematics teachers subsamples are similar in general terms. 

Regarding how teachers conclude the lesson, it is interesting to note that 37% of the applicants did 

not consider a closure activity in their lessons, or this end was not content-related, while 45% of the 

teachers just ended the lesson briefly mentioning the accomplished tasks or taught contents. Only 

14% of the sample succeeded in ending the lesson by doing a synthesis of the contents taught, 

drawing conclusions, or reinforcing the key issues allowing the students to make sense about what 

was learned (Mahias et al., 2015). 

Concerning the “teaching of contents” dimension (see Table 2.4), the results indicate that around a 

quarter of the participants included activation of prior knowledge and linking with previous content 

during instruction, while around the half just mentioned previous content without establishing an 

                                                
9   It is important to take into account that since the participation in this program is voluntary and due to its nature there 

can be a self-selection bias among the applicants. 
10   The total amount of persons in this indicator is minor than the other ones because it was included for the first time in 

2009. 
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explicit link with the new content. Finally, the lowest proficiency level was obtained by 23% of the 

applicants, those that did not mention, nor evoke neither included students’ prior knowledge during 

the lesson. The proportion of teachers in the lowest proficiency level diminished to around 15% when 

considering exclusively the mathematics teachers (Mahias et al., 2015). 

Table 2.4:   Results of the element “teaching of contents” obtained by the applicants of the “program for 
Teacher Excellency Accreditation 

Group Achieved Partially achieved Not achieved N 

Link with prior knowledge     

Total 24% 53% 23% 9534 

Math 5th-8th grade 22% 64% 14% 662 

Math High school 26% 59% 15% 376 

Explanations     

Total 50% 45% 5% 9534 

Math 5th-8th grade 53% 45% 2% 662 

Math High school 62% 37% 1% 376 

Monitoring     

Total 40% 42% 18% 9534 

Math 5th-8th grade 52% 40% 8% 662 

Math High school 42% 46% 12% 376 

 

In regard of the element of “instructional explanations” almost half of the applicants achieved the 

highest proficiency level, that is, they explained clearly, establishing connections and relations 

between the concepts and/or procedures as well as clarifying, going in detail and exemplifying the 

content taught 11 . Forty-five percent of the teachers achieved the middle level, since their 

explanations only partially fulfilled the requirements mentioned previously. The performance of the 

mathematics middle-school teachers is similar to the general sample, while the high school teachers 

show a comparative better performance (Mahias et al., 2015). 

In the element “monitoring students work”, 40% of the teachers made sure their students understood 

the explanations and indications and they are working as expected, while a similar proportion of 

teachers only partially supervised the students’ work. The remaining 18% of the sample did not 

monitor students’ comprehension or work at all (Mahias et al., 2015). 

                                                
11  It is not possible to deepen in the operationalization of Instructional Explanations, because the scoring rubrics are 

confidential. However, this general description fits with the theoretical framework of IEs addressed in this work. 
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The third dimension “teacher-student interaction” (see Table 2.5) is composed of the elements 

“participation of students” and “feedback”. Regarding the first element, 24 % of the teachers were 

assessed as successfully achieving high student participation, as they allowed distributed 

participation of all the students, whereas 71% offered general participation opportunities only without 

assuring the participation of all of them. Finally, 5% asked questions exclusively to a certain group 

of students or did not ask questions at all. It is interesting that among the math teachers, the middle-

school participants outperformed the proportion of teachers in the highest proficiency level of the 

general sample whereas in high school, math teachers to a relatively low degree achieved this 

category. In regard of “feedback” more than the half of the applicants made clear and pertinent 

feedback to the students, using them as opportunities to go in depth, clarify and extend the content 

of the lesson. Forty percent of the teachers reacted to students’ interventions in a monosyllabic way 

or with non-informative interventions, whereas 7% did not answer at all or in an inadequate manner. 

Mathematics teachers of middle- and high school outperformed the general sample with more than 

70% of applicants obtaining the highest proficiency level (Mahias et al., 2015). 

Table 2.5:   Results of the dimension “Teacher student interaction” obtained by the applicants of the “program 
for Teacher Excellency Accreditation 

Group Achieved Partially achieved Not achieved n 

Participation     

Total 24% 71% 5% 9534 

Math 5th-8th grade 34% 64% 2% 662 

Math High school 15% 84% 1% 376 

Feedback     

Total 53% 40% 7% 9534 

Math 5th-8th grade 74% 22% 4% 662 

Math High school 72% 25% 3% 376 

 

As mentioned above, the “National Teacher Evaluation System” (Docentemás), has been another 

important source of information regarding Chilean teaching practices due to the videotaped lesson 

included in its portfolio. In the following, we summarize findings on the dimensions regarding the 

videotaped lessons that were applied without changes between 2006 and 2009. These dimensions 

are (1) classroom climate that is, in turn composed of classroom management and student 

participation; and (2) pedagogical interaction, that is composed of quality of explanations, quality of 

teacher-student interactions, and pedagogical monitoring and support. The results are based on a 

sample of 55.536 teachers, from which 4580 are middle school mathematics teachers and 2089 are 

high school mathematics teachers (Sun, Correa, Zapata & Carrasco, 2011) 
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In the indicator “classroom management” over 90% of the evaluated teachers achieved one of the 

two upper categories of the 4 points rubric that distinguishes between outstanding, competent, basic 

and unsatisfactory. This means that the ample majority of the evaluated teachers managed the group 

of students properly during the lesson, that is, the students behaved respectful with each other and 

with teacher, and at the same time the teachers succeeded in keeping the students focused in the 

instructional activities, allowing the lesson to run smoothly. It is noteworthy that the middle school 

mathematics teachers outperformed their peers, with almost 98% of them reaching the two upper 

performance categories (Sun et al., 2011). 

Regarding the indicator “promotion of the participation of all the students” around 35% of the 

teachers attained the category outstanding or competent, similar as the mathematics teachers that 

participated in the evaluation. Achieving the standard in this indicator required the teachers to offer 

participation opportunities to all the students, allowing them to take the word, express their opinions, 

pose and answer questions, in order to assume an active role during the lesson. Consequently, the 

greatest part of the teachers gave their students only few opportunities to participate and contribute 

to the lesson or offered these opportunities to a reduced group of students repeatedly (Sun et al., 

2011). 

The pedagogical interaction dimension considers the competencies good teachers should have to 

organize interesting and productive instructional situations, in order to promote inquiry, and 

interaction and exchange about learning topics between the students. The first indicator of this 

dimension is the “quality of explanations” and measures how the teacher introduces new content to 

the students12. The results show that 28% of the full sample of evaluated teachers attained the 

expected level of competence, that is, they provide explanations that are clear and complete, they 

show conceptual accuracy and their explanations are based on an ample repertoire of examples. 

Besides, they show proceedings when necessary and promote meaningful learning by linking the 

new content with prior knowledge and everyday life experiences.  It is noteworthy that mathematics 

high school teachers subsample performed better than the full sample, with almost 40% of the 

teachers reaching the two upper proficiency levels, while within the middle school mathematics 

teachers only around 20% of them achieved those levels (Sun et al., 2011). 

The second indicator is “teachers-student interaction quality” and measures the quality of questions 

posed by the teachers and the promotion of interaction based on these questions. Twenty percent 

of the total sample achieved the expected level, though mathematics teachers obtained poorer 

results, reaching around 18% in middle school and not even 10% in high school. These results mean 

                                                
12  As was the case in the excellency Program, it is not possible to deepen in the operationalization of Instructional 

Explanations, because the scoring rubrics are confidential. However, this general description fits with the theoretical 
framework addressed in this dissertation. 
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that most of the teachers stimulate the rote memorization of procedures or repetition of isolated 

pieces of information with no further elaboration or guide the student excessively to the right answer, 

even answering themselves in some occasions. On the contrary, the minority of the evaluated 

teachers allow and promote their students to pose hypotheses, draw conclusions and learn from 

their own mistakes. In addition, these teachers show a better disposition to students’ questions and 

enhance interaction between peers (Sun et al., 2011). 

The third indicator of the dimension “Pedagogical interaction” is “pedagogical monitoring and 

support” and measures how the teachers monitor and support the students’ work during classes. 

Only 33% of the total sample obtained the two upper proficiency levels, whereas a similar proportion 

of teachers obtained these results in the both groups of mathematics teachers. The teachers that 

meet the expected level kept themselves constantly alert to students’ demands, need for support, 

and were willing to provide them with assistance that was coherent with the kind of instructional 

activity that was taking place. Conversely, in the videotaped lessons of most of the evaluated 

teachers, the students are not provided with the necessary guidance in order to accomplish the 

instructional tasks properly, for instance, the teacher remains in her desk scoring quizzes during a 

seatwork phase, or he performs a content presentation in a lecture-format without taking into account 

students’ reactions or potential misunderstandings (Sun et al., 2011). 

Complementing these results, within the frame of the validation agenda of the “National Teacher 

Evaluation System” (Docentemás), Taut et al. (2014) investigated the association between the 

portfolio dimensions and value added scores, gathered through the SIMCE. In Mathematics, the 

findings indicate positives significant correlations around 0.20 between each of the dimensions of 

the videotaped lesson and student value-added estimates. 

Beyond the evaluative purpose of the videotaped lessons that have been recorded in the context of 

these ministerial programs, the tapes have served research purposes and have been reanalyzed 

with different emphasis. Next a brief summary of the main results that these studies have yielded 

regarding teaching practices and instructional culture. 

Preiss has focused his research on analyzing the classroom discourse and identifying interactional 

patterns between teachers and students and studying mathematical thinking (e.g. Preiss, 2009, 

2010; Preiss, Larraín & Valenzuela, 2011; Radovic & Preiss, 2010). His approach is based on the 

sequence of interaction between teacher and students using the initiation-response-follow-up model 

widely used in empirical work on classroom discourse (e.g. Mehan, 1982; Wells, 1999). In the 

analysis of interaction performed in mathematics lessons from a sample of 89 teachers between 5th 

and 8th grade, they found an average around 68 questions per lesson. The results showed that 

almost half of the questions posed by the teachers during the public interactions of entire lessons 
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served the purpose of regulating its flow, that is check whether the students were paying attention 

or distributions of turns. The other half of the questions was content-related and included mainly 

recall of concepts and definitions and application of content knowledge in simple situations (Radovic 

& Preiss, 2010). In regard of the type of questions, those posed in open-format having more than 

one right answer appeared at least one time in 43% of the lessons, while those having a unique right 

answer arose in every lesson, even more frequently than the dichotomous ones in 87% of the coded 

lessons.  Concerning the students’ interventions, only 1% was spontaneous and around 95% were 

answers to the teacher’s requests and their extension was quite brief with 70% of them composed 

of one or two words and 11% of them longer than six words Finally, the follow up performed by the 

teacher consisted mainly in the repetition of the student’s answer, probably as a way to emphasize 

it was right (Radovic & Preiss, 2010).  In a complementary analysis of the teacher practices of 117 

mathematics teachers (the sample was partially shared with the former paper), Preiss (2010) 

focused on the kind of instructional activities promoted by Chilean teachers. He found a recurrent 

pattern starting with the teacher presenting definitions of concepts and or procedures followed by 

individual guided practice emphasizing repetition. 

In a later paper, Preiss et al. (2011) reanalyzed the public content-related phases of mathematics 

lessons of 77 participants of the sample used for former study in terms of its presence or absence 

of a problem-solving approach and mathematical reasoning. These phases lasted in average around 

17 minutes per lesson, a period of time that comprised about 5 minutes devoted to problem-solving 

tasks and around 11 minutes of non-problem-solving activities. On the one hand, the problem-solving 

phase included, in turn, 4 minutes of mechanical work and less than 1 minute involving mathematical 

reasoning. On the other hand, the non-problem solving phase encompassed around 10 minutes of 

mechanical work and around 1,5 minute was devoted to mathematical reasoning (Preiss et al., 

2011). 

The research of Araya & Dartnell (2007) also focused on describing teaching practices of 

mathematics teachers participating in the National Teacher Evaluation. They analyzed selected 

segments of approximately 800 lessons from 5th to 12th grade. The results show that Chilean 

mathematics lessons are mainly teacher-centered, that is, the teacher presents the contents and 

mainly asked the questions in the classroom, while students posed in average only one question per 

lesson. In high school (9th to 12th grade) the teachers spent more time than in secondary (5th to 8th) 

in the blackboard and writing down mathematics contents, while secondary teachers spent more 

time working with flip charts, cardboards, sticks or other instructional materials. The use of this kind 

of materials is especially frequent in geometry lessons.  

To summarize, the research on instruction in Chile is relatively young and has proliferated in the last 

two decades, especially since 2002 and 2003 with the implementation of the “Program for Teacher 
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Excellency Certification” and the “National teacher Evaluation System, respectively, which included 

a portfolio assessment with a videotaped lesson. The aggregated data of these programs have 

yielded relevant descriptive information of the classroom practices. In general terms, Chilean middle-

school mathematics teachers still work in a mainly teacher-centered way, with a majority of the 

teachers that properly master the classroom management elements, while only between 30% and 

35% properly promote the students participation in terms of the equity of opportunities and quality, 

in terms of giving the students an active role in their learning process. Moreover, only about 20% of 

the teachers posed high quality questions and promotes interaction (between peers or with teacher) 

based upon them at the same time as fostering reasoning. The suitable monitoring of the teachers 

reached around 33%, that is, teachers monitoring the tasks, the students’ understanding during the 

lesson or the responsiveness of the teacher to the students’ need for support in general terms 

(Mahias et al., 2015; Sun et al., 2011). These results are confirmed with the research of Preiss (2009; 

2010) and Araya & Dartnell (2007) which findings show that Chilean teaching practices endorse 

basically teacher-centered orientation, focusing in rote memorization. In addition, an emphasis on 

computing activities instead of promotion of reasoning was observed in the great majority of lessons.    

Regarding the instructional explanations, it is interesting that the results of both teacher evaluation 

programs show important differences, with high proficiency levels between 20% for the National 

Teacher evaluation system and 50% for the Excellency program. Even when, the participation in the 

Excellency program is voluntary and a self-selection bias is expected, this difference could be 

probably traced back to discrepancies in the operationalization of the constructs. As stated before, 

a deepen examination and comparison of the rubrics is not allowed because of confidentiality. Still, 

a possible hypothesis based on the public data, would be that the component “linking with prior 

knowledge”, scored very low in the Excellency program, is assessed independently from 

Explanations Quality. On the contrary, in the National Evaluation program the component “linking 

with prior knowledge” is contained in the indicator concerning Instructional Explanations (Mahias et 

al., 2015; Sun et al., 2011). 

Finally, it is important to point out, that, as part of the of the evaluation protocol, participant teachers 

of the National Evaluation System, are explicitly asked to allow or deny their authorization to use 

their material and data for research purpose. Therefore, a major proportion of the research on 

instruction has been carried out using these videotapes in the last 10 years. However, the advantage 

of using this material implies the lack of complementary data gathered with instruments, such as 

teacher questionnaires, students’ questionnaires or students learning tests. Excepting the work of 

Taut et al. (2014) in value-added, mentioned above, there are is an important gap in studies 

connecting teaching practices and students’ outcomes, what makes the present study especially 

relevant for Chilean research on quality of instruction.  
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3 Research Questions 

The general purpose of the present work is to characterize the quality of instructional explanations 

(IEs) that take place in mathematics lessons by examining the particular case of lessons introducing 

the Pythagorean Theorem. This characterization implies the measurement of IEs and their attributes 

as well as the examination of the effects IEs have on the students’ learning outcomes. Next, I will 

summarize the main theoretical aspects that support the research questions that are intended to be 

pursued with this work. 

Firstly, as addressed previously, instructional quality research consisted for long time on the search 

of empirical associations between teaching elements and students’ outcomes. This search was 

completely functional and not theory driven and delivered mainly isolated pieces of information that 

were not only not easy to integrate from a theoretical perspective but also, on occasions, difficult to 

inform in broader frameworks for teacher professional development, school improvement and 

education public policies in more general terms In this context, the need for integration among 

variables, progressively demanded the use of instructional quality models to give structure to the 

empirical work in the field (see 2.1.2 for details). 

Secondly, is the fact that IEs are recognized as important teaching actions that occur in any 

classroom daily and have a direct effect on learning, that is, good IEs can foster learning while poor 

IEs can hinder it (see 2.2.2 ). They are considered inherent to the nature of teaching and that is why 

some teacher education programs include the development of explanatory competencies as part of 

the key skills to be acquired during teacher training (see the examples of Inoue, 2009 and 

Charalambous et al., 2011 in section 2.2.5). 

 Nevertheless, the research of IEs is not only scarce but has also remained separated from the 

dimensions highlighted in the instructional quality models. Moreover, this segmentation can be 

addressed in two ways, that is, the empirical work undertaken regarding IEs is not situated in the 

tradition of the instructional quality and the instructional quality models do not include IEs as a key 

issue. This work is intended to shed light on this gap and proposes to characterize IEs using the 

instructional quality perspective and examine the association between IEs and general instructional 

quality dimensions.   

Since the main purpose of the present work is to discuss IEs, to examine them and study their effect 

on students’ outcomes, the first step in order to attain these, is to assess and characterize IEs using 

the empirical approach common in the instructional quality studies (see 4.2 and 4.3). This 

assessment followed two different approaches, considering that the design of the study 

encompassed both student perceptions and external observations (see 4.1.1), which implies 
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differential hypotheses, since the operationalization of the quality features needs to be adjusted 

according to the nature of the informant.  

3.1 Quality of explanations in mathematics lessons perceived by external observers 

The quality components of the IEs included in the video rating system were operationalized based 

on the theoretical background of IEs (see 2.2.4 and 2.2.6.2). The measurement of these quality 

features are the baseline for the hypotheses related to association between IEs and other variables 

included in sections 3.3 and 3.4.  

Hypotheses: 

(a) Since high quality explanations are related to experience teaching mathematics (see 2.2.6), 

the Video rating results are expected to be better for more experienced teachers than for 

teachers with less experience in the subject mathematics. 

(b)  Besides, results obtained in private schools are expected to be better than in public ones, 

since public schools are usually outperformed by private ones (Agencia de Calidad de la 

Educación, 2013) 

3.2 Quality of explanations in mathematics lessons perceived by the pupils 

As mentioned before, the use of observation/video protocols and student questionnaires is very 

frequent within the current instructional quality research tradition in order to capture important 

quality features from different perspectives. It is important to notice that the questions posed to the 

pupils in a questionnaire (see Table 4.5) were included in the original project in the frame of a 

general instructional quality perspective conceiving the explanatory competence related to clarity 

and structure of the contents and do not refer to the specific quality attributes of IEs discussed in 

this work.  

Hypotheses: 

(a) Since the group students attend to lessons with the same teacher along the school year, the 

perception of students within a classroom is expected to differ more at the begin of the school 

year than at the end; in other words, the proportion of variance of perception which lies 

between classes is expected to be higher at the end of the school year than at its beginning, 

since the pupils’ perception is a consequence of shared experienced of lessons in the same 

class.  
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(b) Regarding the stability of the perception, it is important to take into account that the pupils’ 

perception of the quality of explanations was measured immediately after the videotaped 

lessons and at the end of the school year. Both measurements are expected to be moderately 

related since the perception of the pupils can change along the school year. Besides, the 

questions in the questionnaire after the videotaped lessons were formulated in order to 

measure the specific perception of the explanations regarding the Pythagorean Theorem, 

whereas at the end of the school year the measurement considered the perception of the 

explanations given by the teacher regardless of a specific mathematical content. 

(c) The experience in teaching mathematics is expected to account for differences in pupils’ 

perception mathematics (see 2.2.6), that is teachers with more teaching experience are 

expected to be perceived as better explainers than those teachers with less teaching 

experience. In addition, differences according to the type of school, namely private or public 

are expected in favor of the private schools, since the latter usually outperformed public 

schools (Agencia de Calidad de la Educación, 2013). 

(d) Since the formulation of the items in the questionnaire refers to a general impression of clarity 

of explanations, it is expected to find a close relationship between the perception of the pupils 

and their achievement in mathematics. In other words, it is expected that low achievers in 

mathematics believe that their teacher is not a good explainer while, in turn, students with 

better learning outcomes are expected to perceive their mathematics teacher as better 

explainers. 

3.3 Association between perceptions of instructional explanations from different 
perspectives  

The present study encompassed two perspectives on the instructional explanations, perceptions of 

the students and ratings of observers who were especially trained to observe and code the videos. 

The following hypotheses examine the association between these two different perspectives. It is 

important to keep in mind that the video raters observed one set of videos corresponding to the three 

introductory lessons of the Pythagorean Theorem while the pupils answered two questionnaires with 

questions about the quality of explanations in two moments and with differentiated emphases. They 

answered one set of questions at the end of the videotaped lessons focalized only on the 

explanations about the Pythagorean Theorem, and the second set of questions was answered at 

the end of the school year, referring to the competence of the teacher to explain mathematical 

content in general. 

Hypotheses: 
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(a) It is expected to find an association between IEs quality features as addressed by external 

observers and pupils’ perception of how well the teacher explained. Still, the perspective of 

raters and pupils is expected to differ to an extent, since the conceptual emphases put in the 

video rating system and in the questionnaire are different. In conclusion, it is expected to find 

a positive moderate association  

(b) The association between the appreciation of the video raters and the perception of the pupils 

is expected to be higher when the examination is regarding the same topic, that is, when raters 

and pupils were referring to the Pythagorean Theorem. This is the examination that actually 

compares perspectives, while the association with the pupils’ perception about mathematical 

content in general terms confounds the variation in perspective, but also in focus of the object 

being explained. 

3.4 Association between generic dimensions of instructional quality and perceived 
quality of instructional explanations 

The instructional quality features encompass a number of variables that are grouped into domains 

that characterize high quality classroom practices, as can be seen in the model presented in the 

theoretical background (see 2.1.2). Some of these quality features are highlighted as important 

elements of IEs, too. Therefore, there is an overlap of generic aspects of instructional quality with 

specific, explanations-related aspects of teaching quality. The following research questions emerged 

as an exploration of these conceptual similitudes. 

Hypotheses: 

(a) Since instructional explanations are embedded in larger instructional settings, which are, in 

turn, defined by quality features regarding their context, it is plausible to assume that 

instructional quality features could be associated to pupils’ perception of the quality of 

instructional explanations. 

(b) Since the dimension of Cognitive Activation has more conceptual alignment with the 

conceptualization of IEs than Supportive Climate and Classroom Management, it is expected 

to find a stronger association between Cognitive Activation and the IE quality dimensions in 

comparison to the other Instructional Quality Dimensions. 

 

 



 

58 

3.5 Association between Instructional Explanations and achievement development 
in mathematics 

As addressed in the theoretical background (see 2.2.2), IEs are considered important instructional 

elements since well performed IEs can foster learning and poorly performed IEs can hinder it. The 

underlying idea is that the ratings obtained from three videotaped lessons can be used as an 

indicator of the explanatory competence of the teacher.  

Hypothesis: 

(a) It is expected to find positive associations between the quality elements of IEs and 

achievement development. The IEs quality elements are expected to be positively related to 

the achievement development shown by the pupils along the school year.  

3.6 Association between Instructional Explanations and interest development in 
mathematics 

As addressed previously, the IEs quality features are related not only to variables included in 

instructional quality models, that is to variables related to achievement but also to elements regarding 

interest in the subject (see 2.2.3). 

Hypothesis: 

(a) It is expected to find positive association between the quality elements of IEs and interest 

development. The IEs quality elements are expected to be positively related to the Interest 

development shown by the pupils along the school year. In particular, the Usefulness is 

expected to be stronger associated to pupils’ interest because conceptual proximity. 

3.7 The adaptive role of IEs action 

It has been argued that high quality IEs are expected to foster mathematical understanding. Still, it 

can be argued that teaching practices are modified or influenced by the knowledge of their students’ 

needs.  

Hypothesis:  

(a) The way the teacher explains a mathematical content can be understood as an adaptive action 

according to the previous knowledge exhibited by the pupils. In particular, in this case, it is 

assumed that teachers whose pupils have a low mathematical understanding choose to enact 
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their explanations in a more illustrative way, that is, they show a higher use of graphic support 

and concretion/illustration features when explaining. 

3.8 Qualitative Characterization of Instructional Explanations 

In order to complement the results of the prior research questions and gain depth in better 

understanding the enactment of instructional explanations in the classrooms, the former study 

included a sequence of questions to be investigated using a qualitative approach. Even when the 

focus put in these questions is based in the literature, these research questions are meant to be 

explorative and consequently there are not specific hypotheses associated to them (see the 

complete working protocol in the appendix 11.2.)  

(a) Graphic support: Which kind of classroom discourse is generated from the presence of the 

graphic representation? Which role plays the graphic piece in the discourse? 

(b) Adaptive Approach: how does the teacher react if a student explicitly says he or she does 

not understand what the teacher has just explained? 

(c) Participation and Contribution: How can be described the spaces of participation offered by 

the teacher? 

(d) Check for Understanding: How does the teacher verify that the students understood what 

she has just explained? 

(e) Link with prior knowledge: How can be described the connections made or promoted by the 

teacher with prior knowledge? 

(f) Usefulness and Concretion/Illustration: is the Pythagorean Theorem introduced embedded 

in an everyday life situation? If yes, how can be described this situation? Is there any mention 

about the usefulness of the Pythagorean Theorem? If yes, what mentioned the teacher? 
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4 Methods 

The research questions of the present work were carried out in the context of the project “Analysis 

of mathematic lessons” (FONIDE 209) funded by the Chilean Ministry of Education during 2007. This 

project was an adaptation of the original broader project “Quality of instruction, learning and 

mathematical understanding” developed between 2000 and 2006 by the German Institute for 

International Educational Research (DIPF) in Frankfurt, Germany, and the University of Zurich in 

Switzerland (e.g. Klieme et al., 2006; Klieme & Reusser, 2003). The Swiss-German project consisted 

of three phases, specifically, a representative teacher survey, a video study and a video-based 

teacher professional development. The Chilean adaptation was a shorten version and encompassed 

only the second phase, that is the video study, which main purpose was the examination of teaching 

and learning processes in mathematics lessons. The video-study was designed to be implemented 

along one school year and focused on one particular curricular learning unit, namely, the 

Pythagorean Theorem 13  including the measurement of several cognitive and socio-emotional 

variables of the students as well as contextual variables, believes and opinions of the teachers.  This 

design and the correspondent gathered data would allow to test associations between student 

achievement, motivation and instructional quality (Lipowsky, Rakoczy, Klieme, Reusser, & Pauli, 

2005).  

4.1 Description of the sample 

Keeping the magnitude of the original study that included 20 teachers per country, a sample of 21 

Chilean mathematics teachers and their respective 802 students was initially recruited to participate 

in this version of the study. The recruitment was carried out with a preliminary selection of schools 

in terms of their socioeconomic status and students’ achievement levels in mathematics, according 

to the information of the Chilean National Standardized Assessment provided by the Ministry of 

Education. The reason for this previous selection was to obtain variability in the participant school14. 

Every school participated with only one teacher and one class. The final sample was composed by 

12 public schools, six subsidized-private and three private schools from the urban area of Santiago 

de Chile. The participation was voluntary and did not consider any economic incentive. Because the 

curricular topic was standardized, namely the introduction to the Pythagorean Theorem, in order to 

participate every teacher had to fulfill the condition of being teaching a 7th grade in that school year, 

level that includes that topic according to the Chilean National Curriculum. Still, in one private school, 

the Pythagorean Theorem was introduced for the first time in the 8th grade and that teacher 

                                                
13  In the original study, every teacher participated with two learning units, that is, the Introduction to the Pythagorean 

Theorem and Word Problem-Solving. 
14    This requirement was explicit requested by the funding agency. 
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participated with an 8th grade class. Table 4.1 shows the general characteristics of the sample. 

Because of logistic and technical difficulties that aroused during the field work, there were failures in 

applications related to two schools, that is, we were able to collect the full dataset of only 19 classes. 

Because of this reason, the size of the sample varies in some cases between 19 and 21 classes. 

Table 4.1: Description of the sample 

 Private schools Subsidized-
private schools Public schools All schools 

Students per class     

Mean (SD) 24 40,8 40,4 38,2 

Min-max 12-32 32-45 36-47 12-47 

N of classes 3 6 12 21 

 

4.1.1 Data structure 

According to the description of the sample, it can be seen that the data gathered in this study have 

a nested structure, that is, there are pupils grouped in classes which belong to schools. Since every 

school was represented by only one class and one mathematics teacher, we are dealing with a two-

level structure, namely, the pupils level and the school- teacher level.  

In this case the nested structure means that pupils are not independent from each other and their 

belonging to a certain class needs to be taken into account when testing associations using variables 

at this level, otherwise it is likely to underestimate the standard errors of the effect between variables, 

potentially risking the incorrect attribution of statistically significance. 

In order to avoid such a problem, research questions were modelled considering the hierarchical 

structure of the data by using the software HLM (Hierarchical Linear Modeling developed by 

Raudenbusch, Bryk, Cheong & Congdon, 2001) or by correcting the design effect (DEFF). 
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4.1.2 Data collection overview 

Table 4.2:   Classes, teachers and students involved in each application/videotape session during the school 
year. 

 Respondent Instrument Measurement point n 

1 Students Questionnaire Begin of the school year 704 

2 Students Mathematics Test Begin of the school year 756 

3 Teachers Questionnaire Begin of the school year 21 

4 Students Pre Test (Geometry) Lesson before the first videotaped 
lesson 676 

5 Class Videotaped lessons First three lesson about the 
Pythagorean Theorem 19 

6 Students Questionnaire regarding the 
videotaped lesson 

Lesson after the last videotaped 
lesson 594 

7 Students Logic test Lesson after the last videotaped 
lesson 696 

8 Students Post Test 1(Pythagorean 
Theorem) 

Lesson after the last videotaped 
lesson 696 

9 Students Post Test 2 Lesson after the last Pythagorean 
Theorem/Geometry unit 687 

10 Students Questionnaire At the end of the school year 616 

11 Students Mathematics Test At the end of the school year 560 

12 Teachers Mathematics Knowledge test At the end of the school year 20 

 

4.2 Videotaping as a method of collecting lesson data 

There are mainly two alternatives to gather data of classroom activity in the instructional quality 

research, namely, through the capture of the protagonists’ perception of the lessons, that is, the 

teacher and/or the pupils, or by using external observers. In this latter case, the observation can 

occur in vivo or by using videotaped evidence.  

The video studies and classroom observation procedures are an appropriate methodology in order 

to capture what happens in classrooms minimizing interpretation and experiences of the participants 

directly involved in the interactions. Still, it is important to acknowledge that the implementation of 

an observation or videotaping procedure already means an intervention in the natural classroom 

environment and it also necessarily implies a selection of what is captured in the classroom, what 
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can be considered as an introduction of subjectivity. In conclusion, it is important to take into account 

the pros and cons of the different techniques, assuming that every of them has its own error sources. 

The main advantage of implementing a video study in comparison to a live observation procedure is 

the possibility to observe and code the videotapes several times and by many persons, and the use 

of the observations to potentially answer different research questions. Nevertheless, video studies 

are very expensive and time consuming in comparison to the use of questionnaires or even 

classroom observation.  

4.2.1 Procedures and technical aspects of videotaping 

The videotaping procedure to capture the mathematics lessons in the study was standardized 

according to a protocol in order to assure comparable recording conditions among the different 

classes. The cameramen were specially trained for this purpose and get feedback after the first 

videotaped lessons in order to improve eventual discrepancies detected with the protocol. 

The videotaping was conducted using two cameras in the classroom. One camera (the “teacher 

camera”) focused primarily on the teacher, and was operated manually by a videographer. The 

videographer also used this camera to capture close-ups of the chalkboard or overhead screen, 

objects shown or used in the lesson, students’ notebooks or worksheets during periods of private 

work, and teacher/student interactions during private work. A second camera (the “student camera”) 

was placed high on a tripod near the front of the room, positioned with a wide angle to include as 

many students as possible. The main goal of this camera was to capture students’ interactions with 

the teacher and/or each other during the lesson. The student camera facilitated coding of the 

mathematics instruction, for example by reducing the number of inferences coders had to make 

about what students were doing in response to teacher talk and action, or to what student behaviors 

the teacher was referring. For a detailed description of the camera script see Petko (2006). 

4.2.2 The use of video rating systems to measure characteristics of instruction 

In order to generate data suitable to be analyzed using quantitative methods, it is important to code 

the videos according to a standardized procedure. In this case according to a rating system 

developed to measure several characteristics of instruction. This procedure allows the subsequent 

quantitative analysis of the data obtained from the videos 

Depending on the interpretation necessary to code a video it is possible to distinguish between 

different kind of rating systems, that is, low, middle and high inference rating systems. When using 

a low inference rating system, the coders don’t need much interpretation in order to give a certain 

code because it is based on concrete observable aspects of a lesson (e.g. Rakoczy, 2008).  
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4.2.2.1 Rating system to measure instructional explanations 

The rating system used to examine instructional explanations was composed of two consecutive 

rating passes.  

In the first pass the three 45 minutes videotaped lessons of each teacher were analyzed in order to 

identify different type of phases within them. So, the raters had to segment the lessons into the 

following predefined categories: theory or problem-theory phase; problem solving phase; homework 

control phase and organization phase. The definition of each category was adapted from the video 

rating system for content activity (Inhaltsbezogene Aktivitäten) developed by Hugener & Drollinger-

Vetter (2006) and used in the implementation of the Swiss-German study. With the aim of assuring 

data reliability, the coding procedure started with a training where the two raters learned about the 

categories of the rating system, and how to use them. After that they practiced watching and coding 

videos that weren’t part of the sample. The observation and coding of the first videos was made 

jointly and based on short periods of time, so that the coders could made questions and get feedback 

immediately. After that the raters started coding videos of the real sample. These videos were 

watched and coded individually, but discussed in the group. The results were compared and 

discussed, so that the coders had the opportunity to explain why she or he had given a specific code 

to a lesson segment. These discussions allowed to clarify differences in understanding the rating 

system and to agree about prototypical situations when one code should be used or when not.  

As the rating system used in the first pass was a categorical one, it was important to achieve an 

absolute interrater agreement as high as possible. After the training each rater worked individually 

following a given sequence of videos. Due to the fact that the second pass was based on this one, 

all the coding differences were cleared after each teacher was coded and one consensual code was 

assigned. 

The interrater reliability measure computed for this pass was Cohen’s Kappa, appropriate for this 

polytomus scale (Wirtz & Caspar, 2002). The value at the end of the coding procedure was 0.61, 

that is, within the range of acceptability next to the lower limit.  

In the second pass, developed exclusively for the purpose of the present dissertation, the raters 

analyzed exclusively the theory-phases and theory-problem-phases identified in the first pass. Like 

in the first rating pass, the coders participated in a special training to learn how to use the rating 

system. Because this pass analyses only a selection of phases of the lessons, there were important 

differences in the total time to be coded for each teacher (these results are detailed in section 5.1.1). 

The duration of every segment could be very diverse as well. 
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The structure of the training was very similar to those followed in the first pass. First of all, the raters 

had to read and understand the dimensions compounding the rating system and learn how to use 

them. After that they coded the same videos used to practice in the first pass. The observation and 

coding of the first video was made jointly, so that the coders could made questions and get feedback 

immediately. After that the raters started to code video segments of the real sample. These videos 

were watched and coded individually and the results were compared and discussed, so that the 

coders had the opportunity to explain why she or he had given a specific code to a lesson segment. 

These discussions allowed to clarify differences in understanding the coding scheme and to agree 

about prototypical situations when one code should be used or when not. 

4.2.2.2 The coding indicators 

The rating system about instructional explanations consisted of 10 dimensions mainly based on 

relevant elements found in the literature (see 2.2.4). Some elements were adapted from the rating 

scheme developed by Drollinger-Vetter & Lipowsky (2006) to capture the mathematics-didactics 

perspective (Fachdidaktische Qualität der Theoriephasen) in the original study: (1) the explanations 

are supported by a graphic representation, (2) teacher explains using an adaptive approach, (3) 

participation and contribution of the students in the explanations (4) teacher checks whether the 

students have understood, (5) while explaining, the teacher links the new contents with previous 

knowledge, (5) level of Concretion/Illustration of the explanations, (6) the usefulness of the 

Pythagorean Theorem is mentioned, (7) the explanations include the most important concept of the 

Pythagorean Theorem. The structure of the coding scheme included a brief general description 

about the purpose of each indicator followed by the description of categories developed with an 

ordinal logic, that is, the order considered an underlying quality gradient, in which the higher value 

was given to the attributes related to relative better explanations’ quality according to the literature. 

See the full coding scheme in the appendix 11.1. 

As the coding scheme used in the second pass was an ordinal one, the emphasis was put not only 

in trying to achieve an absolute agreement, but also in understanding the limits between adjacent 

categories. After the training each rater worked individually following a given sequence of videos. 

After completing an amount of segments, the rating of the coders was compared. The differences 

were discussed in order to identify their source and eventually clear them when they were produced 

due to mistakes in applying the coding scheme.  

Interrater reliability of the IEs quality elements coding scheme 
 

The interrater reliability of this pass was computed using the intraclass correlation (ICC). This was 

considered an appropriate measure because it divides the variance of the coding in the effective 
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differences between the videos (true variance), in variance produced due to differences between the 

raters (systematic error variance) and unsystematic error variance. Due to the relative significance 

of these three variance components is the ICC an adequate indicator for the measure’s quality. A 

value above 0.65 is considered acceptable (Wirtz & Caspar, 2002). As can be seen in Table 4.3,  

only half of the indicators of the quality of explanations achieved a sufficient value in order to allow 

further statistical analyses with these data. The problems of the five indicators that failed were 

examined in order to develop the categories that were used to recode the videos analyzed in the 

case study (see section 11.2 for details).  
 

Table 4.3: Intraclass correlation values for the rating of quality elements of IEs (2nd rating pass) 

Indicator ICC 

(1) The explanations are supported by a graphic representation .72 

(2) How often explanations are repeated .67 

(3) Diversity of explanations <.65 

(4) Teacher checks whether the students have understood <.65 

(5) Students participate in explanations  <.65 

(6) Students contribute to the explanations <.65 

(7) While explaining, the teacher links the new contents with previous knowledge <.65 

(8) Level of abstraction of the explanations .83 

(9) The usefulness of the Pythagorean Theorem is mentioned .88 

(10) The explanations include the most important concept of the Pythagorean 
Theorem .81 

 

4.2.2.3 High inference rating system to assess quality of teaching and learning processes  

The high inference rating system used to assess the general instruction quality was based on a 

selection of the dimensions used in the original German-Swiss study15 (Rakoczy & Pauli, 2006). 

Table 4.4 shows the dimensions that were included in the Chilean version of the study and  in the 

present work. These dimensions are based on the theoretical framework presented in the section 

about contemporary Instructional Quality Models (see 2.1.2.) 

 

 

                                                
15   A detailed description of the “High inference rating system to evaluate the teaching and learning processes” goes 

beyond the scope of the present work and can be found in German in the documentation of the original study (Rakoczy 
& Pauli, 2006). 
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Table 4.4: High inference rating dimensions to gather instructional quality aspects 

Instructional Quality Aspect Dimension 

Supportive Climate Acknowledgment Teacher-Student 
Acknowledgment Student Teacher 
Feedback 
Learning Community 

  

Cognitive Activation Prior Knowledge Exploration 
Explorations of Ways of Thought 
Challenging Problems 
Conceptual Refinement  
Receptive learning 
 

Classroom Management Disciplinary Disruptions 

Classroom Management 

 

Interrater reliability 
 

All the videos were double-coded and compute interrater reliability was computed using intraclass 

correlation. The acceptable ICC value was achieved only in 5 of the 11 dimensions. Those 

dimensions in which the ICC was insufficient were coded by a third trained person. The final scores 

were the mean of the three coders. 

4.3 Questionnaire Data to measure subjective perspective 

As mentioned above, the use of questionnaires to gather the subjective perspective of teacher and 

students has been extensive in the instructional quality research tradition (e.g. Aleamoni, 1999; De 

Jong & Westerhof, 2001). In the design of the present study questionnaires were incorporated as 

complementary sources of information at different moments during the school year16 (see data 

collection overview in Table 4.2). 

  

                                                
16  The scales used to measure motivation were exactly those used in the original study based in the work of Prenzel, 

Kirsten, Dengler, Ettle & Beer (1996). 
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4.3.1 Explanations quality  

In regard of the explanations quality, it measurement was performed by using the questionnaires of 

the study original, which scales were developed based on the work of Fend and Specht (1986), von 

Saldern, Littig and Ingenkamp (1986), Baumert, Gruehn, Heyn, Köller and Schnabel (1997). This 

scale was included in two students’ questionnaires, namely, the one applied immediately after the 

videotaped lessons and for a second time at the end of the school year. Nevertheless, it is very 

important to note that the wording in both applications presented slightly differences in terms of the 

analysis unit it referred to, that is, the wording in the scale applied after the Pythagoras videotaped 

lessons was modified in order to capture the students’ perception specifically about the explanations 

of the Pythagorean Theorem, while the version used at the end of the school year was intended to 

measure the general perception of the students, just as was the case of the items used in the original 

swiss-german study, from which they were translated and adapted17. The internal consistencies of 

the scales in both applications were 0.75 and 0.77 for the application after the videotaped lesson 

and the end of the school year, respectively. Tables 4.5 and 4.6 show the descriptive statistics as 

well as the item-test correlation values of the items that composed the Explanations Quality scale. 

Table 4.5:   Explanations Quality Scale: Composition and item-test correlation. Version used after the videotaped 
lessons 

Item formulation N Mean Std. Dev. 
Corrected 
Item-Tot. 

Correlation 

In the videotaped lessons…     

Our mathematics teacher explained in orderly 
fashion 585 3,63 0,70 0,49 

Our mathematics teacher explained so, that we 
succeeded even in the most difficult exercises 589 3,36 0,80 0,41 

Our mathematics teacher forgot important 
things when explaining(r) 580 3,03 1,07 0,39 

Our mathematics teacher explained well 583 3,32 0,97 0,30 

Our mathematics teacher explained in a 
confusing manner (r) 583 3,20 1,06 0,55 

Our mathematics teacher explained comparing 
apples and oranges and no one understood a 
thing (r) 

585 3,43 0,95 0,55 

Our mathematics teacher explained many 
things and got me confused (r) 585 3,25 1,00 0,59 

 

                                                
17  The original scale was called “Explanatory Competencies of the teacher” (for details see Rakoczy, Buff & Lipowsky, 

2005, p.63) 
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Table 4.6:   Explanations Quality Scale: Composition and item-test correlation. Version used at the end of the 
school year 

Item formulation N Mean Std. Dev. 
Corrected 
Item-Tot. 

Correlation 

Our mathematics teacher explains in orderly 
fashion 533 3,53 0,74 0,44 

Our mathematics teacher explains so, that we 
succeeded even in the most difficult exercises 531 3,25 0,78 0,42 

Our mathematics teacher forgets important things 
when explaining (r) 522 2,76 1,02 0,43 

Our mathematics teacher explains well 529 3,37 0,87 0,37 

Our mathematics teacher explained in a 
confusing manner (r) 519 3,04 1,05 0,55 

Our mathematics teacher explains comparing 
apples and oranges and no one understood a 
thing (r) 

525 3,22 0,96 0,59 

Our mathematics teacher explains many things 
and got me confused (r) 528 3,06 1,00 0,61 

 

4.4 Case study 

This form of qualitative research was chosen to examine in depth aspects of the quality of 

instructional explanations gathered through the videotaped lesson. This strategy aims obtaining a 

detailed description of specific cases (Flick, 2009), here, the case is the teacher explanation of 

mathematical content to his or her pupils.  

As mentioned previously, this case study was not carried out following specific hypotheses, but 

aiming to better characterize certain aspects of the instructional explanations performed by the 

teachers. Thus, even when there is a particular interest in every chosen case, the final purpose of 

the case study is to go beyond them, what in terms of Stake (2006) would correspond to an 

“instrumental case study”.  

In addition, a cross-case analysis approach was adopted because of the reasons addressed by 

Miles, Huberman & Saldaña (2013): 

 

One advantage of studying cross-case or multiple case is to increase the generalizability 

reassuring yourself that the events and processes in one well-described setting are not wholly 

idiosyncratic. At a deeper level, the purpose is to see processes and outcomes across many 
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cases, to understand how they are qualified by local conditions, and thus to develop more 

sophisticated descriptions and more powerful explanations (p.101). 

 

Moreover, following the idea of Stake (2006) the sampling of this cross-case study was carried out 

emphasizing variety, which for the purpose of this work was understood in terms of two outcome 

variables, namely, students’ motivation and students’ mathematics achievement level. More 

specifically, the sampling was performed in order to select teachers with students having different 

levels of achievement and motivation, assuming that this consideration would serve to serve the 

variety criteria mentioned above.  

Figure 4.1 shows the dispersion of the cases of the full sample in terms of the motivation and 

achievement, in both cases this value was operationalized as the residuum obtained in a regression 

using the motivation/mathematics achievement score at the end of the school year as dependent 

variable and the motivation/mathematics achievement score at the beginning of the school year as 

predictor. In other words, the figure shows the mean score of achievement and motivation of every 

class, that cannot be traced back to its initial level of the attribute. Three teacher were selected: 

teacher A, who taught a class with motivation and achievement in mathematics above the sample 

average, teacher B that taught a class with motivation and achievement in mathematics above the 

average, and teacher C that taught a class that showed achievement slightly above average and 

motivation under the average. 

The cross-case analysis was performed in regard of six topics: (1) Use of graphic support; (2) 

Flexibility when explaining; (3) Participation and Contribution of the students to the explanations; (4) 

Check for understanding; (5) Linking new content to prior knowledge; and (6) Abstraction and Utility 

of the Pythagorean Theorem. See section 11.2 for a full description of these themes and the 

correspondent research questions used for the purpose of this case study. The cross-case analysis 

was carried out following the steps proposed by Stake (2006). 
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Figure 4.1: Shows the average motivation and achievement in mathematics obtained by the participant classes 
at the end of the school after accounting for it level at the beginning of the school year. 

 

 

4.5 Empirical implementation of the research questions 

4.5.1 Quality of explanations in mathematics lessons perceived by external observers 

To examine the hypothesis related to time devoted to explanations the videotaped lessons were 

coded in order to identify “theoretical phases,” which were later tallied in terms of the percentage of 

the time in each class that was allocated to these theoretical phases.  

The hypothesis concerning the relation between experience teaching mathematics and instructional 

quality was examined through teacher ratings on four different aspects of teaching quality: the use 

of graphics, the level con abstraction or concreteness of the explanations, the discussion of the 

usefulness of the Pythagorean Theorem, and the review of the main elements of the Pythagorean 

Theorem. Each teacher was rated in this four areas using a scale from 1 to 4. In order to examine 

the relation between these four scales and teaching experience, teachers were divided into two 

groups depending on whether they had less than 10 years of experience versus those with at least 
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10 years of experience or more. Comparison between these two groups were conducted for each 

one of the four scales through the use of t-tests. 

4.5.2 Quality of explanations in mathematics lessons perceived by the pupils 

The first hypothesis about the shared perceptions that pupils may develop as a function of sharing 

experiences in the same class was examined through the estimation of the Intra-Class Correlation 

coefficient observed in measurements of the of pupil’s perceptions of teacher explanations made at 

two different time points. 

The subsequent hypothesis about pupil perception were examined both at the pupil level and at the 

class level. The perceptions were then compared between the results obtained after the videotape 

was recorded and at the end of the school year using a t-test to determine if there were statistically 

significant differences between these two time points. 

Finally, the pupil’s perceptions were analyzed by comparing whether they presented variations 

depending on the one hand of the teachers’ level of experience (operationalized again in terms of 

two groups, one with less that 10 years of experience and one with 10 or more), while on the other 

hand comparting teachers in public schools and teachers in private schools. 

4.5.3 Association between instructional explanations from different perspectives 

Two perspectives on instructional explanations were captured in this study. The first perspective was 

from the students, and was obtained through the use of questionnaires, while the second perspective 

was from especially trained observers that coded the lesson video recordings.  

These two perspectives about the instructional explanations were examined using multilevel analysis 

techniques because of the nested structure of the data. Multiple multilevel models were considered, 

examining the relation between the perceived quality of the instructional explanations with a number 

of level 2 and level 1 covariates; all the models included a level 2 measure of previous content 

knowledge, as well as a three level 1 covariates: gender, previous knowledge, and level of interest.  

One set of four different multilevel models additional level 2 covariates were considered, including 

the amount of graphic support used by the teacher, the level of concreteness of the explanations, 

the discussion of the usefulness of the Pythagorean Theorem, and the review of its main elements 

among other elements. 

 



 

73 

4.5.4 Association between instructional quality features and perceived instructional 
explanations 

In order to hypotheses related to the association between instructional quality features and perceived 

instructional explanations, instructional quality was analyzed from an observer’s perspective by high 

inference ratings on three different dimensions: level of supportive climate, cognitive activation and 

classroom management. 

A set of multilevel models were used to examine the relation between these three different factors 

and first (a) explanations quality measured immediately after the videotaped lessons and (b) the 

perception about explanations quality measured at the end of the school year. Similarly, to the 

models described in the previous subsection, each one of the multilevel models controlled for 

previous knowledge (at both level 1 and 2), gender (level 1) and interest in mathematics (level 1). 

4.5.5 Association between Instructional Explanations and achievement development in 
mathematics 

A similar set of multilevel models was used to examine the relation between student achievement 

and the quality of instructional explanations. These models followed a similar structure to the set of 

models previously described, but used as dependent variable the learning outcomes as measured 

by an end of the year mathematics test. The model considered the effect of the four dimensions of 

the amounts of graphic support used by the teacher, the level of concreteness of the explanations, 

the discussion of the usefulness of the Pythagorean Theorem, and the review of its main elements 

among other elements. 

4.5.6 Examining the relationship between quality of explanations and interest for the subject 
mathematics 

A final set of multilevel models was used to examine the relation between student interest on 

mathematics. Again, as it has been the case for all the previous models, each multilevel model 

controlled at both levels for student’s previous knowledge, while examining the relation of student 

interest with the effect of the four dimensions of the amounts of graphic support used by the teacher, 

the level of concreteness of the explanations, the discussion of the usefulness of the Pythagorean 

Theorem, and the review of its main elements among other elements. 
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5  Results 

5.1 Quality of explanations in mathematics lessons perceived by external observers 

In a first step, the three recorded lessons of the introductory unit of the Pythagorean Theorem were 

analyzed and the theoretical phases were identified. Besides within the theoretical phases segments 

of “private” and “public” interaction were identified (see Hugener & Drollinger-Vetter 2006 for a 

detailed description of the coding procedure). Due to technical reasons the segments of “private 

interaction” were excluded from the subsequent coding pass and it was based exclusively on the 

public interactions in theoretical phases, that is, segments in which the whole class was working 

together. 

In the next step, each theoretical phase was examined in order to identify quality features of the 

instructional explanations included in it, in other words, the public classroom discourse in the 

theoretical phases was understood as the location for IEs to appear, following Leinhardt’s (2001) 

theoretical framework, especially because of the introductory nature of the videotaped lessons. In 

all, 49 theoretical phases were identified among the videotaped lessons of 19 teachers and their 

respective classes. 

5.1.1 Identification of theoretical phases where IEs are embedded 

Table 5.1 presents an overview of the time devoted to theoretical phases for every participant 

teacher. It is interesting to note that in average more than a third of the instructional time, more 

precisely 37.89%, was devoted to this kind of phases. The range of proportional time dedicated to 

theoretical phases fluctuated between 19.8% and 78.21%, corresponding to approximately 28 and 

87 minutes, respectively. It is interesting to highlight that in the original study carried out in Germany 

and Switzerland the proportion of time devoted to theoretical phases oscillated between 15.23% and 

96.6% with an average of 59.60% of the time devoted to theory. In addition, when comparing 

countries, Switzerland obtained an average of 68.55% of the instructional time dedicated to theory, 

while Germany reached an average percentage of only 50.64% (Drollinger-Vetter, 2011). 
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Table 5.1:   Overview of the time devoted to theoretical phases in the introductory lessons of the Pythagorean 
Theorem. 

Class Time devoted to 
theoretical phases 

Videotaped time 
(overall) 

Proportion of time 
devoted to theoretical 

phases 

5001 0:42 1:52 37.55% 

5002 0:28 1:59 24.28% 

5003 0:58 1:52 52.16% 

5004 0:49 2:04 39.54% 

5005 0:37 2:41 22.96% 

5006 0:54 2:04 43.39% 

5007 0:28 2:14 21.54% 

5009 0:56 1:57 48.38% 

5010 0:35 2:13 26.83% 

5011 0:27 1:55 23.86% 

5014 1:17 2:02 62.78% 

5015 0:36 2:24 25.47% 

5016 0:41 2:03 33.96% 

5018 1:02 1:53 55.33% 

5019 1:27 1:51 78.21% 

5020 1:12 2:15 53.26% 

5021 0:27 2:15 20.19% 

5022 0:39 2:08 30.33% 

5023 0:28 2:26 19.80% 

Mean 0:47 2:07 37.89% 

 

Table 5.2 shows the means and standard deviations of the rating dimensions of the quality of 

teachers’ explanations. According to the video rating teachers use very frequently graphical support 

when explaining the Pythagorean Theorem and their explanations are strongly based on the 

presence of graphic pieces, since the mean value for that item reached 3.45 from a maximal of 4 

points in the rating scale.  

Concerning how concrete are explanations about the Pythagorean Theorem given by the teacher, 

the results show a low average score of 1.83 (from 4 points rating scale), meaning that the 

explanations are carried out mostly in an abstract way with no consideration to everyday life 

elements. This abstract way to explain consisted mainly in the presentation of the geometric and/or 

the algebraic formulation of the Theorem and some examples or applications, always keeping the 

explanation within an exclusively mathematical context, for example, the pupils had to compute the 

length of a side of the right triangle or the length of a, b or c; or they had to compare the area of 

surfaces but these sides or surfaces did not represent the length of a path or of a piece of wood, or 
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a rope, or the surface of a corn field, but geometric figures or any of its components.  

Besides the results of the dimension regarding the usefulness of the Pythagorean Theorem reached 

a mean score of 1.34 from a maximal of 3 points, meaning that during the first three lessons 

introducing the Pythagorean Theorem many teachers never mentioned what the Theorem is useful 

for.  

Finally, most of the main elements of the Pythagorean Theorem were included in teachers’ 

explanations when introducing this, with a mean of 3.47 from a 4 points scale. 

Table 5.2: Video rating Dimension about Instructional Explanations. Descriptive Statistics 

Dimension N Mean SD 

Graphic support 19 3.45 0.62 

Concretion/Illustration 19 1.83 0.52 

Usefulness of the Pythagorean Theorem 19 1.34 0.42 

The main elements of the Pythagorean Theorem 19 3.47 0.70 

 

5.1.2 Examining the quality of explanations in videotaped lessons according to experience 
of the teacher and school type  

As can be seen in Table 5.3  when examining the video rating results according to the teacher’s 

experience teaching mathematics, significant differences were found only in one dimension, namely 

the use of graphical support. The results show that teachers with more experience teaching 

mathematics support their explanations less with graphic representations (M= 3.18, SE= 0.21) than 

teachers with less experience teaching mathematics (M= 3.74, SE= 0.14), t(17)= 2.15, p<.05. For all 

the other dimensions no significant differences between means were found, in other words, there 

were no differences found in the way teachers explained the Pythagorean Theorem depending on 

their experience teaching mathematics.  
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Table 5.3: Mean scores in Video Dimensions about Instructional Quality and Explanations.  

Comparison according experience teaching mathematics 

Video rating Dimension 

Less than 10 years 
teaching 

mathematics 

10 or more years 
teaching 

mathematics 

t df Sig. Mean SE Mean SE 

Graphic support 3.74 0.14 3.18 0.21 2.15 17 <.05 

Concretion/Illustration 1.62 0.09 2.03 0.20 -1.91 12.29 >.05 

Usefulness 1.18 0.11 1.48 0.14 -1.66 17 >.05 

Main concepts 3.56 0.18 3.40 0.27 0.48 17 >.05 

 

When comparing the video dimensions between classes belonging to public schools and those ones 

belonging to private schools, there is no significant difference between the means (see Table 5.4). 

In other words, there are no differences among the use of graphical support, level of abstraction, 

mention of usefulness or the main elements of the Pythagorean Theorem between teachers of public 

schools and private ones. 

Table 5.4: Mean scores in Video Dimensions about Instructional Quality and Explanations.  

Comparison between public and private schools 

Video rating Dimension 

Public schools Private schools 

t df Sig. Mean SE Mean SE 

Graphic support 3.46 0.21 3.42 0.18 0.13 17 >.05 

Concretion/Illustration 1.86 0.18 1.80 0.15 0.21 17 >.05 

Usefulness 1.42 0.12 1.24 0.15 0.94 17 >.05 

Main concepts 3.36 0.20 3.63 0.26 -0.80 17 >.05 
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5.2 Quality of explanations in mathematics lessons perceived by the pupils 

5.2.1 Examining the variance of the pupils’ perception of quality of explanations 

Since the pupils participating in the present study are clustered in classes, it is important to examine 

the variance of their perception of instructional explanations, in order to determine if the database 

shows a nested structured that has to be considered in the following statistical analyses. 

The intraclass correlation (ICC) is 0.15 for the measurement regarding the quality of explanations 

during the introductory unit of the Pythagorean Theorem and 0.18 regarding mathematical contents 

in general terms. In other words, between 15% -18% of the total variance can be traced back to 

differences between classes. This means firstly, that there is an important portion of variance in the 

pupils’ perception that can be attributed to belonging to a certain class. In addition, as expected, this 

portion is bigger on the second measurement point than it was on the first one. That is, the perception 

differs stronger between the classes and is more similar within the classes when pupils have to rate 

the explanations of their teacher regardless of a specific mathematical content than rating in concern 

of the introduction of the Pythagorean Theorem. Besides, it can be argued that pupils’ perception 

within a class tend to be more homogenous at the end of the school year since it is not only an 

individual appreciation but also a consequence of shared experiences of class (Rakoczy, 2008). 

5.2.2 Pupils’ perception of the quality of explanations given by the teacher 

Table 5.5 presents the descriptive results of pupils’ perception about the quality of instructional 

explanations given by the teachers in both measurements. The means of the scales are clearly 

above the theoretical average of the scale (2.50), reaching a mean of 3.31 in the measurement after 

the videotaped lessons and 3.17 at the end of the school year.  

Table 5.5: Descriptive Statistics of pupils’ perception of the quality of explanations given by the teacher. 

 N Min. Max. Mean SD 

Teacher Explanations (after the videotaped lessons) 600 1.14 4.00 3.31 0.59 

Teacher Explanations (at the end of the school year)  534 1.43 4.00 3.17 0.60 

 

As expected, the correlation between both measurements is moderate (r=.39, p<.001) and situated 

between the expected values according to previous studies analyzing stability of pupils’ perception 

about instruction features over time (e.g. Weinert & Stefanek, 1997) However, the focus in the 

present study is not on the stability of pupils’ perception, but on comparing perception between 

different units of analysis, namely, teacher’s explanations when introducing the Pythagorean 
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Theorem compared to explanations in more general terms, regardless of a specific mathematical 

content. Hence, differences in the scores cannot be only attributed to aspects related to different 

measurement points. Keeping that consideration in mind it is interesting to note that the comparison 

of means between measurements using t-test (see Table 5.6) shows that the values at the end of 

the school year are slightly but significantly lower than those reported after the videotaped lessons. 

This significant difference can be observed at the pupil level and at the class level as well. In other 

words, the pupils rated the explanations given when learning the Pythagorean Theorem more 

positively in comparison to the teacher’s explanations in general terms, regardless of a particular 

instructional content.  

Table 5.6:   Comparison of means of pupils’ perception of the quality of explanations in two measurements 
points. 

Scale Questionnaire 

After 
videotaped 

lessons 
At the end of the 

school year 

t df* Sig. Mean SE Mean SE 

Pupil level: Teacher Explanations 3.39 0.03 3.19 0.03 180 6.41 <.001 

Class level: Teacher Explanations 3.32 0.06 3.14 0.06 18 5.43 <.001 

* The degrees of freedom at pupil level were adjusted according to the Design effect (DEFF) computed in order to consider the 
nested structure of the data. 

5.2.3 Examining pupils’ perception of the quality of explanations according to experience 
of the teacher and school type 

In the following section we examine whether pupils’ perception of instructional explanations given by 

their teachers varies according to the teacher’s experience teaching mathematics. The results at 

individual level show that no significant mean difference was found for the measurement after the 

videotaped lessons, in other words, the number of years of experience in teaching mathematics do 

not significantly impact the perception of the quality of the explanations given by the teacher when 

introducing the Pythagorean Theorem (see Table 5.7).  

However, when comparing pupils’ perception about the quality of explanations given by the teacher 

in general terms, the pupils of teachers with 10 or more years of experience in teaching mathematics 

have on average a slightly more positive perception (M= 3.25, SE= 0.03) than those taught by 

teachers with 9 or less years teaching mathematics (M=3.06, SE= 0.04), t(58)= -3.68, p.<.001. 

Nevertheless, when performing these analyses on class level, no significant differences were found. 
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Table 5.7:   Comparison of pupils’ perception about quality of explanations according to experience of the 
teacher teaching mathematics. 

Scale Questionnaire 

9 or less years of 
experience 

teaching 
mathematics 

10 or more years 
of experience 

teaching 
mathematics 

df* t Sig. Mean SE Mean SE 

Quality of Explanations about the 
Pythagorean Theorem (pupil level) 3.27 0.04 3.35 0.03 88 -1.53 >.05 

Quality of Explanations in math 
lessons (pupil level) 3.06 0.04 3.25 0.03 58 -3.68 <.001 

Quality of Explanations about the 
Pythagorean Theorem (class level) 3.27 0.07 3.36 0.08 19 -0.81 >.05 

Quality of Explanations in math 
lessons (class level) 3.04 0.10 3.23 0.07 17 -1.66 >.05 

* The degrees of freedom at pupil level were adjusted according to the Design effect (DEFF) computed in order to consider the 
nested structure of the data. 

When comparing pupils’ perception of teacher’s explanations based on the type of school they attend, 

the results show that pupils attending private schools have a more positive perception about the 

quality of explanations given by their teachers than those attending public schools, when comparing 

at pupil level (see Table 5.8). Such a significant difference can be observed in the measurement 

after the videotaped lessons and at the end of the school year as well. Nevertheless, there is no 

significant difference comparing means at class level for neither of the measurements. 

Table 5.8:   Comparison of pupils’ perception of quality of explanations according to type of school (private or 
public) 

Scale Questionnaire 

Public schools Private schools 

df* t Sig. Mean SE Mean SE 

Quality of Explanations about the 
Pythagorean Theorem (pupil level) 3.26 0.03 3.42 0.04 88 -3.21 <.05 

Quality of Explanations in math 
lessons (pupil level) 3.10 0.03 3.29 0.04 67 -3.69 <.001 

Quality of Explanations about the 
Pythagorean Theorem (class level) 3.27 0.07 3.39 0.08 19 -1.10 >.05 

Quality of Explanations in math 
lessons (class level) 3.08 0.08 3.23 0.10 17 -1.22 >.05 

* The degrees of freedom at pupil level were adjusted according to the Design effect (DEFF) computed in order to consider the 
nested structure of the data. 
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5.3 Association between instructional explanations from different perspectives 

The impact of the video rating dimensions on the perception about the instructional explanations was 

examined using multilevel analysis techniques because of the nested structure of the data. Due to 

the small amount of units at the class level the models included a maximum of two independent 

variables on that level, while the others were included at pupil level (see details in section 4.5.3).  

Table 5.9 shows the multilevel regression results when analyzing the factors associated to the pupils’ 

perception after the videotaped lessons controlling for gender, previous knowledge (at pupil and 

class level as well) measured by a test immediately before the Pythagorean Theorem Unit, and 

interest for the subject mathematics measured at the beginning of the school year.  

The findings show that there is no significant effect of neither of the specific dimensions related to 

instructional explanations’ quality (see Table 5.9) nor the instructional quality features included in 

the video rating. 

Among the control variables, it is interesting to note that gender and previous knowledge at individual 

level weren’t significant either, while interest was significant in all models run. Previous knowledge 

at class level was significant (at a α-level of 10%) in all the computed models. 
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Table 5.9:   Multilevel analyses. The dependent Variable is the perception about explanations quality specifically 
regarding the Pythagorean Theorem measured immediately after the videotaped lessons 

Model M1 M2 M3 M4 

Level 2     

Graphic support 
-0.08 

(p=0.44) 
— — — 

Concretion/ Illustration — 
-0.06 

(p=0.50) 
— — 

Usefulness — — 
0.10 

(p=0.92) 
— 

Main elements — — — 
0.09 

(p=0.35) 

Previous Knowledge 
0.25 

(p=0.10) 
0.29 

(p=0.06) 
0.28 

(p=0.08) 
0.25 

(p=0.09) 

Level 1     

Gender 
-0.10 

(p=0.26) 
-0.10 

(p=0.26) 
-0.10 

(p=0.25) 
-0.10 

(p=0.25) 

Previous Knowledge  
0.05 

(p=0.36) 
0.06 

(p=0.37) 
0.06 

(p=0.36) 
0.06 

(p=0.37) 

Interest 
0.18 

(p<0.001) 
0.18 

(p<0.001) 
0.18 

(p<0.001) 
0.18 

(p<0.001) 

 

Table 5.10 shows the results of similar analyses as those presented above, but instead of examining 

the effect on pupils’ perception about the Pythagorean Theorem, the dependent variable included is 

pupils’ perception of instructional explanations regardless of a specific mathematical content.  

It is important to highlight the significant negative effect of “graphic support” on the pupils’ perception, 

that is, the more frequent the teacher supports his/her explanations on graphic representations, the 

worse is perceived the quality of the explanations he/she gave. Besides there is an important effect 

of the dimension “main elements of the Pythagorean Theorem” in the perceived quality of 

explanations, which means that there is an association between the contents included in the 

introductory unit regarding the Pythagorean Theorem and the pupils’ perception about the quality of 

the explanations delivered by the teachers in our sample.  
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Table 5.10:    Multilevel analyses. The dependent Variable is the perception about explanations quality measured 
at the end of the school year 

Model M1 M2 M3 M4 

Level 2     

Graphic 
support 

-0.20 
(p=0.07) — — — 

Concretion/ 
Illustration — -0.10 

(p=0.39) — — 

Usefulness — — 0.00 
(p=0.99) — 

Main 
elements — — — 0.20 

(p=0.09) 

Previous 
Knowledge 

0.04 
(p=0.80) 

0.15 
(p=0.42) 

0.12 
(p=0.56) 

0.06 
(p=0.73) 

Level 1     

Gender -0.13 
(p=0.20) 

-0.13 
(p=0.20) 

-0.12 
(p=0.20) 

-0.12 
(p=0.20) 

Previous 
Knowledge  

0.14 
(p=0.05) 

0.14 
(p=0.06) 

0.14 
(p=0.06) 

0.13 
(p=0.06) 

Interest 0.20 
(p<0.001) 

0.20 
(p<0.001) 

0.20 
(p<0.001) 

0.21 
(p<0.001) 

 

5.4 Association between instructional quality features and perceived instructional 
explanations 

5.4.1 The instructional quality features gathered through video rating 

In order to answer the present research question, instructional quality was analyzed from an 

observer’s perspective by high inference ratings. Table 5.11 shows the descriptive statistics of the 

high inference rating dimensions (see section 4.2.4 for a detailed description of the Video rating 

dimensions). According to these results, the dimension of “supportive climate” showed a mean score 

of 2.11 slightly below the theoretical average of the scale, with a narrow range of values, between 

1.54 and 2.69. The dimension “cognitive activation” yielded a mean score of 1.42, exhibiting a quite 

narrow range of values, too, oscillating between 1.04 and 2.24 from a 4 points scale. The dimension 

“classroom management” obtained higher scores than the other dimensions, with a mean of 3.57 

and a wider range of values, between 2 and 4 from a 4 points scale. 
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Table 5.11:   Descriptive Statistics of Video rating dimensions of instructional Quality. 

 N Minimum Maximum Mean Std. Dev. 

Supportive climate  19 1.54 2.69 2.11 .34 

Cognitive activation 19 1.04 2.24 1.42 .35 

Classroom Management  19 2.00 4.00 3.57 .61 

 

The association between the video rating dimensions on the perception about the instructional 

explanations was examined using multilevel analysis techniques because of the nested structure of 

the data. Due to the small amount of units at the class level the models included a maximum of two 

independent variables on that level, while the others were included at pupil level (for details see 

4.5.4).  

Table 5.12 shows the multilevel regression results when analyzing the factors associated to the 

pupils’ perception after the videotaped lessons controlling for gender, previous knowledge (at pupil 

and class level as well) measured by a test immediately before the Pythagorean Theorem Unit, and 

interest for the subject mathematics measured at the beginning of the school year.  

The findings show that there is no significant effect of neither of the instructional quality features 

included in the video rating. Among the control variables, it is interesting to note that gender and 

previous knowledge at individual level weren’t significant either, while interest was significant in all 

models run. Previous knowledge at class level was significant (at a α-level of 10%) in most of the 

models but not in all of them. Regarding the influence of instructional quality features or quality of 

explanations, no significant impacts were found.  
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Table 5.12:    Multilevel analyses. The dependent Variable is the perception about explanations quality measured 
immediately after the videotaped lessons 

Model M1 M2 M3 

Level 2    

Supportive 
Climate 

0.11 
(p=0.25) — — 

Cognitive 
Activation — 0.06 

(p=0.50) — 

Classroom 
Management — — 0.13 

(p=0.18) 

Previous 
Knowledge 

0.27 
(p=0.07) 

0.28 
(p=0.06) 

0.22 
(p=0.14) 

Level 1    

Gender -0.10 
(p=0.27) 

-0.10 
(p=0.26) 

-0.10 
(p=0.25) 

Previous 
Knowledge  

0.06 
(p=0.36) 

0.06 
(p=0.36) 

0.06 
(p=0.35) 

Interest 0.18 
(p<0.001) 

0.18 
(p<0.001) 

0.18 
(p<0.001) 

 

Table 5.13:    Multilevel analyses. The dependent Variable is the perception about explanations quality measured 
at the end of the school year. 

Model M1 M2 M3 

Level 2    

Supportive 
Climate 

0.11 
(p=0.32) — — 

Cognitive 
Activation — 0.11 

(p=0.33) — 

Classroom 
Management — — 0.12 

(p=0.31) 

Previous 
Knowledge 

0.10 
(p=0.57) 

0.13 
(p=0.45) 

0.06 
(p=0.75) 

Level 1    

Gender -0.12 
(p=0.21) 

-0.12 
(p=0.21) 

-0.13 
(p=0.20) 

Previous 
Knowledge  

0.14 
(p=0.05) 

0.14 
(p=0.06) 

0.14 
(p=0.06) 

Interest 0.20 
(p<0.001) 

0.21 
(p<0.001) 

0.20 
(p<0.001) 
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5.5 Association between Instructional Explanations and achievement development 
in mathematics 

In order to examine the association of quality of explanations and pupils’ learning outcomes further 

analyses were computed, obtaining no significant results in any dimension except the negative 

coefficient in the dimension Concretion and Illustration. This means that the more abstract a teacher 

explains the better are the learning outcomes under control of gender, previous knowledge (at pupil 

and class level) and perception of the explanations given by the teacher measured at a prior time 

point. 

Table 5.14:  Multilevel analyses. The dependent Variable is pupil’s interest in mathematics measured at the end 
of the school year. 

Model M1 M2 M3 M4 

Level 2     

Graphic support -0.20 
(p=0.24) — — — 

Concretion/ Illustration — -0.29 
(p=0.07) — — 

Usefulness — — -0.03 
(p=0.87) — 

Main elements — — — 0.18 
(p=0.28) 

Previous Knowledge 0.58 
(p=0.02) 

0.71 
(p<0.001) 

0.66 
(p=0.02) 

0.60 
(p=0.02) 

Level 1     

Gender 0.05 
(p=0.45) 

0.05 
(p=0.43) 

0.05 
(p=0.45) 

0.05 
(p=0.46) 

Previous Knowledge  0.05 
(p=0.24) 

0.05 
(p=0.25) 

0.05 
(p=0.24) 

0.05 
(p=0.25) 

Perception of teachers’ IE 0.12 
(p<0.001) 

0.12 
(p<0.001) 

0.12 
(p<0.001) 

0.12 
(p<0.001) 

 

5.6 Association between Instructional explanations and interest for the subject 
mathematics 

Further analyses were carried out in order to examine the impact of instructional quality features and 

of quality of explanations on the Interest development in mathematics. The results (see Table 5.15) 

show that the use of graphic support has a negative impact (at a α-level of 10%) the interest for 
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mathematics that pupils report at the end of the school year under control of previous interest. This 

means, the more the teacher uses graphical support when explaining the lower the interest for the 

subject reported by the pupils. The variable previous interest at individual level is, as expected, 

significant and shows a very high regression coefficient. The perceived quality of explanations in a 

prior measurement point is significant, while there were no significant differences by gender. 

Table 5.15:    Multilevel analyses.  The dependent Variable is the pupils’ Interest in mathematics measured at the 
end of the school year. 

Model M1 M2 M3 M4 

Level 2     

Graphic support 
-0.11 

(p=0.10) 
— — — 

Concretion/ Illustration — 
-0.02 

(p=0.81) 
— — 

Usefulness — — 
0.00 

(p=0.97) 
— 

Main elements — — — 
-0.02 

(p=0.75) 

Level 1     

Gender 
0.05 

(p=0.58) 
0.05 

(p=0.60) 
0.05 

(p=0.60) 
0.05 

(p=0.59) 

Previous Interest  
0.56 

(p<0.001) 
0.57 

(p<0.001) 
0.57 

(p<0.001) 
0.56 

(p<0.001) 

Perception of teacher’s IE 
0.11 

(p=0.03) 
0.11 

(p=0.02) 
0.11 

(p=0.02) 
0.11 

(p=0.02) 

 

5.7 The adaptive role of IEs 

The finally research question within the quantitative approach was whether IEs could be understood 

as an adaptive action of the teachers. Since the design of study considered mathematics testing at 

different moments in the school year, a correlation with the learning outcomes at the beginning of 

the school year were performed to examine this question. As can be seen in the Table 5.16 there is 

a negative correlation between the understandings pupils have regarding proof (measured at the 

beginning of the school year) and the use of graphic support or Illustration or concrete elements 

when explaining the Pythagorean Theorem. This means, the higher is the proof understanding 

exhibited by the pupils, the more abstract explains the teacher and the less graphic support is used 

in the given explanations. It could be argued that teachers explain in a more abstract way to students 
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that show a better proof understanding and more concrete to students with lower proof 

understanding. Still, this negative relationship remains if the association is computed  with the 

outcomes at the end of the school year (see Table 5.14), meaning that if that approach was intended 

to meet students’ needs to promote a better mathematics understanding, it is apparently not working. 

Another plausible conclusion could be that such a way of explaining is not an adaptive action, but a 

way of teaching that conduces to less positive learning outcomes or doesn’t contribute to promote 

mathematical understanding. 

Table 5.16:   Correlation between Explanation Quality features and previous knowledge. 

  Graphic 
support 

Concretion/ 
Illustration Usefulness Main 

elements 

Proof understanding (at 
the beginning of the 

school year) 

Pearson Corr. -.497(*) -.457(*) .020 -.112 

Sig. (2-tailed) .031 .049 .934 .649 

N 19 19 19 19 

*  Correlation is significant at the 0.05 level (2-tailed). 

5.8 Qualitative Characterization of Instructional Explanations 

The present section includes the results of a case study carried out in order to complement the 

quantitative results of the previous chapter with a qualitative approach towards the instructional 

explanations in the theoretical phases of the videotaped lessons. The purpose of the case study was 

to characterize in depth the way in which the instructional explanations were developed in three 

classrooms with different motivation and performance levels. 

The chapter begins with the report of the three cases. Every case is reported following the same 

structure, that is, an introduction giving some background information of the teacher and the class; 

an outline of the videotaped lessons; the findings arranged according to the conceptual dimensions 

explored in the present study (see section 11.2 for a detailed description of these dimensions); finally, 

a table that provides an overview of the findings for the three cases is presented. 

In order to understand the section, following the meaning of the symbols and letters used in the 

extracts of classroom discourse: 

• T: Teacher 

• S: Student 

• Ss: Several students (but not all of them) 

• A: All students (chorus) 

• The text in round parentheses fills out the implicit part of the classroom discourse.   

• The text in square parentheses indicates what the teacher does while he or she is speaking 
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5.8.1 Case Report Teacher A 

Teacher A is a female elementary teacher around 35 years old, with 10 years of teaching experience 

and 9 years teaching mathematics. At the time of the study she taught 36 hours of mathematics a 

week. Classroom A was composed of 41 girls of a low socioeconomic level private school with public 

subsidization (see sample description in section 4.4), although only 36 were present in the recorded 

lessons. 

5.8.1.1 Lesson Outline 

The first lesson (90 minutes) started with a review of prior contents, remembering the triangle 

classification by its internal angles and relative lengths of sides. This phase was carried out in a 

question-answer format, guided by the teacher. Next, the teacher distributed worksheets and began 

an individual practice activity of these classifications in which the students had to indicate to what 

kind of type every triangle belonged according to data indicated in draws. After this individual work, 

the classroom altogether checked the answers orally. After that, they summed up and focused on 

the characteristics of the right triangle and made a quick individual practice in a worksheet, identifying 

hypotenuse and catheti in several triangles. After checking the answers jointly, the teacher made a 

brief summary of the core concepts pointed out until that moment and announced the beginning of 

a new activity, forming groups of 4 students each. Every group received a worksheet with a puzzle 

similar to the one presented in Figure 5.1 and questions regarding it. 

Figure 5.1: Drawing contained in the Worksheet distributed by the teacher 

The questions were: what kind of polygons has been drawn on the catheti a and b? And on the 

hypotenuse of the right triangle? Watch the surface of the squares and answer: which square has 

the minor surface? Which square has the major surface? Do you believe it is possible to cover all 
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the surface of the square built on the hypotenuse with the area of the squares built on the catheti? 

Write down a conclusion relating the areas of the squares built on the catheti and the area of the 

square built on the hypotenuse. 

This group work concluded with a whole class interaction with the teacher asking the questions orally 

to the students in order to check their answers and based on the last question the teacher started to 

formulate the Pythagorean Theorem algebraically. After that, they solved an example with numbers 

jointly in the blackboard and the teacher showed how to compute the side of the triangle.  The 

students wrote down from the blackboard and the teacher gave the students as homework to look 

for information about Pythagoras, his school and the historical background. 

The second lesson (45 minutes) started with a quick review about the former lesson, focusing in the 

Pythagorean Theorem statement. After that, they reviewed the homework and the teacher distributed 

a hand out with the Theorem formulation written on it. Next, the teacher gave the students a 

worksheet with several exercises to be solved using the Pythagorean Theorem formula. 

In the following table, there is a presentation of the theoretical phases that were identified in the three 

lessons taught by teacher A. Only these segments were analyzed in depth for the case study. 

 

Table 5.17:  Overview of the Theoretical Phases carried out by Teacher A 

Segment Description  

Segment 1 (Lesson 1, 9’5’’) 
 

[09:00-18:05] Review of the classification of the 
triangles. 

Segment 2 (Lesson 1, 3’11) [34:24-37:35] Focus on the right triangle and the name 
of its sides.  

Segment 3 (Lesson 1, 2’55’’) [03:43-06:38] Repetition of the main elements of the 
right triangle. 

Segment 4 (Lesson 1, 15’03’’) [41:00-56:03] Whole group discussion about the hands 
on activity about the Pythagorean Theorem. 

Segment 5 (Lesson 2, 6’52’’) [00:00-06:52] Recall of the Theorem. 

 

5.8.1.2 Use of graphic support 

Since the lessons analyzed in this work are about the Pythagorean Theorem, every teacher uses 

draws or colored paper to support his or her explanatory discourse. 

So, the emphasis in this topic is put on the purpose of the graphic representation, and what is the 

graphic support for (see appendix 0 for a detailed description). 
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Following, there is a description of every instance in which a graphic representation is used by the 

teacher. 

Segment 1: There is no graphic support. The review was conducted entirely at a verbal level. 

Segment 2: The teacher drew a right triangle in the blackboard at the beginning of this segment in 

order to mention the names of its sides and explained the students how to identify them. In this case, 

the draw complemented the discourse working as visualization tool and as an additional 

representation of what is said verbally, for example,  

• “the longest side, which is this” [showing the hypotenuse]18. 

• “the vertex of the right angle is here, right?” [marking the vertex with the right angle symbol]. 

• “Which would be the side opposing the right angle?” [Shows the opposite side]. 

Therefore, it can be argued, that this episode about the introduction of the catheti and hypotenuse 

included two representations, namely, the graphic and the verbal one. Consequently, the graphic 

support in this segment is not actually a support but content itself. 

Segment 3: This segment is very brief and centered on the verbal repetition of the concepts cathetus 

and hypotenuse. There were two instances of use of graphic support; in the first one, the teacher 

drew a right triangle in the blackboard in order to clarify a student’s question whether every right 

triangle has hypotenuse or not. 

 

 

 

 

 

 

 

 

 

                                                
18  In the extracts of classroom discourse the underlined text indicates a relevant teacher action that occurs simultaneously 

to this specific piece discourse, which is described right after it in the square brackets. 
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Extract 5.1: Discussing whether every right triangle has hypotenuse. 

1 T (In the right triangle)…we say the longest side is called hypotenuse. Does every 
right triangle have hypotenuse? 

2 A Yes / No 

3 T Yes, OK, who said no or the one who said no, why do you think (the answer is) 
no? Yes, or no? You, Camila, why do you think (the answer is) no? 

4 S Because there might be a triangle that has two sides of the same size. 

5 T Let’s see the case the triangle that has two sides of the same size, I am going to 
do it with a ruler so you can see that they have really equal size [draws on the 
board]. Camila, in this triangle the 2 sides have equal size, the two sides are 40 
cm, what kind of triangle are we talking about, [marks the symbol of congruency 
in the catheti], girls? 

6 A Isosceles 

7 T An isosceles triangle. Let’s see, if these two sides are equal size. How would the 
other size turn out? 

8 Ss Different 

9 T Different. Shorter or longer? 

10 Ss Longer 

11 T Longer. Would this triangle have hypotenuse? 

12 Ss Yes 

13 T Despite of being isosceles, it still would have hypotenuse.   

 

In this instance, even when the teacher drew the right triangle using a ruler to assure the both sides 

were equal, she did not consider the draw anymore when claiming that the third side was longer. At 

the end, when she asks, “would this triangle have an hypotenuse?” pointed at the triangle in general 

and moved on with the lesson, so the initial use of a conceptual representation of a topic to be 

discussed got lost.  

The second instance was a few minutes later, when the teacher referred to this same draw again to 

repeat how to identify the hypotenuse in a similar way as shown in segment 2, that is, the draw 

worked as a complement of the discourse, representing graphically what is said verbally.  

“the hypotenuse is the one [showing it in the draw] that is in front of or opposite, if I want to draw 

the height [showing the opposition on the draw], opposite to that right angle, right?”  

Segment 4: In this segment the teacher leaded the classroom discourse in order to introduce the 

Pythagorean Theorem based on the hands-on activity carried out in the former lesson. This talk 

began with the teacher posing the question “Do you believe it is possible to cover all the surface of 

the square built on the hypotenuse with the area of the squares built on the catheti?” For that 
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purpose, the teacher drew a representation similar as the one the students had in their worksheet 

(see Figure 5.2). 

Figure 5.2:  Drawing that the teacher made on the blackboard in order to introduce the Pythagorean Theorem 

 
 

During this discussion, that lasted around 11 minutes, the draw served two main purposes: (a) as 

visualization tool of the mathematical discourse, complementing it (e.g. “Did you succeed in covering 

this (square) with these two (squares)?”; “We say that these two are congruent or the same as the 

surface of this one”); (b) as graphic input of the Theorem while it was translated into algebraic 

language to obtain the formula, as can been seen in the next extract: 
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Extract 5.2: Approaching to the formulation of the Pythagorean Theorem. 

1 T Congruent or equal, right? We say that these 2 are… 

2 A [talking at the same time, unintelligible] 

3 T Congruent or equal to the area of this one [Indicating the squares drawn on the 
board] How could we write it? How is the area written? 

4 A [talking at the same time, unintelligible] a2 [?] 

5 T OK, let’s use this one [indicating a cathetus on the board] which letter was it? Was 
it a or b? 

6 A B 

7 T And this one was…? [Indicating a cathetus on the board] 

8 A A 

9 T A. OK, how can I write the area of this square [indicating the square on the board]. 
How can I write it? a ... a what? 

10 A A squared 

11 T And how can we write a squared? 

12 A (a) with a 2 above 

13 T With a 2 above, as an exponent, right?  

14 A Yes  

15 T Well, this area [indicating the drawing] could be written as a2. 

16 T Congruent or equal, right? We say that these 2 are… 

17 A [talking at the same time, unintelligible] 

18 T Congruent or equal to the area of this one [Indicating the squares drawn on the 
board] How could we write it? How is the area written? 

 

This kind of interaction allowed the teacher to finally write down the complete formula, and give 

straight ahead an example with numbers, ending this theoretical phase with the students using the 

formula to compute something. It is interesting to highlight, that during this episode the graphic 

representations worked as a link to the verbal representation and to algebraic representation as well, 

putting these three levels of representation available to the students at the same time, giving richness 

to the explanation of the Theorem by relating the formula to it meaning. 

Finally, while the students were copying what was written in the blackboard, some students were 

confused because they apparently did not remember the formula of the area of the square. The 

teacher refreshed the formula to the students by drawing the squares within the ones that were 

already on the blackboard (see Figure 5.3) so that the girls could count the little squares and see the 

total quantity was equal to the multiplication of the value of the sides. In a similar way as in the last 
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example, the graphic representation is linked to a conceptual piece; in this case, why the formula of 

the area of the square is a2 by showing what a2 concretely means. 

Figure 5.3:  Drawing that the teacher made on the blackboard in order to recall the notion of area 

 

 

Segment 5: (Recall of the Theorem at the beginning of the second lesson). 

The second lesson began with a recall of prior knowledge. During this phase a student wrote down 

the formula of the Pythagorean theorem on the blackboard and the teacher asked her to draw a 

triangle saying, “If I just write letters there, I cannot imagine very well. Could you draw a triangle 

there next to (the formula)?” 

After the student drew the triangle, the teacher used it to quickly review the addition of the squares 

built on its sides, just by making as if she was drawing the squares with the finger. During this 

interaction the role of the graphic representations is, as in other occasions, the visual representations 

of what is said in words. The following dialogue shows the explicit connection established by the 

teacher between both representations, fostering the meaning of the Theorem, specifically in regard 

of the equivalence of surfaces of the squares. 
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Extract 5.3: Review of the introductory lesson of the Pythagorean Theorem.   

1 T We can bring to mind that the formula was a2. What does this mean? This 
means that the area of the square built on cathetus a, [shaping/drawing with a 
finger the corresponding square on the board] plus b2, and we had said that b2 
was the area of the cathetus built on, pardon me, the area of the square built on 
cathetus b. [shaping/drawing with a finger the corresponding square on the 
board] Yes? The addition of those two was equal to... the area of the square 
built on the... [indicating the hypotenuse] 

2 Ss [several people talking at the same time, unintelligible] Hypotenuse 

 T Hypotenuse. Remember that you checked it with the puzzle, didn´t you? What 
happened when you saw the area built on this cathetus and this...? [Indicating 
the catheti and quickly shaping it with the finger] You cut it out and assembled it 
on the square that was built on the hypotenuse [Indicating the hypotenuse and 
quickly shaping it with the finger]. What happened? Were you able to assemble 
it? 

3 Ss Yes  

4 T Were you able to cover it completely? 

5 Ss Yes  

 

5.8.1.3 Adaptive approach 

This dimension considered two levels, namely, the spontaneous teachers’ discourse and their 

reactions to students’ interventions. Regarding this second level the flexibility was not only 

conceptualized as adaptive behavior in order to meet the students’ needs, but also as lack of it, 

observed as repetition and rigidity in the teachers’ explanatory discourse as well (see section 11.2 

for a detailed description of the questions guiding the analysis). 

According to the lesson outline above, this teacher showed a high structured way of teaching, moving 

slowly forward and emphasizing the pieces of content being added in every step by summing up 

before moving on. Because of this clear structure with short but explicit sum up interventions, there 

are frequent conceptual repetitions, which are clearly not depending on the questions the students 

posed, e.g. the segment 3 is an explicit repetition of the main elements of the right triangle introduced 

in segment 2. 

Regarding the teacher’s reactions towards wrong answers, there were five clear of such instances 

along the observed segments of the lessons. In three of them, the teacher just repeated the wrong 

answer as a question, offered another student the possibility to answer the question correctly, 

emphasized the right answer and moved on. As can be seen in the transcriptions below, all of these 

examples are related to very specific pieces of prior knowledge related to the Pythagorean Theorem. 
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Extract 5.4: Review of the classification of the triangles. 

1 T Who can remember what the scalene triangle is? Cynthia. 

2 S [inaudible] 

3 T Macarena 

4 S The one that has all equal sides. 

5 T Does it have all equal sides? What was the triangle that had all equal sides? 

6 Ss The equilateral  

7 T Exactly! Well, there was just one little word that we misused a bit. 

 

Extract 5.5: Review of the classification of the triangles 2. 

1 T In an equilateral triangle, how many degrees is each angle? 

2 Ss 90 

3 T 90? 

4 Ss 60 

5 T 60, right? 180 divided by 3... 60. 

 

There were two instances in which the teacher repeated the wrong answer as a question or said the 

correct answer, but instead of moving on after obtaining the right answer, she asked for a justification 

and used it to expand the learning, emphasizing not only which was the right answer but also why it 

was right. Even when these explanatory dialogues were quite concise, they seem to be adequate to 

meet the students’ needs. As the examples presented above these ones are related to prior 

knowledge and not to the Theorem itself.  
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Extract 5.6: Could a triangle have two angles greater than 90 degrees? 

1 T The obtuse triangle. The obtuse triangle, Camila  Retamal... another one, let´s 
see... another person who may want to say it, that did not participate today, let´s 
see, Millaray. 

2 S  

3 T Are the 3 angles greater than 90 degrees? 

4 S No 

5 T How many (angles) are greater than 90 degrees? How many angles? 

6 S Two 

7 T Two? Are you sure? 

8 S No, one 

9 T Let's see, could a triangle have two angles that are greater than 90 degrees? 

10 A Nooo! 

11 T Let's see, who could explain why not? 

12 S Because it would be greater than 180 

13 T And? 

14 S The 3 of them… 

15 T Exactly! The three interior angles should be 180, therefore, if I have two obtuse angles 
in a triangle, then those two would be over 180. So, what do we need to have an obtuse 
triangle?  

16 S [inaudible] 

17 T An obtuse angle. How are the other 2 (angles) going to be then? 

18 T How would they be? The other two should be acute angles, because what if there was 
one right angle? Raising your hands. 

19 T What if there was one right angle? What if there was an obtuse and a right angle? 
It Would be the same because the obtuse angle would be over 90, right? And with the 
right angle it would be greater than 180. So, in order to say that a triangle  
is an obtuse one, we would say that it should have one angle greater than 90 ° or an 
obtuse angle. 
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Extract 5.7: Does every right triangle have an hypotenuse? 

1 T (In the right triangle)…we say the longest side is called hypotenuse. Does every right 
triangle have hypotenuse? 

2 A Yes / No 

3 T Yes, OK, who said no or the one who said no, why do you think (the answer is) no? Yes, 
or no? You, Camila, why do you think (the answer is) no? 

4 S Because there might be a triangle that has two sides of the same size. 

5 T Let’s see the case [draws on the board]. The triangle that has two sides of the same size, 
I am going to do it with a ruler so you can see that they have really equal size. Camila, in 
this triangle the 2 sides have equal size, the two sides are 40 cm, what kind of triangle 
are we talking about, girls? 

6 Ss Isosceles 

7 T An isosceles triangle. Let’s see, if these two sides are equal size. How would the other 
size turn out? 

8 Ss Different 

9 T Different. Shorter or longer? 

10 Ss Longer 

11 T Longer. Would this triangle have hypotenuse? 

12 Ss Yes 

13 T Despite of being isosceles, it still will have hypotenuse. When we talk about a right 
triangle, about what kind of triangle could I be speaking? About a right isosceles triangle 
and right scalene triangle. Could I speak about an equilateral right triangle? 

 

To sum up, even when this teacher seemed to stick to her initial script for the lesson in general terms, 

there are some instances of her giving space to the students to develop their ideas and acting in an 

adaptive way.   

5.8.1.4 Participation and Contribution of the students 

This dimension characterizes the opportunities of participation that the teacher offers to the students 

during the theoretical phases, the emphasis is put, mainly, on the kind of questions posed by the 

teacher and the interaction built upon them (see section 11.2 for a detailed description). 

Segment 1: (Review of the classification of the triangles according to the length of its sides and its 

angles). It was highly participative and the discourse was structured upon numerous questions posed 

by the teacher in a very clear and systematic way in order to recall all the information about these 

classifications and write it down on the board. The most questions were dichotomous or had a unique 

correct answer, allowing the teacher to keep a quick and regular pace, moving on easily from one 

student’s intervention to another. 
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Extract 5.8: Reviewing the classification of the triangles. 

1 T According to their sides. We have that an equilateral triangle is the one with 3 equal 
sides or 3 congruent sides. What other kinds of triangles do we know according to 
the length of their sides? Camila? 

2 S The scalene 

3 T The scalene, we are going to write it down. Who can remember what a scalene 
triangle is? Cynthia? 

 

Extract 5.9: Reviewing the classification of the triangles. 

1 T You were saying there were 3 types of triangles according to the length of their 
sides. There is one left... Scarlet? 

2 S The Isosceles 

3 T The Isosceles. We are going to write it down… isosceles triangle. Who can 
remember what an isosceles triangle is? Camila Manzur 

 

There is one instance in this segment in which the teacher gave the students a brief opportunity to 

think about the content going beyond the plain recall of content. This happens in the episode in which 

the class recalled the classifications of triangles by the measure of its angles already presented 

above (see Extract 6.6) The interaction pace was still quick, and the teacher made interventions 

guiding the students reasoning and reducing the complexity of the question, but it was still a change 

from very simple questions to one requiring the student to justify the answer. 

Segment 2: (The right triangle and the identification of the catheti and the hypotenuse). This segment 

was not as interactive as the first one since the teacher did not pose so many questions as in the 

review, but there were still only dichotomous ones. 

Segment 3: It was a repetition of the main elements of the right triangle, so it discourse was very 

similar as in the review of prior knowledge, that is, the teacher posed very precise questions in order 

to obtain the pieces of knowledge needed to summarize the characteristics of the right triangle and 

begin with the next activity. Anyway, at the beginning of this segment, there were two instances in 

which the teacher asked the students to justify their answers; the first instance corresponds to the 

extract 6.7 (see above) based on the intervention of a student regarding whether a triangle that has 

two sides of the same size would still have hypotenuse. The teacher went in depth in this intervention 

asking the student “why do you think (the answer is no)? Even when the teacher did not really go in 

detail to the core explanation why every right triangle has hypotenuse, she explicitly used the 

intervention of the student to mention the possible combination of the classification criteria in the 

case of the right triangle. Additionally, this dialogue can be interpreted as a positive general 
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disposition of the teacher towards the intervention of the students even when unexpected giving 

space to raise their questions.   

Segment 4: The next segment started with the students sharing their answers of the hands on activity 

developed with the worksheet, so the participation was mainly based on the students saying their 

answers out loud. The worksheet defined the script of the discourse, containing mainly closed 

questions that can be answered with one word, e.g., what kind of polygons are those drawn up the 

catheti a and b? Which one had the smallest area? Which one had the largest area? The last 

question of the worksheet was whether the students could cover all the surface of the square built 

on the hypotenuse with the squares built on the catheti and the students had to write down a 

conclusion relating the areas. The teacher posed very precise questions in order to establish quickly 

the equivalence of the surfaces and move on to the algebraic formulation of the Theorem: “we say 

that these 2 are equivalent or the same as the area of this. How could we write it down?” With this 

question started a highly participative phase that ended with teacher writing down the formula and 

an example on the blackboard using the inputs of the students, but always strongly guided by the 

teacher, keeping the predominant use of closed questions in a quick paced lesson. 

Segment 5: The final segment corresponds to the first 7 minutes of the third lesson, in which the 

teacher made a recall of the former lesson. During this segment the teacher asked the students 

several questions in order to retrieve the Theorem and it formula. During this interaction, the teacher 

gave the students the opportunity to go to the blackboard and elicit a collective recall, starting with 

general questions that became progressively more specific, guiding the students’ answers with the 

aim of obtaining the pieces of information needed for the teacher to repeat the core aspects of the 

Pythagorean Theorem (that is, the statement, formula, meaning and examples of uses) 

5.8.1.5 Check for understanding 

This dimension refers to the actions or strategies implemented by the teacher in order to 

acknowledge whether the students are following the lesson and understanding the contents (see 

section 11.2 for a detailed description). 

Teacher A never explicitly asked her students whether they understood what she was talking about. 

During the theoretic phases, there were only two instances in which the teacher posed questions 

that gave her direct information about the current understanding. In the first instance, right after 

mentioning that the catheti were the shortest sides of the right triangle, she asked the students to 

identify them in a right triangle. Lately she made the same with the identification of the hypotenuse. 
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Extract 5.10: Introducing cathetus and hypotenuse. 

1 T Well, this triangle for being so special, its sides would have other names, different 
from the ones any triangle has. If you observe this right triangle,  it has two sides with 
shorter size and one side longer, right? 

2 S Yes 

3 T The sides that have a shorter size, they are going to be called catheti. In this triangle, 
which one could we say are the catheti? Raising your hands, otherwise no one will 
understand!  which one could we say are the catheti…how many catheti do we have? 

4 Ss Two 

5 T Two. Which one would they be? How can they be called? Camila? 

6 S The ab 

7 T ab is one cathetus, and the other one?  

8 S ac 

9 T ac, perfect, that is it’s the same, right? These two sides are going to be called catheti. 
In any triangle…or rather in every right triangle, the two shorter sides are going to be 
called catheti. And the longest side is going to be called 

10 S Hypotenuse 

11 T How did you know that? 

12 Ss Because we learned it last year 

13 T Oh, you learned it last year. And did you learn the Pythagorean Theorem last year? 

14 Ss Nooo 

15 T Did you study only the sides? OK, then, you knew this already. Even better. You 
remember a lot! Oh no, nonsense, I wrote it down with zed … I wrote it down… 
hypotenuse… hypotenuse, right? Which one would be the hypotenuse in this case? 

16 T The longest side in this case would be the… 

17 S cb  

   

Nevertheless, this teacher was constantly monitoring the students’ understanding by mean of 

following strategy: In the structure of the lesson, she included very specific episodes of practice right 

after theoretic phases. As described in the outline, this teacher made a very structured lesson 

presenting a clear theory-practice pattern. So, after the review of the classifications of the triangle, 

she gave the students a worksheet in which the students had to classify triangles according to the 

mentioned criteria.  After introducing the names of the sides of the right triangle, she gave the 

students a worksheet where they had to identify the sides of the triangle. Finally, in the last lesson, 

after recalling the main aspects of the Pythagorean Theorem and highlight it formula, the students 

began to solve exercises. It is important to note, that this teacher was very meticulous when 

monitoring the students work, going through all the desks, and checking the work of all students what 

allowed her to check with precision not only the difficulties, but also the velocity of work. In this 
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context, these practice phases clearly work as a way to check individually whether the students 

understood what was taught collectively. 

Additionally, she was constantly making implicit questions within her discourse, almost like catch 

phrases, right? OK? The teacher didn’t really seem to wait for an answer, but she used a question 

intonation and her rhythm was slow enough to allow a pupil’s interventions when needed. She was 

constantly observing the reaction of the students before giving the word as well. 

5.8.1.6 Linking the Pythagorean Theorem with previous knowledge 

There is strong evidence of a connection between previous knowledge and the contents introduced 

in this lesson. The whole first segment was completely devoted to the review of the classification of 

the triangles that ended focusing in the right triangle and the identification of its sides. Later, after 

the hands on activity, the teacher linked the algebraic and geometric formulation of the Theorem 

based on students’ previous knowledge. 

5.8.1.7 Concretion/Illustration and Usefulness 

This dimension considers the context in which the explanations took place during the lesson and the 

explicit mention of uses of the Pythagorean Theorem (see section 11.2 for details). 

The whole theoretical phases remained in an abstract level since there is no mention to any everyday 

life situation. The class worked with letters and with numbers, but the teacher did not mention at any 

moment practical applications of the Theorem.  

There was no special emphasis on the usefulness of the Pythagorean Theorem during the theoretical 

phases, either. However, the teacher mentions that the Theorem allows the calculation of the length 

of the hypotenuse or of one cathetus if the other one and the hypotenuse are known. 
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Extract 5.11: Use of the Pythagorean Theorem 

1 T If I know the length of the 2 catheti in a right triangle I could, using this formula, calculate 
the hypotenuse. And the same is going to happen with the catheti. If I know the length 
of one cathetus and the hypotenuse, you will be able to know the length of the other 
cathetus in later classes, right? 

 

Extract 5.12: Use of the Pythagorean Theorem 

1 T And with this formula what can we find out, for instance… what... why is this formula 
useful? For example if I know the length of the two catheti, could I find the hypotenuse? 

2 Ss Yes 

3 T Yes, right? It is useful to find the length of the hypotenuse or, if I already know it and 
also know the length of a cathetus, it is useful to find out... 

4 A The other cathetus  

5 T The other cathetus, right? You had homework, What did you have to do? Raise your 
hands! 

  

5.8.2 Case Report Teacher B 

Teacher B is a female around fifty years old with 32 years experience as a teacher and 30 years 

teaching mathematics. At the time of the study she taught 38 hours of mathematics a week. 

Classroom C was composed of 47 boys and girls of a middle-low socioeconomic level public school, 

but XX were present in the recorded lessons. 

5.8.2.1 Lesson Outline 

The first lesson was a double lesson (90 minutes) with a pause in between. After the greeting, the 

students read the goal of the lesson “to know the Pythagoras’ Theorem”. They opened the textbook 

and read out about the origins of the Theorem. Then they started to answer collectively questions 

about a sketch on the textbook representing the floor tiles that Pythagoras would have observed in 

a temple (see Figure 5.4) 
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Figure 5.4: Drawing from the textbook that was used to introduce the Pythagorean Theorem 

 

 
 

The teacher posed questions like: Which shapes did compose the floor design? What did Pythagoras 

observe in the floor of the temple? She used the context to review the concepts of cathetus and 

hypotenuse. The teacher intended the students to formulate the Theorem based on the observation 

of the draw. She made several questions and gave the pupils clues about the Theorem. Finally, the 

teacher herself stated the Pythagoras’ Theorem. After that, they started a group-work phase. The 

pupils had to piece together puzzles with different regular polygons (equilateral triangles, squares 

and hexagons) on the legs and hypotenuse of a right triangle. The teacher walked through the seats 

monitoring the pupils’ work and answering questions. After a while of individual work, the teacher 

gave instructions about how to stick their puzzles on their notebooks. After that, she announced the 

beginning of a second instructional activity19. For doing it the students should have brought squared 

paper or remarked the squares in notebook sheets in order to cut out squares and count the quantity 

of little squares within them and compare them with the quantity of squares sticked on the legs and 

on the hypotenuse of the triangle. Since apparently nobody remembered to bring the squared paper, 

they started the activity remarking the squares of their notebook sheets. The goal of that activity was 

that pupils confirmed if the Pythagoras’ Theorem is valid for different type of triangles, i.e. acute 

triangle, obtuse triangle and right triangle. Every seat row checked one type of triangle. When 

finished, one student of each row explained the answer to the whole class. First they mentioned the 

characteristics of the triangle used for the verification (acute, obtuse or right). The teacher guided 

the discussion by using the following question: when piecing together the puzzle, would the pieces 

fit?20 Why? Regarding the right triangle, the teacher clarified that the equivalence is between the 

squares and not the measure of the hypotenuse and the legs. After checking the results of every 

type of triangle, students said collectively that only the right triangle fits the Theorem. Next, the 

teacher formulated the Pythagoras’ Theorem orally and dictated it to the pupils. She mentioned also 

the formula, writing c12+c22=h2 where c1 en c2 are catheti and h is the hypotenuse. After that they 

                                                
19  It is not clear whether all pupils finished the former activity, since there is no public interaction sharing their solutions or 

saying that the first activity is over. 
20  Meaning whether pieces would be left over or fit exactly. 
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wrote down an example with numbers on the blackboard. Then, she gave exercises to the pupils to 

be solved in the class and gave also homework: an exercise and to look for information about 

Pythagoras. 

In the beginning of the second lesson they talked about the activity done in the previous lesson and 

the teacher asked the pupils to tell what they remembered about the Pythagoras’ Theorem. The 

students did not participate much. The teacher tried to put together the interventions of the students 

until one student succeeded in formulating the Theorem correctly. After that, the teacher gave the 

pupils a worksheet with problems to be solved individually; she went through the seats monitoring 

the work. At the end of the lesson, the teacher repeated the wording of the Pythagoras’ Theorem 

aloud, but it is not possible to assure if the pupils could actually listen to her, because of the loud 

noise in the classroom. She wrote down an exercise on the blackboard about computing the length 

of a diagonal in a rectangle and gave it as homework. 

In the following table, there is a presentation of the theoretical phases that were identified in the three 

lessons taught by teacher B. Only these segments were analyzed in depth for the case study. 

Table 5.18: Overview of the Theoretical Phases carried out by Teacher B 

Segment Description 

Segment 1 (Lesson 1, 15’48’’) 00:12-16:00 Introduction of the Pythagorean Theorem 

Segment 2 (Lesson 1, 4’6’’) 16:25-20:15 Hands on activity, verifying equivalences of areas 
of squares, hexagons and equilateral triangles built on the 
sides of the right triangle. 

Segment 3 (Lesson 1,14’22’’) 25:58-40:20 Hands on activity, verifying equivalences of areas 
of squares in different type of triangles 

Segment 4 (Lesson 2, 2’30’’) 08:09-10:39 Recall of the statement of the theorem (No 
graphic support is used) 

 

5.8.2.2 Use of graphic support 

Segment 1: In this segment the teacher proposed an inquiry activity and tried the pupils to discover 

the Pythagorean Theorem by observing a sketch on the textbook (see Figure 5.4 in the lesson 

outline). They got historical and background information and were told that Pythagoras found a 

pattern when observing floor tiles, so they are required to observe like Pythagoras did. In this inquiry 

activity, the interaction was strongly guided by the teacher that posed questions based on the sketch 

intending to elicit the students thinking. Nevertheless, the use of the graphic is very shallow, the 

questions were too general and there were no explicit indications to specific parts of it in order to 

focus the observation. Some question posed were, for example: Who is observing something? What 
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are we looking at there (without specification of any part of the draw)? How many squares did 

Pythagoras see in the figure?  What happens with the little squares and the big squares? 

Besides knowing that they are observing the floor tiles the way Pythagoras did when he “discovered” 

the Theorem, the students seemed confused in the activity, since there is no thread in the question 

sequences and the conceptual meaning of the observation is not clear. There were no explicit 

conceptual questions or hypotheses guiding the pupils’ reflection. Instead of that the teacher 

encouraged the pupils’ interventions that seem to go in the right direction without asking them to 

justify their answers or summarizing the reflection chain stated until that point. The students seemed 

to be lost in the task and not understanding its goal and where to focus their attention. It is important 

to highlight, that during this phase everybody is watching at their own textbook and there is no 

graphic at the blackboard allowing an overview of the sketch nor does the teacher show the draw in 

her textbook to guide the observation at least formally. To sum up, the draw was intended to be an 

observational prompt that provide elements to be put together and translate into another kind of 

representation, nevertheless because of the obstacles mentioned above it role remained diffuse and 

shallow. 

Segments 2 and 3: The main graphic representations used in these segments correspond to 

triangles drawn by the students that had to verify the equivalence of the surfaces of the squares on 

the sides of different type of triangles. The teacher showed to the rest of the class the work of some 

students, emphasizing the type of triangle and whether there was or not equivalence between the 

surfaces of the squares. More specifically, she used the draw to show the squares on the sides of 

the triangle when referring to them, otherwise she showed just the whole draw as a sort of general 

complement of her discourse, independently from the specific part of it, she was talking about. In 

occasions (see extract below), the indication to the draw seemed to be used as a mean to obtain the 

attention of the students, more than a conceptual component of her talk. 
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Extract 5.13: Verifying whether the Pythagorean Theorem works out in an acute triangle 

1 T That`s right... he, that is his notebook, this is an acute triangle. Why is it an acute 
triangle? [Takes the notebook and shows it to the class] 

2 S [murmur] because all of its angles… 

3 T Because all of its angles what? [indicates the entire draw] 

4 S All of its angles are acute. 

5 T All of its angles are acute. OK, he... look.... will you please be quiet...  
I had to see what happened [indicates quickly both squares on the catheti]. He did it 
differently because the squares are smaller, they are smaller than those you have in 
your notebooks. But he realized, what? How many squares are there in the shorter 
sides? [indicates one square on a cathetus] Yesenia? Yes? 21  64 squares here 
[indicates the square]. What about the other side? [indicates the other square] 

6 S The same. 

7 T The same. And the longest one? [Indicates the square] 

8 S 100 

9 T And 100 in the longest one. Listen... I'll ask any student! ... You... Javiera! It... Camila! 
[Pause, while indicating the whole draw to the class] Here there is a square that has 
64,[indicates the square] here there are 64 too, [indicates the square] and in the  
longest 100 [indicates the hypotenuse]. If I assemble or want to assemble a puzzle 
with all this [indicates the whole draw]. Are all the pieces going to match? 

10 Ss [murmur] 

11 P If I want to place them on the big square [indicates the whole draw], are all the pieces 
going to fit? 

12 Ss [murmur]  

13 T The little squares, right? The squares. If I add up the squares that are, the 
hypote(nuse) ... in the catheti,[ [indicates the whole draw], what ... what would happen 
if I add up those two squares? [indicates the squares on the catheti] What would 
happen? What if I add up these two squares, Anari? 

14 Ss [murmur] 

15 T It would be 25, but it would be equal to? It would be equal to the hypotenuse or… 
what is there in the hypotenuse? 

16 Ss [murmur] 

17 T There is a square, right? There are more squares [indicates the squares in general 
terms]. Good. Good. 

 

At the end of the third segment, as can be seen in the teacher drew a triangle, indicated its sides, 

related them to the formula and showed an example with numbers. The main use of the draw here 

is to indicate the sides, but there is no explicit relation between the geometric representation and 

another one. After showing the sides of the triangle in the drawing, the teacher relates de formula to 

                                                
21    The teacher is not offering participation to Yesenia, but willing her to pay attention to the lesson. 
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the verbal statement. Finally, the teacher said “we are going to write it in an easier way” and wrote 

down an example with number, keeping the idea that it is necessary to verify whether the numbers 

“match”. 

Extract 5.14: Towards the formulation of the Pythagorean Theorem 

1 T (…) the acute triangle. In the acute triangle it didn’t work. In the isos… the right triangle 
is the only one in which it worked. Therefore, this the great Pythagorean Theorem that 
says as follows.  Who can help me? Who can help me? We said something that in the 
right triangle this was fulfilled What was fulfilled? Someone said it when Anari helped 
me. What did we say? 

2 S [murmur] square  

3 T Squares, what squares got  to do with this? 

4 S [murmur] triangles  

5 T What happened with the squares?  

6 Ss [murmur] 

7 T Was it/Were they equal to what? 

8 Ss [murmur] 

9 T We are going to write it down in an easier way. 

10 Ss [unintelligible] 

11 T: Yes, c1. c1 is a cathetus, c2 another cathetus, and the H is the hypotenuse squared. 
Now I am going to read it aloud in an easier way [makes a pause and draws a right 
triangle and marks the right angle]. We are going to do it with the same numbers. Look 
at that sheet of paper, look at this sheet of paper. How much is missing from it? How 
much? 
... OK. Now, let's see. Look at this. Here It´s easier we're going to do it with the numbers 
you did. 3 [points at one catethus with the finger], 4 [points at the other catethus with 
the finger] and 5 [points at the hypotenuse]. 
Would you pay attention? Would you pay attention? Richard!  
Look what Pythagoras said. He said, if I construct a square on this cathetus [points at 
the 3] and construct another square on the second cathetus [points at the 4], it’s going 
to be equal to the square that I construct [points at the hypotenuse] on the hypotenuse. 
We are going to apply it now with exponentiation. If I have 32 + 42, why, why am I putting 
it in numbers. Because he… look what he said. The square of cathetus 1, the square 
of cathetus 2, and the square of the hypotenuse. Then, what ´s the value of it? 5 How 
much was this, how many times? 

12 S 9 

13 T 9, why is it 9? 3 by 3, 9, perfect… plus. 

14 S 16 

15 T 16 

16 S It’s equal to 25 

17 T Equal to 25. Let’s see if it's true. 9 + 16 equals 25, and 25 equals 25. That's what 
Pythagoras said. OK? Let's do another one to see if it meets (the theorem) 
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5.8.2.3 Adaptive approach 

Segment 1: In the inquiry activity, the teacher chose a very unstructured instructional setting posing 

many general open-ended questions to the students, letting them discover the Pythagorean 

Theorem. There was evidence that this option was not working and the students were struggling, 

but the teacher persisted asking “what else? what can we observe?” and never changed her strategy 

(see transcript below). 

Extract 5.15: Observing tiles as Pythagoras did 

1 Ss 90°. Perfect. All Right. Well now, we have remembered this. We have also drawn and 
now I want you to see what Pythagoras saw there, what did he discover? You were talking 
to me about squares, but what can we do with these squares? Observe these squares, 
who can see anything? 

2 S [Almost inaudible] four triangles forming a square. 

3 T Let´s see. Four triangles forming a square. Perfect. OK, but what else?  

4 S [inaudible] 

5 T We have a right angle, good. But what things are you seeing there? 

6 S [inaudible] 

7 T Yes, there is a figure, observe it, but let me see, I'll give you a hint. How many 
trian(gles)..., how many squares, how many squares, how many squares did Pythagoras 
see in the figure? The one that is... 

8 S [inaudible] 

9 T Three. What can we see in those 3? 

10 S That they are formed by triangles  

11 T That they are formed by triangles, but in addition to that, what can we see? 

12 S They are all equal 

13 T They are all equal..., they are equal triangles, OK, but in addition to that, what else? how 
many squares do you see? Three. What size (are they)? That´s another hint. I am giving 
you another clue. 

 […] 

14 T What about the other one? [Brief interruption]. Now, how many triangles were there in 
that small square? 

15 S [inaudible] 

16 T OK, one, pardon me. And how many triangles? 

17 S 4 

18 T 4. What about the other? 

19 S There are 4 squares  

20 T 4 squares [or triangles, there is a brief cut and it is not possible to hear clearly]. Good, 
and the total (amount of squares) in the big one, how many are there? 
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21 S 8 triangles and 4 squares  

22 T 8 triangles and 4 squares... OK? So, that's what Pythagoras saw. Pythagoras, if you 
observe this square... the two squares that are... in the catheti, there are 4 small triangles 
and, in the big one, add up the total amount. 

23 S 8 

24 T 8. OK. That's what he observed when he was walking through the temple. Now let's see 
what happens if this is... let´s say happens with other triangles and with other polygonal 
figures. I'm going to hand out some sheets of paper so we can start cutting out.... 

  

It is possible to observe a certain development in the approach to the Pythagorean Theorem, since 

the teacher begins using expressions like “piecing together puzzles” and counting squares on the 

triangle’s sides and ends the lesson formulating the Theorem in the algebraic and geometrical way. 

The idea of equivalence of surfaces or quantity of little squares is repeated in several occasions 

during the hands on activity; however, as can be seen in the extract 6.14 below, there is no space 

for going beyond the formulation and for deepen in what the Theorem really means. 

5.8.2.4 Participation and contribution of the pupils to the explanation 

The teacher constantly offers participation opportunities to the pupils. In terms of the kind of 

questions posed, these instances can be roughly split in two phases, namely, the inquiry activity that 

was full of open ended questions (see lines 1-5 of the transcript above) and the rest of the lesson 

with predominant questions that do not require much elaboration, since they just had to answer 

questions with one word or concept. 

However, since the instructional setting during the inquiry activity was too much unstructured and 

the follow up did not really work, there is not much difference between the kind of actual contribution 

that the students were able to do based on these questions. 

It is important to add, that even when the teacher constantly fostered participation, many students 

were not engaged in the proposed tasks, what lead to some difficulties with the classroom 

management with permanent background noise of students talking, especially in the second half of 

the first lesson. 

5.8.2.5 Check for understanding 

During the whole group phases, the teacher never asked directly whether or what the pupils have 

understood about the Pythagorean Theorem or any other related mathematical content. The only 

evidence of checking of comprehension happened when the teacher walked through the seats 

monitoring pupils work.  
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5.8.2.6 Linking the new contents with previous knowledge 

There are some specific mentions to previous knowledge, for example in the “inquiry task” at the 

beginning of the first lesson (see quotation above, first line), the teacher made a brief review of right 

triangle, cathetus and hypotenuse. Later on, there was a mention to the powers as the way to write 

“a squared number” and a brief mention to the acute and obtuse triangles. 

5.8.2.7 Abstraction and Usefulness of the Theorem 

The background information read from the textbook offered concrete elements to embed the 

introduction of the Theorem, namely the reference to the Egyptians and the use of the rope with 

knots as measure instrument and the floor tiles that Pythagoras observed. There were explicit 

mentions about contexts in which the Theorem is useful, but there is no concrete mention how it is 

used or what for.  

Extract 5.16: Pythagoras and the Egyptians. 

1 S [reading aloud] There are historical records that, some centuries before him, on the 
banks of the Nile river, the Egyptians worked with some practical applications of this 
theorem. Because every year.... they suffered from the overflow of the river, so farmers 
lost their lands and estates. Then every year, when the river was normalized, they 
divided the lands again with the strings of the surveyor, which origin it is recognized. 
This was separated into 12 equal parts, when tighten up, it formed a right rectangle of 
3, 4 and 5 equal parts, thereby they discovered other Pythagorean triples 

[…] 

2 S [reading aloud] What was the contribution of Pythagoras then? To Enunciate it in 
geometric terms and to investigate its theoretical and practical consequences. An 
important legacy for the future of mathematics. So much so that nowadays it is applied 
in topography, in the building industry, in surveying, in architecture to calculate 
measures. As basis for the operation of lifting loads machines, among others. 

 

Anyhow once the teacher stated the surface equivalence from the floor tiles, she moved on to the 

equivalence between squares and remains in this abstract level for the rest of the lesson. Later on, 

there was no further mention to any usefulness of the Theorem although they solve problems in 

which they have to calculate the length of one side when the other ones are given that can be 

considered as an implicit use. 

  



 

113 

5.8.3 Case report Teacher C 

Teacher C is a male around fifty years old with 10 years experience as a teacher and teaching 

mathematics. At the time of the study he taught 40 hours of mathematics a week. Classroom C was 

composed of 36 boys and girls of a middle-low socioeconomic level public school. 

5.8.3.1 Lesson outline 

The first 45 minutes are almost only about theory. The teacher announced they were going to learn 

the Pythagoras’ Theorem that involves exclusively the right triangle. After that they reviewed the 

triangle, its properties and characteristics (vertices, angles, classification, etc.). Immediately after 

that review the teacher wrote down the Pythagorean Theorem statement on the board and sticked 

a poster with a draw of the right triangle including the identification of its sides, the formula and the 

definitions of right triangle, cathetus and hypotenuse. The teacher used this poster to present the 

theorem. Next, the teacher gave an algebraic example of the Theorem using numbers and showed 

the theorem in a visual way, more specifically; using colored paperboard he cut out and sticked the 

squares on the legs and the hypotenuse. After that, teacher and students solved together another 

exercise. In the next phase, the teacher gave instructions for peer work in order to verify that the 

squares on the catheti together have the same surface as the square on the hypotenuse. The 

students used squared paper for that task, since they had to measure the areas and verify if the sum 

fit according with the Theorems’ statement. The teacher went through the seats following up 

students’ work and answering to questions. When time for the activity was up the teacher began a 

new whole-class phase, mentioning some conclusions about Pythagoras’ Theorem based on the 

work pupils were doing with the squared paper. The teacher repeated how to identify the sides in 

the right triangle and mentioned that the hypotenuse is not always necessarily labeled as “c”. After 

the conclusions, the pupils that hadn’t finished the work kept on doing it. Next they went out of the 

classroom to take a break. 

After the break, the pupils had to verify the Pythagoras’ Theorem based on a hands-on activity, 

namely the performance of the same verification the teacher made on the blackboard with the 

colored paperboard in the first part of the lesson. Here the emphasis was not put on the area of the 

squares as in the previous activity, but in the visual experimentation, using paperboards from 

different colors, that the square on the hypotenuse can be fully covered by the squares on the legs. 

The students worked in groups for the rest of the hour. Briefly before finishing the lesson, the teacher 

required all students’ attention and asked “what did we learn today?” and mentioned the statement 

of the Pythagorean Theorem again as closure. 
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In the following table, there is a presentation of the theoretical phases that were identified in the three 

lessons taught by teacher C. Only these segments were analyzed in depth for the case study. 

Table 5.19: Overview of the Theoretical Phases carried out by Teacher C 

Segment Description 

Segment 1 (Lesson 1, 39’45) 
 

03:38-43:23 Review of properties of the triangles 
Introduction of the Pythagorean Theorem, algebraic and 
geometric formulation and examples 

Segment 2 (Lesson 1, 4’36’’) 21:24-26:01 

 

5.8.3.2 The use of graphic support  

This teacher showed a wide use of graphic support when introducing the Pythagorean theorem. 

Even when he started his approach to the Theorem writing down the statement of the Theorem in 

the board, followed by the formula Immediately next to that, he sticked a poster on the board with 

the statement, a draw of a right triangle with the definition of right triangle, cathetus and hypotenuse 

and the Theorem’s formula. He based on that support to explain the Pythagorean theorem. He 

frequently refers to specific parts of the triangle in his discourse, that is, the draw worked like a 

complement of it and as content as well. 

Extract 5.17: Introducing the Pythagorean Theorem 

1 T [...] So if the right angle is here, this side is called cathetus and this other side is also 
called cathetus. Right? And the other side is the hypotenuse, which is the opposite of 
the right angle, it means, the right angle is here, the one from here is going to be the 
hypotenuse. What did this gentleman do? This gentleman proved that if a square is 
built on the hypotenuse, which has the..., the area of the square, which has as a side 
the hypotenuse, and if two squares are built, that have as one side a cathetus, and as 
the other side, the other, the other cathetus, and if we add up these two areas, these 
two squares are going to be equal to this that we have here. That is, what did he do? 
more or less we are going to try to do something like this. [Drawing the squares on the 
sides of the triangle] then, he draws a square here, OK? It didn’t turn out very square, 
so to speak, right? and another one over here, well, not right here, but a bit beyond. 
And another square here. 

It is important to note, that this teacher, showed the students the equivalence of surfaces by sticking 

colored squares on the sides of a right triangle, and cutting and pasting in order to show that the 

area of the square on the hypotenuse can be actually covered with the squares built on the catheti. 
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5.8.3.3 Adaptive approach 

At the beginning of the lesson, the teacher announced they are going to learn the Pythagorean 

Theorem that refers exclusively to the right triangle. While reviewing he emphasized the goal was 

the right triangle in order to learn the Pythagorean Theorem. After reading out the Theorem’s 

statement he reviewed the properties of the right triangle again, introducing cathetus and 

hypotenuse. 

It is interesting to examine the segment where he presents the Theorem to the students and the 

corresponding explanations he gave. 

Extract 5.18: Presenting the Pythagorean Theorem 

1 S [...] So if the right angle is here, this side is called cathetus and this other side is also 
called cathetus. Right? And the other side is the hypotenuse, which is the opposite of 
the right angle, it means, the right angle is here, the one from here is going to be the 
hypotenuse. What did this gentleman do? This gentleman proved that if a square is 
built on the hypotenuse, which has the..., the area of the square, which has as a side 
the hypotenuse, and if two squares are built, that have as one side a cathetus, and as 
the other side, the other, the other cathetus, and if we add up these two areas, these 
two squares are going to be equal to this that we have here. That is, what did he do? 
more or less we are going to try to do something like this. [Drawing the squares on the 
sides of the triangle] then, he draws a square here, OK? It didn’t turn out very square, 
so to speak, right? and another one over here, well, not right here, but a bit beyond. 
And another square here. 

2 T Then this is the ABC rectangle triangle, where is the right angle? 

3 S [murmurs are heard] In the vertex C 

4 T In the vertex... 

5 S C 

6 T c, Yeah! There you can see it is a rectangle. Here there are some right angles, look, 
there. Whenever we do certain things like when we want them to be perfect squares, 
for example, this line and the line that... they have to be cut out perpendicularly, there 
a right angle is formed. When you build a house you have to build it at right angles so 
the house is a square otherwise you will have a crooked house, OK? That is why we 
use this, so... he drew an area here. He drew an area here and drew an area here and 
compared them. As this is c, and this is a, and this is b, what is in here is going to be 
the square of 2, because it is the area of that. What is here is going to be the square 
of b, because this side is b, bxb, b2, and this is nothing like a square, it is going to be 
the square of c. So what did he say in his theorem. He says that c2, the square of the 
hypotenuse equals a2 + b2. What is a? What is b?, What is c? A, b and c are numbers, 
the length of the triangle sides. For example, let`s assume that this length, in an 
average situation... 3.... a equals 3, b equals 4, c equals 5. Check in your notebooks 
that this is fulfilled. Replace a by 3, then get the square of it, replace b by 4, get the 
square of it... and replace c by 5, and get the square of it. Let's see if you can prove it. 

[...]   
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7 T What am I doing here? I'm showing you how the Pythagorean theorem works. When I 
am going to draw a square, a figure, I have to have measures, in this case, the 
measures are going to be the length of this cathetus. In this case, this one is, I cannot 
see... 24 cm. Then I use a ruler, I mark 24, I mark 24, I mark 24, I mark 24 [showing 
every side of the square] and... then you take this [indicating the area of the square]. 
This is 18, 18, 18, 18 and this is 30, 30, 30, 30. Now this is the nice thing, the nice thing 
is the following...This is only a matter of give and take...tape. We are going to try it, 
here I have another right triangle, yes or no? This right triangle, we going to do 
differently now. Paste it, hit it with pencil there. Well done Nicanor [laughs]. Look what 
I do, you will have to do what I am showing you here, which is the same that is there. 
OK? You are going to cut out a right triangle, watch this, that is the square of the 
cathetus or hypotenuse. 

8 S
  

Hypotenuse 

9 T Hypotenuse, because here's the right angle, right? And the longest side is the 
hypotenuse. Cut it out here please, black! Thank You. Look, now we are going to put 
it there. You may say why is he doing the same thing that he did there. It´s not the 
same, no, don’t be silly. My grandson told me I had to do this one like this. And I.OK. 
Gosh, what a dumb, said my grandson. OK? Do you all agree with that? Do not say I 
am cheating then. I'll do magic here. This is the square from there, yes? 

10 S Yes 

11 T (…) Look, I’m going to try it with these two, if this area is equal to the sum of these 2, 
right? Which is the same that I have over here. These 2 areas, that are from catheti, 
are equal to the sum…to these 2, which means, the sum of these 2 is equal to this, 
what I mean is that with these 2 brown ones I have to cover the whole blue, yes or no?  

  

Along the quotations is possible to see little differences, at the beginning the teacher enunciates the 

theorem without draw, then makes a draw with the squares, deduces the formula, they solve and 

exercise and take up again the draw and using colored paperboard, he shows the students the 

equivalence between areas. The teacher shows certain adaptive orientation by using variety of 

resources when presenting the theorem from different perspectives not only repeating, but also 

adding information to what was said before.  

Besides he occasionally used a sort of “metacognitive” observations, giving structure to his 

explanation, for example, “what did this gentleman do?”, “what am I doing here? I am showing how 

the Pythagorean Theorem works!” 

5.8.3.4 Participation and contribution of the pupils to the explanation 

Teacher and students interact frequently, but the students’ role is mainly answering dichotomous 

questions or using one word or concept.  Besides, as can be seen in the transcriptions (for example 

extract 5.19), there are extended pieces of discourse held almost exclusively by the teacher. 
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There is one interesting situation, where the teacher gave more space to the class to participate and 

used a student’s intervention to add information about the Theorem. 

Extract 5.19: Pythagorean Triplets. 

1 T The fact I say cathetus 1 or cathetus 2, does not mean that cathetus1 is shorter than 
cathetus 2. OK? It does not mean that I am giving some priority, because of the 
distance, to one of them…it can be any of them. It is not 14. Aaaah, you guys are 
very moony. [Writing on the board cat2=28] 28. 

2 S why 28? 

3 T Cause I know it’s 28, ha! 

4 S But, why? [Several students talking at the same time] But explain it!  

5 S Cathetus 1 has a difference of 7 from cathetus 2 and 28 from the hypotenuse. It has 
also a difference of 7. [Unintelligible] in the other example is 6, 8 10, which have a 
difference of 2. 

6 T So it is not a very clear relationship. 

7 S But teacher, explain it. 

8 T If the length of cathetus 1 is 21...look, 21, the square of cathetus 1 plus the square 
of cathetus 2, whose value is unknown to me, is equal to the square of 35. Right? 

9 S Yes 

10 T So, you calculate the square of 35, what is the square of 21? you move this number 
from here to here subtracting, you calculate the square root and find the cathetus 
which is 28. But easier... 

11 S But, why not  just subtracting by 7? 

12 T Because that is a a... [pause] I really don’t know. That’s a good asseveration...and 
why is the difference here this one and a 1? 

13 S [unintelligible] 

14 T Ah that´s a good one...mmmmh, yes, there is some kind of proportion.  There is a 
relationship among the right rectangle, that is, if the length of a cathetus is 3, the 
other is 4 and the hypotenuse is going to be 5. Then, we can always find this 
relationship, 3, 4, 5. Pythagoras discovered this. Now, what did I do, I turned 
(number) 3 into... 

15 Ss 21 

16 T What? Huh? 

17 S 3X7 

18 T I multiplied by 7. I turned (number 4) into... 

19 S 28 

20 T How? 

21 S [unintelligible murmur] 

22 T 4X7 and I turned (number) 5 into 35. Multiplying it by 

23 Ss 7. 
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24 T 7, is it clear? OK. You are multiplying this. Now for example, I can tell you this one, 
that is over here, this. How long is the hypotenuse? 30, this cathetus is 24, and this 
cathetus? 18. Then 182 + 242 is = to 302. That’s what it shows me. But if I do the 
following, look, 3X6 

25 S 18 

26 T 4X6 

27 S 24 

28 T 5X6 

29 S 30 

 

5.8.3.5 Check for understanding 

The teacher asked explicitly during his talk, whether the students have understood the contents and 

the students answered in chorus. 

When the students answered a question all together but not giving the same answer, the teacher 

didn’t take the time to clarify the wrong questions, but emphasized which was the correct answer 

and which the wrong one. 

Extract 5.20: Showing equivalence of surfaces with colored paper. 

1 T […] Look, I’m going to try it with these two, if this area is equal to the sum of these 2, 
right? Which is the same that I have over here. These 2 areas, that are from catheti, 
are equal to the sum(m)…to these 2, which means, the sum of these 2 is equal to 
this, what I mean is that with these 2 brown ones I have to cover the whole blue, yes 
or no?  

2 S Yes [murmur] 

3 T It would have to be like that, wouldn’t it? 

4 S Yes 

6 T Did you get it or not?   

7 S Yes  

8 T Are you lost? Did you understand it or not? With these two…  

[…] 

9 T We are going to put it just like that, over it, OK? Here we are going to make a sort of 
arrangement, OK, done! That little piece that you see is the product of the sunlight 
only [laughs]. This one has to go there. Give it to me... just a smaller piece. We are 
going to put that one over there. You are going to have the good will to suppose that 
this thing is cut out properly [laughs] right? With a window... and this little piece over 
there. Do you get the idea or not? 
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5.8.3.6 Linking the new contents with previous knowledge 

At the beginning of the lesson the teacher uses almost 10 minutes for making a review, beginning 

with the definition of triangle and its properties and classifications. 

Later on, when solving an exercise, the teacher recalled how to compute powers. 

Extract 5.21: Remembering powers. 

1 T [brief cut] The brown Areas covered the blue area. Did you get it or not? Now if you 
see something blue, that's a sight problem of you guys because everything is brown 
there [laughs].OK! Now, consider the following. When I calculate the square of any 
number, what does it mean? [Writing on the board 72] That I am going to multiply 7x7 
that equals 

[…] 

2 T Yes, sir because 10x10 equals 100, because if you multiply 50X50 equals 2500. 
Because it is not multiplying 50X2 to get 100, how many times have I said it? 
Exponentiation is to multiply the base by itself as many times as the exponent 
indicates it. Are we OK? 

3 Ss Yes 

 

5.8.3.7 Abstraction and usefulness of the Theorem 

There is an implicit mention of the usefulness of the Theorem, by mentioning the importance of the 

right angle in context of building, what is afterwards briefly linked to the Theorem. The following 

quotation is the only segment along the theoretic phases, where an everyday life situation is 

mentioned (see extract 5.19). 

5.8.4 Case study Summary 

5.8.4.1 Use of the graphic support  

Regarding this dimension, there was an interesting common element between teachers A and C, 

namely the fact that the draws were not only supporting the explanation of the content, but were part 

of the explained content, thus there was a clear and explicit connection between the discourse. There 

were many instances in which the draws of triangles and its specific parts were the exactly graphic 

representation of the content. Besides, the geometric representation of the Pythagorean Theorem 

allowed the natural link between the Theorem statement, that is the verbal representation of the 

equivalence of surfaces and the theorem’s formula, which was presented by the teachers as “another 

way to write” the theorem. In other words, the draw works as a way of knowledge representation. 
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Since the analyzed lessons corresponded to the introduction of the Pythagoras Theorem, it could be 

argued that this would be always the case in any geometry lesson. This idea makes the third case 

an interesting contrast: in teacher B’s lesson, references to drawings were frequently but mostly far 

too general, so that the drawing never became a piece of content really accessible to the students. 

Instead of working as different ways to represent the content that get connected through an 

articulating classroom discourse, the discourse evolved separated from the graphic representation 

in the initial inquiry activity, segmentation that was not overcome along the lessons. The teacher’s 

explanations were little isolated pieces of information and there was never clear that the formula, the 

statement and the drawing were three different representations of the same idea, which richness is 

given when these three representations are available and properly connected. In her model about 

IEs, Leinhardt (2001) addressed the benefits and risks of using representations, specifically 

mentioning that is important to acknowledge that the representation can contribute to the 

development of a good explanation but in none of the cases can be assumed that the solely presence 

of the representation would replace it  (see section 2.2.4). 

5.8.4.2 Adaptive Approach 

In regard of this dimension, it is not possible to draw clear conclusions, since there were not many 

occasions to observe an adaptive approach by the teacher when explaining. On the contrary, there 

were more instances of lack of flexibility what in this context was observed as rigidity in the lesson 

script and conceptual repetition.  

Teacher A organized her lesson including repetition segments and exhibited a very structured way 

to teach, giving the students opportunities to raise their concerns. There were some instances in 

which the teacher followed up the students’ ideas, showing some adaptive actions. 

Teacher B did not show responsiveness towards the students in more general terms and, on the 

contrary, seemed quite rigid keeping the track of the lesson while having evidence that the students 

were not necessarily engaged in the proposed activities. Even when the unresolved classroom 

management issue by teacher B’s classroom probably influenced the analysis of every dimension, 

it was particularly manifest in this one, since the classroom discourse was very interrupted practically 

impeding the flow of the lessons. 

Teacher C organized the lesson with a long theoretical phase including many concepts, adding 

information gradually, and combining different perspectives to the Theorem. His teaching approach 

was extremely teacher-centered and the scarce instances in which he followed up pupils’ ideas were 

addressed as an excursus instead of being incorporated to enrich the explanation, clarify or stress 

any aspect of the content. 
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To sum-up, the lack of evidence about adaptive approach of the teachers when explaining does not 

allow a characterization. Leinhardt’s (2001) model, underlying the present work, claims the 

understanding of the nature of the problem as a core issue in a explanatory dialogue. The 

perspective used in this work assumed the disposition of the teachers to adapt according to 

misconceptions that students show would  

5.8.4.3 Participation and Contribution 

The three teachers fostered students’ participation continuously. The main difference is that 

Teachers A and C succeeded better in engaging the students than teacher B did. 

The participation instances offered are mainly restrictive and allow the students to contribute with 

very short answers or dichotomous ones. The main difference between teachers A and C is that 

teacher A gave more space to her students to expand their ideas in a friendly context, while teacher 

C was in occasions open to give space to students’ opinions and in other occasions was sarcastic 

discouraging them to express their ideas. 

5.8.4.4 Check for understanding 

Teachers A and B checked students understanding in an implicit way, that is monitoring individual 

work through the seats. Additionally, teacher A implemented practice phases specifically related to 

the theoretic ones. 

Teacher C asked his students permanently whether they understand the contents, but did not really 

showed himself responsive to the students’ reactions. 

5.8.4.5 Linking new contents with previous knowledge 

Teachers A and C carried out explicit introductory review phases at the beginning of the lesson. 

Some additional refresh episodes occurred during the lesson. Teacher B included only the review of 

some isolated concepts when they aroused in the lesson. 

5.8.4.6 Concretion/Illustration 

None of the teachers linked explicitly the Pythagoras theorem to everyday life situations. Teacher A 

highlighted the uses of the theorem to compute lengths of sides of the right triangle when others are 

given: “If I have the length of the two catheti I can compute the length of the hypotenuse with this 

formula. And the same with the catheti, if I have the measure of one cathetus and the hypotenuse, I 

can compute the length of the other cathetus”. 
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Teacher B devoted time to an extensive historical background about the Nile ad the Egyptians and 

mentioned fields in which the theorem is important, omitting the specific uses: “The theorem is used 

nowadays in topography, building and architecture in order to compute measures”. 

Teacher C mentioned the importance of the right triangle in construction work.  “It is important in 

building. When you build a house, you have to build right angles in order to get a square. If you don’t 

the house is going to be crooked, ok?” This latter quotation is an extract of larger one (see extract 

5.19) ) which ends with a reference to the Theorem but there is no clear connection with the 

Theorem. The same happens in the former example, it is not clear why the Theorem is important to 

compute measures in topography, building and architecture. 

  

5.9 General Summary 

The examination of Instructional Explanations carried out in the present work was organized around 

seven quality dimensions based on the literature, namely,  (1) Use of graphic support, (2) Adaptive 

approach, (3) Check for Understanding, (4) Participation and Contribution of the students, (5) Linking 

with previous Knowledge, (6) Concretion/Illustration and Usefulness22, and (7) Main elements. As 

shown in Table 5.20, some of these quality features were examined using an initial categorization 

that lead to the use of quantitative methods, while others were studied with a qualitative approach 

and some of them by using both methodological approaches. The goal of this section is to put 

together the results showed in the former sections in a broader thematic perspective.  

  

                                                
22  The dimensions “Concretion/illustration” and “Usefulness” were used as separated variables for the analyses 

reported in the results obtained using quantitative methods.   
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Table 5.20: Summary of the IEs quality features examined in the present study 

Quality Dimension Examined with 
quantitative methods 

Examined with 
qualitative methods 

Use of graphic support Yes Yes 

Adaptive Approach No Yes 

Check for understanding No Yes 

Participation and Contribution of the students No Yes 

Linking with prior knowledge No Yes 

Concretion (Illustration) and Usefulness Yes Yes 

Main elements Yes No 

 

5.9.1 Use of Graphic Support 

The results related to the use of graphic support tell us not only that all participant teachers use 

graphic elements when teaching the Pythagorean Theorem, but also use them frequently and their 

role is important, in terms that the explanation couldn’t be understood in absence of the 

correspondent graphic piece. Still, this importance seems to work at a logical but not necessarily 

pedagogical level, in other words, even when the IE wouldn’t probably make sense without the 

graphic piece, it presence doesn’t necessarily make it a good one. Furthermore, the results indicate 

that teachers with 10 or more years teaching mathematics tend to use less graphic support than 

those with less experience; while the students of these more experienced teachers showed a better 

perception of the quality of the explanations given by them. One possible speculative interpretation 

of that results would be that teachers with less experience teaching mathematics prepared special 

materials to introduce the Pythagorean Theorem because of their participation in the study, without 

being part of their usual practice. 

In addition, it is interesting to note that the multilevel analysis showed a negative association between 

the use of graphic support done by the teacher and the quality of the IEs perceived by the students. 

This evidence reassures the idea that presence of graphic support does not mean better IEs, rather 

the opposite, and lead us to go back to the idea of representation stated by Leinhardt (2001) as a 

core component of IEs. In her model, she emphasizes the importance of representations as well as 

the relevance of the connection they have with the IEs. One of the goals of the case study in regard 

to this theme was to specifically shed light in this latter element, going beyond the presence of 

graphic elements but characterizing their role in the development of the IE. According to these 

results, on the one hand the teacher of the classroom with low learning outcomes exhibited an explicit 

failure in the connection between the graphic representation and the discourse, almost literally as 

warned by Leinhardt (2001), in this introductory lesson the teacher nearly assumed that the drawing 

was the explanation itself and there was no need to guide the classroom discourse. On the other 
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hand, the teacher of the classroom that obtained high learning outcomes showed a sort of 

progression in the connection that was established between the representations and the IEs. The 

lesson started using drawings that were the content (e.g. right angle, right triangle, cathetus, 

hypotenuse, etc.) and when moving forward, the discourse was becoming progressively more 

abstract and more complex, since it presented the relationship between elements (e.g. the 

equivalence of certain surfaces) to finally obtain the algebraic formula, that is actually another kind 

of representation of what was previously showed with the draw. Still, probably the most characteristic 

feature of this teacher is the quite precise correlate between the discourse and the graphic piece, 

what can be interpreted as a connecting discourse, emphasizing the fact that in geometry there are 

many representations of the content and the visual representation is one of them. 

5.9.2 Adaptive Approach 

As mentioned previously there was not much evidence about adaptive actions of the teachers to 

meet students’ needs in order to develop an Instructional Explanation that could be better adjusted 

to them. In general terms, the few examples extracted from the case study show that lesson scripts 

tend to be quite rigid and the occasions in which the teachers pose further questions to specific 

students in reaction to his or her errors works like an excursus with a beginning and clear ending to 

allow moving forward with the flow of the class, in other words it is not managed as a worthy input 

that can be profited from the other students in the classroom. 

Even when this specific element is not included in the original work of Leinhardt but can be traced 

back to van de Sande & Greeno’s (2010) idea of the communicational alignment that must exist 

between the teacher and the student when developing am IE what would include here to know what 

the student is thinking or what he or she understands in order to move forward.     

5.9.3 Participation and Contribution of the Students 

These elements are considered relevant for IEs, firstly, because based on the broader 

conceptualization of Leinhardt (2001) IEs are defined in this a work as portions of classroom 

discourse, which assumes interaction between the parties in order to work out as such and; 

secondly, because in more general terms this model is embedded in a constructivist perspective, 

and there is no truly chance to co-construct knowledge if only the teacher is the one proposing ideas 

in the classroom an does not challenge the students and give them ample opportunities to co-

construct with her. 

In regard of these dimension, the results show clear trend in which the teacher is continuously 

offering participation to the students, even when these opportunities are mostly short, shallow and 
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do not involve high order skills. Still, it is interesting that there are episodes of long discourse pieces 

exclusively dominated by the teacher.  

5.9.4 Checking for Understanding 

As other dimensions, this one is not explicit mentioned by Leinhardt as a crucial component of an 

IE, but is directly derived from her approach due to the discursive nature of the object of interest. 

The dimension Check for Understanding can work in some occasions in a similar way as Link with 

Prior Knowledge, since it can be understood as a general aspect of the classroom discourse about 

the acknowledgment done by the teacher in terms that the students are engaged in the dialogue, 

and there is a minimum amount of shared understanding that allows the discourse to go forward in 

a successful manner. The analysis conducted for this study considered the frequency of this 

checking as well as whether it occurred implicitly, that is asking general questions (e.g. Are we OK? 

Did you get it? Any Questions?) or explicitly, meaning, the pupils are explicitly asked to say or do 

something that will give the teacher evidence of their knowledge. The results show that the teacher 

whose students obtained better results was rather centered in explicit Check for Understanding and 

more specifically, about the core concepts of The Pythagorean Theorem, while the other teachers 

did both kinds of Checking and in a less systematic way.  

5.9.5 Linking with Prior Knowledge 

This dimension is claimed as a crucial quality by Leinhardt (2001), since the IE need to include this 

linking in order to succeed. She insists in the fact that teachers cannot just assume that the students 

know something based on the class they are attending to, but need to implement whatever is 

necessary to find out what students know and go forward to the next steps considering the actual 

starting point. 

The results of the case study seem to be according to the theory, since the teacher obtaining better 

achievement and motivation results was the one who dedicated more time to an initial content 

review, which in addition was carried out in a very interactive way. She was not asking whether the 

pupils remembered the different type of triangles, but gathering evidence of their knowledge. In 

contrast to that, the teacher whose students obtained average learning outcomes, but low motivation, 

devoted time to review at the beginning, but this review took place in a lecture format with very few 

occasions of participation offered to the pupils. Finally, the teacher with under average achievement 

class carried out a brief review during the initial instructional activity, which actually responded to the 

fact that the pupils could not grasp what she was trying to teach, at least somewhat because the 

prior knowledge was not in place. 
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5.9.6 Concretion/ Illustration and Usefulness 

The dimensions of Concretion/Illustration and Usefulness will be presented together here, as was in 

the case study, because both of them refer to the connection of the content of the Instructional 

Explanation to the students’ everyday life and the relevance of what is learned in school can have in 

their lives.  

Both elements infrequently appear in the Instructional Explanations captured in the videotaped 

lessons. On the one hand, all the teachers of the sample explained the Pythagorean Theorem using 

letters or numbers but seldom embedding the Theorem in a real situation in which the sides of the 

triangle were representations of any real life element. The average score of the sample reached 1.83 

from a 4 point (SD= 0.52). On the other hand, only around half of them indicated what was the 

Theorem useful for and these mentions were rather general and brief, obtaining an average score 

of 1.34 (SD=0.42). However, it is interesting highlight that there was a significant negative 

association between the dimension Concretion/Illustration and learning outcomes, in other words, 

the more abstract the explanation was developed, the better the learning outcomes of the students. 

In the qualitative further analyses, specifically, in the case of Concretion/illustration, it came out, that 

the teacher B (with students with under average learning outcomes) was the only who actually had 

incorporated any contextual element to her Instructional Explanations. However, as can be seen in 

the detailed case report (section 5.8.2) there were other clear problems affecting the quality of the 

Instructional Explanations developed by this teacher. The other teachers under examination, whose 

students obtained on average and over average learning outcomes, developed their Instructional 

Explanations in a fully abstract way. Thus, in regard of the Concretion/Illustration dimension the 

results of the case study would tend to confirm the quantitative results, that this dimension would 

have a rather negative association with students’ variables. In regard of this particular result, there 

was also found a negative significant association between this dimension and the proof 

understandings core that the pupils exhibited at the beginning of the classroom. Initially this result 

seemed likely to be interpreted as an adaptive performance of the teacher, that is, the teachers 

whose students have better proof understanding teach in a more abstract way.  

Finally, the aspect Usefulness did not yield meaningful differences between in the case study either, 

since the three teachers mentioned briefly and in general terms the usefulness of the Theorem. The 

teacher A, whose pupils obtained better results, was probably the one giving more details to the 

potential use of the Theorem, but at the same time it is interesting that the use that she emphasized 

was to compute the unknown length of the side of the triangle when the other two are known, what 

according to the definitions of this study was considered fully abstract. 
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5.9.7 Main elements 

This dimension refers to the idea of “core principles” claimed by Leinhardt in her model as a critical 

criterion, that is, the importance of properly emphasizing the central conceptual components of an 

IE and at the same time clarifying which are those that play a secondary role. In this study, the main 

elements were operationalized according to those previously used in the subject-didactic coding 

scheme developed by Drollinger Vetter & Lipowsky (2006). The results show a positive association 

between this dimension and the perceived quality of the IEs reported by the students. 
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6 Discussion 

The goal of the present work has been to examine Instructional Explanations (IEs) performed by 

mathematics teachers when introducing the Pythagorean Theorem in Chilean 7th grade classrooms. 

This empirical examination started with the identification of Instructional Explanations as ubiquitous 

and important elements of everyday teaching practices based in the literature. From different 

theoretical perspectives, teachers are assumed to commonly explain when conveying content to 

their students (Leinhardt, 2001; Perry, 2000; Renkl et al., 2006; Schmidt-Thieme, 2009) and at the 

same time, good teachers are assumed be good explainers (e.g. Charalambous et al., 2011; Inoue, 

2009; Ball et al., 2005). Still, there is scarce empirical research about IEs and in particular in terms 

of their quality. 

In this dissertation, IEs have been understood according to the conceptualization of Leinhardt (2001) 

as a form of classroom discourse that involves the teacher and one or more students in order to 

answer a subject-matter related question. The quality components of IEs were derived from 

Leinhardts’ model of effective explanations, as well. 

The examination of instructional explanations was carried out considering the students’ perspective 

gathered with a questionnaire and the perception of external observers (i.e. especially trained 

coders) collected through the coding procedure of the videotaped lessons. 

In addition, a case study was performed in order to deepen the results obtained with the video rating 

scheme and specifically to characterize specific features of the IEs carried out by three teachers that 

were selected based on characteristics shown by their students in terms of motivation regarding 

mathematics and their learning achievement along the school year during which they participated in 

our study. 

In this section, the results of the empirical work are discussed in view of the theoretical background 

that motivated its research questions.  

A central goal of this work was to bridge the gap between the IE and the instructional quality 

literatures by examining the former while using the empirical approach established by current 

research on the latter. This idea seemed appropriate in order to look for associations between ways 

how teachers explain the content and students’ outcomes in terms of interest and learning 

achievement. This endeavor required the development of a video coding scheme including a set of 

indicators capturing relevant quality features that an instructional explanation should show, based 

on the theoretical framework of Leinhardt (2001). The approach taken was an analytic observation 

protocol, which required the reduction of complexity and also simplification of some elements in order 

to make them observable through a medium-level inference rating process implemented by trained 
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coders. The underlying assumption was that the final combined set of indicators would allow for an 

empirically characterization of effective Instructional Explanations. This idea can be expressed in 

terms of a multiple regression analysis, where high ratings for the quality features aligned with 

Leinhardt’s theoretical model should be associated to positive learning outcomes, confirming their 

effectivity. This line of argumentation has been a key rationale established for the present work.  

Unfortunately, the results of the video coding did not support the idea that the set of chosen indicators 

can be considered to load on one broader concept of “Instructional Explanations Quality”. Rather, 

the components proved to be heterogeneous. A possible explanation for this results is, tracing back 

to Leinhardt’s model, that many of the criteria that must be meet by an explanation to actually take 

place and have a positive impact (see 2.2.4) are not explicitly addressed by the teachers. Therefore, 

instead of relying on indicators that could be observed directly, it was necessary to make inferences 

regarding IEs based on interactions occurring in the classroom. The need to rely on these inferences, 

as opposed to directly observable behavior of teachers, is an important difficulty when trying to study 

IEs.  

The subsequent steps in the analyses were performed keeping the rationale of looking for 

associations with students’ outcomes, but considering every indicator separately rather than running 

multiple regression models. These analyses, however, lead us to a complicated mix of findings that 

needs to be interpreted in a careful, and exploratory, way. Given the limitations of the quantitative, 

regression-analytic approach and the need for subtler interpretations, the case study plays an 

important role. The case study was meant to provide a characterization of the Instructional 

Explanations based on the theoretical background of the same indicators as used in the quantitative 

analysis, but with a more detailed and fine-grained approach. This case study played a crucial role 

in giving integrity and conceptual solidity to the results as a whole, giving context to the quantitative 

results, and providing guidance to future improvements on study designs of IEs. 

One of the complex results in the study is the role of Use of graphic Support obtained with the video 

scoring scheme, which seemed paradoxical since a higher frequency of use was negatively 

associated with quality of IEs. In the qualitative study, it became clear that the use of graphic support 

in the development of IEs is only important when the mathematical content explicitly connected both 

to the graphical representation and to other representations, such as an algebraic one. This explicit 

connection that is established and developed through the discourse. There is a conceptual precision 

that needs to be transmitted in this connection; for example, if the teacher is connecting a2 in the 

formula with the square built on the side a, which surface corresponds to a2, it is important for the 

connection to be made explicitly, so that the students have a real chance to realize the link between 

these different representations. In the case of geometry, making these connections is probably more 

critical than in other areas of mathematics, since in geometry the graphical representation is the 
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content itself, rather than a nice-to-have additional element. However, in order to draw more robust 

conclusions in this regard, further analyses would be needed, since there could be further issues 

hidden behind this negative association between use of Graphic Support and the quality of IEs. 

Another important result is the one regarding Usefulness and Concretion/Illustration of the IEs about 

the Pythagorean Theorem. As stated before, both dimensions showed low scores, that is, the 

teachers do not tend to link the Pythagorean Theorem with the students’ everyday life – neither by 

mentioning it’s usefulness, nor by referring to everyday life elements or concrete objects. On the 

contrary, the results show that the more abstract the IEs were phrased, the better was the students’ 

learning achievement. Although this result seems to contradict the literature, a possible explanation 

would be that the teachers do not really endorse constructivist practices, but they only resort to that 

perspective when their children struggle with the content. Thus, constructivist practices such as 

commenting on usefulness or referring to everyday life elements are correlated with low achievement 

levels. This idea is in line with previous analyses performed on the same sample of classroom videos 

that indicated the scarce presence of constructivist teaching practices, and the high prevalence of 

teacher-centered teaching practices (see Jiménez & Varas, 2010). An alternative explanation would 

be that teachers who experience more difficulties teaching the Pythagorean Theorem remain on a 

rather concrete level, usually a hands-on activity (paper cut task) and they do not succeed in correctly 

addressing it conceptual meaning, leading to confusion. Still, this results would need to be 

complemented with further analysis in order to fully account for their discrepancy with the literature 

on this area. 

 

One of the main limitations of this study is related to the sample that was selected on convenience 

and was composed of only 19 teachers. The small number of level 2 units imposed restrictions on 

the data analysis, specifically on the number of variables that could be entered in any single 

multilevel analysis examining the research questions related to associations between teacher and 

student variables. Furthermore, even when, the participant teachers were told that the goal of the 

study was to capture their usual classroom practice and they did not have to prepare special 

materials or instructional activities for the videotaped lessons, there was one important exception, 

namely, that they had to include a proof at any time during the three lessons. We are aware, that 

even when many teachers did not make any comment in this regard, they are not used to include a 

proof, especially since in 7th grade many of those teaching mathematics are actually elementary 

teachers. However, when analyzing the teaching practices from a mathematical perspective, it came 

out that none of the teachers actually implemented a proof, but inquiring activities, that unfortunately 

were not conducive to mathematical reasoning because of problems with monitoring and drawing 

correct conclusions from a disciplinary perspective (Jiménez & Varas, 2010). In despite of these 
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findings, it is possible that this intended requirement, could have probably lead to especial 

preparation which could have distortion our results to an extent that is not possible to assess. 

An additional limitation of the study is the fact that all the questionnaires and achievement test 

applied, as well as High inference rating system to gather the quality of teaching practices, were 

developed in the original Swiss-German study and were submitted to an accurate translation 

procedure staying close to the original formulation of the items. This decision was made in order to 

allow for cross-cultural comparison and could have compromised to some extent the adequacy of 

the instruments to the Chilean sample. In addition, Chile participated in the study with 7th graders 

because it is the grade in which pupils learn the Pythagorean Theorem for the first time, while in 

Germany and Switzerland attended to 9th and 8th grade in order to meet the same criteria. 

 Given these limitations of the quantitative approach, which was taken up from the Swiss-German 

study design, the additional case study implemented here is an important asset of the Chilean 

project. Its implementation was essential in order to shed light on the quantitative results, and an 

eventual incorporation of additional cases would have probably increased the richness of the 

interpretation. All in all, these results are not susceptible to be generalized widely; they should be 

considered as a starting point of further in-depth research. 

Despite these limitations, the empirical results of this work give some orientations about how a 

coding scheme incorporating IEs could be improved. In the case of the graphic representation, the 

emphasis must be put in the connection between the object or portion of subject matter to be 

explained by means of the representation and the representation itself. Probably in the case of other 

areas in the mathematics such an assessment would include the part or feature of the content that 

is addressed by the representations or whether it is intended to distinguish between core elements 

and nonessential.  In addition, the abstraction component could be refined in its operationalization, 

indicating more precisely which concrete view in an IEs really means addressing “conditions of use” 

in sense of Leinhardt and when it is just an artificial setting to make a lesson more fun. This distinction 

would help to overcome a potential distortion in the coding procedure due to the inclusion of hands-

on activities. 

Finally, it is relevant to remark the contribution of the present work in connecting IEs and models of 

quality of instruction. Firstly, the theoretical intersections between IEs and models of quality of 

instruction have been addressed, and based on this review it can be argued that IEs clearly 

correspond to the domain of instructional support or cognitive activation, that is, the domain in which 

the core of instruction takes place. Secondly, empirical findings have been reported, establishing IEs 

quality features that worked out as expectedly and giving specific orientations regarding potential 

improvements. Consequently, the present work is a contribution in addressing the potential of 
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including of a dimension that explicitly considers instructional explanations to models of instructional 

quality. For instance, such a dimension would be a worthy complement to Klieme’s Model, especially 

in two situations: on the one hand, a dimension of IEs would be significant when analyzing 

introductory lessons or lessons with a theoretical emphasis, in other words, lessons where IEs are 

more likely to emerge. On the other hand, it is important to consider that even when the relevance 

of interaction in instruction is well known and it is a core component extremely noteworthy to analyze, 

there are instructional cultures in which the teacher has still the preponderant role in the classroom 

and lessons are not as interactive as expected. In such cultures, like in Chile, the pedagogical 

dialogue is short and not fluid, students are not used to participate spontaneously, and interaction 

between students occurs seldom. Consequently, the choice using observation protocols strongly 

based in the richness of interaction lose power in terms of the information they are able to deliver. 

The inclusion of a dimension of IEs would mean a contribution in those situations as well.  
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11 Appendix 

11.1 Coding scheme for the quality of instructional explanations 

Zweite Beobachtung: Kodierung der identifizierten Theoriephasen 
 

1. Die Erklärungen werden durch eine Zeichnung/Graphik unterstützt. 
 

1 Keine Zeichnung oder Graphik vorhanden. 
Die ganze Erklärung wird mündlich oder schriftlich durchgeführt. Eine Zeichnung kann an der 

Tafel stehen, aber die Erklärung wird nicht anhand der Zeichnung durchgeführt. 

2 Die Verwendung von einer Zeichnung erschwert das Verständnis.  
Die Erklärung wird anhand der Zeichnung durchgeführt, aber es gibt Widersprüche zwischen der 

Erklärung und der Zeichnung oder die Zeichnung stellt eine Ablenkung für die Schüler. Die Erklärung 

wird mit der Zeichnung nicht leichter sondern eher komplexer. 
3 

 

Zeichnung oder Graphik wird verwendet, man gewinnt aber den Eindruck, dass 

diese eher eine „dekorative“ Rolle hat. 
Obwohl die Erklärung anhand der Zeichnung durchgeführt wird, ist diese eher unwichtig. Die 

ganze Erklärung wäre auch ohne Zeichnung nahvollziehbar. 

4 

 

Zeichnung und/oder Graphik spielen eine wesentliche Rolle in der Erklärung.  
Die Erklärung ohne Zeichnung wäre nicht möglich, denn die graphische Darstellung und „das 

Gespräch“ sind inhaltlich stark verbunden.  
 

2. Wiederholungen kommen vor. 
- Gesamteindruck der Häufigkeit, mit der Erklärungen von der Lehrperson wiederholt werden. 

1 Nie 

Keine Wiederholung kommt vor. 

2 Selten 

Vereinzelte Wiederholungen kommen vor. 

3 Häufig 

Mehrere Wiederholungen kommen vor. 
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3. Vielfalt der Erklärungen. 
Diese Vielfalt kann bei Missverständnis der Schüler, Fragen oder als follow-up nach falschen 

Antworten vorkommen, aber auch spontan von der Lehrperson. 

1 Die Erklärung wird wiederholt 
Die Lehrperson wiederholt den Sachverhalt auf dieselbe Weise sogar bei Fragen und 

Missverständnis (Als ob die Schüler nicht gehört hätten, nicht als ob sie nicht verstanden hätten). 

2 

 

Die Erklärung wird umformuliert 
Die Lehrperson greift zu Synonymen oder versucht umzuformulieren, erklärt aber 

grundsätzlich auf dieselbe Weise (nur geringe Änderungen). 
3 

 

Die Erklärung wird modifiziert 
Die Lehrperson zeigt Flexibilität und erklärt auf unterschiedlichen Arent und Weisen. Die 

Erklärung ist flexibel und wird bei Bedarf vereinfacht. Die Lehrperson verwendet eventuell auch 

neue Beispiele oder neue Zeichnungen. 
 

4. Die Lehrperson überprüft, ob die Schüler die Erklärung verstanden haben.  

1 Implizite Überprüfung 
Als Beobachter hat man den Eindruck, dass die Lehrperson während der Erklärung die 

Schüler berücksichtigt. (Die Lehrperson fragt nicht explizit, aber man sieht, als Beobachter, dass 

die Lehrperson aufmerksam ist, wie die Schüler reagieren). 

2 Explizite und sporadische Überprüfung (Dichotome Frage) 
Die Lehrperson fragt ab und zu nach dem Verständnis der Schüler. Die Frage muss explizit 

auftreten z.B. „Alles Klar?“ „Fragen?“ 
3 Explizite und ständige Überprüfung (Was haben die Schüler verstanden?) 

Die Lehrperson vergewissert sich ständig, dass die Schüler einen Schritt verstehen, bevor sie 

weitermacht. Es muss explizit nachgefragt werden und es sollen eher offenen Fragen gebraucht 

werden, um wirklich Verständnis zu prüfen. 
4  Die Lehrperson holt sich Informationen über den Verständnisgrad fast aller 

Lernende ein. 
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5. Die Lehrperson fördert, dass sich die Schüler an der Erklärung beteiligen. 
- Das bedeutet, dass die Erklärung nicht als „Vorlesung“ durchgeführt wird, die den Schülern die 

Zuschauerrolle zuweist, sondern dass sich die Schüler beteiligen.  

- In diesem Indikator geht es nur darum, wie häufig die Lehrperson während der Erklärung Fragen 

stellt oder andere Gelegenheiten für Beteiligung anbietet, unabhängig von der Qualität dieser 

Beteiligung. 

1 Nie 

Während der Erklärung wird den Schülern keine Gelegenheit zur Beteiligung geboten. 

2 Selten 

Während der Erklärung wird den Schülern vereinzelt Gelegenheit zur Beteiligung geboten. 

3 Häufig 

Während der Erklärung wird den Schüler häufig Gelegenheit zur Beteiligung geboten. 

4 Ständig 

Während der Erklärung wird den Schüler ständig Gelegenheit zur Beteiligung geboten. 

 

6. Die Lehrperson fördert, dass die Schüler zur Erklärung beitragen. 
- Hier geht es um den Gesamteindruck der Qualität der Beteiligung, die während der Erklärung 

von der Lehrperson ermöglicht wird. 

1  Die Mehrheit der Fragen haben ein geschlossenes Antwortformat 

(Ja/Nein) oder es kommen gar keine Fragen vor. 

2 Die Mehrheit der Beteiligungsversuche zielt darauf ab, dass die Schüler 

als Stichwortgeber auftreten.  
Die Beteiligung der Schüler während der Erklärung hilft den Verlauf des Unterrichts 

fortzusetzen. Es wird grundsätzlich über Inhalt desselben Unterrichts gefragt oder es wird 

Auswendiggelerntes abgefragt.  

3 Beteiligung, die elaborierte/umfassende Beiträge erfordert, kommt 

genauso oft vor wie solche, in der die Schüler als Stichwortgeber auftreten. 
Beispiele von beiden Arten von Beteiligung (von Kategorie 2 und 4) kommen gleichhäufig 

vor. 
4  Die Mehrheit der Beteiligung fordert elaborierte/umfassende Beiträge der 

Schüler.  
Es wird von der Lehrperson eine Beteiligung gefordert, die von den Schülern 

elaborierte/umfassende Beiträge verlangt, in denen die Schüler etwas begründen, 

nachdenken oder Inhalte anwenden müssen. 
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7. Der neue Inhalt wird in Zusammenhang mit dem Vorwissen gebracht. 
- Vorwissen in Bezug auf Pythagoras wird wiederholt. 

- Formulierungen wie: „Erinnert euch an...?“ sind nicht ausreichend. Der Zusammenhang muss 

explizit auftreten. 

1 Nie 
In der Erklärung wird nie auf Vorwissen zurückgegriffen. 

2 

 

Manchmal 
In der Erklärung wird vereinzelt auf Vorwissen zurückgegriffen. 

3 

 

Häufig 
In der Erklärung wird Häufig auf Vorwissen zurückgegriffen. 

 

 

8. Abstrakstionsgrad der Erklärungen 

1  Die ganze Erklärung ist innermathematisch abstrakt, es wird nur mit 

Buchstaben gerechnet und es gibt überhaupt keinen Alltagsbezug. 

2 Die ganze Erklärung ist innermathematisch, es wird mit Zahlen gerechnet, 

es gibt aber keinen Alltagsbezug. 

3 Außermathematisch mit Zahlen: Alltagsituationen werden mit Zahlen 

bearbeitet, ohne dass konkrete Gegenstände vorhanden sind. 

4 Außermathematisch konkret: es wird mit konkreten Alltagsgegenständen 

gearbeitet. z.B. einer echten Leiter oder Schnur) 

 

9. Während der Erklärung wird die Brauchbarkeit des Satzes erwähnt. 

1  Nie erwähnt. 

2  Kurz erwähnt. (Das bedeutet die Erklärung kann von einem kurzfristig 

unaufmerksamen Schüler überhört werden.) 

3  Ausführlich erwähnt. 
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10. Die Erklärungen und Erläuterungen umfassen die wichtigsten Begriffe und Konzepte des 
Satzes von Pythagoras. 

Es geht um zwei Typen von Seiten. Katheten/ Hypothenusen werden wiederholt oder 

eingeführt    

Es muss ein rechtwinkliges Dreieck sein. 

Algebraische Formulierung des Satzes des Pythagoras. Formel oder sprachliche 

Formulierung mithilfe von Seitenlängen. 

Geometrische Formulierung des Satzes des Pythagoras. Flächengleichheit von 

Quadraten über den Seiten. 

 

1=Kein oder ein Begriff (egal welcher) 

2=zwei Begriffe 

3=drei Begriffe 

4= vier Begriffe 
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11.2 Themes and associated Research Questions of the case study 

Tema 1: Uso de apoyo gráfico 

Todas las clases son de geometría y son las 3 primeras clases acerca del teorema de Pitágoras por 

lo que todas se apoyan en dibujos, papelógrafos o equivalentes. No interesa enfocar la descripción 

en el tipo de recurso que usan, por ejemplo si lo trae preparado o lo dibuja in situ, sino la interacción 

y el discurso que se da en torno a los recursos gráficos y cómo se utilizan los dibujos. 

Focos principales: 

- ¿Qué discurso se genera a partir del dibujo? Exploración, profe hace preguntas (abiertas, 

dicotómicas), el profe habla y los estudiantes responden, los estudiantes opinan, etc.   

- ¿Qué rol juega el dibujo en el discurso? El discurso incluye términos que indican el uso del 

gráfico o de sus parte: Aquí, esto, este cuadrado, el cuadrado dibujado sobre este cateto, etc.; 

las oraciones son completas y explicitan las referencias al dibujo o son incompletas y se 

completan mostrando una parte del dibujo;  sin mirar el dibujo no se entiende; el uso es 

intermitente o continuo, empieza usando el dibujo y luego lo abandona por completo. 

***JUICIO GLOBAL: ¿Para qué se usan los dibujos? Este sería un juicio más abarcativo basado en 

las 2 preguntas anteriores. En principio podría haber un propósito por cada segmento de video. 

Tema 2: Flexibilidad de las explicaciones 

Esto se observa sobre todo ante errores de comprensión de los alumnos, preguntas que hacen al 

profesor o cuando dan respuestas incorrectas. Sin embargo, también se consideran en una 

explicación espontáneamente o al repasar o repetir un contenido. 

- Si hay algún episodio en que un alumno dice que no entiende y el profe explica nuevamente, 

¿qué hace? ¿dice básicamente lo mismo que antes? ¿parafrasea? ¿aborda de la misma manera 

el tema? ¿agrega ejemplos? ¿se detiene y parte de cero todo de nuevo chequeando los 

supuestos? ¿contesta rápido para retomar el hilo conductor de la clase? ¿se toma tiempo para 

usar el error o la duda como instancia de aprendizaje o para profundizar algo? 

- En general, ¿cómo reacciona ante las preguntas de comprensión de los estudiantes? Contesta 

oraciones completas, monosílabos, responde con otra pregunta para que otro estudiante 

responda. 

***JUICIO GLOBAL: A lo largo de los fragmentos, ¿existen grandes conceptos que se repiten? 
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Tema 3: Participación y contribución de los estudiantes en las explicaciones 

Se trata de describir cómo son los espacios de participación que ofrece el profesor a los a 

estudiantes en los fragmentos observados. 

- Esta descripción presupone que la interacción entre el profesor y los estudiantes no se da como 

en una “conferencia” en que los alumnos son meros espectadores, sino que el profesor les hace 

preguntas o les da otras oportunidades de participación. Si en alguno de los fragmentos 

observados no se ofrece ningún espacio de participación, debe registrarse. 

- En aquellos fragmentos en que sí se ofrecen espacios de participación, es necesario 

describirlos, por ejemplo si se trata de preguntas dicotómicas, de respuesta única, o preguntas 

para que los estudiantes reflexionen, si los espacios de participación ofrecidos por el profesor 

promueven que los alumnos hagan aportes de mayor complejidad y elaboración, que requieren 

que los alumnos fundamenten algo, o apliquen contenidos aprendidos. 

Tema 4: Monitoreo de comprensión 

Se trata de registrar cómo el profesor chequea la comprensión de los alumnos a lo largo del 

segmento observado para asegurarse que los alumnos han entendido. No se trata de las preguntas 

que el profesor hace acerca de conocimientos previos de los alumnos, sino aquellas que apuntan a 

averiguar la comprensión de esa clase, por lo tanto, a modo de directriz, se puede pensar que un 

alumno que no estuvo sentado ese día en esa clase no podría responder a tales preguntas. 

Ejemplos:  

- El profesor no realiza preguntas explícitas por comprensión, pero se observa que está atento a 

cómo reaccionan los alumnos (indicador blando de actitud). 

- El profesor realiza preguntas generales que no pretenden que el alumno demuestre que 

entendió sino que simplemente lo señale. ¿Todo bien hasta ahí? ¿Estamos claros? ¿Entienden? 

¿Alguna duda? 

- El profesor realiza  preguntas específicas chequeando, por ejemplo, si han entendido un paso 

o una parte de la explicación antes de continuar. Estas preguntas permiten al profesor corroborar 

efectivamente la comprensión, es decir, no se averigua sólo si entendieron o no, sino qué 

entendieron.  Pueden parecer como una pequeña práctica justo después de la presentación de 

contenidos o preguntas de cierre al concluir un fragmento, por ejemplo: ¿cuáles son los catetos? 

¿Cómo se llama el lado más largo del triángulo rectángulo? ¿por qué tenemos que sacar la raíz 

cuadrada? 
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Tema 5: Conexión de contenidos nuevos con conocimientos previos 

- Se trata de describir las conexiones que el profesor hace entre los conocimientos previos y el 

contenido tratado durante el fragmento observado. 

- Esto puede darse, ya sea porque el propio profesor hace una “exposición” acerca de los 

conocimientos previos o porque hace preguntas a los alumnos para “levantar” conocimientos 

previos.  

- En la práctica no existe certeza de qué es realmente conocimiento previo y que no, por lo que 

hay que basarse de acuerdo con el discurso del profesor no con lo que uno cree que los alumnos 

saben por la edad que tienen o el curso al que van. 

*** JUICIO GLOBAL: Para este tema es relevante hacer alguna conclusión acerca de la práctica 

global y no solo de cada uno de los fragmentos observados. 

Tema 6: Abstracción y utilidad del teorema de Pitágoras  

- En los fragmentos observados, ¿se presentan el teorema vinculado a algo del contexto cotidiano 

del estudiante o al menos más allá de lo matemático propiamente tal? En caso afirmativo, se 

debe describir. 

- Se trata de registrar si en alguno de los fragmentos observados, ¿se habla acerca de la utilidad 

del teorema de Pitágoras? ¿para qué sirve o qué usos se le puede dar? ¿qué dice el profesor? 

En caso afirmativo, se debe describir. 
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11.3 Summary in German 

 
Erklärungen im Mathematikunterricht 

Am Beispiel der Einführung des Satzes des Pythagoras in Chile 
 
 

1. Theoretischer Hintergrund 
 

Instruktionale Erklärungen werden als pädagogische Handlungen betrachtet, die im Unterricht 

vorkommen, und die Vermittlung eines Inhalts intendieren (Leinhardt, 2001). Sie erfolgen sehr häufig 

im Unterricht und entstehen im Verlauf des Unterrichtsgesprächs, zumeist als Antwort auf explizite 

oder implizite Fragen (vgl. Perry, 2000; Renkl et al., 2006) und insbesondere als Reaktion der 

Lehrperson auf eventuelle Missverständnisse oder Fehlkonzepte der Schüler (Perry, 2000).   

Dabei unterstützen gute Erklärungen das Lernen, insbesondere das Verständnis von Begriffen und 

Theorien, während mangelhafte Erklärungen lernhinderlich sein können (Leinhardt, 2001). Es wird 

angenommen, dass instruktionale Erklärungen ebenfalls zum Aufbau von konzeptuellen 

Repräsentationen beitragen (Inoue, 2009; Sánchez et al., 2009).  

Nach Leinhardt können Erklärungen im Unterricht auf unterschiedliche Weise gegeben werden und 

kommen vor allem im Klassengespräch oder in Bezug auf eine Aufgabebearbeitung vor. Neben 

dieser eher allgemeineren Konzeptualisierung, sind Erklärungen nach Kiel (1999) hauptsächlich als 

ein Prozess der Lehrer-Schüler-Interaktion zu verstehen, welcher in verschiedenen Formen 

stattfinden kann. Die Lehrperson kann beispielweise der Hauptsprecher sein, aber auch kann die 

Rolle des Moderators in einem Dialog zwischen den Schülern einnehmen. Darüber hinaus, wird von 

Ball, Hill und Bass (2005) die Wichtigkeit des „sense-making“ im Mathematikunterricht 

hervorgehoben, die ausschließlich durch adäquate Erklärungen und Ausführungen der Lehrperson 

erreicht werden kann. 

Diese Art von Erklärungen, die als mündliche Erklärungen charakterisiert werden können, haben 

den Vorteil, dass sie persönlich vermittelt werden, was die unverzügliche Überprüfung des 

Verständnisses erlaubt und von daher eine schnelle Rückmeldung und die Vermittlung von 

zusätzlicher Information – wie etwa Beispielen - ermöglicht, um das Lernen weiter zu fördern 

(Wittwer & Renkl, 2008). Nach Duffy und Kollegen, (1986) ist das der Grund, warum mündliche 

Erklärungen ein effektives Mittel zur Vermittlung von Lerninhalten im Unterricht darstellen und die 

Lernentwicklung der Schüler – auch die Entwicklung der mathematischen Kenntnisse (z.B. Perry, 

2000) - beeinflussen können.  
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Von Muijs, Campbell, Kyrikiades und Robinson (2005) wurde in einer differenzierten Studie im 

Mathematikunterricht die Klarheit von Erklärungen als ein wichtiges Qualitätsmerkmal des 

Unterrichts hervorgehoben.  

Ein besonderes Merkmal von Erklärungen im Mathematikunterricht im Vergleich zu anderen 

Schulfächern ist, dass sie sich entweder direkt auf die Inhalte beziehen können, z.B. die Erklärung 

des Satzes des Pythagoras, oder eingebettet, z.B. bei Problemlöse- oder Modellierungsaufgaben, 

vorkommen können. In diesem Fall geht es darum,  eine Prozedur oder eine Verfahrensweise zu 

erklären, der aber in einem Kontext eingebettet vorkommt (Leinhardt, 2001). 

 

 

Was ist eine gute Erklärung? 

 

Leinhardt (2001) stellt ein Modell für Erklärungen vor, das Erklärungen als Interaktion oder als 

Gespräch betrachtet und indem Qualitätsmerkmale von Erklärungen definiert werden. Zunächst 

sollte bei einer guten Erklärung für alle Beteiligten klar sein, welche Frage damit beantwortet wird, 

das heißt, worauf sich die Erklärung bezieht. Dieser deutliche Bezug muss bei einer lernförderlichen 

Erklärung im Unterricht stets gegeben sein.  

Aus theoretischer Sicht plädiert sie dafür, dass Erklärungen unbedingt Beispiele beinhalten, wobei 

nicht nur die Vielfalt von Beispielen wichtig ist, sondern auch die Entwicklung oder Auswahl des 

passenden Beispiels. Ein weiteres wichtiges Merkmal von guten Erklärungen ist der Gebrauch von 

Darstellungen, die die Erklärung unterstützen. In der Mathematik und im Besonderen in der 

Geometrie werden normalerweise Zeichnungen oder andere graphische Darstellungen verwendet. 

Leinhardt (2001) gibt dabei zu bedenken, dass der Gebrauch von Darstellungen (genauso wie bei 

Beispiele) auch zu unerwünschten Missverständnissen führen kann, deshalb müssten sie immer 

kohärent und eng mit der Erklärung verbunden sein. Zusätzlich müssen Erklärungen sich deutlich 

auf das Vorwissen der Schüler beziehen (Leinhardt & Steele, 2005; Renkl et al., 2006) und 

potentielle Quellen für Missverständnisse sollten vorweggenommen werden. Weiterhin sollte eine 

gute Erklärung die Unterscheidung zwischen Kern- und nebensächlichen Elementen beinhalten, 

was eng mit möglichen Verallgemeinerung oder Einschränkungen zusammenhängt. Dabei gilt es 

also deutlich zu machen, welche Aspekte konzeptuell unabdingbar, und welche, im Gegensatz dazu, 

veränderbar sind (z.B. Anwendung des Satz des Pythagoras auch bei einem spitzwinkligen oder 

gleichschenkligem Dreieck)  

Zusammenfassend lässt sich einerseits feststellen, dass es aus theoretischer Sicht eine Vielfalt von 

Merkmalen guter Erklärungen gibt, die aber noch näher operationalisiert und überprüft werden 

müssen. Anderseits, obwohl wiederholt behauptet wird, dass Erklärungen im Unterricht wichtig sind, 

gibt es nur wenige Untersuchungen, die Zusammenhänge mit Leistung und Motivation der Schüler 

im Mathematikunterricht betrachten.  
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2. Ziel und Fragestellungen 
 

Das Ziel der vorliegenden Arbeit ist die empirische Untersuchung von Erklärungen durch 

Lehrpersonen im Mathematikunterricht, und zwar in Unterrichtseinheiten in denen ein neuer Inhalt 

unterrichtet wird. Ausgewählt wurde das Beispiel der Einführung in die Satzgruppe des Pythagoras. 

Im Einzelnen soll folgenden Fragestellungen nachgegangen werden: 

 

1. Wie gut wird im Mathematikunterricht erklärt? 

a. Wie schätzen Beobachter die Erklärungen der Lehrperson ein? 

b. Wie schätzen die Schüler die Qualität von Erklärungen der Lehrperson ein? 

c. Inwieweit unterscheiden sich die Einschätzungen der Lehrererklärungen durch die 

Beobachter und durch die Schüler? 

2. Wovon hängt die Erklärungsqualität ab? 

a. Unterscheidet sich die Qualität der Erklärungen nach Erfahrung der Lehrpersonen bzw. 

nach Trägerschaft der Schule (staatlich oder privat)? 

b. Hängt die Qualität der Erklärungen mit anderen Unterrichtsmerkmalen zusammen? 

3. Welche Effekte haben die Erklärungen im Unterricht? 

a. Welchen Effekt haben die Erklärungen der Lehrpersonen auf die Leistung der Schüler? 

b. Welchen Effekt haben die Erklärungen der Lehrpersonen auf die Motivation der Schüler? 

4. Welche qualitativen Unterschiede gibt es zwischen den Erklärungen?  
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3. Methode 
 
Zur Untersuchung der dargestellten Fragestellungen wurden Datensätze aus der in Chile 

durchgeführten Erweiterung des deutsch-schweizerischen Projekts „Unterrichtsqualität und 

mathematisches Verständnis in verschiedenen Unterrichtskulturen“ ausgewertet.  

Das ursprüngliche Projekt (2000-2006) war im DFG-Schwerpunktprogramm „Bildungsqualität 

von Schule“ angesiedelt und wurde in Kooperation zwischen dem DIPF und der Universität Zürich 

durchgeführt. Innerhalb der internationalen Erweiterung dieses Projekts wurde das Kerndesign der 

Studie 2007 in Chile im Rahmen des Forschungsprogrammes für Mathematik des Instituto de 

Educación de la Universidad de Chile [Pädagogisches Institut der „Universidad de Chile“] 

angewendet.  

 

Stichprobe 

Die Stichprobe (siehe Tabelle 1) besteht aus 802 Schülern aus 21 chilenischen Klassen der 

siebten Jahrgangstufe23. Da in Chile keine Bildungsgänge bzw. Schulformen bestehen, wurde diese 

Variable durch eine andere, die für Chile als sinnvoll erachten wird, nämlich den Status der 

Trägerschaft der Schule (privat oder staatlich), ersetzt. So wurden sowohl private als auch staatliche 

Schulen in die Stichprobe einbezogen. 

Tabelle 1: Beschreibung der Stichprobe 

 Private Schulen 
Staatliche Schulen 

mit privater 
Trägerschaft 

Staatliche 
Schulen 

Vollständige 
Stichprobe 

Anzahl von Schülern 
in der Klasse     

Mittelwert (SD) 24 40,8 40,4 38,2 

Min-max 12-32 32-45 36-47 12-47 

N Klassen 3 6 12 21 

 

Instrumente 

Zur Bearbeitung der dargestellten Fragestellungen werden Daten aus folgenden Quellen 

ausgewertet. 

• Videoaufzeichnungen: Zur Beschreibung der im Unterricht vorkommenden Erklärungen und 

anderer Unterrichtsmerkmale wird die Videoperspektive auf den Unterricht herangezogen. In 

                                                
23 Wegen logistischen und technischen Schwierigkeiten während der Datenerhebung, sind die vollständigen Daten, 

nur für 19 Klassen vorhanden. Deshalb variiert die Anzahl von Schülern in den unterschiedlichen Analysen 
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jeder Klasse wurden drei aufeinander folgende Stunden aufgezeichnet, in denen sich die Klasse 

mit der Einführung in die Satzgruppe des Pythagoras beschäftigte. Das Ratingsystem für die 

Untersuchung der Erklärungen besteht aus zwei Phasen. In der ersten Phase wurde, in 

Anlehnung auf Hugener (2006), ein niedrig inferentes Rating durchgeführt, um Phasen innerhalb 

des Unterrichts zu identifizieren und abzugrenzen. Danach wurde für diese Unterrichtsabschnitte 

ein eigen-entwickeltes Ratingsystem angewandt (siehe Anhang). Einige Dimensionen des 

Ratingsystems wurden von dem Kodierschema der Fachdidaktischen Qualität der 

Theoriephasen(von Drollinger-Vetter & Lipowsky (2006) im Rahmen des ursprünglichen Projekts 

entwickelt) adaptiert. Für jede Phase des Ratings wurde die Übereinstimmung der Rater 

entsprechend des Verfahrens, das in der TIMMS Video Studie verwendet wurde, ermittelt 

(Jacobson et al., 2003). Für die Beurteilung der allgemeinen Qualität unterrichtlicher Prozesse 

wurde eine adaptierte Version des hochinferenten Ratingsystems verwendet, das für das 

ursprüngliche Projekt angefertigt wurde (Rakoczy & Pauli, 2006). Alle Videos wurden von vier 

Ratern beurteilt, zwei Rater arbeiteten mit jedem Ratingsystem. Die Beurteilung erfolgte dabei 

unabhängig voneinander. Alle Beobachter haben an einer Schulung für die entsprechende 

Kodierung teilgenommen.  

 

• Fragebogen: Die Einschätzung der Schüler zu ihrer Motivation und zu den Erklärungen der 

Lehrperson im Unterricht wurden anhand von Fragebögen erhoben. Die in Chile verwendeten 

Skalen waren eine Adaptierung der ursprünglichen Version, die vom deutschen und 

schweizerischen Forschungsteam entwickelt wurden. Die Items zur Erfassung von 

Erklärkompetenz der Lehrperson wurden in Anlehnung an Fend und Specht (1986), Saldern, 

Littig und Ingenkamp (1986), Baumert, Gruehn, Heyn, Köller und Schnabel (1997) entwickelt, 

während die Items zur Messung von Motivation in Anlehnung an Prenzel, Kirsten, Dengler, Ettle 

und Beer (1996) entworfen wurden. Die vollständige Dokumentation der Fragebögen ist in 

Rakoczy, Buff und Lipowsky (2005) vorhanden.  

• Leistungstest: Die Mathematikleistung der Schüler wurde zu mehreren Zeitpunkten im Schuljahr 

erhoben (siehe Tabelle 2). Die Dokumentation der Leistungstests ist in Lipowsky, Drollinger-

Vetter, Hartig & Klieme (2006) zu finden. 

 

In Tabelle 2 sind die Skalen aufgelistet, die zur Operationalisierung der Motivation und Leistung 

der Schüler herangezogen werden. In Chile wurde die Datenerhebung im Schuljahr (März-

Dezember) 2007 durchgeführt. Auch die Videoufzeichnung wurde in die Tabelle eingeschlossen, um 

das Design der Studie deutlicher zu machen. 
Tabelle 2: Darstellung des Designs und Erhebung der für die Fragestellung relevanten Daten  
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Zeitpunkt Instrument Inhalte 

Beginn des 

Schuljahres 

Fragebogen 
- Interesse 

- Wahrgenommene Motivationsunterstützung 

Eingangstest - Allgemeine geometrische Vorkenntnisse 

In der Stunde vor den 

Videoaufzeichnungen 
Vortest Pythagoras 

- Inhaltliche Voraussetzungen des Pythagoras 

Satzes 

Aufzeichnung:  Drei aufeinander folgende Stunden der Einführung in die Satzgruppe des Pythagoras 

In der Stunde nach 

den Videoaufzeichnungen 

Nachbefragung 

- positive/negative Affekte 

- aktuelle Motivation 

- Wahrgenommene Motivationsunterstützung 

- Erklärkompetenz der Lehrperson 

Nachtest 1 

Pythagoras 
- Kenntnisse zur Satzgruppe des Pythagoras 

KFT - Intelligenztest 

Nach Beendigung der 

Unterrichtseinheit 
Nachtest 2 - Kenntnisse zur Satzgruppe des Pythagoras 

Ende des Schuljahres 
Endbefragung 

- Interesse 

- Wahrgenommene Motivationsunterstützung 

- Erklärkompetenz der Lehrperson 

Abschlusstest - Allgemeine mathematische Kenntnisse 

 

 

Videodaten  

 

Empirische Untersuchung der Fragestellungen: 

Die Einschätzung der Erklärungsqualität aus Perspektive der Schüler und der externen 

Beobachtern wurde als Mittelwert berechnet, während der Zusammenhang der Erklärungsqualität 

mit der Schulträgerschaft bzw. der Erfahrung der Lehrperson mit T-Tests berechnet wurde. 

Mittels Mehrebenenanalysen wurde untersucht, welchen Zusammenhang es zwischen den 

Erklärungen aus Perspektive des Beobachters und den Schüler gibt. Diese Auswahl ist durch die 

hierarchisch geschachtelte Struktur des Datensatzes zu begründen. Die selbe Methode wurde 

verwendet, um den Zusammenhang zwischen Erklärungsqualität und Leistungs- und 

Motivationsdaten der Schüler zu untersuchen. Mehrebenenanalysen wurden ebenfalls durchgeführt, 

um den Zusammenhang zwischen den allgemeinen Unterrichtsqualitätsmerkmalen und 

wahrgenommener Erklärungsqualität zu untersuchen. 
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Die weitere Charakterisierung der ausgeführten Erklärungen in der Einheit der Einführung des 

Pythagoras Satzes wurde durch eine Fallstudie untersucht, in der eine fallübergreifende Analyse 

durchgeführt wurde. Da die Untersuchung von Zusammenhängen zwischen Erklärungsqualität und 

Leistungsentwicklung  und Motivation im Mittelpunkt der vorliegenden Arbeit steht, wurden drei 

Lehrpersonen für die Fallstudie ausgewählt, deren Klassen unterschiedlichen Leistung und 

Motivation unter Kontrolle der Messungen zu Beginn des Schuljahres aufwiesen.  

 

4. Ergebnisse 
 

In Bezug auf die Einschätzung der Erklärungsqualität von den Beobachtern (Fragestellung 1a) 

in den 4 Qualitätsdimensionen kann einerseits behauptet werden, dass graphische Darstellung 

häufig verwendet wurden, und dass im Durchschnitt, die Mehrheit der Kernelemente des Satzes von 

Pythagoras vorhanden waren. Anderseits, bekamen die Dimensionen über Brauchbarkeit und 

Abstraktionsgrad, eher niedrige Werte, unter dem theoretischen Mittelwert der Skala (siehe Tabelle 

3) 

Tabelle 3: Video rating Dimension über Erklärungsqualität. Deskriptive Ergebnisse 

Dimension N Mittelwert SD 

Graphische Unterstützung 19 3.45 0.62 

Abstraktionsgrad 19 1.83 0.52 

Anwendbarkeit 19 1.34 0.42 

Kernelemente des Satz des Pythagoras 19 3.47 0.70 

 

Bezüglich der Wahrnehmung der Schüler der Erklärungsqualität der Lehrpersonen im 

Mathematikunterricht (Fragestellung 1b), sind die Ergebnisse eher positiv, mit Mittelwerten über 3 in 

einer Skala zwischen 1 und 4. Die Schüler nahmen die Erklärungsqualität der Lehrpersonen mit 

längerer Lehrerfahrung und der Lehrpersonen in privaten Schulen als besser war. 

 

Hingegen zeigte die Untersuchung des Zusammenhangs zwischen Erklärungen aus 

unterschiedlichen Perspektive (Fragestellung 1c) kein signifikantes Ergebnis, wenn die 

Analyseeinheit auf die Einführung des Satz des Pythagoras beschränkt wurde. Jedoch wurde ein 

signifikanter negativer Zusammenhang zwischen der graphischen Unterstützung und der 

wahrgenommenen Erklärungsqualität der Schüler sowie ein positiver Zusammenhang zur Präsenz 

der Kernelemente des Satz des Pythagoras, wenn die Erklärungsqualität in Bezug auf die 

allgemeine Wahrnehmung der Schüler berücksichtigt wurde. Das heißt, je mehr graphische 

Unterstützung im Rahmen der Erklärungen der Lehrpersonen verwendet wurde, desto schlechter 
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wird die Erklärungsqualität von den Schülern wahrgenommen. Die Erklärungsqualität im Unterricht 

wird von den Schülern hingegen besser wahrgenommen, wenn mehr Kernelemente des Pythagoras 

Satzes im Unterricht eingeschlossen wurden.  

Die Untersuchung des Effekts von Erklärungsqualität auf die Leistung (Fragestellung 3a) zeigt, dass 

eine abstrakte Erklärung mit einer höheren Mathematikleistung der Schüler einhergeht. In Bezug auf 

die anderen Qualitätsmerkmale der Erklärungen wurde jedoch kein signifikanter Zusammenhang 

gefunden. Bezüglich der Effekte von Erklärungsqualität auf Interesse, zeigen die Ergebnisse, dass 

eine graphische Unterstützung einen signifikant negativen (α-Niveau von 10%) Effekt hat, das heißt, 

je mehr graphische Unterstützung verwendet wurde, desto weniger Interesse wurde von den 

Schülern an dem Fach Mathematik berichtet. 

 

Die qualitative Untersuchung instruktionaler Erklärungen wurde anhand einer Fallstudie 

vorgenommen, die sechs Qualitätselemente von Erklärungen fokussierte, nämlich (1) graphische 

Unterstützung, (2) Adaptivität, (3) Beteiligung und Beitrag der Schüler, (4) Überprüfung des 

Verständnisses, (5) Zusammenhang mit Vorwissen, (6) Abstraktionsgrad und Anwendbarkeit 

Die Auswahl der Lehrpersonen erfolgte entsprechend der Leistung und des Interesses der Schüler 

ihrer Klassen. Das heißt, es wurde eine Lehrperson ausgewählt, deren Klasse eine 

überdurchschnittliche  Motivation und Leistung aufwies (Lehrperson A); eine weitere Lehrperson mit 

einer Klasse mit durchschnittlicher Motivation und unterdurchschnittlicher Leistung (Lehrperson B), 

und schließlich eine dritte Lehrperson mit einer Klasse mit durchschnittlicher Leistung und 

unterdurchschnittlicher Motivation (Lehrperson C). 

Zusammenfassend, lassen sich folgende Ergebnisse der Fallstudie berichten: 

• Graphische Darstellungen wurden von Lehrperson A als Werkzeuge zur Veranschaulichung von 

Inhalt und Input zur Formulierung des Satzes des Pythagoras eingesetzt. Lehrperson B 

verwendete graphische Darstellungen als ein Beobachtungsmethode, das eigentlich auch einen 

Beitrag der Formulierung des Satzes leisten soll, das aber in der Ausführung wesentliche 

Probleme zeigte und als erfolglos bezeichnet werden kann. Lehrperson C nutze graphischen 

Darstellungen, wie auch Lehrperson A zur eine Veranschaulichung, insofern der Satz des 

Pythagoras als eine logische Konsequenz dieser Repräsentation vorgestellt wurde. 

• Adaptivität: Lehrperson A zeigte zum Teil adaptives Handeln, im Sinne, dass sie häufig die 

selben Konzepte wiederholt, jedoch in Reaktion auf Fragen oder Antworten der Schüler ihre 

Erklärungen vertiefte oder verbreitet. Lehrpersonen B und C hingegen änderten ihre Erklärung 

sehr selten, auch wenn Schüler Fragen stellten. Dieses Vorgehen von Lehrpersonen B und C 

kann eher als unflexibel und wenig adaptiv bezeichnet werden, unabhängig von den Ideen oder 

Beiträgen der Schüler. 

• Beteiligung und Beitrag der Schüler: interessanterweise zeigten sich keine wesentlichen 

Unterschieden zwischen den Lehrpersonen, das heißt, alle drei Lehrpersonen boten ihren 
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Schülern ständig die Möglichkeit zur Beteiligung im Unterrichtsgespräch an, jedoch eher als 

Stichwortgeber, ohne Raum für Vertiefung oder weiterführende Kommentare. 

• Verständnisüberprüfung: Lehrperson A vergewisserte sich, dass die Schüler die wichtigsten 

Begriffe des Satz des Pythagoras verstanden haben, auch wenn sie diese Überprüfung nicht 

ständig durchführte. Lehrpersonen A und B überprüften das Lernverständnis sporadisch und 

eher nur oberflächlich, (z.B. ob es Fragen gibt), es erfolgte jedoch keine genaue Überprüfung 

des Lernverständnisses der Schüler. 

• Zusammenhang mit Vorwissen: Lehrperson A verwendete 30 Minuten zu Beginn des Unterrichts 

für eine Wiederholung und stellte außerdem Verknüpfungen zwischen dem Vorwissen und den 

Schülerantworten her. Lehrer C realisierte ebenfalls eine Wiederholungsphase zu Beginn der 

Einführungsstunde (etwa 15 Minuten), jedoch fand keine weiterer Rückbezug während den drei 

Lektionen statt. Lehrerin B realisierte keine Wiederholungsphase, lediglich eine kleine 

Erinnerung an Vorwissen während der ersten Aktivität. 

• Abstraktionsgrad und Anwendbarkeit: Alle Lehrpersonen erklärten den Satz des Pythagoras 

ohne Verwendung von alltäglichen Gegenständen, Beispielen oder einen Bezug auf 

außermathematische Situationen. Die einzige Ausnahme stellte Lehrperson B dar, die einen 

historischen Kontext (Ägypter) einbezogen hat. Die Andwendbarkeit kann in zwei Varianten 

unterteilt werden, Lehrerin A, die die mathematische Brauchbarkeit erwähnt, im dem Sinne, dass 

eine Seitenlänge von dem rechtwinkligen Dreieck berechnet werden kann, wenn die anderen 

bereits bekannt sind. Diese Erklärung war sehr genau aber ohne die Erwähnung von weiteren 

Anwendungen in anderen Kontexten. Die zweite Variante, die von Lehrpersonen B und C 

verwendet wurde, ist der allgemeine Hinweis auf die Brauchbarkeit vom Satz in einem 

alltäglichen Kontext, z.B. Architektur, um ein Haus richtig bauen zu können. 
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5. Schlussfolgerungen und Diskussion 
 

Das Ziel der vorliegenden Arbeit war die Untersuchung der Erklärungsqualität bei der Einführung 

des Satz des Pythagoras im Mathematikunterricht in Chile. In Anlehnung an die entsprechende 

Literatur, wurden Qualitätsmerkmale von Erklärungen identifiziert und Zusammenhänge mit 

Schülermerkmalen (Leistung, Motivation und Wahrnehmung) untersucht. 

Ein interessantes Ergebnis betrifft den Gebrauch von graphischen Unterstützungen bei Erklärungen. 

Auch wenn graphische Unterstützungen von der Literatur bisher als ein Qualitätselement bezeichnet 

wird, wurde in dieser Arbeit festgestellt, dass das Vorkommen dieser graphischen Unterstützungen 

nicht unmittelbar mit einer höheren Erklärungsqualität einhergehen. Die Befunde zeigen, dass 

Erklärungen von Lehrpersonen die im Vergleich weniger graphischen Unterstützung einsetzten, von 

ihren Schülern als hilfreicher wahrgenommen wurden. Darüber hinaus zeigte sich ein negativer 

Zusammenhang zwischen dieser graphischen Unterstützung und dem Interesse der Schüler. In 

Anlehnung an diese Ergebnisse, wurde in den qualitativen Analysen entsprechend die Verbindung 

zwischen den Erklärungen und den graphischen Darstellungen fokussiert. Diese Analyse ergab, 

dass eine klare Verbindung zwischen dem Klassengespräch und den graphischen Darstellung 

sinnvoll ist, in der die Darstellung eine klare veranschaulichende Rolle spielt, das Lernen fördert. 

Adaptive Erklärungen von Lehrpersonen waren insgesamt in sehr wenigen Unterrichtssequenzen 

zu beobachten, so dass keine weiteren Schlussfolgerungen gezogen werden können. Hinsichtlich 

der Beteiligung der Schüler konnten keine Unterschiede zwischen den Lehrpersonen festgestellt 

werden. Zumeist waren die Schüler Stichwortgeber und es gab wenig Raum für ausführliche oder 

weiterführende Beiträge. Das Überprüfen des Verständnisses der Erklärungen erfolgte eher implizit, 

das heißt, es ging mehr um die Frage ob die Schüler verstanden hatten, und weniger um die Frage, 

was die Schüler verstanden hatten. Jedoch wurden einige wichtige Sequenzen von Vergewisserung 

bei einer Klasse mit hohen Leistungen beobachtet. 

Hinsichtlich des Abstraktionsgrads von Erklärungen kann es festgestellt werden, dass ein hoher 

Abstraktionsgrad mit einer besseren Schülerleistung zusammenhängt. Jedoch gab es keine 

Lehrperson die ihre Erklärung zum Satz des Pythagoras in den Alltagskontext eingebettet oder mit 

konkreten Gegenständen durchgeführt hat. Das letzte untersuchte Qualitätsmerkmal der 

Erklärungen, nämlich die Kernelemente des Satzes des Pythagoras haben sich als positiv mit der 

wahrgenommenen Erklärungsqualität erwiesen. 

Resümierend kann festgehalten werden, dass es in der hier vorgestellten Studie möglich war, 

Qualitätsmerkmale von Erklärungen im Mathematikunterricht zu identifizieren. Allerdings gibt es 

Aspekte, die anknüpfende Untersuchungen brauchen, z.B. gilt es zu untersuchen, ob sich diese 

Befunde auch bei anderen mathematischen Inhalten, oder anderen Schulfächer bestätigen lassen.  

 


