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Chapter 1

Motivation

The field of attoscience [1,2] is dedicated to the study of ultrafast processes in physics and chem-

istry on the natural time scale of electrons. The characteristic atomic unit of time is 24.2 as,

reflecting the time it takes an 1s electron of the Bohr atom to travel a distance of one Bohr radius.

In order to study such processes, one has to develop technologies that are capable of sampling on

an equal or shorter time scale. Historically, this field was born out of the development of modern

ultrafast pulsed lasers [3, 4]. These lasers originally gave birth to femtochemistry [5] and then

launched the field of attoscience. The key to this development was a laser driven process called

high harmonic generation (HHG) [6–8], which generates a broad spectrum of electromagnetic

radiation, stretching from the VUV to the soft X-ray region between 10 eV to 3000 eV [9]. By

tailoring these spectra, pulses as short as 67 as have been reported [10].

HHG is a non-linear process, depending strongly on the medium as well as the driving laser field.

On a microscopic scale, the generation depends on fundamental atomic and molecular properties.

On this level, HHG is often explained using the three step model [7], as detailed in the second

chapter of this dissertation. Each step of the three step model affects the created electromagnetic

radiation. HHG can be described as the electron probing itself and measuring its properties in

situ. Using the three step model and its factorization, the steps can be studied individually and

so high harmonic generation also permits a fully coherent energy-resolved measurement of single-

photon ionization [11–14], as the driving laser field launches a coherent electron wave packet that

emits coherent light. We get information about the electron wave packet in the continuum.

Macroscopically, high harmonic generation can be described as a coherent process, where gen-

erated photons can add up and form a bright source of XUV light. However, this is highly

dependent on phase-matching between the driving laser field and the higher order fields in a

gaseous medium. As the electromagnetic waves propagate through the gaseous medium and

vacuum, described by Maxwell’s equations, light may interfere constructively and destructively,

influencing the observed high harmonic flux.

On this macroscopic level we can compare it to perturbative non linear optic, where low order

harmonic generation can be described as sum frequency generation in a non-linear medium and

the propagation and property of the electromagnetic radiation is described with perturbative

non-linear optics and the propagation of light. It is this interplay of macroscopic phase-matching

and light with matter interaction that makes HHG an interesting and challenging field of re-

search.

It is my goal in this dissertation to study the fundamental processes of HHG and to use HHG

as a spectroscopic tool of atomic and molecular targets. HHG spectroscopy has proven itself

9



CHAPTER 1. MOTIVATION

as a coherent photoionization experiment [15–17], measuring photoionization cross sections as

a function electron energy and molecular axis angle by measuring the amplitude of high har-

monic emission. In recent years, the measurement of amplitude and phase of the high harmonics

has expanded this knowledge to a complete measurement of high harmonic generation and the

extraction of complex-valued photoionization dipoles d = |d|eiφ and the presented work in this

dissertation adds valuable observations to the need of measuring amplitude and phase of HHG.

On a more fundamental level, the process of HHG has similarities and drastic differences to its

perturbative sibling of low order harmonic generation. I will put a new perspective on a specific

aspect of high harmonic generation and also study with high precision one of the fundamentally

different aspects of HHG, where the harmonic phase strongly depends on the intensity of the

laser field. The dissertation is built on known techniques of non-adiabatic alignment and pulse-

shaping, which will yield a angle-resolved picture of HHG from molecules and high-stability in a

deployed commonpath interferometer.
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Chapter 2

Deutsche Zusammenfassung

Schon im Jahr 1880 wurden Kameras genutzt, um Vorgänge aufzulösen, die für das menschliche

Auge zu schnell waren. Die offene Frage in den Jahren um 1880 war, ob ein Pferd im Galopp zu

einem gegebenem Zeitpunkt alle seine Hufe in der Luft hat oder ob immer ein Huf auf dem Boden

ist. Eadweard Muybridge veröffentlichte im Jahre 1887 seine Arbeit [18] und gab eine Antwort

auf die offene Frage. Man konnte sehen, dass das Pferd im Galopp als auch im Trab zu einer

bestimmten Zeit alle seine Hufe in der Luft hat. Dieses Analogon wird sehr oft in der Wissen-

schaft benutzt. Man benötigt eine Kamera mit einer kürzeren Auflösungszeit, um die natürliche

Bewegung aufzulösen. Erste Fortschritte mit Lasern [3, 4] und Femtochemie [5] erlaubten eine

Auflösungszeit von Femtosekunden. Fortschitte in Lasertechnologie ermöglichten es anschließend

mit High Harmonic Generation (HHG) noch eine feinere Zeitauflösung zu erlangen [6–8]. Mit

einer HHG-Quelle kann in den Attosekundenbereich vorgestoßen werden: Die natürliche Zeitska-

la eines Elektrons von 24.2 as wird dadurch erreichbar. Diese Zeitskala beschreibt die benötigte

Zeit eines Elektrons um die Distanz eines 1s Bohrradius zurückzulegen. Experimentell wurden

Attosekundenpulse mit einer Pulsdauer von 67 as erzeugt [10]. Die vorliegende Arbeit ist in dem

Gebiet der Atomphysik angesiedelt und nutzt die Erzeugung höherer Harmonischer als Werk-

zeug, um Erkenntnisse in diesem Gebiet zu erlangen. In HHG werden höhere Harmonische eines

zu Grunde liegenden Lasers erzeugt, wobei die Harmonischen ein Vielfaches der Photonenener-

gie des zu Grunde liegenden Lasers besitzen. Der Prozess kann in einem Drei-Schritte-Modell

beschrieben werden [7]. Im ersten Schritt werden Elektronen von einem Atom oder Molekül

freigesetzt. Die Ionisation kann durch Tunnelionisation beschrieben werden [19, 20], wenn das

elektrische Feld des Lasers so stark ist, dass das Potential des bindenden Atoms verbogen wird

und das Elektron durch das Potential tunneln kann. Im nächsten Schritt kann es im elektri-

schen Wechselfeld des Lasers kinetische Energie gewinnen. Wenn die Trajektorie des Elektrons

zum Mutterion zurückführt, kann das Elektron mit dem Atom rekombinieren und die gewonnene

Energie wird in der Form eines Photon ausgestrahlt. Dieser Prozess findet in einem Medium an

vielen Atomen statt, wobei die erzeugten Photonen kohärent emittiert werden und eine helle

Quelle von höheren Harmonischen erzeugen.
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Abbildung 2.1: ”Photogravure after Eadweard Muybridge, 188 “. Quelle: Wellcome Libra-
ry, London

Neben dem Erzeugen von Attosekundenpulsen kann die gemessene Strahlung eines Atoms

oder Moleküls Rückschlüsse über das Atom und Molekül geben und so für Spektroskopie genutzt

werden, welche ein Schwerpunkt in dieser Arbeit ist.

Zu Beginn behandelt die vorliegende Arbeit eine ausführliche, theoretische Beschreibung von

High Harmonic Generation in dem Drei-Schritte-Modell, mit dem HHG semiklassisch beschrie-

ben werden kann. Dieses Modell wird dann schrittweise um genauere Kalkulationen ergänzt. Das

klassische Drei-Schritte-Modell von Corkum [7] kann den experimentell beobachtbaren cutoff und

das Plateau beschreiben. Das semiklasssische Modell von Lewenstein [21], die Strong Field Ap-

proximation (SFA), kann eine quantitative Signalstärke der höheren Harmonischen berechnen.

Zusätzlich zeigt SFA eine intensitätsabhängige Phase der höheren Harmonischen, die nicht durch

perturbative nicht lineare Effekte erklärt werden kann.

In dem SFA-Modell wird der Rekombinationsschritt nur in einer Näherung betrachtet, die sowohl

theoretisch [17] als auch experimentell unzufriedenstellend ist [15]. In der SFA wird das Elek-

tron in dem Kontinuum, wenn es zu dem ursprünglichen Grundzustand übergeht, angenähert.

Eine strukturlose, ebene Welle wird in den Berechnungen verwendet. Allerdings ist von Pho-

toionisationsexperimenten und Experimenten in HHG bekannt, dass die Photoionisation und

ebenso die -rekombination nicht nur von dem Ionizationspotential und der Symmetrie des Mo-

leküls abhängen, sondern es zu Interfernzeffekten kommen kann. Diese Interferenzeffekte können

durch das Prinzip des detailiertem Gleichgewichts für Photoionisation and Photorekombination

berechnet werden. Dieses Prinzip ist allgegenwärtig in der Welt der Physik und postuliert, dass

die Zeitumkehr eines Prozesses zum ursprünglichen Zustand zurückführe. Es ermöglicht den Ver-

gleich von HHG-Experimenten mit Photoionisationsexperimenten.

Da HHG ein kohärenter Prozess ist, ermöglicht es die Phase der Strahlung zu messen und damit

ebenso eine Phase in der Photorekombination, welche in Photoionisationsexperimten nicht mess-

bar ist. Durch die Benutzung von kurzen Laserpulsen in der Größenordnung von 5 bis 30 fs können

ebenfalls Experimente mit schnellen Dynamiken gemessen werden. Allerdings ist HHG ein höchst

verschachtelter Prozess, in dem nicht nur von einem einzelnen Atom die Strahlung gesammelt

wird, sondern von Millionen Emittern, die durch ihre Kohärenz eine Lichtquelle bilden und in

optimalen Bedingungen keinen Phasenunterschied aufweisen. Sobald durch das erzeugende Medi-

um ein Gradient in der Dichte entsteht oder das elektrische Feld ebenfalls im Fokus einen starken
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Gradienten erzeugt, kann es zu einem Phasenunterschied kommen, der die Helligkeit und Phase

der höheren Harmonischen beeeinflusst. Durch die Verwendung eines dünnen Gasmediums und

eines ”weichen“ Fokus können diese Effekte minimiert werden, sodass eine Lichtquelle ähnlich

einer Quelle aus einem einzelnen Emitter angenommen werden kann. Mit einem ”weichen“ Fokus

wird ein Laserfokus bezeichnet, dessen Peak-Intensität sich nicht im Medium verändert, sondern

erst weit weg vom Medium abfällt. Diese Thematik des Phasenunterschied wird In Kapitel 4 und

6 im experimentellen Zusammenhang besprochen.

Nachdem Theorien von HHG vorgestellt wurden, behandelt die Arbeit Theorien über genutzte

Techniken, um mehr über HHG zu erfahren. In der vorliegenden Arbeit werden in Kapitel 7

und 8 ein schwaches elektrisches Feld genutzt, um Rotationen in Molekülen anzuregen. Durch

die Verwendung von Pulsen, deutlich kürzer als die Rotationsperiode der behandelten Moleküle,

entsteht ein angeregtes Molekülensemble, das periodische Minima und Maxima zeigt, nachdem

das elektrische Feld mit dem Molekül interagiert hat und nicht mehr präsent ist. Die Technik wird

”non-adiabatic alignment“ genannt [22]. Ein weiteres Kernelement dieser Arbeit ist ein ßpatial

light modulator“. Das Gerät ermöglicht es die Phase des Lasers in der räumlichen Verteilung

zu verändern und so gewünschte Fokusformen und eine Verschiebung des Pulses in der Zeit zu

erzeugen. In dem theoretischen Kapitel als auch in dem dritten Kapitel werden die Grundlagen

zur Manipulation und zur genauen Berechnung der genutzten Phasenmanipulation erklärt.

Kapitel 4 zeigt das erste Experiment der Dissertation. Es zeigt ein Doppelspaltexperiment, das

durch zwei Laserfoki erzeugt wird (siehe Abbildung 4.5b). Der Doppelspalt ist Young’s Doppel-

spalt ähnlich, wird aber hier nicht nur genuzt, um die Kohärenz von HHG zu beweisen [23],

sondern eine relative Phase zwischen den Spalten zu messen. Dies ist Grundlage um eine kom-

plette Messung der Strahlung durchzuführen und damit weitere Eigenschaften in HHG zu messen

und zu extrahieren. Das gezeigte Experiment zeigt hervorragende Stabilität in Abbildung 5.3.

Im Unterschied zu anderen Interferometern, wie einem Michelson Interferometer, kann der ver-

wendete Aufbau als ”common path interferometer“ bezeichnet werden. Durch die Verwendung

von zwei Pfaden oder zwei Spalten die immer denselben optischen Pfad und Elemente durch-

queren, kommt es zu sehr geringem Einfluss durch Vibrationen und Luftzirkulationen, der sich

in einem Fehler von weniger als 1 as realisiert. Der verwendete SLM kann dabei eine Zeitver-

schiebung von 2.67 fs im elektrischen Feld induzieren, in Schritten von 12.5 as. Dies wurde in

Kapitel 4 und 3 genauer besprochen. Nicht nur kann die örtliche Intensitätsverteilung im Fo-

kus in einen Doppelspalt umgewandelt werden, auch die Intensität der Spalte kann in einer

asymmetrischen Weise beeinflusst werden (siehe Abbildungen 4.6c). In Kapitel 5 wird diese Ma-

nipulation genutzt, um die Phase und Intensität der Harmonischen als Funktion der Differenz

in der Peak-Intensität der einzlenen Spalte zu messen. Hier zeigt sich ein weiterer fundamen-

taler Unterschied zur perturbativen Erzeugung von höheren Harmonischen, neben Plateau und

cutoff. Im perturbativen Bild ist die Phase der Harmonischen nicht intensitätsabhängig und ih-

re Phase bleibt unverändert, wenn die Intensität der Fundamentalen anwächst. Hier zeigt sich

in dem SFA-Modell und dem gezeigten Experiment (wie in zahlreichen anderen Experimenten)

in Abbildungen 6.8a und 6.14, dass die Phase der Harmonischen sehr stark von der Intensität,

aber auch von der Elektrontrajektorie abhängt (siehe Abbildung 6.24 und Abbildung 6.26). Hier

erwartet man eine deutlich stärker beeinflusste Phase der Harmonischen, wenn diese mit langen

Elektrontrajektorien entstanden sind, während Harmonische von kurzen Elektronentrajektori-

en eine deutlich schwächere Abhängigkeit zeigen. Erst, wenn Harmonische mit der maximalen

kinetischen Energie erzeugt werden, kann es nur noch einen Rekombinationspfad geben und die-
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se Harmonischen werden eine feste Abhängigkeit von der Peak-Intensität des Lasers aufweisen.

In dem gezeigten Experiment wird diese Abhängigkeit für verschiedene Gase untersucht, aber

auch für andere Größenordnungen in der Peak-Intensität. Ebenso wird auch ein zwei-Farben-Feld

erzeugt, mit dem die Abhängigkeit der Phase der Harmonischen zu diesem zwei-Farben-Feld stu-

diert wird. In dem ersten Experiment stimmen die Resultate sehr gut mit SFA-Kalkulationen

überein. Die experimentelle Fehlerbalken sind sehr klein, während vergleichbare Experimente

mit größeren Fehlerbalken ihre Analyse durchführen müssen. Dies zeigt ebenfalls die Stärke des

gezeigten ”common path interferometers“.

Im Vergleich zu Kapitel 6 der Dissertation kann die komplexwertige Größe des Dipolmoments

direkt gemessen werden, sofern man Phase und Amplitude der HHG Strahlung misst. Dieses

Prinzip wird in Kapitel 7 und 8 genutzt, um eine detailreichere Messung in ausgerichtetem Stick-

stoff und Ethylen zu zeigen.

Zuerst werden allerdings Grundlagen der HHG Spektroskopie besprochen, wie die Faktorisie-

rung des Harmonischensignals, in einem elliptizitätsabhängigen Experiment. In dem Experiment

von Kapitel 6 werden diese Grundlagen genutzt: Harmonische eines 785 nm Lasers werden in

Argon erzeugt. Anschließend wird die Elliptizität des Lasers geändert und dabei die Intensität

der Harmonischen aufgenommen (siehe experimtenller Aufabu in Abbildung 7.1). Dieses Expe-

riment zeigt eine Abhängigkeit der Intensität in Abbildung 7.2, die sich für jede Harmonische

ändert. Besonders zeigt sich hier für Harmonische von 33. Ordnung ein deutlich langsamerer

Abfall der Intensität im Vergleich zu anderen Harmonischen. Diese Messung wird dazu genutzt

mit Hilfe einer Theorie von Mikhail Frolov [24] den β-Parameter in der Photoionization von

Argon zu extrahieren. Der β-Parameter in Abbildung 7.5 kann hier im Falle eines p-orbitals in

Argon extrahiert werden. Dieser Parameter ist eine bekannte Größe in Photoionisationsmessun-

gen an Synchrotronanlagen. Er zeigt die Winkelabhḧangigkeit in Einphotonionisation und zeigt

in Argon einen winkelunabhängigen Wirkungsquerschnitt für Photonenenergien um 50 eV oder

in dem gezeigten Experiment für Harmonische um 33. Ordnung. Durch das Prinzip von detailier-

tem Gleichgewicht können Schlussfolgerungen über beide Experimente gezogen werden, welche

zeigen, dass sich HHG als Photionisationsexperiment in einem sehr einfachen und kompakten

Aufbau beweisen kann. Nach dem Experiment an Argon befassen sich Kapitel 7 und 8 mit HHG

von ausgerichteten Molekülen, in denen experimentell Amplitude und Phase der höheren Harmo-

nischen gesammelt werden. Non-adiabatic alignment ermöglicht es winkelabhängige Phasen und

Amplituden zu messen. Dabei wird die zeitabhängige Intensität und Phase der Harmonischen ge-

messen und mit der kalkulierten Molekülachsenverteilung in der Zeit eine Winkelabhängigkeit ex-

trahiert. Dabei werden Basis-Sets verwendet, die die Symmetrie des Moleküls darstellen können.

In Stickstoff wird eine starke, symmetrische Zeitabhängigkeit in Phase und Amplitude in den

Abbildungen 8.7 und 8.8 beobachtet, die auf die molekulare Struktur zurückzuführen ist. Eine

Shape resonance um 25 eV erzeugt eine starke Winkelabhängigkeit, die im Experiment allerdings

noch ein Maximum um 90◦ zeigt, das nicht mit der shape resonance des HOMO zu erklären ist,

siehe Abbildung 8.11c. Die Diskussion muss um HOMO-1 ergänzt werden, um damit die gemes-

senen Eigenschaften zu erklären. HOMO und HOMO-1 beschreiben die molekularen Orbitale, die

die zwei kleinsten Ionisationspotentiale aufweisen und damit bei der Ionisation dominieren. In

Ethylen folgt die Rotation des Moleküls nun nicht mehr einer einfachen Rotation um eine Achse,

sondern folgt einer komplizierten Struktur mit Rotationen um einzelne Achsen und Rotationen

mit Perioden aus der Summe von mehreren Trägheitsmomenten (siehe Kapitel 3.3.4). In Ethylen

kann nun nicht zu einer gewissen Zeit von einem ausgerichteten Molekül gesprochen werden,
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sondern es muss das Wissen eines zeitabhängigen Verhaltens genutzt werden, um auf eine Win-

kelabhängigkeit zu schließen. Im Experiment werden Kalkulationen genutzt, um die Phase und

die Amplitude in zwei Winkeln anzugeben. In dem gezeigten Experiment ist mit systematischen

und statistischen Fehlern zu kämpfen. Nur eine Harmonische im Experiment zeigt einen akzep-

tablen Wert für die entsprechende Wertigkeit des Fits zu den gemessenen Werten. Alle anderen

Harmonischen zeigen ein Überfitten der experimentellen Werte und die Kalkulationen haben

keine eindeutige Lösung. Nichtsdestotrotz kann aus dem Ergebnis für Ethylen in Abbildung 9.13

eine sehr interessante Winkelabhängigkeit für die Phase und Amplitude extrahiert werden. Ge-

nauso wie in Stickstoff sind zwei Orbitale in der Erzeugung der höheren Harmonischen involviert.

Besonders in der Phase zeigt sich, dass die Resultate mit gegebenen theoretischen Kalkulationen

übereinstimmen, wenn mehrere Orbitale angenommen werden.
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Chapter 3

Theoretical background

3.1 High harmonic generation

With the discovery of high-order harmonic generation [25,26] and above-threshold ionization [27],
new theories were required to describe these strong field processes. In high harmonic generation
(HHG), studies showed a discrete spectrum, in which the lines were separated by twice the
photon energy of the driving laser. These lines are the harmonics of the fundamental laser field.
The spectrum generated in HHG consists of three characteristic regions: low order harmonics,
a plateau and the so called cutoff. Low order harmonics can be generated perturbitavely and
show a high flux compared to harmonics in the plateau region, where the relative brightness of
neighboring harmonics is comparable to each other and does not show a decay in brightness as the
order increases. Beginning in the cutoff region, we observe a rapid fall-off of harmonic intensity
with harmonic order. In 1992 and 1993, important work based on a classical model was developed
and matched the characteristic plateau behavior and cutoff in above threshold ionization [28]
and high harmonic generation [7, 8]. Lewenstein [21] formulated in 1994 a semi-classical theory
of high harmonic generation, which describes high harmonic generation in the tunneling regime
and describes the electron in the continuum as a wave function along its classical trajectory. The
theory is able to give the strength of the radiation and information about its phase.
These models are based on a single active electron approximation. HHG can be qualitatively
described in a three step model:

(1) In an intense laser field, an electron can tunnel-ionize from the atom/molecule.
(2) The freed electron gains kinetic energy in the electric field of the laser.
(3) The electron recombines with the parent ion, emitting a single photon

The harmonic emission can then be described as the product of the three steps.

3.1.1 Interaction of light with matter

On a fundamental level, high harmonic generation can be described as the radiation emitted
from a charged particle in an external, time deependent electric field. While the electron is in
the external field, we can describe the electron as an electric dipole that is emitting radiation as
a Hertzian dipole. This radiation can be labeled as bremsstrahlung [29, 30]. In the dipole limit,
using the Larmor formula [31], the total power irradiated P can be written as

P =
2

3

q2a2

c3
(3.1)

where a is the acceleration of a charged particle with charge q and c the speed of light. The
irradiated power of the dipole is proportional to the square of the acceleration. However, in
Quantum mechanics, the electron is described by a wave function, |Ψ〉. We find the electron
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wave function by solving the Schrödinger equation

i
d

dt
|Ψ〉 = Ĥ |Ψ〉 , (3.2)

where the Hamiltonian operator Ĥ is the sum of the kinetic energy and potential energy operators
Ĥ = T̂ + V̂ . The Hamiltonian operator can describe an electron bound in an atomic potential

V̂ = V (r) and with the kinetic energy operator T̂ = − p̂2

2m = − 1
2∇2. For the given Hamiltonian

operator, which has no time dependence, we find solutions of the time independent Schrödinger
equation Ĥ |Ψ〉 = E |Ψ〉 with the energy eigenvalue E < 0 and find an electron wave function,
|0〉, bound to the atom. When we have no atomic potential present, the Hamiltonian is written

H0 |k〉 = k2

2 |k〉 and we find an electron wave function |k〉, that is a solution to the Schrödinger
equation with an energy eigenvalue of E > 0. It is the wave function of a so called continuum
electron. However, an electron in the joint potential of the nucleus and an external laser field
F (t) = ǫ cos(ωt) is expressed with a Hamiltonian

H(t) = −1

2
∇2 + V (r) − ǫ cos(ωt) (3.3)

in which case, the solution to the Schrödinger equation becomes more complex. The wave func-
tions have eigenvalues in energy with E < 0 and E > 0. We can write the electron wave function
as a superposition of the ground states, excited states and continuum states

|Ψ(t)〉 = a(t) |0〉+
∫

d3kb(k, t) |k〉+
∑

c(t) |e〉 (3.4)

with |e〉 the wave function of an excited state and a, b, c amplitudes of the wave functions. This
electron wave function has a dipole moment that can be written as

d(t) = e ·D(t) = e 〈Ψ(t)|~r |Ψ(t)〉 (3.5)

and radiation will be emitted. The radiation can be expressed by the acceleration of the dipole
moment, where we have seen the proportionality of the irradiated power P ∝ a2 in the Larmor
formula in Equation 3.1. We can perform a time derivative to acquire the expectation value of

the acceleration d2

dt2 〈Ψ|~r |Ψ〉 or use Ehrenfest’s theorem [32] to get

d̈(t) =

〈

Ψ(t)

∣

∣

∣

∣

δV (r)

δr

∣

∣

∣

∣

Ψ(t)

〉

+ F (t) (3.6)

where the second term, given by the electric field F (t), does not contain any light matter inter-
action and can be dropped. Using a Fourier transformation to change from time to frequency
domain, we obtain the power spectrum

P (ω) = |d̈(ω)|2 (3.7)

which describes the emitted light, when the oscillating electric field is strong enough to influence
the electron bound in matter.

3.1.2 Factorization of High Harmonic Generation

Classical simple man’s model: Three Step Model

In this section, we introduce HHG through the semi-classical model as presented by Corkum [7].
In this model, we treat the electron’s motion in the continuum fully classically. The model can
explain the first experimental observations in HHG, such as the cutoff law.
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Ionization As mentioned before, ionization is the first step in the process. Ionization can be
described in two regimes: tunnel ionization and multiphoton ionization. Quantitatively, Keldysh
[19] defined in 1964 an adiabatic parameter γ

γ =
ωL

ǫ

√

2Ip (3.8)

with ωL the laser frequency, ǫ the electric field strength and Ip the ionization potential of the
atom/molecule. With the adiabatic parameter, we can differentiate between the multiphoton
and the tunnel ionization regimes: multi photon ionization dominates over tunnel ionization
when γ ≫ 1, tunneling ionization dominates over multiphoton ionization when γ ≪ 1. In the
intermediate region with γ ∼ 1, both processes can have equal probability. Qualitatively we can
describe tunnel ionization with the following picture: When the laser field strength approaches
the strength of the atomic potential, the potential well becomes distorted. The infinitely long
barrier of the well becomes a finite barrier through which the electron can tunnel. With low-
frequency lasers, where the period of the field is on the order of femtoseconds (1 fs = 10−15s),
the finite barrier is quasi-static compared to the time it takes for the electron to tunnel out, and
this ionization process can be described with well-known theories of tunnel ionization [20, 33].
In the other limit, when the laser field strength is smaller than the strength of the atomic
potential, the electron can still become free from the atomic potential. Absorbing enough photons,
the electron in the ground state may be excited to a continuum state and ionized, which is
described as multiphoton ionization.
In the limit γ ≪ 1, the tunneling rate Γ is derived in a strong field approximation [20, 34],

Γ = Xexp

(

−4

3
Ipτ

)

= Xexp

(

−2(2Ip)
3/2

3|ǫ|

)

(3.9)

with a ”tunneling time” of τ = γ/ωL and X an unknown factor [34]. The rate follows an
exponential law, until saturation effects occur. In the multi photon regime, for γ ≫ 1, the
”tunneling time” changes to τ ≈ ln(2γ)/ωL [34], so that the ionization rate turns into the power
law

Γ = X(2γ)−2N ∝ |ǫ|2N (3.10)

with N = Ip/ωL the number of photons required to reach the continuum threshold.
In the semi-classical model of HHG, the ionization is assumed to be in the tunnel-ionization
regime and the electron is released into the continuum with zero energy. The only energy it gains
is given by the acceleration in the electric field. The probability of ionization P (t) [7] during a
time interval dt is given by P (t) = Γ(F (t))dt, which describes the formation of wave packets near
each crest of the laser field.

Acceleration in a classical field After the ionization, assuming a monochromatic laser field
F (t) = ǫ cos(ωLt) and describing the evolution of the electron in the continuum with classical
mechanics, the acceleration a(t) of the electron, with mass me = 1 a.u. and charge qe = −1 a.u.,
can be written as

a(t) = −ǫ cos(ωLt). (3.11)

When we integrate the acceleration in time from t0, the time of ionization, to tr, the time of
recombination, which defines the window of time in which the electron is in the electric field, we
get the time dependent velocity v(tr)

v(tr) = − ǫ

ωL
[sin(ωLtr)− sin(ωLt0)] + v0 (3.12)

with v0 the velocity of the electron at t0.
Performing the integration a second time, we get the time dependent position of the electron

x(tr) =
ǫ

ω2
L

[cos(ωLtr)− cos(ωLt0) + ωL(tr − t0)sin(ωLt0)] + (tr − t0)v0 + x0 (3.13)
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In order for the electron to emit a photon, we have to assume that the electron started at the
origin and that it will return to its origin:

x(tr) = x(t0) = 0. (3.14)

Given Equation 3.14, we can write the return condition for the freed electron to be

0 =
ǫ

ω2
L

[cos(ωLtr)− cos(ωLt0) + ωL(tr − t0)sin(ωLt0)] + (tr − t0)v0. (3.15)

Under the assumption that the electron’s initial velocity is zero (v0 = 0), we get the electron’s
kinetic energy obtained in the electric field

Ekin(tr) = 2Up[sin(ωLtr)− sin(ωLt0)]
2 (3.16)

with

Up =
ǫ2

4ω2
L

(3.17)

the ponderomotive energy of an electron in an oscillating electric field. A solution to Equation
3.15 can be found numerically and can be approximated with [35]

tr
T0

=
1

4
− 3

2π
sin−1

(

4
t0
T0

− 1

)

(3.18)

with T0 the period of the laser cycle. Inserting Equation 3.18 in Equation 3.16, we get an equation
that yields the kinetic energy of the electron depending on its recombination time tr,

Ekin(tr) = 2Up

[

sin(ωLtr)− cos

(

π

2
sin

(

1

3
ωLtr

)

− π

6

)]2

(3.19)

and an equation for its kinetic energy, depending on its ionization time t0,

Ekin(t0) = 2Up

[

cos

(

3 sin−1

(

2

π
ωLt0 − 1

))

− sin(ωLt0)

]2

(3.20)

with ωl =
2π
T0
. These equations show the well-known cutoff law of high harmonic generation:

nmax~ωL = 3.17Up + Ip (3.21)

where nmax is the highest order of harmonic emission that can be generated for a particular
molecule/atom and a given laser intensity. The cutoff scales with the ponderomotive energy of
the driving laser field which is proportional to Iλ2, so that a higher driving laser wavelength λ
and intensity I will result in a higher harmonic cutoff.
In Figure 3.1 we plot the kinetic energy given by Equation 3.19 and Equation 3.20 as a function
of time over one cycle of the fundamental laser field. In this picture, we can define three distinct
types of electron trajectories, which stem from particular excursion times. Electrons emitted with
the maximum kinetic energy of 3.17 Up produce cutoff harmonics. For values of the energy less
than the maximum, there are two additional types of trajectories. While long trajectories are
ionized at the peak of the electric field at times of t < 0.05 and recombine at times of t > 0.71,
short trajectories are ionized at times t > 0.05 and spend less time in the electric field before they
recombine at times t < 0.71. Cutoff harmonics are generated from electrons ionized at t ≈ 0.05
and recombining at t ≈ 0.71, where a time of t = 1 corresponds to one optical cycle of length 2π.
Due to the difference in excursion time in the electric field, long trajectories have a smaller rate
of returning to the origin and the contribution of long trajectories to the HHG yield is smaller
than the contribution from short trajectories.
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Figure 3.1: Kinetic energy of an electron gained in the electric field of a monochromatic
laser for the ionization event and for the recombination event.

Recombination After the electron has been driven back to its origin, it may recombine with its
parent ion. If it does, the excess energy, consisting of the kinetic energy of up to Ekin = 3.17Up

plus the ionization potential of the ground state |0〉, is emitted in a single XUV-photon, when the
electron decelerates and recombines to the ground state. Since the kinetic energy of the electron
depends on the trajectory and specifically on the ionization and recombination times, the excess
energy differs for each trajectory, and a single cycle laser field will produce a continuous spectrum
of XUV. However, due to a long, pulsed driving laser field and the generation of harmonic
emission every half cycle in time, we get a spectrum of odd harmonics spaced by 2 · hωL. A
qualitative spectrum is given in Figure 3.2, which shows bright low order harmonics, harmonics
with an equal brightness in the plateau regime and the cutoff, where the intensity decreases
with harmonic order. The brightness of the plateau is given by equal amplitudes of the electron
trajectories recombining and emitting photons.

3.1.3 Strong field approximation of HHG

In 1994, Lewenstein et al. [21] presented a semiclassical theory of high harmonic generation,
called the strong field approximation (SFA), using the quantum nature of the electron in all steps
of the three step model. As introduced in section 3.1.1, the electron is moving in a sinusoidal
motion around the nucleus, driven by the external electric field. The emitted radiation is given by
Equation 3.6 and the acceleration of the dipole moment. In quantum mechanics, the expectation
value of the dipole moment of an atom in the time domain is given by Equation 3.5. In the
SFA model, an analytical form for the dipole moment can be derived and used to calculate the
emitted radiation. The assumption is made that only one ground state 〈0| is contributing and is
not depleted by the electric field. In addition, we assume that the intense laser field promotes the
ground state electron directly to the continuum state 〈k| and no excited states are populated.
Since the electron gains roughly 3Up, the electron in the continuum is treated as a free particle
unaffected by the parent ion’s Coulomb field (just as in the previously described classical picture).
The continuum state 〈k| is labeled by its kinetic momentum k. With those assumptions, the wave
function can be written as

〈Ψ(t)| = eiIpt
(

a(t) 〈0|+
∫

d3kb(k, t) 〈k|
)

(3.22)
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Figure 3.2: Cartoon of a high harmonic spectrum. A plateau of equal intensity harmonics
is surrounded by bright low order harmonics and dim cutoff harmonics

with b(k, t) the amplitude of the continuum states and a(t) the amplitude of the ground state.
Assuming that |0〉 is known and treating the problem only in one dimension, given by the laser
polarization axis x, only a solution to the Schrödinger equation of b(k, t) has to be found,

ḃ(k, t) = −i

(

k2

2
+ Ip

)

b(k, t)− ǫ cos(t)b(k,t). kx + iǫ cos(t)dx(k), (3.23)

where dx(k) = 〈k|x |0〉 is the dipole matrix element for the bound-continuum transition parallel
to the laser polarization. Solving the Schrödinger equation in Equation 3.23, the solution becomes:

b(k, t) = i

∫ tr

0

dtiǫ cos(ti)dx(k +A(ti))exp

[

−i

∫ tr

ti

dt”(
1

2
(vk + A(tr)−A(t”))2 + Ip

]

(3.24)

with A(t) = −ǫ sin(t)x̂ the vector potential of the laser field. We use the solution of Equation
3.24 to form the electron wave packet from Equation 3.22. Inserting Equation 3.22 in Equation
3.5, we get

x(t) = a2(t) 〈0|x |0〉+
∫

d3ka∗(t)b(k, t) 〈0|x |k〉+
∫

d3ka(t)b(k, t) 〈k|x |0〉+
∫

d3kb2(k, t) 〈k′|x |k〉
(3.25)

with x(t) the x-component of the dipole moment. The continuum-continuum transitions 〈k′|x |k〉
and the slow varying term 〈0|x |0〉 are ignored [21], forming the dipole moment

x(t) =

∫

d3ka∗(t)d∗(k)b(k, t) + c.c.. (3.26)

We assume an amplitude of the ground state to be a(t) ≈ 1 and drop the term in the following
equations. Using the canonical momentum p = k +A(t), we get the expression

x(t) = i

∫ tr

0

dt0

∫

d3pǫ cos(ti)dx(p−A(t0))exp[iS(p, tr, t0)]d
∗
x(p−A(tr)) + c.c. (3.27)
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where the argument of the complex exponential S(p, tr, t0) is the time integral over the classical
action of the electron along the trajectory from t0 to tr

S(p, tr, t0) =

∫ tr

t0

dt”

(

[p−A(t”)]2

2
+ Ip

)

. (3.28)

Qualitatively, Equation 3.27 represents a product of probability amplitudes: the first term ǫ cos(t0)dx(p−
A(t0) describes the probability amplitude for the electron to leave the atom/molecule and gain
canonical momentum p. The second term describes the electron propagating along the classical
trajectory in the continuum, acquiring a phase of S(p, tr, t0). Finally the third term describes, at
time tr, the electron recombining with a probability amplitude of d∗x(p − A(t)) with its parent.
The HHG power spectrum is obtained by a Fourier transformation of the acceleration of the
dipole moment ẍ(t)

P (ω) ∝ |ẍ(ω)|2 = |
∫

ẍ(t)eiωtdt|2 ≈ ω|x(ω)|2 (3.29)

We should emphasize that an approximation made in this model is given in the matrix element
d(k) = 〈0|x |k〉 in Equation 3.23. We assume that |k〉 is a plane wave instead of the exact
solution of the electron wave function. In this approximation, the dipole matrix element upon
re-scattering can be written as

d(p) = i

(

1

πα

)3/4
p

α
exp(−p2/2α) (3.30)

Equation 3.29 with approximation 3.30 yields qualitative agreement with experiments, where the
SFA theory was used to extract the Fourier transform of an atomic wave packet in the ground
state [36, 37]. The SFA model can calculate the strength and the phase of the HHG radiation.

3.2 Inelastic scattering and detailed balance

As stated in the previous chapter, the continuum electron wave function is not a plane wave
function with the classical action as its energy, but was approximated in such a fashion as to
give an analytical form for the high harmonic yield in the SFA model. We need to introduce
a better continuum wave function to describe experimental findings in HHG, where structural
features were visible [15,38,39] that contradict the plane wave approximation. When the electron
recombines with the parent ion, the process can be expressed as inelastic scattering in which the
accelerated electron loses its kinetic energy, the absorbed energy is emitted by a photon (just
as Bethe proved for bremsstrahlung in 1934 [40]) and the continuum wave function has to be
a solution to the Schrödiner equation describing inelastic scattering. In this section we follow
chapter 123 from Landau-Lifschitz [41] to formulate a relation between inelastic scattering, the
photoionization and the photorecombination dipoles. For the elastic scattering case, we have to
solve the Schrödinger equation

∇2Ψ+ 2m/~2(E − U(r))Ψ = 0 (3.31)

with a free electron of energy E in a spherical potential U(r) given by the parent ion. If we
reduced this Schrödinger equation to the case of an electron with no angular momentum l = 0
and in the presence of no electric field U(r) = 0, the solution of Equation 3.31 reduces to a plane
wave and the wave function can be written as

Ψ ≈ eikz . (3.32)
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When a radial potential is given and the electron has a well defined angular momentum, the
solution to the Schrödinger equation is given by partial waves

Ψ =

∞
∑

l=0

AlPl(cos θ)Rkl(r) (3.33)

where Pl(cos θ) are Legendre polynomials and Rkl is the radial component of the wave function.
Following Landau-Lifschitz [41], we get an elastic scattering wave function

Ψ ≈ eikz + f(θ)eikr/r (3.34)

with the scattering amplitude f(θ) = 1
2ikr

∑∞
l=0(2l + 1)[Sl − 1]Pl(cos θ). The square of the am-

plitude f gives the cross section of elastic scattering, and we can define the total cross section
σ

σ = 2π

∫ π

0

|f |2 sin θdθ. (3.35)

The cross section for elastic scattering from initial state i to the same initial state i is written as

dσii = |fii|2dΩ (3.36)

while the inelastic scattering cross section for a different, final state Ψf = ffi(θ)
√

mf

mi

eikf r

r is

defined as the probability of transitioning from the initial to final state with

dσfi = |ffi|2
pf
pi

dΩf , (3.37)

where the momenta of the final and initial state are pi = mivi and pf = mfvf . We write the
exact scattering, recombining wave function as Ψk and the transition dipole, used in the strong
field approximation, becomes

d(~r) = 〈Ψk|~r |0〉 (3.38)

where the dipole matrix element describes the transition from the inelastic scattering wave func-
tion to the ground state. This dipole moment is different from the dipole moment used in the
SFA model, allowing one to account for structural features in the scattering process.

3.2.1 Principle of detailed balance

To calculate the exact solution of the recombination dipole in Equation 3.38, we can harness the
vast body of knowledge about photoionization cross sections(PICS) [11–13]. Theories throughout
the history of physics and chemistry have been formulated, using the principle of detailed balance
or time-reversal: Maxwell in 1867 [42], Boltzman in 1872 [43] Onsager in 1931 [44]. At thermody-
namic equilibrium, processes should be balanced by their reverse processes. We use the principle
of detailed balance to connect photoionization calculations to the recombination step in HHG.
The recombination process can be described as the time inverse process of photoionization. The
scattering process, which we used to describe the dipole matrix element of photorecombination
in the previous section, is symmetric with respect to time reversal [41], which means

ffi = fi∗f∗ (3.39)

where the states i∗ and f∗ differ from i, f by a change in sign of the momentum. The scattering
cross sections for i → f can be expressed in relation to each other

dσfi/p
2
fdσf = dσif/p

2
idσi, (3.40)

which links the transition from state i to state f to the transition from f to i. This is the principle
of detailed balance.
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Using this principle, we can describe the dipole moment of photorecombination as the dipole
moment of photoionization. With the principle of detailed balance, we achieve a quantitative
comparison between theoretical HHG yields and experimental HHG yields. This has been shown
theoretically by Frolov and co-workers in a first principle model [17] and used in quantitative
re-scattering theory by Chii-Dong Lin and Anh-Thu Le [45].

3.2.2 Models using the principle of detailed balance

In HHG, the rate of high harmonics can be written as the parameterization [17]

R(E, I) ∝ N(I)W (E, I)σ(E), E = EΩ − Ip, (3.41)

where W (E, I) is the propagation factor and σ(E) the photorecombination cross section σ(E)
of the electron energy E and the intensity I that can shape the harmonic spectrum depending
on the atomic/molecular target, where the ionization rate N(I) and the electron wave packet
depend on the intensity I of the electric field. The high harmonic spectrum in Figure 3.2 was
generated based on the plane wave approximation.
However, in experimental studies [15, 38, 39] it was shown that this does not hold true. Fea-
tures of the photorecombination cross section are present and shape the harmonic spectrum.
Theories have shown that the exact treatment of a scattering wave is able to retrieve these
features [17, 45] in atomic targets and has been extended to molecular targets. Quantitative
rescattering theory [45] shows very good agreement with high harmonic generation from aligned
molecules, as shown in [46], where features like the shape resonance and the Cooper minimum in
the photoionization cross section can be directly observed in HHG measured in the laboratory
frame. These theories will be briefly explained in the next sections and we use this approach to
investigate structural features encoded in the harmonic yield and phase in Chapters 8 and 9.

Quantitative rescattering theory

Quantitative rescattering theory (QRS) is based on the principle of detailed balance, where the
recombination step can be more accurately described by existing models of photoionization. QRS
uses a phenomenological approach to calculate the yield of high harmonics generated in molec-
ular targets.
In a recent publication [47], Le et al. called the quantitative rescattering theory (QRS) an “ex-
trapolation” of the factorization shown in Equation 3.27, where the treatment of the plane
wave is extrapolated onto an expansion that can treat the recombination more accurately. The
transition dipole is the time reverse of a one-photon process of photoionization. Computational
packages [48, 49] are available and can model atomic and molecular photoionization. This ap-
proach has been used to perform studies on complex polyatomic molecules [50]. The harmonic
yield is calculated using the Fourier transform of the generated harmonic dipole

Y (E) ∝ |
∫

D̈(t)eiωtdt|2 = ω4|D(ω)|2, (3.42)

where we find solutions to D̈(t) in the SFA and solve the integrand to find the yield. In QRS, we
calculate D(ω) with calculated solutions to the transition dipole d = 〈Ψk| r |Ψi〉 from photoion-
ization computational programs. The factorization of QRS yields a harmonic dipole,

|D(ω)|eiφ(ω) = |W (E)|eiη |d(ω)|eiδ(ω), (3.43)

that is the product of the ionized electron wave packet in the continuum W (E) with phase η
and the complex-valued recombination dipole matrix element d(ω) with phase δ(ω), where the
energy of the electron is equal to E = EΩ − Ip and EΩ is the harmonic energy.
QRS expands the calculations to high harmonic generation from aligned molecules. We define
an induced harmonic dipole D(ω, θ) that depends on the orientation of the molecular axis, with
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the angle θ defined as the angle between the molecular axis of the molecule and the polarization
axis of the linearly polarized laser. Within the QRS, the induced dipole moment for an aligned
molecule is written as

|D(ω, θ)|eiφ(ω,θ) = |W (E, θ)|eiη|d(ω, θ)|eiδ(ω,θ), (3.44)

where the square of the electron wave packet in the continuum is

|W (E, θ)|2 = N(θ)|W̃ (E, θ)|2 (3.45)

with N(θ) the angle dependent ionization probability. We can use the SFA calculations to cal-
culate the induced dipole moment DSFA(ω, θ) and use it to calculate the electron wave packet:

WSFA(E, θ) =
DSFA(ω, θ)

dPWA(ω, θ)
(3.46)

We can calculate the electron wave packet in the continuum under the further assumption that
the wave packet is independent of the target, just as it was described in the simple man’s and
Lewenstein models. The electron energy is solely a function of the electric field, given molecules
and atoms with a similar ionization potential.
The induced dipole moment can then be written as

DQRS(ω, θ) = WSFA(E, θ)d(ω, θ) =
d(ω, θ)

dPWA(ω, θ)
DSFA(ω, θ) (3.47)

and the harmonic signal can be expressed as

Y QRS(ω, θ) =
σ(ω)

σPWA(ω)
Y SFA(ω, θ), (3.48)

where the SFA yield calculations are “corrected“ by the “exact“ photorecombination cross sec-
tion. The QRS allows us to calculate parts of the factorization by using atomic reference targets
to expand HHG to molecular targets of the same ionization potential and can extract information
about the PICS in the molecular frame.

Scattering model for harmonics driven by elliptically polarized laser fields

So far, we have shown the HHG factorization in three steps that include the ground state wave
function and a complex continuum wave function, which is influenced by the atomic potential.
Through the principle of detailed balance, we made use of the extensive knowledge of photoion-
ization dipoles and improved the quantitative agreement between experiments and theory that
allowed us to understand atomic and molecular structures influencing the yield of HHG. How-
ever, these models only considered linearly polarized laser fields and used the calculated dipole
moments out of reference atoms to expand the calculations through QRS to molecular targets.
In this section, the ground state wave function will be expanded to wave functions with angular
momentum l > 0, and the transition dipole element from the continuum to the ground state will
be calculated using the exact rescattering wave function. One of our recent publications, [51],
uses the model of Frolov and coworkers [52]. In this model, we assume the electron is in a short
range potential that can support two bound states of angular momentum l = 0 and l = 1, where
we now have two partial wave scattering phases δl(k) that are nonzero. In reference [24], the
electric field is expressed as

F (t) = ǫ(x̂ cosωt+ ŷη sinωt) (3.49)

where ǫ is the electric field strength and η the ellipticity of the field. The angular momentum
projection m is not conserved anymore for an ellipticity η 6= 0, and field-free states φklm(~r)
become degenerate, resulting in (2l+1) quasistationary quasienergy states with quasienergies
ǫq = E0 + δǫq (for a p state we get q = −1, 0, 1). The field-free states are defined by φklm(~r)
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with E0 = −~
2k2/2m and angular momentum l and its projection m. With the assumption

that we are in the tunneling regime and that we can approximate the quasienergy ǫq with E0,
the quasistationary quasienergy states can be written as superpositions of the degenerate bound
state wave functions φklm(~r) = φkl0(r)Ylm(~r) with

φklq(~r) = φkl0(r)flq(~r) (3.50a)

fl,0 = Yl,0(~r) , f1,±1(~r) = [Y1,1(~r)± Y1,−1(~r)]
√

(2) (3.50b)

which define states that are oriented in the three coordinate axes: x(q = −1),y(q = 1) and z
(q = 0). We insert the wave functions into the equation for the dipole moment, which is similar
to the dipole moment defined in SFA, and get

dl,q(t) =
2Ck,l

iT (ka)3/2

∫ T

T/2

fl,q[K̂i(t)]

(

F (ti)

F0
· Ki(t)

~k

)−1/2

(3.51)

× exp(−i(S(t, ti)− Et+ E0ti)/~)

[v(t− ti)]3/2
〈φklq | r |φK(t)〉 dt (3.52)

where K(t′, t, ti) is the instantaneous classical momentum of an electron with a trajectory from
its ionization time to its return time [24] and T the cycle length of the driving laser field. In the
calculations of reference [24], the continuum electron wave function φK(t)(r) is represented in a
partial wave equation, as previously shown in Section 3.2

ΨK(t)(r) =
∑

l,m

Ψǫ(t),l(r)Y
∗
l,m[K(t)]Yl,m(r) (3.53)

φǫ(t),l(r) =
2π~

aK(t)
ileiδl[ǫ(t)]RK(t),l(r) (3.54)

We get dipole elements in r,x and y components: 〈φk,0,0| r |φK(t)〉, 〈φk,1,+1|x |φK(t)〉, 〈φk,1,+1| y |φK(t)〉,
〈φk,1,−1|x |φK(t)〉, 〈φk,1,−1| y |φK(t)〉. Changing the polarization from a linear driving field in the
previous sections to an elliptical field, the solution to the harmonic yield contains dipole moments
in multiple directions. With the proposed theory, we can understand the ellipticity-dependent
yield of high harmonics. Previous papers have measured the ellipticity dependence and theories
were able to explain the behavior. However, with this theory developed by Frolov and coworkers,
we can extract structural information, as seen in Chapter 7.

3.2.3 Coherent nature of HHG

In this section, I will talk about coherence from a general perspective and how the coherence of
the laser light is ultimately the cause of the coherence in high harmonic generation.
Waves are coherent with each other when their relative phases have a fixed relation. This principle
can be expanded to describe the coherence between light and matter, when there is a well-defined
phase between the electric field and the electron wave function. For the case of high harmonic
generation, we can use the same argument to show the coherence of higher order harmonics,
where HHG is driven by the interaction between light and matter. Light of well-defined phase
launches the electron wave packet by tunnel ionization. Its phase is correlated with the phase of
the laser light and forms a coherent wave packet. Each step of the three step model then imprints
another well-defined phase on the electron wave function, after which the electron recombines to
the ground state and emits a photon. This coherence is imprinted on the emitted high harmonic
spectrum. We can find an analog between tunnel ionization and stimulated emission. Stimulated
emission is the fundamental step in the coherence of a laser, while tunnel ionization is the fun-
damental step to start the “clock” in high harmonic generation.
Starting in 1998, experiments first revealed the coherent nature of HHG. Bellini [23] measured
the coherence time between two harmonic sources, where the time of coherence was similar to
the pulse duration of the driving laser fields. Yost [53] performed a coherence measurements of a
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single-harmonic pulse for adjacent pulses of a cavity-based laser. Since the electron wave packet
generates all harmonic orders in a single event, a phase relation between different harmonic orders
is given as well. This has been experimentally shown with measurements based on reconstruction
of attosecond beating by interference of two-photon transitions (RABBIT) [54], which proved the
full coherence of HHG. Streaking experiments have further shown the realization of attosecond
pulse trains [55] or isolated attosecond pulses [56].
The coherent nature of high harmonic generation can be used to perform spectroscopic studies.
Ex-situ measurements [14], based on RABBIT, and in-situ interferometric studies [57] have pro-
vided valuable information on structural and dynamical features of high harmonic generation,
not only in the amplitude, but also in the phase of harmonics.
Interferometric studies can be described in analogy to Young’s double slit, where the two slits
are illuminated by two independent harmonic sources. Due to the coherence of HHG, emission
from both slits/sources can interfere destructively or constructively in the far field. Assuming
the distance between the double slits to be small and the observation plane to be far away from
the two slits, an equation of interference can be given by a classical Young’s double slit

d sin θ ≈ dθ (3.55)

where the minima and maxima of the interference are separated by

θf ≈ λ/d. (3.56)

The position of these minima and maxima is a direct measurement of the relative phase between
the two sources. If the phase of the irradiated light of one of the two sources changes, the minima
and maxima will move and resolve the change in phase. In HHG, these phases hold valuable
information on all steps involved in high harmonic generation.
More specifically, individual steps in HHG can be isolated from the additional steps and their
influence on the phase and amplitude measured. This point is crucial to my thesis: We can
isolate the third step of HHG and use HHG to study the complex-valued photoionization dipole
by measuring the amplitude and phase of the harmonic sources.
Describing the photoionization dipole as d(ω, θ) = |d(ω, θ)|eiφ(ω,θ) is in contrast to the method
of describing photoionization as a perturbation. Following Dirac [58] and Fermi [59], we can
describe photoionization by a perturbation. Following Fermi’s golden rule, we write

Γif =
2π

~
| 〈f |H ′ |i〉 |2ρ (3.57)

where Γ is the transition rate between initial state i and final state f . It is given by the magnitude
of the matrix element alone. ρ describes the density of the final states. Any phase information
is lost in this approach, but can be measured in a very indirect way, as long as we can express
the photoionization cross section with two variables, we can extract similar knowledge out of the
photoionization process. We still observe interference effects given by shape resonances or Cooper
minima, which can be expressed by the double differential cross section of photoionization, known
from synchrotron measurements and theory [11–13]. It is written as

σ(E, θ) =
σ0(E)

4π

[

1 +
β(E)

2
(3 cos2 θ − 1)

]

(3.58)

which is only a real-valued function of the PICS as a function of the two varibales E and θ. In
HHG we have access to the real and imaginary parts of d(ω, θ) =

√

σ(ω, θ)ei(φ(ω,θ).

3.3 Molecular alignment

In this section, I will introduce the concept of non-adiabatic alignment and how a rigid rotor
behaves under rotational excitation. I will introduce a rotor that has different moments of inertia,
which will then be used to explain a simpler rigid rotor with only one rotational axis, but will
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also be used to explain an asymmetric rotor.

3.3.1 Classification of molecular rotors

Any molecule has three moments of inertia IA, IB , IC about three orthogonal axes, with the
center of mass as the origin. The general notion describes IA as the smallest moment of inertia.
We can put the molecules in different categories, depending on the symmetry of the molecule:
linear molecules, spherical molecules, symmetric tops and asymmetric tops. Linear molecules
have a typical ratio between the moments of inertia of IA < IB ≈ IC , where the moment of
inertia IA around the internuclear axis can be approximated to be zero in most cases. Examples
are diatomic nitrogen or oxygen. Spherical molecules, such as sulfur hexaflouride, have the same
moment of inertia in all three axes (IA = IB = IC). Symmetric tops are similar to linear
molecules, where two axes have the same moment of inertia. However, the third axis has a
momentum of inertia that cannot be neglected. We can divide the symmetric tops into groups
of oblate (IA = IB < IC) and prolate symmetric tops (IA < IB = IC). Oblate molecules are disc
shaped, an example is benzene, and prolate molecules are more cigar shaped, e.g. chloromethane.
In the case of asymmetric tops, we have 3 different moments of inertia (IA 6= IB 6= IC).

3.3.2 Introduction to the rigid rotor in quantum mechanics

In the Born-Oppenheimer approximation, we can write the total wave function of our system as
the product of the wave function of the nucleus and of the electrons and approximate the motion
of the nucleus to be frozen compared to the fast motion of the electrons around it. The molecular
wave function is described as the product [60, 61]

Φmol = ΦelΦvibΦrotΦnu.spin (3.59)

where Φel is the electronic wave function, Φvib the vibrational wave function, Φrot the rotational
wave function and Φnu.spin the wave function of nuclear spins. Each component can be solved
by writing the individual Hamiltonian for each wave function. We assume no coupling between
the vibrational and rotational Hamiltonian of the molecule. For a rigid rotor we can write the
rotational Hamiltonian

Hrot =
J2
a

2Ia
+

J2
b

2Ib
+

J2
c

2Ic
= AJ2

a +BJ2
b + CJ2

c (3.60)

where Ja,b,c are angular momentum operators and A,B and C are the frequencies of rotation
about each axis. In the case of nitrogen, we get a one-dimensional rigid rotor, since the rotation
around the b-axis and c-axis are identical and cannot be distinguished. The internal Hamiltonian
for nitrogen is

Hrot =
i2~2

2IB
(3.61)

With the Schrödinger equation
HrotΦ = EΦ (3.62)

we get the energy of the rotational states

En =
j(j + 1)h2

8π2IB
(3.63)

which can be written as En = j(j + 1)Bh with the rotational constant B. Using the energy of
the rotational states, we can estimate the partition function of the rotational states:

ξ =
∑

Ji

e−EJi
/kT (3.64)

which describes the statistical properties of the rotational system.
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Figure 3.3: Definition of molecular frame and laboratory frame, Figure taken from [62]

3.3.3 Particle in an external field

When an atom or molecule is in an electric field of strength ~ǫ, the energy U of the system can
be expressed in a Taylor expansion

U = U0 − µperm.ǫi −
1

2
αijǫiǫj −

1

6
βijkǫiǫjǫk −

1

24
γijklǫiǫjǫkǫl (3.65)

where U0 is the unperturbed energy, µperm. the permanent dipole moment, α the polarizability
and β and γ the first and second hyperpolarizabilities with ijk coordinates in the cartesian
coordinate system and l one of the three coordinates. In the case of the molecules and techniques
treated in this thesis, the permanent dipole moment and hyperpolarizability of nitrogen and
ethylene wash out over the multi-cycle laser fields, as each half cycle introduces an effect opposite
to the adjacent half cycle. The energy of the system is then described as

U = U0 −
1

2
αijǫiǫj (3.66)

where the energy of the system is only influenced by the interaction with the induced dipole
µij = αijǫi. The polarizability α is a 3x3 tensor given by

α =







αXX αXY αXZ

αYX αY Y αY Z

αZX αZY αZZ






(3.67)

and the induced dipole moment µi =
∑

αijǫi in the lab frame is





µX

µY

µZ



 =







αXX αXY αXZ

αY X αY Y αY Z

αZX αZY αZZ






·





ǫX
ǫY
ǫZ



 (3.68)

where we have to perform a transformation from the molecule fixed frame to the laboratory
frame, since we are only able to calculate the polarizability of the molecule in the molecule fixed
frame, given by its coordinate system x, y, z. The transformation is performed using the direction
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cosine matrix [62]
Φ(φ, θ, χ) = Rz(χ)RN (θ)RZ(φ) (3.69)

where φ is a rotation about the Z axis in the lab frame, θ a rotation about the molecular y
axis and χ the rotation about the molecular z axis. Definitions for the Euler angles and rotation
function can be taken from [62] and are shown in Figure 3.3. For a linear rotor with the molecular
axis around the z axis and an electric field with a component in the Z-axis we get an induced
dipole moment only in the Z direction:

µZ = µx sin θ cosχ+ µy sin θ sinχ+ µz cos θ (3.70)

with µx = sin θ cosχǫZαxx, which results in a laboratory induced dipole moment

µZ = αxxǫZ sin2 θ cos2 χ+ αyyǫZ sin2 θ sin2 χ+ αzzǫZ cos2 θ (3.71)

= α⊥ǫZ sin2 θ + α‖ǫZ cos2 θ (3.72)

which we re-write to

µZ = α⊥ǫZ sin2 θ + α‖ǫZ cos2 θ (3.73)

= α⊥ǫZ sin2 θ + α⊥ǫZ cos2 θ − α⊥ǫZ cos2 θ + α‖ǫZ cos2 θ (3.74)

= α⊥ǫZ − α⊥ǫZ cos2 θ + α‖ǫZ cos2 θ (3.75)

and use the a new variable with ∆α = α‖ǫZ − α⊥ǫZ to write

µZ = ∆αǫZ cos2 θ + α⊥ǫZ (3.76)

Following the above description and using Equation 3.66, we can write the induced Hamiltonian
as

Hind(t) = (∆α cos2 θ + α⊥) · F 2(t)Ẑ (3.77)

with F (t) = 1
2ǫ(t) cosωt, where ǫ(t) describes the envelope of the electric field as a function of

time, and we get

Hind(t) = (∆α cos2 θ + α⊥) ·
ǫ2(t)

4
Ẑ (3.78)

A linear rigid rotor in an external electric field

To describe the system under the influence of the external field, we solve the time dependent
Schrödinger equation (TDSE). The Hamiltonian for the interaction between the laser pulse and
the molecule is given by

H(t) = Hrot +Hind(t) (3.79)

where Hrot is the field free Hamiltonian described in Equation 3.60 and Hind the induced Hamil-
tonian described in Equation 3.78. We assume that the laser pulse duration is significantly shorter
than the rotational constant of the molecule, B, i.e. τ << ~

B , with τ defined as the full width at

half maximum of a Gaussian pulse, when the signal drops to 1/e with the envelope ǫ(t) = et
2/τ2

.
The TDSE can be written as

i~
∂Ψ

∂t
= ĤΨ (3.80)

and we can find solutions to the TDSE using the orthonormal basis set

|Ψ〉 = CJ
M |JM〉 (3.81)

where the coefficients CJM are time dependent and we can write the TDSE as

i~Ċ =
∑

J,M

CJ
M (t) (〈JM |Hrot |J ′M ′〉+ 〈JM |Hind |J ′M ′〉) (3.82)
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where J ′,M ′ are the initial rotational states and J,M the occupied states after the interaction
with the electric field. We insert the formalism for the rotational Hamiltonian and insert the
exact formula of the induced Hamiltonian, so that

i~
∑

J,M

Ċ =
∑

J,M

CJ
M (t)

(

EJJ′δJJ′ − ǫ2(t)∆α

4
〈JM | cos2 θ |J ′M ′〉 − ǫ2(t)α⊥

4
〈JM | |J ′M ′〉

)

(3.83)
where δJ,J′ is a Kronecker delta and the equation turns into

∑

J,M

ĊJ
M (t) = − i

~

∑

J,M

CJ
M (t)

(

EJ′JδJ′J − ǫ2(t)α⊥

4
δJ′J − ǫ2(t)∆α

4
〈J ′M ′| cos2 θ |JM〉

)

(3.84)

where we now have to solve the last summand out of the equation to find a solution for the
coefficients CJ

M (t). Solving the summand, while rewriting cos2 θ as a spherical harmonic, we get

〈J ′M ′| cos2 θ |JM〉 =
1

3
δJ′J +

4

3

√

π

5
〈J ′M ′| J = 2,M = 0 |JM〉

=
1

3
δJ′J +

2

3

√

(2J ′ + 1)(2J + 1)

(

J ′ 2 J
0 0 0

)(

J ′ 2 J
M ′ 0 M

)

(3.85)

where the two brackets at the end are Wigner 3-j symbols to add the angular momentum J = 2
from the initial state to the final state. Inserting Equation 3.85 into Equation 3.84, we can write
the solution for the time dependent coefficients as

∑

J,M

ĊJ
M (t) = − i

~

∑

J,M

CJ
M (t)

(

EJ′JδJ′J − ǫ2(t)α⊥

4
δJ′J

− ǫ2(t)∆α

4

(

1

3
δJ′J +

2

3

√

(2J + 1)(2J ′ + 1)

(

J ′ 2 J
0 0 0

)(

J ′ 2 J
M ′ 0 M

)))

(3.86)

This ordinary differential equation of the form Ċ = C(t, J) is solved using the MATLAB ode45
function, based on the DormandPrince method, an explicit Runge-Kutta method. For each time
step in the electric field, an array of coefficients is calculated and used for the next time step. The
square of the coefficients is equal to the population of the corresponding J state. The coefficients
in Equation 3.86 will be zero unless ∆J = −2, 0, 2. Raman transitions follow these rules and
we can describe the rotational excitation as a series of Raman transitions. During the pulse,
these transitions happen coherently and the resulting coefficient CJ

M are real values. After the
laser pulse, we calculate the time dependent behavior of the wave function by solving the time
dependent Schrödinger equation for the field-free Hamiltonian. The solution is

|Ψ(t)〉 =
∑

J′

CJ′M (te) |J ′M〉 e−iEJ′ (t−te)/~ (3.87)

with te the time at the end of the laser pulse and EJ′ the eigenenergies of the field-free Hamil-
tonian. From Equation 3.87 we can define a J-state dependent phase in the wave packet:

φJ = EJ∆t/~ = 2π(BJ(J + 1))∆t (3.88)

and look at the phase difference of neighboring J states:

φJ − φJ−1 = 2π(2B∆t)J (3.89)

where ∆t is given as the time difference between the end of the pulse and the current time. If
we now set the time delay ∆t to be Trev = 1/(2B), we see that all J-states have the same phase,
resulting in a full revival and all excited states align with the polarization direction of the external
field. At t = 1/4B the neighboring states have a phase offset of π, resulting in a half revival,
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where rotational states point in opposite direction, but are indistinguishable. Fractional revivals
at times Trev · p/q with q = 1, 2, 4 can occur. However, calculations expect no revival at times
of t = 1/8B, where neighboring states have a phase difference of π/2, so even J-states anti-align
with the laser polarization, while odd states align with the laser polarization and are parallel to
the polarization direction. Due to the spin-statistics in diatomic nitrogen, we can still observe a
revival at this particular time. With a ratio of 2:1, more even states anti-align at this particular
time with the laser field, resulting in a revival with a reduced degree of alignment, while then
at a time of t = 1/2B − 1/8B, more states align with the laser and a peak in the alignment
is visible. These behaviors are shown in Figure 3.4, where we plot the time dependent value of
〈

cos2 θ
〉

as a function of time after the interaction with a laser pulse. We use the expectation

of
〈

cos2 θ
〉

as a metric to describe the degree of alignment, where
〈

cos2 θ
〉

describes the overlap
between the molecular axis and the laser polarization.
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Figure 3.4: Molecular alignment of diatomic nitrogen as a function of field-free time, ex-
pressed with the expectation value 〈cos2 θ〉 for a rotational temperature of T=25 K, rota-
tional excited with a single pulse with a pulse duration of 80 fs and 20 TW/cm2.

3.3.4 Asymmetric rotor

As described in section 3.3.1 and Equation 3.60, the Hamiltonian for a rigid asymmetric rotor
has different moments of inertia in all directions. However, using Ray’s parameter κ we can split
the description into two limits.

κ =
2B −A− C

A− C
(3.90)

For κ > 0, the asymmetric rotor resembles a prolate top molecule and for κ < 0, the asymmetric
top molecule resembles an oblate top molecule, where in the limit A ≈ B we have an oblate top
(κ = 1) and in the limit B ≈ C we can describe the rotor as a prolate top molecule (κ = 1). In
these extreme cases, the asymmetric rotor is reduced to a symmetric rotor again. We first show
solutions to the symmetric rotor case and extrapolate this to the case of the asymmetric rotor.
The field free Hamiltonians for the two cases is given by

Hrot = AĴ2 + (C −A)J2
z (3.91)

for the oblate case and
Hrot = CĴ2 + (A− C)J2

z (3.92)

for the prolate case, where the eigenvalues are defined as EJK = AJ(J + 1) + (C − A)K2 and
EJK = CJ(J + 1) + (A− C)K2.
In the general case of an asymmetric rotor, the wave functions of the asymmetric rotor are linear

3.3. MOLECULAR ALIGNMENT 33



CHAPTER 3. THEORETICAL BACKGROUND

combinations of the symmetric top wave functions

ΨJM =
∑

K

cK |JKM〉 . (3.93)

where it is only a summation over K, while J,M are still good quantum numbers, when changing
from a symmetric rotor to the asymmetric rotor. Following chapter 6.3 from [62], the solution to
the rotational Hamiltonian can be found through a variational method, where the energies are
the roots of the secular determinant

|HK′K − EδK′K | = 0 (3.94)

with HK′K = 〈JK ′M |Hrot |JKM〉 and the secular determinant is of order (2J+1)(2J+1). Zare
follows up with a simplification of the secular determinant into four blocks through the Wang
transformation [63] that uses group operations to simplify the calculations of the asymmetric
rotor, since asymmetric tops belong to the point group D2 [62]. Further to that, when again
considering the limits of the oblate and prolate tops, one can define a new index for the resulting
energy levels of the rotor. In the limit of prolate or oblate tops, |K| reaches different values in
each limit. We can define a value for |K| in the oblate limit with K1 and a value for |K| for the
prolate limit with K−1 and the resulting index for the energy levels is defined as

τ = K−1 −K1 (3.95)

where K1 is associated with a rotation around the c-axis and K−1 with a rotation around the
a-axis. We get a set of eigenvalues in the 〈JτM | basis set, where the energy states show energy
values given in Figure 3.5.

Figure 3.5: Energy levels for an asymmetric top as a function of Ray’s asymmetry param-
eter κ, where κ = 1 corresponds to a prolate symmetric top and κ = −1 to an oblate
symmetric top. Copied from [62]
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Following the partition function from Equation 3.64, we get a weight associated to each
rotational state as shown in Figure 3.6a. The weights were calculated by code provided by
Varun Makhija [64] and also account for nuclear spin statistics. In the case of nitrogen, we get
a rotational ensemble that is well described by 5 states for a rotational temperature of 5 K or 9
states for a rotational temperature of 25 K in Figure 3.6b, while for ethylene we have 35 states
for a rotational temperature of 5 K and over 700 for a rotational temperature of 40 K, where the
partition function was only calculated to account for 0.99 of the involved rotational states, while
for nitrogen, we can set the convergence limit to 0.999.
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Figure 3.6: (a) Weight in the partition function of ethylene as a function of energy of
occupied rotational states for different temperatures (b) Weight in the partition function
of nitrogen as a function of rotational states for different temperatures

Induced dipole of the asymmetric rotor

As previously expressed for a linear rotor in Equations 3.68 and 3.69, the energy of the molecule
is influenced by the induced dipole. The induced dipole moment is written as

µi = −1

2
αijFj(t) (3.96)

where αij is the polarizability tensor in the laboratory frame with an electric field Fj with
polarization components ǫj. The polarizability tensor can be solved by noting [65]

αρρ′ =
∑

k,k′

〈ρ|k〉αkk′ 〈k′|ρ′〉 (3.97)

where 〈ρ|k〉 are elements of the transformation matrix between the lab frame k and the molecular
frame ρ, with k = X,Y, Z lab fixed cartesian coordinates. Here again, we have to perform a trans-
formation from the molecular frame into the laboratory frame to calculate the proper potential
that is introduced through the electric field on an asymmetric rotor. Instead of describing the
transformation by the direction cosine transformation, given by 3.69, we use the transformation

α
[L]
M (Ω) =

∑

K

D
∗[L]
M,K(Ω)α

[L]
K (3.98)

whereD
∗[L]
M,K(Ω) areWigner-D rotation matrices connecting the molecular frame to the laboratory

frame with Ω = {θ, φ, χ} [64]. The potential becomes

V = −1

2
(−1)L+MαL

MUL
M = −1

4
(−1)L+MDL

M,m′(Ω)αL
m′UL

M , (3.99)

with Uij the electric field tensor. For the case of αij being diagonal in the molecular frame, only
components αL

M with α0
0, α

2
0, α

2
2 = α2

−2 are non zero, which then diagonalizes the field tensor Uij ,
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leaving only the components U0
0 , U

2
0 and U2

2 = U2
−2 and we get an expression for the potential [64]

V (t) = −2παI0(t)

[

2− 3ǫ2X√
6

[

α2
0D

2
0,0 + α2

2(D
2
0,2 +D2

0,−2)
]

(3.100)

+
ǫ2

2

[

α2
0(D

2
2,0 +D2

−2,0) + α2
2(D

2
2,2 +D2

2,−2 +D2
−2,2 +D2

−2,−2)
]

]

.

where the light has components in x and z. Assuming a linearly polarized pulse so that ǫx = 0
and rewriting the Wigner function DL

M,K in Euler angles, we can write a simplified expression
for the potential of

V (t) = −2παI0(t)√
6

[

α2
0(
3

2
cos2 θ − 1) + α2

2

√

3

2
sin2 θ cos 2χ

]

. (3.101)

The potential shows that with a linearly polarized electric field, we can achieve alignment in
both angles θ and χ.

Interaction of light with the asymmetric rotor

We can insert the potential given in Equation 3.101 into the TDSE as previously shown in
Equation 3.80 and can expand the time dependent wave function in the |JKM〉 basis with time
dependent coefficients CJKM

Ψ(t) = CJKM (t) |JKM〉 . (3.102)

where we gain coupled differential equations for the coefficients CJKM (t)

i
dCJKM

dt
= CJK′MHK,K′ + CJ′K′M ′ 〈JKM |V |J ′K ′M ′〉 (3.103)

where HK,K′ are matrix elements of the field-free Hamiltonian. Detailed description can be taken
from [64], where the solution of the second term of Equation 3.103 has to be solved to find the
time dependent behavior of CJKM (t). The second term is solved for a linearly polarized field:

〈JKM |V (t)|J ′K ′M ′〉 = −2παI0(t)

√

2J + 1

2J ′ + 1

[

2√
6
〈J,M ; 2, 0|J ′M ′〉

[α2
0 〈J,K; 2, 0|J ′K ′〉+ α2

2(〈J,K; 2, 2|J ′,K ′〉+ 〈J,K; 2,−2|J ′,K ′〉)]
]

The expression for the matrix elements of V provides selection rules for transitions between
rotational states. The terms on the right excite coherences between states with ∆J = −2, 0, 2,
∆M = 0 and ∆K = −2, 0, 2. The excitations occur via Raman transitions and form our rotational
wave packet. The wave function evolves in time as a function of the angles θ, χ during and after
the laser pulse. The above expression can then be used to numerically propagate Equation 3.103
to calculate the values of CJKM (te). The Clebsch-Gordon coefficients are calculated using known
analytic expressions [62]. The solutions for Equation 3.103 is supplied by Varun Makhija [64].
And as already shown in the linear rotor case in Equation 3.87, we calculate the field free wave
function after the interaction with the laser pulse at the end time te with

CJτM (t) = CJτM (te)e
−i2πEJτM (t−te), (3.104)

The time dependent expectation value of a physical quantity can then be calculated from these
coefficients.
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Nuclear spins

As introduced in Section 3.3.2 in Equation 3.59, the molecular wave function is described as the
product

Φmol = ΦelΦvibΦrotΦnu.spin (3.105)

where Φel is the electronic wave function, Φvib the vibrational wave function, Φrot the rotational
wave function and Φnu.spin the wave function of nuclear spins. The rotational eigenfunctions
have to be combined with the nuclear spin eigenfunctions Φnu.sp to fulfill the symmetrization
postulate. Looking into the nuclear spins of the constituents for ethylene, 12C and 1H , we get
zero nuclear spin for 12C and nuclear spin of 1/2 for 1H , giving rise to 16 spin states for ethylene,
which have a different symmetry following the point group of ethylene in Table 3.1.

Γrot Γnu.sp gΓnu.sp

A A 7
Ba Ba 3
Bb Bb 3
Bc Bc 3

Table 3.1: Character table for ethylene and the D2 point group. More details in [60]

These states can be associated with the rotational wave function and show their weight
in accordance with the rotational ensemble of the molecule. Each symmetry has a different
weight that is additionally put into Figure 3.6a. For the case of diatomic nitrogen we have the
constituents of two nitrogen atoms. 14N has a nuclear spin of 1 so that the entire nuclear wave
function must be symmetric with respect to the exchange of the nuclei. For I = 1 there are 6
symmetric and 3 antisymmetric spin states for the two nuclei, giving rise to the ratio between
even and odd rotational states of 2 : 1, explaining the observation of higher order fractional
revivals in nitrogen.

Calculation examples

As shown for nitrogen in Figure 3.4, we can estimate our degree of alignment by using the
expectation value

〈

cos2 θ
〉

. Expanding this to other functions, we can write for any function O

〈O〉J0,τ0,M0
(t) = C∗

JKM (t)CJ′K′M ′ (t) 〈JKM |O |J ′K ′M ′〉 (3.106)

where O can be chosen arbitrarily, however the expectation value of a random function would
be 0 as a function of time. We choose a basis set that will describe the rotational motion well
and will have a expectation value 6= 0. We discuss our selection in Chapters 8 and 9. For the
projection 〈cos2 θ〉 we get for a given set of temperature, pulse duration and intensity a time
dependent behavior shown in Figure 3.7, while we can also calculate the expectation value for
other functions O = 〈D4

0(θ, χ)〉, 〈D4
4(θ, χ)〉 in Figures 3.8 and 3.9. For ethylene we have moments

of inertia with A = 145.82 GHz, B = 30.009 GHz and C = 24.823 GHz, which results in a Ray’s
parameterof κ = 0.91 and makes ethylene prolate. For a prolate asymmetric rotor we can describe
rotational revival structures:

Revival position time
A-type t = n/4A 1.71 ps
C-Type t = n/4C 10.07 ps
K-Type t = n/4A− 2B − 2C 2.11 ps
J-Type t = n/2(B + C) 9.12 ps

where the times are calculated for the case of ethylene gas. We can see features in Figure 3.7
that show oscillations of similar times, while

〈

cos2 θ
〉

cannot represent a A-type revival with the
angle χ.
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Figure 3.7: Degree of alignment, described with the expectation value of 〈cos2 θ〉 as a
function of time after an interaction with an intense laser field with 16 TWcm−2 and
150 fs.
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Figure 3.8: Expectation value of 〈D4
0(θ, χ)〉 as a function of time after an interaction with

an intense laser field with 16 TWcm−2 and 150 fs.
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Figure 3.9: Expectation value of 〈D4
4(θ, χ)〉 as a function of time after an interaction with

an intense laser field with 16 TWcm−2 and 150 fs.
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3.4 Fourier Optics

In this section, I will explain in detail the steps and theory behind generating the focus spots
for the two source interferometry experiments. These two sources serve as a Young’s double slit
to perform interferometric studies on HHG. To create the two sources, we have to control the
spatial profile U(x, y) of the incoming laser light and calculate the propagation of light. To do
so, I introduce the well-known concept of Fourier transformations to show calculations of the
expected spot size and phase distribution of spatially shaped light. We describe the electric field
for beams with different orbital angular momentum (OAM) or tilt. Explicitly, when mentioning
phase masks, I am making reference to a spatial light modulator (SLM), introduced in Chapter
4, that allows us to manipulate the spatial phase of light. Most of the discussion is based on the
book Computational Fourier transformation by Voelz [66].

3.4.1 Transverse modes of light

As a reminder, the typical modes of light from a laser system are described with transverse modes
of light. A transverse mode of light describes the electromagnetic field in a plane perpendicular
(or transverse) to the propagation direction. Unguided or unobstructed electromagnetic waves in
free space can be described as a superposition of plane waves. However, when light is traveling
through any sort of waveguide, where boundary conditions are applied by physical structure,
the modes follow different propagation constants. In Ti:Sapphire lasers we typically describe the
transverse mode of light as a Gaussian profile or as a TEM00 mode.

Gaussian laser mode

In Ti:Sa lasers, the modes of the laser can be described well with a Gaussian mode. We define
the mode as

E(r, z) = E0x̂
w0

w(z)
exp

( −r2

w(z)2

)

exp

(

−i

(

kz + k
r2

2R(z)
− Φ(z)

))

(3.107)

where r is the radial distance from the center of the beam axis, z the propagation distance from
the beam’s focus position, k = 2π/λ the wave number and E0 the electric field amplitude at t0.
w(z) describes the Gaussian beam waist, which is defined as the distance from the center of the
beam, where the intensity falls below 1/e. R(z) is the radius of curvature and Φ(z) is the Gouy
phase. The beam waist follows

w(z) = w0

√

1 +

(

z

zR

)2

(3.108)

where zR =
πw2

0

λ is called the Rayleigh range, at which point in propagation distance the intensity
of the laser is reduced by a factor of 2. The Gouy phase of the beam is described by

Φ(z) = arctan

(

z

zR

)

(3.109)

which describes a phase offset due to the deviation of the Gaussian mode from a plane wave.

Relation between the beam profile and the Gouy phase

From Feng et al. [67] , we take the math to understand the Gouy phase: A monochromatic wave
of frequency ω and wave number k = ω/c is propagating along the z direction. For an infinite
plane wave the momentum is directed towards z and has no transverse components. A Gaussian
beam will have a spread in transverse momentum and the wave number is now related to these
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components by k2 = k2x + k2y + k2z . We can define an effective axial propagation constant:

kz =
〈k2z〉
k

= k − 〈k2x〉
k

−
〈k2y〉
k

(3.110)

where kz is associated with the overall propagation phase φ(z) on axis through kz = δφ(z)/δz.
While the first term yields the phase of an infinite plane wave, the two later terms give rise to
the Gouy phase shift:

φG = − 1

k

∫

〈k2x〉+ 〈k2y〉dz (3.111)

If we now take a Gaussian transverse distribution

f(x, y) =

√

2

π

1

w(z)
e
− x2+y2

w2(z) (3.112)

after some calculations in [67], we get:

φG = − 1

k

∫

〈k2x〉+ 〈k2y〉dz = − 2

k

∫

1

w2(z)
dz (3.113)

Carrying out the integral in Equation 3.113 we get the Gouy phase of a fundamental Gaussian
beam:

φG = −arctan(z/zR) (3.114)

The Gouy phase gives rise to a phase deviation between a Gaussian beam and a plane wave. This
phase deviation has to be considered, when generating HHG in the medium as a phase mismatch
between laser and generated harmonics will reduce the harmonic yield.

Hermite Gaussian modes

In a more general description, the Gaussian mode is a TEM00 mode or a Hermite Gaussian mode
of order 00. This Hermite Gaussian mode is depicted in Figure 3.10.

Figure 3.10: Orders of Hermite Gaussian modes, adapted from [68]

Higher order modes of Hermite Gaussians are described in categories of TEMlm modes. The
number of l and m can be associated with the number of nodes in the spatial profile of the mode.
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The electric field of the Hermite Gaussian is defined as

E(r, z) = E0x̂
w0

w(z)
Hl

(√
2x

w(z)

)

Hm

(√
2y

w(z)

)

exp

(

−x2 + y2

w(z)2

)

exp

(

−i

(

kz + k
x2 + y2

2R(z)
− Φ(z)

))

(3.115)
with the same definitions as previously described for a Gaussian mode, while here the profile
depends on Hermite polynomials Hl and Hm. The Gouy phase of a Hermite Gaussian beam is
written as

φG = (N + 1) arctan(z/zR) (3.116)

where N is defined as N = l+m, due to the higher order modes.

Laguerre Gaussian modes

Laguerre Gaussian beams are an equivalent description of transverse electromagnetic modes, but
in cylindrical rather than cartesian coordinates. In Figure 3.11 a Laguerre Gaussian of order
l = 0, p = 0 has the same spatial profile as a Hermite Gaussian beam with l = 0,m = 0.
However, higher order terms have different structures. Additionally, these modes carry orbital
angular momentum. I am introducing these modes, as we, later on, use beams similar to Laguerre
Gaussian modes to perform selected experiments. The use of Laguerre Gaussian modes will yield
the production of a Young’s double slit in the focus of a lens and the production of individual
slits of this double slit.

Figure 3.11: Orders of Laguerre Gaussian modes, adapted from [68]

Describing the electromagnetic wave with Laguerre Gaussian modes, we write [69]

E(r, φ, z) =
CLG

lp

w(z)

(

r
√
2

w(z)

)|l|

exp

(

− r2

w(z)2

)

L|l|
p

(

2r2

w2(z)

)

exp(ilφ)exp

(

−i

(

kz + k
r2

2R(z)
− Φ(z)

))

(3.117)

with L
|l|
p Laguerre polynomials, Φ(z)the Gouy phase and CLG

lp normalization constants. w(z) and
R(z) are defined by the same definitions valid for TEM-modes. In this equation, we notice the
term exp(ilφ) that gives rise to orbital angular momentum (OAM). In the later experiment we
use beams with l = 1 and p = 0, which results in a Laguerre polynomial L1

0 = 1 and the electric
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field is reduced to

E(r, φ, z) = CLG
10

r
√
2

w(z)2
exp

(

− r2

w(z)2

)

exp (iφ) exp

(

−i

(

kz + k
r2

2R(z)
− Φ(z)

))

(3.118)

and beams with l = −1, p = 0 yield an electric field

E(r, φ, z) = CLG
10

r
√
2

w(z)2
exp

(

− r2

w(z)2

)

exp (−iφ) exp

(

−i

(

kz + k
r2

2R(z)
− Φ(z)

))

(3.119)

resulting in a phase difference between the two different LG modes of ∆Φ = 2φ. The Gouy phase
of a Laguerre Gaussian mode is written as

φG = (N + 1) arctan(z/zR) (3.120)

with N = |l|+ 2p, so that beams with same |l| have the same Gouy phase.

3.4.2 Analytic Fourier Theory

The electric fields in the following sections are reduced to a scaled function U(η, ν), where the
transverse modes of light are E(η, ν) = E0×U(η, ν). All propagation calculations in the following
chapter are based on fast Fourier transformations, so that this section will serve as a reminder
of the concept of Fourier transformations. We define the Fourier transformation of a function U
of two variables η and ν as

U ′(fη, fν) =

∫ ∫

U(η, ν)exp[−i2π(fηη + fνν)]dηdν, (3.121)

where U ′(fη, fν) is the transformation result and fη, fν are independent frequency variables
associated with η, ν. However, in our calculations we perform transformation in space from the
coordinates (η, ν) to (x, y), where the frequency variables are substituted by fη → x

λz . A laser
beam with the spatial profile U(η, ν) propagates through an optical element with the impulse
response h. The spatial profile of the laser will be different than the spatial profile before the
optical element. We can calculate the laser beam after the optical element with the output
function U ′(x, y)

U ′(x, y) =

∫ ∫

U(η, ν)h(x, y; η, ν)dηdν. (3.122)

This leads to the Fourier transformation of U ′

F {U ′(fη, fν)} = F {U(η, ν)}F {h(η, ν)} (3.123)

where F {h} is the Fourier transformation of the impulse response h and is known as the transfer
function. The solution of the output field can then be solved by calculating the inverse Fourier
transformation

U ′(x, y) = F
−1 {F {U(η, ν)}F {h(η, ν)}} (3.124)

We have found a mathematical description for the output field U ′ after the initial electric field
has interacted with an optical element and we will use this description to calculate the actual
spot sizes in our experiments.
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3.4.3 Diffraction and Propagation

Figure 3.12: The propagation of a source field U by a distance z onto the observation plane
U ′

When monochromatic light with a spatial profile of U(η, ν) propagates from the source plane
(η, ν) to the observation plane (x, y)) (as shown in Figure 3.12),we can formulate the propagation

with an impulse function h, where the impulse function is now a propagator h = eikr

r . The field
U ′(x, y) in the observation plane can be predicted using the first Rayleigh-Sommerfeld diffraction
solution

U ′(x, y) =
z

iλ

∫ ∫

U(η, ν)
exp(ikr)

r2
dηdν (3.125)

Here, λ is the wavelength, k the wave number and z the distance between the source and obser-
vation plane. In Equation 3.125, r is the distance between a position on the source plane and a
position on the observation plane. It translates to r =

√

z2 + (x − η)2 + (y − ν)2. Approxima-
tions for the square root term [66], result in the Fresnel (and Fraunhofer) diffraction formulas,
giving solutions to the diffraction through an aperture with the characteristic size a. Solutions
to Equation 3.125 can be found either with the Fresnel diffraction for the near field or with the
Fraunhofer diffraction in the far field. We choose between the Fraunhofer or Fresnel approxima-

tion based on the Fresnel number N = a2

Lλ , where L is the distance of the observation plane
from the aperture. For N << 1, we use the Fresnel diffraction formula and for N >> 1, we
can use Fraunhofer diffraction to calculate the field in the observation plane. For the Fraunhofer
diffraction we can write

U ′(x, y) =
exp(ikz)

iλz
exp

(

i
k

2z

(

x2 + y2
)

)
∫ ∫

U(η, ν)exp

(

−i
2π

λz
(xν + yη)

)

dηdν (3.126)

which will give us an appropriate representation of the electric field, when propagated over a
long distance L, which will be used to calculate the spatial distribution of light in the focus of a
lens.

3.4.4 Beam tilt and Convergence

In this section, we show first calculations for the propagation of light . We calculate electric fields
in the far field for tilted and converging beams, following Equation 3.124. These calculations will
then be later used to show theoretical spot size calculations. Our manipulations in the experiment
are based on a spatial light modulator that can influence the phase φ(η, ν) of the light, where
the electric field is written as U(η, ν) = |U(η, ν)|eiφ(η,ν). We can produce a spatial tilt α in the
phase of the source plane U(η, ν). We define α with α = arctan(νz ) and write

φ(η, ν) = k(η cos θ + ν sin θ) tanα, (3.127)

where θ is the angle in the plane of η, ν and defined as θ = arctan(ην ). When the light is
propagating in free space, we calculate the electric field in the observation plane by solving
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Equation 3.126. We get for the observation plane a field U ′

U ′(x, y) = U(η, ν)exp(ik(η cos θ + ν sin θ) tanα), (3.128)

that describes an electric field in the far field, tilted by the angle α. When light is propagating
through a lens and converging, we can express the electric field with an additional parabolic
phase, where the distance z = f is given by the focal length of a convex lens. The phase is
written as

φ(η, ν) = − k

2f
(η2 + ν2), (3.129)

and the resulting electric field in the observation plane is expressed by Equation 3.124 and
becomes

U ′(x, y) =
exp(ikf)

iλf
exp

[

ik

2f
(x2 + y2)

]
∫ ∫

U(η, ν)exp

[

−i
2π

λf
(xη + yν)

]

dηdν, (3.130)

This is the expression for a spatial distribution of light propagating through a lens, when mea-
sured at the focal plane. We can compare this equation to the Fraunhofer diffraction in Equation
3.126, and observe identical behavior for z = f , where we can write the Fraunhofer diffraction
equation with

U ′(x, y) = F−1 {F {U(η, ν)hFF (f)}}
dηdν

λf
. (3.131)

Equation 3.131 is a scaled calculation of the Fraunhofer diffraction of the input field by a factor of
1
λf with the impulse response hFF (f), a propagation of the input beam by the distance f . It yields
the field in the observation plane, when we are in an optical geometry, where the observation
plane is one focal length away from the focusing lens with a focal length of f.

3.5 A double slit with focused light

To prepare a focus in the interaction region of laser and gas, that can generate a Young’s double
slit of HHG light, we spatially shape the fundamental light by manipulating its phase, as we have
shown in Section 3.4.4 with the example of a spatial tilt. We introduce two methods to generate
a double focus: Interference in the focus or a redistribution of light in the focus. We’ll start with
a full description of shaping light through interference and then describe the technique of light
redistribution.

3.5.1 Simple examples of shaping light by interference

For the sake of simplicity, I am reducing the initial discussion about the interference of light to
two plane waves. Considering two light waves U1 = |U1|1eiφ1 and U2 = |U2|eiφ2 , the superposition
of both will form an intensity pattern in space given by

I = |U1 + U2|2 (3.132)

When we apply U = U1 = U2, we get an intensity I following

I = 2U2(1 + cos∆φ) (3.133)

with ∆φ = φ2−φ1, where constructive interference occurs at integer multiples of 2π in ∆φ. This
will cause complete destructive or constructive interference of light. However, when the light
beams have a vertical offset in space and are propagating parallel to the optical axis of the lens,
an additional tilt is introduced, reducing the area of destructive interference to the optical axis of
the lens in the far field. In references [70–73] a single Gaussian TEM00 mode is manipulated by
inserting a phase plate with a phase difference of π between the upper and lower halves, resulting
in two beams parallel to the optical axis of the lens. With this, a quasi-Hermite Gaussian of order
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TEM01 can be generated. At positions, where the spatial phase of beams shows a difference of
π, destructive inference occurs and the resulting spot size at the focus is similar to two foci.

Interference between a Laguerre-Gaussian and a Gaussian beam If we now look into the
interference of a plane wave with U1 = |U |eiφ1 and a high-order beam with U2 = |U |ei(lθ+φ2) ,
as here given with a Laguerre-Gauss mode, we now get a phase difference of

∆φ = φ1 − lθ − φ2 (3.134)

where a condition for constructive interference is given at a particular value of θ, where θ describes
the angle in the x, y-plane. Here we do not have complete destructive or constructive inference
anymore, but can select a specific angle of interference, without applying a “trick“ as in the last
paragraph.

Interference between two Laguerre-Gaussian beams When two high-order beams interfere,
here given with Laguerre-Gauss modes with U1 = |U |ei(−lθ+φ1) and U2 = |U |ei(lθ+φ2), we get a
phase difference of

∆φ = φ1 − 2lθ− φ2 (3.135)

where over 2π in the angle θ, we can reach destructive interference 2l times. For |l| = 1, we get
two destructive interferences over 2π, resulting in a two source focus.

3.5.2 Diffraction calculations

We switch now to more detailed and accurate diffraction calculations, where the spatial profiles
are given by Gaussian distribution E(η, ν) = E0 · |U(η, ν)|eiφ that are shaped by the spatial light
modulator. We use the theory introduced in the previous section. In our experiments, we use a
75 cm lens and a spatial light modulator (SLM) that supports a 12 mm diameter beam. The
spatial light modulator will be introduced in detail in Section 4.2 of Chapter 4. We insert the exact
focal length, aperture size of SLM and Gaussian distribution into our calculations and simulate
expected magnification and focus behaviors. We start with a diffraction calculation for light
manipulated by a phase plate, as briefly described in the previous section and references [70–73].
The light E(η, ν)eiφ has a phase φ(η, ν) with a Heaviside step function H between the upper
and lower part of the beam

φ(η, ν) = H
(

ν − νmax

2

)

π − π/2 (3.136)

|E(η, ν)| = E0 · |U(η, ν)| (3.137)

We show the spatial profile for the intensity and phase in Figure 3.13 for the electric field
E(η, ν)exp(iφ) and use Fraunhofer and Fresnel propagation to calculate E′(x, y) for different
propagation distances to generate a focus dependent projection of the beam waist in Figure 3.14.
We are able to produce a focus similar to a TEM01 mode, with a node in one dimension, similar
to two focus spots.
Each half can be expressed by an electric field with

φ(η, ν) = H
(

ν − νmax

2

)

π − π/2 (3.138)

|E(η, ν)| = H
(

ν − νmax

2

)

· E0 · |U(η, ν)| (3.139)

We block part of the beam, as illustrated by Equation 3.139, and caclulate the focus waist as a
function of focus in Figure 3.15. The focus behavior does not match the individual behavior of
a single source of our two source focus. There is no more destructive interference in the center
and the focus is tilted, resulting in a propagation direction with a small angle compared to the
optical axis of light, which results in harmonic sources traveling away from the optical axis of
our optical system.
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Figure 3.13: Spatial phase and intensity distribution in the source plane (on the SLM)
after manipulation of the phase with a Heaviside function, applying a π phase difference.
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Figure 3.14: Projected focus of a laser beam, manipulated by a phase mask that introduces
a phase jump between parts of the beam, as shown in Figure 3.13.
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Figure 3.15: Projected focus of a laser beam, manipulated by a phase mask that blocks
part of the light

Similar to the phase plate and using single beams as shown in Figure 3.15, the spatial light
can be manipulated by glass wedges. In references [57, 74] a single Gaussian TEM00 mode is
manipulated by inserting two glass plates of opposite tilting angle into the focusing beam. By
manipulating the tilt angle, the laser focus of each half has a vertical offset and two foci can be
generated. The spatial phase distribution can be expressed as

φ(η, ν) = H
(

ν − νmax

2

)

·k(η cos θ+ν sin θ) tan(+α)+|H
(

ν − νmax

2

)

−1|·k(η cos θ+ν sin θ) tan(−α)

(3.140)
that is similar to the inserted glass wedges. The spatial intensity distribution is given with a
Gaussian distribution E(η, ν) = E0|U(η, ν)|. The propagation is calculated with Equation 3.131.
Experimentally, big angles and separations have to be used to keep the crossing of the beams
at a position before the focus far away from the gas source. Calculations in Figure 3.16 show
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Figure 3.16: Projected focus of a laser beam, manipulated by a phase mask similar to
inserting glass wedges at an angle

interference effects far away from the focus of the individual beams. At the focus of the lens, the
light is separated well and two independent spots are generated that can produce high harmon-
ics. However, both sources propagate with an angle towards the far field and are not completely
parallel with each other.
The shown calculations have very stringent requirements on the pointing of the laser light through
the optical elements which introduces the phase manipulation, as any imbalance between the up-
per and lower halves can cause an altered interference. As a first improvement to avoid pointing
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issues, we introduce phase masks which separate the two electric fields into sections homoge-
nously distributed across the aperture/SLM. We use a spatial phase distribution with alternating
“rings”, containing phase information for individual electric fields. The description of the “rings”
is done in cylindrical coordinates ρ, θ, z. We use phase patterns with angular orbital momentum
(OAM) and can create two sources and individual sources, based on the interference shown in
Equations 3.134 and 3.135. In addition to the better pointing stability, it results in the ability
to create a good representation of a single slit of the Young’s double slit. We use a phase mask

φ(η, ν) with a product out of a dirac comb IIIρ = 1
r

∑300/ρ−1
0 e2πin

1
ρ and a boxcar function

Πa,b(ρ) = H(ρ− a)−H(ρ− b) function, with ρ = 2 ∗ (a+ b). ρ′ is off set by a+ b with respect
to ρ, which will result in adjacent ”rings” on the SLM to hold an applied phase value of ±lθ.
A Dirac comb is a series of Dirac-delta functions separated by the distance ρ and a, b define the
“width” of the rings, as the boxcar function is similar to a top-hat function. The mask reads

φ(ρ, θ) = IIIρ ·Πa,b(ρ) · lθ + IIIρ′ ·Πa,b(ρ
′) · (−l)θ (3.141)

and is shown in the left panel of Figure 3.17, with the intensity profile in the right panel, given
by a Gaussian beam with the exact dimensions from the experiment. The source plane E(η, ν)
contains OAM with alternating rings of OAM of l = 1,−1.
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Figure 3.17: Spatial phase and intensity distribution in the source plane after manipulation
of the phase with OAM l = 1,−1

In Figure 3.18, we show beam waist calculations of E′(x, y) as a function of distance around
the focus of a lens. We can observe interference of light, forming two separated foci as proposed
in Equation 3.135.
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Figure 3.18: Projected focus of a laser beam, manipulated by a phase mask that introduces
two beams with OAM l = 1,−1

When switching to a single source scheme, we write a spatial phase mask following

Φ(ρ, θ) = IIIρ · Πa,b(ρ) · lθ + IIIρ′ · Πa,b(ρ
′) · φ2, (3.142)

where part of the light carries OAM and the other part carries a constant phase φ2 to control the
angle of interference on the observation plane and the electric field E′(x, y). The spatial profile of
the phase and intensity is shown in Figure 3.19. In Figure 3.20 we plot the beam waist of the light
as a function of focus position for the given phase mask. The resulting focusing behavior matches
the behavior of a single source of the two source focus as shown in Figure 3.18. Equation 3.142
uses a value of φ2 so that a destructive inference at an angle of the second source is occurring
and no light is present at the angle of the second source.
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Figure 3.19: Spatial phase and intensity distribution in the source plane after manipulation
of the phase with OAM l = 1, 0
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Figure 3.20: Projected focus of a laser beam, manipulated by a phase mask that introduces
two beams with OAM l = 1, 0. We observe a single focus with a center of mass similar to
the center of mass of one of two foci in Figure 3.18.

Tilt control

To improve the generation of an identical copy of the individual sources, we are faced with the
issue that the superposition of beams with OAM l = 1, 0 does not form the same constructive
interference as beams with OAM l = 1,−1, but forms the constructive interference closer to
the optical axis. Imposing a wavefront tilt as described in Eq. 3.127 on the beam results in an
optimized overlap between single and two source pattern. The tilt applied to the wavefront is
on the order of 10’s of µrad and shows good agreement in Figure 3.21. The focusing behavior
in Figure 3.22 shows no overall change as a function of focus, except the desired offset in the
ordinate of the projected beam waist.
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Figure 3.21: Overlap between single and two source focus as a function of tilt angle applied
to the single source pattern.
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Figure 3.22: Projected focus of a laser beam, shifted by 20 µrad and shifted to overlap
better with its individual in the two source focus

Spatial phase in the focus plane

An important characteristic of our laser beams is the spatial distribution of the phase. A phase
mismatch between different laser foci can yield a reduced intensity of harmonic emission. If we use
techniques to shape the intensity distribution in the focus of the laser, we also have to consider
the phase properties to minimize effects from potential phase mismatches between sources.
When we consider a laser focus manipulated by a phase plate, as given in Equation 3.137, we
can create the phase distribution and the intensity distribution in the focus of a lens in Figure
3.23a and in Figure 3.23b. A phase discontinuity of π between the two focus spots is visible in
Figure 3.23a. The phase distribution of a beam generated of a phase mask that blocks half of the
light, as given by Equation 3.139, in Figure 3.23c, shows a continuous change at the center of the
plane. The phases do not match between panel (a) and (c) of the figure and we are not able to
reproduce a single source in phase and intensity. For the approach of beams with OAM, we were
able to show very similar intensity distributions between a single spot out of the interference of
beams with OAM l = 1,−1 and the single spot created with OAM l = 0, 1. A limitation here
again is the phase of the spatial profile. The phase profile of the two source pattern in Figure
3.24 shows a phase jump of π between the two foci, but the phase of the single source pattern
in Figure 3.25 does not match. We still have a change in phase, that does not match the phase
properties of a single spot in the beam with OAM l = −1, 1. We made improvements in the
intensity distributions, but have differences in phase. Nonetheless, this still allows us to use the
single focus spot as an experimental tool to validate the optical alignment in the experiment,
while the yield of the high harmonics may be different than from a single source in the two focus
experiment. We used this technique in Chapters 8 and 9.

3.5.3 Creating two Gaussian beams without interference

Instead of shaping the focus plane through interference of light, we can shape the spatial prop-
erties of the light to create two independent light sources, that are Gaussian beams of order
TEM00, rather than a mode similar to a TEM01 mode in Section 3.5.1 or a mode of two inter-
fering Laguerre-Gaussians. In Section 3.5.2 we described the distribution of beams with different
OAM onto alternating rings. In this chapter we will use alternating patterns in x and y, resulting
in a grid. Both patterns can create two completely parallel beams in the focus. However, the
ring-like structure produces fresnel-lensing that can damage optical elements in the beam path
and the grid-based pattern introduces higher order diffractions that reduces the efficiency of the
light ”deposited” in the 0th order beam that we use to generate harmonics. Depending on the
spacing used with the ring-based pattern, we can move the lensing effect across the propagation
direction and depending on the line-density of the grating, we can move higher order diffractions
closer to the 0th order diffraction. For the grating based pattern, experimentally, line-densities
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Figure 3.23: Spatial profile in
phase (a) and intensity (b)for a
two source focus with a Heav-
iside function and the spatial
phase distribution for part of
the light in (c)
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Figure 3.24: Spatial intensity distribution at the focus of a 75 cm lens of a two source
focus, created by two counter rotating Laguerre-Gaussian modes
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Figure 3.25: Spatial phase distribution at the focus of a 75 cm lens of a single source focus,
created by two Laguerre-Gaussian modes with l = −1, 0. The intensity profile matches
the intensity profile of a single source in Figure 3.24, but the phase profile shows bigger
deviations from a flat to a tilted phase profile.

higher than 20 lines across the full SLM height result in higher order terms that are far away
from the gas jet and cannot interact with the gas. The experimental data, shown in Section 4.2.1,
was taken with line-densities of 80 to 300 lines across the SLM.
To create two Gaussian beams without an interference, we apply a tilt following Equation 3.127
to our incoming laser light. With the SLM we apply the phase pattern

φ(x, y) = k(x cos θ + y sin θ) tan(+α) for ”beam 1” (3.143)

φ(x, y) = k(x cos θ + y sin θ) tan(−α) for ”beam 2” (3.144)

where θ is in the plane of x, y and α the angle between y and the propagation direction z. When
applying either of the spatial profiles to U(x, y), we get a electric field U ′(x, y) in the observation
plane of a lens with the scaled Fourier transformation following 3.131, while the center of the
focus spot is shifted by f · tanα in the y-direction.
To generate two foci at the same time, we apply the spatial profiles in Equation 3.143 to half
of the array in the source plane and Equation 3.144 to the other half of the array in the source
plane. We show the resulting spatial distribution in Figure 3.26. The spacing between the two
sources in the focus is then given by 2f · tanα.
Using a Gaussian profile, matching our experimental parameters, we calculate the focusing be-
havior with Fresnel diffraction in the near field of the laser focus in Figure 3.28. The observation
plane U ′(x, y) at the focal distance f is shown in Figure 3.28 panel (a) It shows two separate
foci at the focus of the laser with zero phase difference. Far away from the focus, constructive
interference creates on axis bright spots that do not interact with the gas medium close to the
focus. Calculating the phase and intensity profile of the beams at different positions with respect
to the laser, we see similar features. In Figure 3.28 panel (c) we show the intensity and phase
distribution in an observation plane 10mm after the focus. Both foci have the same intensity and
phase. When we calculate the phase and intensity 6 mm before the focus in Figure 3.28 (b), we
can observe the rectangular aperture given by the rectangular SLM and an identical phase for
both foci.
If we introduce a bigger tilt of α = 200 µrad in the fundamental beams, instead of α = 100 µrad

in Figure 3.28, we expect a focus as calculated in Figure 3.29, where the two beams are now
separated by 300 µm. The interference pattern far away from the focus becomes dimmer (when
compared to the on axis bright spot in Figure 3.28). We can see multiple lines, where the two
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Figure 3.26: Phase and Intensity pattern reflected off the spatial light modulator for a
focus of two beams separated by 150 µm
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Figure 3.27: Calculated intensity as a function of focus for a 75 cm lens with a phase mask
given by Equation 3.144
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Figure 3.28: (a) Calculated spatial phase and intensity at the focus of a 75 cm lens with
a phase mask given by Equation 3.144 (b) Calculated spatial phase and intensity 10 mm
after the focus of a 75 cm lens (c) Calculated spatial phase and intensity 6 mm before the
focus of a 75 cm lens
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sources interfere.
In addition, we can also apply a constant phase offset between the two sources. We show the
focus waist projection as a function of focus in Figure 3.30, with one source with an additional
phase offset of π. We cannot observe a change in intensity of the individual foci, but see a change
in the interference region far away from the center of the jet. The two foci do not change, since
there is no spatial overlap between the two beams in the focus. These calculations will be later
used for the experiments presented in Chapters 5 and 6.
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Figure 3.29: Calculated projection of the focus of two beams tilted by ±200 µrad, gen-
erating two bright harmonic sources parallel to the optical axis with an offset of 150 µm
each.
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Figure 3.30: Calculated projection of the focus of two beams tilted by ±200 µrad, generat-
ing two bright harmonic sources parallel to the optical axis with an offset of 150 µm each.
A phase offset of π is incorporated, changing the interference pattern before and after the
focus, where the electric fields overlap again.

3.5.4 Single beams for characterization of individual sources

The great advantage of the tilted beams is shown in this section: We can generate a single tilted
beam with the same spatial character as one of the two foci. By simply applying a single tilt
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to the whole phase mask, we create a single focus matching the focus of a source in the double
focus. A second method allows for greater accuracy: by tilting a beam by the previously given
angle α and tilting the beam on the other half of the mask by a much bigger angle α2, we do
not have to adjust the intensity of the laser pulse. With a single tilted beam, the intensity has
to match the intensity of the previously generated spot in the two-source focus. The intensity of
the shaped single beam has to be reduced by a factor of 4. The resulting focusing behavior is
given in Figure 3.31
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Figure 3.31: Calculated projection of a focus with a single beam tilted by 200 µrad

By applying a big tilt angle α2 to the second beam, no intensity corrections are needed.
In the experiment, we apply a tilt on the order of 3000 µrad, instead of 100 µrad, so that the
second beam is vertically displaced by 3 mm away from the gas jet and cannot generate harmonic
emission. We remove a degree of freedom, since we do not have to alter the intensity of the light..
In Figure 3.32, we show the focusing behavior of such a field.
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Figure 3.32: Projection of the focus waist in one dimension as a function of the laser focus.
In this picture two foci are generated. One focus is tilted 3.5 mm away from the optical
axis and away from the interaction region, while the second beam has the same tilt as the
original two source pattern.
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From shafts to LCDs

In 1909, Poynting [75] described the orbital angular momentum of light using the analogy of ”the
wave motion of a rotating shaft” and suggested a gedankenexperiment of circular polarized light
traveling through discs that are suspended by a fiber. The circular light would wield a torque
on the birefringent plate and one would be able to describe a ratio between angular and linear
momentum equal to λ/2π. He stated: ”my present experience of light forces does not give me
much hope that the effect could be detected”. Beth in 1936 performed an experimental study [76]
with birefringent plates in vacuum, hung on a quartz fiber. By rotating a quartz wave plate and
measuring the torque, he was able to confirm direction and amplitude of the torque. He measured
changes in the torque on the order of 10−9 dyne cm, which roughly translates to 4 · 10−14 Nm
or 20000 atomic units. In 1992 Allen et al. [69] applied the idea of orbital angular momentum
to laser beams and generated Laguerre Gaussian beams, concluding that any light beam which
possesses a field gradient, will have orbital angular momentum. They are usually degenerate,
being of opposite character or randomly fluctuating in time, so that the beam has zero average
orbital angular momentum. Beams with orbital momentum can now be generated with computer
programable devices like LCOS displays and used in this thesis to shape the laser beam spatially.
In other fields of research, they are used as optical traps.
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Experimental techniques

4.1 Experimental setup

In Figure 4.1 a experimental setup is shown: High harmonics are generated from an intense
driving laser that is transported by reflective optics to a spatial light modulator (SLM) that
reflects the light into the vacuum chambers. To reach high peak intensities, we focus the light
with a lens, here given with a focal length of 75 cm, into a gas jet. The light is focused from a
collimated beam diameter of 12 mm to a spot size of 60 µm. The peak intensity of the driving
laser field reaches 1014W/cm2 in the focus. In the experiment, we adjust the distance between
focusing lens and gas source to gain an optimized harmonic yield. The harmonics propagate
in the direction of the optical axis, defined by the propagation direction of the laser, and are
detected in the spectrometer. The spectrometer is described in Section 4.1.1, while the gas source
is described in Section 4.1.2. The laser is HITS [77], a Ti:Sa laser, with a pulse energy of up to
20 mJ, a pulse duration of 27 fs full width at half maximum (FWHM) and a repetition rate of
1 kHz. The laser is used in the experiment, described in Chapter 7, to pump an optical parametric
amplifier (OPA) to give high intensity pulses at tunable wavelengths between 1100 and 2500 nm.
The OPA is a HE:TOPAS from Light Conversion and the Ti:Sa laser is a two stage KMLabs
Dragon that is amplifying pulses from the laser oscillator, a KMLabs Griffin.

Figure 4.1: Experimental setup with a spatial light modulator and vacuum chambers

4.1.1 Spectrometer

To measure light in the ultra-violet to extreme ultra-violet, we use a flat field polychromator. The
central element of the polychromator is a laminar type replica grating [78], with variably spaced
grooves and an effective groove density σ of 1200 grooves/mm. It is a grating that produces a flat
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detector plane for a wide wavelength range. Since HHG produces a wide spectrum of harmonic
emission in a single laser shot, we would like to collect the information of all harmonic orders
at the same time. A curved grating without variable groove density will produce an imaging
circle called a Rowland circle, that would require a curved detector plane to detect multiple
wavelengths with high fidelity at the same time. The spatial profile of each frequency component
is recorded in the vertical direction and is limited by the effective aperture of slit and grating
in the spectrometer. Our slit is 12.5 mm tall and adjustable in width between 0 µm and 5 mm
in steps of 10µm. The slit is typically set to 200 to 400 µm, but not shown in the experimental
setup. It is placed 240 mm in front of the grating. The detector plane of the grating, specified
by the manufacturer, is 5-20 nm (with measured performance up to 40 nm in [78]) over a length
of 25.3 mm. However, we are using the grating to resolve harmonic emission from 100 nm to
5 nm with a detector that spans more than 25 mm in size. An MCP-based detector is used for
its sensitivity in the VUV through soft X-ray region. It is placed 237 mm away from the center
of the grating and the edge of the detector is placed at the right edge of the specified grating’s
detector plane. The angle of diffraction θ of the harmonic emission, diffracted off the grating, is
given by

θ = sin−1(σn
λ

q
− sin θi), (4.1)
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Figure 4.2: Detector image as seen from HHG in Neon gas. Driven with light at 785 nm

where λ
q is the wavelength of the q-th harmonic, λ the wavelength of the fundamental laser, σ

the groove density of the grating, θi the grazing incidence angle in respect to the incoming light
and n the order of diffraction. The grating has a reduced efficiency for higher order diffractions,
so that orders higher than n = 2 can be neglected. Figure 4.2 shows a spectrum of HHG, detected
in our setup, driven with an intense 785 nm laser pulse. The spectrum stretches up to harmonic
order 69 at an energy of 110 eV or a wavelength of 11.4 nm. The spacing between harmonics is
given by Equation 4.1, which we can approximate with θ ≈ σλ/q, to show the equivalent spacing
of wavelengths by the diffraction grating. However, harmonics are equally spaced in frequency by
2hν, so that higher order harmonics are more tightly spaced on the grating’s detector plane, since
the wavelength is the inverse of the frequency. The axes of Figure 4.2 are defined by the lower
left corner of the detector with the coordinates (0, 0) (see Figure 4.1 and the reference arrow on
the detector) and harmonics with a bigger horizontal position have a smaller diffraction angle
from the grating. In the collected spectrum in Figure 4.2 we can observe a change in divergence
on the vertical axis for different harmonics: while low order harmonics have a smaller divergence,
higher order harmonics positioned on the detector at 60 mm have a bigger divergence, before
it gradually decreases in the cut-off of the spectrum. This is target specific and can differ for
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different targets.
UV light striking the MCP detector ejects electrons from the surface. These electrons are accel-
erated down the channels by a high voltage applied across the plate. Collisions with the channel
walls then create secondary electrons, leading to an avalanche effect. Multiple MCP plates are
stacked together to produce sufficient gain so that a signal can be recorded. The used detector
stacks have a typical electron gain of 1 − 3 · 107. A phosphor screen is placed after the stack of
MCPs. The ejected electrons are accelerated towards the phosphor, due to a positive potential
difference between MCP and phosphor, and generate luminescence at a center wavelength of
540 nm upon impact on the phosphor screen. The light is measured with a Hamamatsu Orca
Flash 2.8, a low noise camera with a 12 bit resolution. The detector was switched between exper-
iments. Initially, we used a Chevron stack MCP with two 75 mm circular MCP plates and a slow,
high quantum efficiency P20 phosphor screen that we then replaced by a Z-stack of three MCP’s
with an effective area of 105x35 mm and a fast, low quantum efficiency P46 phosphor screen.
The overall gain remained similar, as the additional gain from the third MCP compensated the
lower efficiency of the fast phosphor. The micro channel plates and phosphor screen are supplied
by Photonis.
We require low pressures in the chamber for two reasons: absorption of XUV light in atmospheric
pressures and the operation of high voltage detectors in low pressure to avoid sparking inside the
detector. A pressure of 1e− 7 torr is held in the spectrometer chamber by two turbo pumps with
pumping speeds of 250 l/s and 360 l/s. To align the optical axis through the spectrometer, the
grating can be moved out of the optical path and we can align the laser to a set of irises placed
before and after the vacuum chambers.

4.1.2 Gas sources

High harmonic generation is driven by intense lasers focused in gases. The brightness of har-
monics scales with the number of emitters quadratically [79], due to the coherent addition of the
electric fields of individual emitters and under the assumption of negligible phase mismatch. To
increase the number of emitters, higher gas pressures are needed. We separate the production
and detection into different chambers that are connected through a differential stage. In the gen-
eration chamber, gas pressures are high and we have to create a pressure differential to adjacent
chambers, since they require low pressures to operate the detectors. In the source chamber we
produce a dense gas target by using a capillary with a inner diameter of 200 µm that leaks gas
into the chamber. Leak rates resulting in an average pressure of 5− 10 · 10−5 torr in the source
chamber produce bright harmonic sources in the setup. Backing pressures of 1 atm are regulated
with a leak valve (Pfeiffer EVN-116) and the leak rate is adjusted to 1 · 10−2 mbar l/s.
Further to that, we can also produce a cold gas jet with a bell shaped nozzle [80]. Through the
bell shaped form and a supersonic expansion, cooling in the gas is enhanced and we observe
rotational temperatures of 25 to 40K in nitrogen and ethylene gas (as seen in Chapters 8 and 9).
The gas jet is pulsed to reduce the gas load in the production chamber. The pulses are generated
through the rapid motion of a piezoceramic which is designed as a cantilever. Switching between
two sets of voltages, the ceramic can either compress a sealing o-ring or open the seal of the
o-ring. By opening the seal, gas can bypass the seal and flow through the nozzle into the gas
chamber. When the seal is compressed, no gas can leak into the chamber. The pulsed operation
reduces gas loads in the chambers, as the interaction between light and matter is limited to the
pulse duration of the laser with 30 fs at a repetition rate of 1 kHz. The temporal length of the
gas pulse is 30µs, which results in a duty cycle of 3%, compared to the 1 ms spacing of the laser
pulses. The gas load is managed with a Leybold MAG drive CT2200, with a pumping speed of
1800l/s for nitrogen. A differential tubing between the production chamber and the spectrome-
ter can hold a differential of 3 magnitudes in pressure. The laser light is sent into the chamber
through fused silica windows.
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4.2 Spatial light modulators

Spatial light modulators (SLM) influence the spatial profile of coherent light. In our laboratory
we use a modulator of the X10468 series from Hamamatsu. It is based on liquid crystal on silicone
(LCOS) technology [81] and uses the birefringent properties of liquid crystals. Birefringent ma-
terials have a polarization and propagation dependent refractive index. As an example, crystals
like Calcite are uniaxial, where one direction is anisotropic, but all directions perpendicular to it
behave equally. We define the axis with the anisotropic behavior as the ordinary axis and the axis
perpendicular to the anisotropy and perpendicular to the light propagation as the extraordinary
axis. We observe a difference in index of refraction ∆n between both:

∆n = ne − no (4.2)

where ne is the refractive index of the extraordinary axis and no the index of refraction for the
ordinary axis. Liquid crystals are phases of matter that can behave like liquids and/or solids.
For the phase-only modulation that we seek in our device, nematic phases work well. In the
nematic phase, molecules tend to align in the same direction, but have no positional order. They
behave more like a liquid compared to smectic phases that show a translational order, i.e. they
align in planes and behave more like a solid. Additionally, the phase of the liquid crystals is a
function of temperature and changes behavior under external influence (e.g. electrically controlled
birefringence [82,83]). Liquid crystals are also uniaxial like Calcite, since they inherently have a
short and long axis, resulting in a different index of refraction for its ordinary and extraordinary
axis. By applying a voltage, the liquid crystals can align with the ordinary or extraordinary axis
parallel to the laser polarization, which will result in a phase retardation for the incident light.
The maximum phase retardation that light of wavelength λ acquires, when traveling through an
LCOS device of thickness d, is given by

φ = 2π∆nd/λ (4.3)

In the case of a reflective device, the phase retardation is increased by a factor of 2, since it
travels through the liquid crystal twice. To then acquire a maximum phase retardation of 2π
through the device, the thickness is fixed to d = λ/2∆n.

Figure 4.3: Scheme for the manipulation of single pixels on the SLM.

The device in our laboratory delivers 2π phase modulation pixel by pixel with a pitch size
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of 20 µm. Every pixel has individual circuitry that can change the voltage and change the
birefringence. The LCD consists of 800 by 600 pixels with a bit depth of 8 bit. In Figure 4.3, we
show a simplified model of our SLM array. Each pixel indicated with XY is controlled with a
different voltage and we illustrate the phase on the SLM as an opacity, where a more opaque blue
will correspond to a higher phase value. By applying a 8-bit image to the SLM, we get a phase
resolution of 30 mrad per voltage unit on the SLM. As described in section 3.4.3 of Chapter 3,
we start with a manipulated spatial profile U(x, y) and will have a propagated spatial profile
U ′(x, y) after propagating it through a lens, using Equations 3.126 and 3.131, which is scaled by
the focal length of the used lens.

4.2.1 Spatially shaped pulses

To generate a focus with a spatial offset in the focus, we apply a tilt in the direction of the
designated offset. We introduced the tilt in Section 3.4.4 in Equation 3.127. On the SLM, we can
display a mask that will result in a tilted phase front as illustrated in the top left of Figure 4.4,
where we call this modulated light ”beam 1” for this section. From bottom to top, the phase of
”beam 1” increases and the beam will have a vertical offset in the focus plane. In the experiment,
we use a 800x600 pixel array, instead of a 4x5 array. When we switch the direction, as shown in
the top right of Figure 4.4, and increase the phase from the top to the bottom, we impose an
opposite offset to the beam in the focus plane and will call this modulated light ”beam 2” for
this section.

Figure 4.4: Scheme for a tilt-manipulation on the SLM

If we now want to generate two independent beams, we can associate a set of pixels to ”beam
1” and the remaining pixels to ”beam 2”. Associating adjacent pixels in the bottom of Figure
4.4 to the first or second beam by alternating between the appropriate phase masks of ”beam 1”
and ”beam 2”, we can generate a new phase mask that will now spatially shape half of the pixels
on the device to tilt the beam vertically in one direction and will spatially shape the other half
of pixels on the device to tilt the beam vertically in the opposite direction. Half of the light is
tilted upwards and the other half of the light is tilted downwards, forming a vertically separated
double focus. These calculations were introduced in Chapter 3 in Section 3.5.3 and calculations
of the focus dependence were shown in Figure 3.26 and Figure 3.28. We choose an alternating
distribution function to switch between ”beam 1” and ”beam 2”, as illustrated in the bottom
of Figure 4.4. However, the SLM has 800x600 pixels and we choose a number of pixels that we
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would like to associate with one of the two sources. We choose to associate a certain line width to
individual beams. In the experiment in section 5.1 of Chapter 5, we use a checker board pattern to
switch between ”beam 1” and ”beam 2”. Each checker will have 10x10 pixels so that our checker
board reduces to an array of 80x60 subarrays. We also can use a completely random distribution
function to either of the two sources, as long as both beams have an equal amount of pixels
associated with them. Given our Gaussian intensity distribution, possible intensity fluctuations
or beam drifts, it is best to sample each of the two beams equally over the whole SLM and over
the whole incoming beam to increase the stability of the shaping process.
Further to this, we can purposely unbalance the amount of pixels associated with one of the two
beams and change the relative intensity of the two beams.
In an imaging setup, we measure the spot sizes as a function of lens position on a CMOS camera.
As we move the lens in respect to the camera, the light’s spot size reduces until a minimum spot
size w0 is reached, given by Gaussian optics and introduced in Section 3.4.1. After the focus the
spot size will start to increase again following Equation 3.108. If we now apply a phase mask,
creating two vertically offset beams, and collect a focus projection as a function of lens position,
we can see each beam focus and defocus as a function of lens position, as seen in Figure 4.5b.
Both beams have the same focusing behavior as the original laser beam, measured in Figure 4.5a.
Far away from the focus, the two beams are overlapping spatially and can interfere. A bright spot
on axis appears, e.g. at a focus position of 15 mm in Figure 4.5b. This is an artifact of the beam
attenuator, that was inserted for the spot size measurements. It is cross-polarized light that is
not shaped by the SLM and focuses at this focus position. Without the attenuator present, the
cross polarized light is low in intensity and does not influence the experiment. Further to that,
the cross-polarized light is focused 2 cm away from the actual focus and will not interact with
a gas jet placed at 0 mm. When applying an additional constant phase of π between ”beam 1”
and ”beam 2” in Figure 4.5d , the shape of the two beams is not changed. The condition for
interference in the far field is shifted by π and we get two spots of bright light before the focus at
-15 mm. In the spot after the focus at +15 mm the cross polarized light washes out this feature.
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Figure 4.5: Focus projection as a function of lens position, captured by a CMOS camera
for a flat phase mask (a), a phase mask producing two foci separated by 120µm (b), by
180µm (c) and by 180µm, when one source is delayed by 1.31 fs or 1π in respect to the
other source (d).
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When changing the relative distribution of light towards one of the two beams, we can in-
fluence the relative intensity of the beams. By distributing the pixels equally between the two
beams, we get a balanced intensity of the two sources in Figure 4.6a, where the maximum
brightness between ”beam 1” and ”beam 2” are equal. However by associating 60% of the pixels
towards one of the two beams, we can generate unbalanced focus spots in Figure 4.6b, where the
brightness of ”beam 1” is higher than the brightness of ”beam 2”, and an unbalanced focus spot
in Figure 4.6c, where the brightness of ”beam 2” is is brighter than the brightness of ”beam 1”.
This technique will be used in Chapter 6.
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Figure 4.6: Focus projection as
a function of lens position, cap-
tured by a CMOS camera for a
two beam focus, where the rela-
tive intensity of the two foci is
tuned. In panel (a) the inten-
sity of the beams is equal. In
panel (b), we associate 60% of
the light to ”beam 1” and in
panel (c) we associate 60% of
the array to ”beam 2”

Spatial shaping through interference effects

Instead of the technique of redistributing light by applying a tilt, we can also shape the beam
spatially through interference. When causing destructive interference between light in space,
we can reduce the intensity to zero and, when causing constructive interference between light
in space, we can increase the intensity by a factor of 4. As described in Section 3.5.1, we use
two Laguerre Gaussian beams with opposite orbital angular momentum (OAM). These beams
interfere destructively as a function of angle in the observation plane. With opposite OAM,
the light interferes destructively twice over 360◦, causing a tightly spaced double focus. In the
experiment we produce a phase mask with a ring structure, where alternating rings have opposite
OAM of l = 1 and l = −1. The resulting focus is shown in the middle panel of Figure 4.7, where
we create a double focus through the interference of Laguerre Gaussian beams and plot the focus
projection as function of lens position. By adjusting the OAM of the interfering beams, we can
generate a single source in the left with OAM of l = 1 and l = 0 and the second source in the
right panel with OAM of l = 1 and l = 0, while an additional phase offset of π is given to move
the angle of destructive inference by π.
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Figure 4.7: Projected focus of a laser beam as a function of lens position. The light carries
OAM. One the left, through combination of l = 0, 1, we get the bottom source, in the
middle panel through the combination of l = 1,−1 we get the two source focus and on the
right, we produce with l = 0, 1 the top source

4.2.2 Creation of delayed pulses via phase modulation

Not only can we shape the light in space, but also change its temporal behavior with the SLM.
The electric field has a spatial and temporal distribution, resulting in an electric field

E(t, ~r) = A(~r)ǫ(t) cos(ωt− ΦCE) (4.4)

where A(~r) describes the spatial intensity and phase distribution and ǫ(t) the temporal domain
accordingly. Both distributions are Gaussian distributions. We introduced the spatial properties
of the Gaussian laser mode in Equation 3.107 and can write the temporal property of the laser
with an electric field in time with ǫ(t) ∝ e((t)

2/σ2). When applying a constant spatial phase to
the beam, we get A′(~r) = A(~r) + e−iΦ and our electric field E′ becomes

E′(t, ~r) = A′(~r)ǫ(t) cos(ωt− ΦCE) (4.5)

= A(~r)e−iΦǫ(t) cos(ωt− ΦCE) (4.6)

which corresponds to a constant offset in time, following the shift theorem for Fourier transforms.
This theorem states that delaying a signal x(t) by τ multiplies its Fourier transform by e−jωτ ,
with Φ = ωt. In our case, we add the later term to our beam and delay our beam by τ and write
ǫ′(t) = ǫ(t− τ) We can now write the electric field in time and space as

E′(t, τ, ~r) = ǫ(t− τ)cos(ω(t− τ) − ΦCE)A(~r) (4.7)

where ǫ(t− τ) ∝ e((t−τ)2/σ2) describes a Gaussian carrier envelope and ΦCE the phase between
the oscillations and the carrier envelope.

Delayed pulses in the experiment

As a proof of principle experiment, we measure the delay dependence on HHG, when driven by a
two color laser field in argon gas. We want to prove the ability of the SLM to act as a delay stage.
The experimental setup is shown in Figure 4.8, where an incoming 785 nm laser field produces
a second harmonic in a beta barium borate (BBO) crystal. When combined, the beams produce
a two color field. Optimizing the phase matching for second harmonic generation in the crystal,
the 200 µm thick crystal has a conversion efficiency of 30-35% for second harmonic generation.
In our experiment, we optimize for a transform limited pulse of the Ti:Sa laser in the interaction
region, inside the vacuum chamber. At the position of the BBO, the laser will have negative chirp
and the pulse duration is increased. This results in a reduced conversion efficiency on the order
of 15% and a chirped 2nd harmonic pulse. After the generation, the co-propagating beams are
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sent into a Michelson interferometer and split with a dichroic mirror (DC). The 785 nm beam
is reflected and shaped by the spatial light modulator, while the 392 nm beam is reflected off a
0◦ aluminum mirror. A linear stage underneath the aluminum mirror is adjusted for a matching
delay between the two beams. The beams recombine on the dichroic mirror and are focused
collinearly with a f=50 cm lens into a gas jet. The beams are cross-polarized after the BBO and
the second harmonic can act as a gate on the process of high harmonic generation [84]. Depending
on the delay between 785 and 392 nm, the electron is driven perpendicular to the fundamental
and can miss the parent ion at re-collision, illustrated in Figure 4.9. Harmonic generation is
suppressed. At other times, more ionization and re-collisions can occur and the harmonic yield
can be increased. This behavior is strongly influenced by the present electron trajectories and
excursion times of different harmonics. With the SLM, the delay can only be scanned over one
full oscillation of the fundamental field, yielding a range of 2.62 fs. In these 2.62 fs we can measure
the delay dependence on high harmonic generation. In Figure 4.10, we collect the integrated yield
of individual harmonics as a function of delay between 785 nm and 392 nm light. The individual
harmonic yield is normalized to its own maximum. Both columns in Figure 4.10 are acquired
at the same time. The even harmonics 12 and 16 in the right panel show a peak at a delay of
1200 as, while the harmonic yield of the 15th harmonic produced by long electron trajectories in
the same panel shows a minimum at this particular delay. We can separate harmonic 15 into two
different contributions: a on-axis contributions stemming from short trajectories and an off-axis
distributions from long trajectories. These two contributions show opposite behavior. The short
trajectory harmonic shows a value of 0.95 at 1200 as and a local minimum of 0.9. The long
trajectory spends more time in the electric field and can experience a bigger spatial offset, due to
the cross polarized second harmonic, resulting in a bigger contrast of 0.7 to 1, compared to the
short trajectory, which spends less time in the electric field and is less influenced by the gating
field.
Harmonic 9, with an energy below the ionization potential of argon, shows strong fluctuations as
a function of delay, while plateau harmonics 15 and 21 show a small delay dependence. However,
once we reach the cutoff with harmonic 31, the yield is again strongly influenced by the delay
between 392 nm and 785 nm. As stated earlier, the SLM should allow us to control the delay of
the incident light and we have shown through this experiment that the SLM gives us the ability
to apply a delay, as the yield of individual harmonics is a function of the phase applied to the
SLM and behaves differently for different electron trajectories and harmonic orders.

Figure 4.8: Experimental proof of principle: A 16 mm beam passes through a 15 mm
BBO crystal, generating the second harmonic of the Ti:Sa laser, The fundamental and
second harmonic are split and recombined on a dichroic beam separator. The arms of the
interferometer are tuned so that the two pulses are temporally overlapped. By changing
the voltage on the SLM, the delay can be adjusted in steps of 12.5 as.

4.2. SPATIAL LIGHT MODULATORS 67



CHAPTER 4. EXPERIMENTAL TECHNIQUES

Figure 4.9: Gating process in high harmonic generation by a two color field. By delaying
the 392 nm in respect to the 785 nm light, the ionization gate in (a) and (b) results
in electron born at a certain time with little lateral offset. When recombing in (c) and
(d), only certain trajectories in time can recombine with an optimized re-collision angle,
resulting in enhanced harmonic emission. Picture taken from [85]
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Figure 4.10: Harmonic yield of even and odd harmonics produced from short and long
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delay is varied in steps of 25.5 as and the yield of individual harmonics oscillates by a
factor of 2 between certain delays.

68 4.2. SPATIAL LIGHT MODULATORS



CHAPTER 4. EXPERIMENTAL TECHNIQUES

4.2.3 Chromatic dispersion

As stated before, with the SLM, we align the liquid crystals so that the light is being refracted of
the oriented birefringent crystal, where the slow axis can rotate between an orientation parallel
or perpendicular to the light’s polarization, which leads to a phase modulation for the light
between 0 and 2π. However, since we use pulsed lasers with an associated bandwidth, we have
to consider the influence of the SLM on all wavelengths. As we change the refractive index, we
also change the dispersion for each wavelength differently. Through this, we could potentially not
only change the delay of the laser pulse, but influence phase and group velocity differently, which
leads to a changing CE-phase as we change the voltage on the liquid crystals. In reference [86],
the CE-phase is described as the change in wedge thickness and a scaling chromatic dispersion.
For each µm of fused silica, the carrier envelope phase changes. However, further to that, the
delay changes in a much bigger fashion. In our setup, we change the voltage on our liquid crystal
and potentially can alter the carrier envelope phase of our beams, beyond the change of delay.
Following the supplied characterization by the manufacturer in the top panel of Figure 4.11,
we plot the calibration value for a 2π manipulation as a function of wavelength and we can
calculate the change of phase as a function of wavelength in the bottom panel of the figure. The
chromatic dispersion of materials is described as dn/dλ. Through the given calibration curve,
we can describe the chromatic dispersion as dΦ/dV dλ and then multiply the fraction by the
voltage that applies a 2π phase difference to the incident beam. We calculate the derivative of
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Figure 4.11: Top panel: calibration curve, supplied by Hamamatsu, describing the voltage
applied to the SLM to reach 2π phase modulation to a given wavelength. Bottom panel:
derivative of the change of phase per unit voltage as a function of wavelength.

the change in phase per unit voltage and do a linear approximation. We calculate the derivative to
be dΦ/dV dλ and multiply the given number by 205, the calibration number for 780 nm, equal to
a 2π manipulation. With this, we get a maximum carrier envelope phase change over the device
of 0.008 rad, when comparing a liquid crystal at the minimum phase manipulation of 0 rad
versus the maximum phase manipulation of 6.283 rad. In our experiment, we use complex phase
masks that tilt the wavefronts, correct for the curvature of the SLM and apply an additional
phase offset. After applying these phase corrections, the phase is wrapped on the device and
the differences are convoluted into the wrapped phase and the CE-phase is an averaged carrier
envelope phase offset that is manipulated by the whole phase mask on the SLM. We take each
pixel value, convert it to the corresponding chromatic dispersion and convert it into a CE-phase
offset. In Figure 4.12, we show the average CE-phase offset 〈∆CE〉 in mrad for additional voltage
values between 0 and 255 applied to the phase mask. We can see a CEP offset of 3 to 5.5 mrad
across all voltage offsets and different masks applied to the SLM. As we apply the additional
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constant voltage to the masks, we change the CE-phase as a function of voltage on the order
of 2 mrad. A minuscule number in the Ultrafast community. As previously described in Section
4.2.1, we apply the phase pattern for two beams on the SLM and group the phase manipulation
in squares of certain line width. Independent of line width or tilt, the CE offset has a maximum
value of 5.5 mrad, but reaches this value at a different voltage value. We do, however, have to
discuss the general concept of phase delay versus group delay: While we tilt the phase front of
a single source, we do not tilt the group front of the pulse and introduce an offset between the
phase and group front that is permanent. This translates to a permanent, spatial CE offset in
the focusing plane. We can define an effective CE-phase of the fundamental in the focus and
treat the measurements as a relative phase measurements, as it always is.
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Figure 4.12: Change in the mean CEP as a function of offset applied to the SLM between
one source in respect to the second source. Phase wrapping has been performed at the
value for 2π of 780 nm light.

4.3 Youngs double slit with HHG

To realize a Young’s double slit of two identical HHG sources, we use a phase mask on the SLM
that introduces an opposite beam tilt for adjacent pixels of the SLM, where the spot sizes were
shown in Section 4.2.1. The theoretical calculations have been performed in Section 3.5.3. We
define a signal and reference source in the experiment: The signal is defined as our observable
that is influenced by an external field (e.g. a pump pulse) or by changing the source directly
through a change in delay or intensity. The reference signal is left unchanged and serves as the
reference to which we can define a change in phase. When high harmonics are generated from
both sources and travel into the far field, we observe an interference pattern on the detector as
shown in Figure 4.13, where higher order harmonics (on the right) have a smaller fringe angle
than lower order harmonics (on the left), as given by Equation 3.56 in Section 3.2.3. The contrast
in the fringes is given by a formula for a Young’s double slit

Itotal = I1 + I2 + 2
√

I1I2 cos(2π
δY

λz
) (4.8)

where Y is the ordinate of the fringe projection, I1,2 the intensities of the harmonic sources,
λ the wavelength of the light and z the distance to the observation plane. Integrating over the
ordinate, the total signal on the detector is Itotal = I1 + I2. Following Equation 4.8, we should
see the harmonic signal drop to zero for given values of the ordinate. However, in Figure 4.13,
we do not observe this behavior. As we increase the harmonic order, the contrast in the fringe is

70 4.3. YOUNGS DOUBLE SLIT WITH HHG



CHAPTER 4. EXPERIMENTAL TECHNIQUES

decreasing further. This can be explained by two factors in our experiment: detector resolution
and finite slit size of the Young’s double slit. In the detector, single events on the MCP/phosphor
detector cover an area of 4x4 pixels on the camera, which will yield a reduced resolution of a
perfect fringe contrast.
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Figure 4.13: Detector image in the XUV interferometer. Higher frequencies get diffracted
less and are on the right of the detector, while lower frequencies get diffracted more and
are on the left of the detector The ordinate is created with a geometrical divergence in
units of mrad, where 0 mrad is equal to the optical axis of the laser beam. The divergence
is not related to the phase of harmonics.
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Figure 4.14: Fringe projection of harmonic 11 for experiments shown in Chapter 5

To form an ordinate dependent fringe projection in Figure 4.14, we integrate over the energy
bandwidth of individual harmonics, given in our detector plane. Performing a fast Fourier trans-
form, described in Equation 3.121 in section 3.4.2, on this lineout, we get a amplitude and phase
for the spatial frequencies involved in the fringe pattern. For the different fringe projections in
Figure 4.14, we would get Fourier transformations that are very similar in amplitude, but dif-
ferent in phase. The frequency representing the interference effect will have a different phase for
the three different lineouts. We define a phase of 0 at the center of the abscissa at 0 mrad and
associate a phase of 0π to the black line. The red line is shifted to the right and has a phase
greater than 0π, while the blue line will yield a phase close to 1π. These phase values are always
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relative to a chosen reference. In the later experiments they are as examples the phase at time
zero, the phase of the harmonic, when the molecule is not aligned.
When generating different Young’s double slits with separations of 120 µm and 180 µm in the
experiment, we get fringes from the interfering harmonics and the fringe spacing will differ for
different separations. In Figure 4.15 we plot the amplitude of the spatial frequencies. We can see
distinct peaks in the amplitude spectrum that can be associated with the fringe spacing visible
on the detector. Harmonic 9 generated from two slits separated by 120 µm has a fringe separation
of 12 pixels on the detector, while with a separation of 180 µm, the spacing reduces by a factor
of 1.5 to 8 pixels. The same is valid for H15 in Figure 4.15. The relative spacing between H9 and
H15 is given by 15/9 and is present in the figure. With a separation of 100 µm in Figure 4.16,
we can see the frequency of the fringes increase with harmonic frequency. While we can observe
33 oscillations of harmonic 9 on the given detector height L, we will observe 90 oscillations for
harmonic 23. The given figures show how well the proposed technique works as a Young’s double
slit, in which the distance between slits can be adjusted by adjusting the phase pattern on the
SLM.
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Figure 4.15: Amplitude of the fourier transform as a function of fringe spacing in pixels
for different slit spacings and harmonic orders.
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Figure 4.16: Amplitude of the fourier transformation for different harmonic orders. The
length L is given by the detector height.
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4.3.1 Resolution of a Young’s double slit

A further discussion has to be made about the resolution of our phase measurements. We perform
a measurement in the spatial domain and relate this measurement by a Fourier transform into
the frequency space. A straight forward calculation is the frequency resolution given by the size
of the detector. By applying zero padding the resolution in frequency can increase theoretically
below the resolution of the detector itself. However, a discussion on the resolution in the phase
value of the performed Fourier transform can be more complex. The resolution in the spatial
domain is given by the detector size of the phosphor and by the pixel size of the camera. As
previously stated, we can observe 90 oscillations for harmonic 23 on our given detector. After
accounting for zero-padding in the Fourier transform, we have a reduced number of 30 oscillation
on the physical detector. Each oscillations has its maximum at a value of close to 6 pixels, which
would correspond to a resolution of 2π/6 rad or roughly 1 rad. However, since the real oscillation
of the fringe pattern is not an integer number, the measurement of the phase can be expressed as
an equivalent to a common technique used in sampling oscilloscopes: Equivalent time sampling.
Our trigger is given in increments of integer pixels, but our oscillation has a period that is not
an integer number. By having multiple triggers or in this case multiple fringe oscillations, we
can sample the phase with various delays given by the difference between the integer trigger and
the actual spacing of the frequency of interest. This results in a increased sampling rate of the
phase. Each oscillation corresponds to a measurable phase value of 2π, these 30 oscillations are
spaced by 5.5 pixels, resulting in a maximum resolution of 2π/165 or 40 mrad for this harmonic.
In reference [87] the phase resolution of a Fourier transformation is given by

E(δΦrms) = (n/2N)1/2σn/(πm) (4.9)

where n is the sampling of the frequency, e.g. 5.5 pixels, and N the total sampling length, given
by 165 in the previous example. Assuming a modulation depth ofm = 0.3, as given in Figure 4.14
and a noise estimate of σn =60 mrad RMS, given by errors reported in a later chapter, we get
a total resolution of 7.7 mrad for the phase of this particular harmonic. In the experiment, the
modulation depth, frequency and RMS value are changing, so that for individual experiments,
the absolute precision may vary, but the given estimate for the given case, shows the high phase
resolution in a Fourier transformation, even when the detector resolution is low.
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Chapter 5

Optical phase of high order

harmonics

When high harmonic generation was first observed and studied experimentally, theoretical mod-
els were missing that were able to quantitatively describe HHG. When high harmonic generation
was described in a perturbative picture by Brunel in 1990 [88], the harmonic efficiency would
decrease with harmonic order exponentially, as expected from perturbative non-linear optics and
the characteristic plateau of high harmonic generation could not be explained. We also know
that in non-linear optics the harmonic dipole phase does not depend on the laser intensity in
perturbative low order harmonic generation and we would not expect a perturbative process to
have an intensity independent phase.
In our current picture of non-pertubative, non-linear high harmonic generation, we have seen the
opposite: a pronounced plateau in the intensity of high harmonics and an intensity dependent
dipole phase of high harmonics, which was discovered by the SFA theory. In the previous theoret-
ical chapters, high harmonic generation was described as a product of amplitudes: an amplitude
of ionization, an amplitude of a returning electron trajectory and an amplitude of re-scattering.
In this picture, each step imprints a specific phase on the emitted harmonic. In this chapter I
will introduce a first proof of principle experiment to show the power and precision of the used
interferometer to measure phases and amplitudes in HHG. The proof of principle experiment is
introducing a very precise delay between the sources. Our approach is to produce two identical
harmonic sources, which will have identical phase and amplitude, so that any dependence from
the target or intensity are canceled and only the effect from a change in delay is visible in our
measurement.
By applying a delay/phase between the two fundamental laser beams, we record a change in
phase between the two harmonic sources. The proposed method is an attosecond analog to a
Young’s double slit experiment. The creation of independent slits gives the ability to control
properties of the individual sources. Because of the common path design (as shown in a pump-
probe experiment in [89]) and homogeneous spatial sampling of the laser, the interferometer has
good stability.

5.1 Experimental methods

In the experiment, shown in Figure 4.1, a 785 nm laser pulse is reflected off a spatial light
modulator and focused with a f=75 cm lens into a gas source. The emitted radiation is detected
with a XUV spectrometer. The focus of the laser is shaped into two spatially offset foci and result
in a Young’s double slit as shown theoretically in Chapter 3 Section 3.2.3 and in our experimental
introduction in Chapter 4 Section 4.3. We give each source a opposite vertical offset and generate
two identical sources of HHG light. The two sources are generated with the identical driving laser
field and the emitted harmonic radiation travels along the optical axis of the driving laser field
and is resolved on the detector. As the light spatially overlaps in the far field, the sources produce
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an interferogram. A unknown phase difference may be present. This phase difference is given by
a path difference from the interaction region to the far field, which cannot be eliminated from
the experiment. At this particular configuration we can define the extracted phase to be zero. By
definition, the spacing between two adjacent maxima in the fringe pattern is defined as a phase
difference of 2π.
In our study, we then manipulate one of the HHG sources by delaying the fundamental laser
itself. If we observe a fringe evolve/move as a function of delay, we can associate the movement
to a change in phase between the two slits. Since the reference arm is not altered, we can map
this change in phase directly to our signal arm only. In Figure 4.14, we observe a change in fringe
position in three given interferograms, due to an external manipulation of one of the two sources.
Each interferogram is given by a projection of an individual harmonic on its spatial profile,
that is given as its divergence in Figure 4.13 in the vertical dimension. The observed change
in fringe position in Figure 4.14 between the blue outline and the black outline approaches a
phase difference of π, when the maxima move into the position of the previous minima. These
changes are rather big and easy to discern by eye. In the experiment, we employ fast Fourier
transformations to extract the relative phase of the fringe frequency, which is equal to a defined
position of the minima and maxima in the interferogram. We show a more detailed procedure of
the fast Fourier transformations in Chapter 4 Section 4.3. We apply a phase through the method
introduced in Section 4.2.2 and collect the phase relation between our reference arm and signal
arm as a function of the phase difference between the two identical driving laser fields. The two
electric fields are

E1(t, τ, ~r) = ǫ(t− τ) cos(ω(t− τ) − ΦCE)A1(~r) (5.1)

E2(t, ~r) = ǫ(t) cos(ωt− ΦCE)A2(~r) (5.2)

in two separate sources, where one of the two sources is manipulated by the delay τ . Both sources
have the same CE-phase ΦCE and the same spatial distribution A1 = A2. A

5.2 A self-referencing interferometer with 12.5 as resolution

In the experiment, we use a thin gas capillary with a inner diameter of 200µm, which produces
a diffusive gas jet at the tip of the capillary that expands rapidly in space further away from the
exit. We generate a double focus of the laser by applying a phase mask, introduced in Section
4.2.1, with a tilt of 100 µrad and a checkerboard pattern with a line width of 10 pixels. This
will result in a focus separation of 100 µm with a lens of focal length f=50 cm and the foci act
as a Young’s double slit. A delay, following Equations 5.2, is introduced to one of the two foci,
resulting in a delay between the laser pulses in each focus. The intensity of an individual source
is measured to be 2 · 1014W/cm2, with a measured pulse duration of 30 fs, a spot size of 38 µm,
and a pulse energy of 146 µJ . When the delay between the laser foci is changed, the fringes will
move up or down, equivalent to the change in phase between the two harmonic sources. As we
can see in Figure 5.1a, the fringes in harmonic 13 generated from the double slit are moving
as a function of delay between the two slits. The minimum step size is given by the minimum
increment of voltage: the minimum step size for light at 780 nm is given by 12.5 as, following the
calibration curve of the SLM. With the 8-bit resolution of the SLM, a value of 205 out of 255 is
needed to introduce a phase delay of 2π, which is equivalent to 2.62 fs based on the period of
light with a wavelength of 780 nm. From a delay of 0 as to a delay of 2620 as with a step size of
12.5 as in Figure 5.1a, we can count 13 maxima as a function of time, while in Figure 5.1b, we can
count 19 maxima over a delay of 2π between the two fundamental laser foci. Figure 5.1b shows
the delay dependent fringe of harmonic 19. The S-shape present in the shown figures is due to
additional diffraction in the SLM and discussed in the appendix A. For each delay, we perform a
fast Fourier transform and select the frequency of the fringe beating. Each fringe frequency for
individual harmonics has an associated phase and we show the phase as a function of delay in
Figure 5.2 for harmonic orders 9 to 19. The extracted phase is normalized to the phase value at
the initial delay of 0 as and we can see the phase of harmonic 19 gradually change from 0 rad to

76 5.2. A SELF-REFERENCING INTERFEROMETER WITH 12.5 AS RESOLUTION



CHAPTER 5. OPTICAL PHASE OF HIGH ORDER HARMONICS

delay [as]

di
ve

rg
en

ce
 [m

ra
d]

 

 

0 500 1000 1500 2000 2500

−4

−3

−2

−1

0

1

2

3

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a)

delay [as]

di
ve

rg
en

ce
 [m

ra
d]

 

 

0 500 1000 1500 2000 2500

−4

−3

−2

−1

0

1

2

3

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b)

Figure 5.1: Fringe projection of harmonic 13 in panel (a) and harmonic 19 in panel (b) as
a function of delay between the two slits.

120 rad as the delay is increased in increments of 12.5 as from 0 to 2620 as. For harmonic 13, we
observe a change in phase of 80 radians over the measured delay range. Harmonic 9 gains a phase
of 57 radian with an introduced delay of 2.62 fs or introduced phase of 2π. The standard error
of our measurement is given with an average value of 20 to 30 mrad for harmonic orders 11 to
19. Harmonic 9 is suffering from a low signal strength and a resulting poor signal to noise ratio
in the detector, which results in a standard error of 60 mrad in our measurement. The standard
error is calculated by repeating the experiment multiple times to find the statistical mean and
standard deviation for each individual harmonic phase. When we plot the measured phase of the
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Figure 5.2: Top panel: Harmonic phase as a function of delay between two sources separated
by 100 µm. The black lines show the predicted behavior. Small differences are visible at
delay between 1000 as and 1500 as. Bottom panel: The standard error of the extracted
phase in mrad as a function of delay between the two sources.

harmonics in units of 2π in Figure 5.3 and as a function of delay between the two sources, we can
see a difference in phase between 0 as and 2620 as to be an odd integer of 2π, where the integer
number is the respective harmonic order. Harmonic 9 gains a phase of 9 times 2π, harmonic 13
gains a phase 13 times 2π. This can be expressed by an equation

∆Φq = q ·∆Φ (5.3)
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where the phase offset of the q-th harmonic is q-times the phase offset of the fundamental laser
field, given by the electric fields in Equation 5.2. The electric field ǫq(t) of the q-th harmonic can
be written as

ǫq(t) = Eqe
−aqt

2

ei(qωt+Φfield(t)+Φq) (5.4)

where Eq is the peak of the electric field, aq is defined as aq = 2ln(2) 1
τ2
q
, where τq is the full

width at half maximum of the harmonic pulse, Φfield(t) is the total temporal phase, which can
be written as

Φfield,q(t) = Φaction,q(E1(t)) + φLaser,q(t) (5.5)

where Φaction,q(E0(t)) will be investigated in the next chapter and φLaser,q(t) is given by φLaser,q(t) =
qb0t

2, where b0 is the chirp of the fundamental laser pulse.
The standard error of the experimental measurement can also be expressed in units of time,
where the calculated standard error in mrad is divided out by the period of the corresponding
harmonic. The resulting error estimate in attoseconds is given in the bottom panel of Figure
5.3 and shows precision of < 1 as for all harmonics except harmonic 9, which shows a bigger
error estimate due to poor signal strength. Our experiment is able to measure the scaling of
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Figure 5.3: Top panel: Harmonic phase in units of 2π as a function of delay between two
sources separated by 100 µm. Bottom panel: Standard error of the extracted phase in
attoseconds as a function of delay between the two sources. The standard error is below
1 as for harmonics 11 to 19.

harmonic phase with the phase/delay of the fundamental laser. We are measuring the scaling by
delaying the fundamental in steps of 12.5 as with a measured precision of 1 as in time. We can
also describe our observation in a time picture, following

∆qk = q · ω∆τ (5.6)

where q is the order of the q-th harmonic with the fundamental frequency ω and ∆τ describes
the delay difference between the fundamental of each arm. When the fundamental electric field is
delayed by ∆τ , the event of HHG is changed by the corresponding time. The emitted harmonic
holds an imprint of the applied time delay given to the fundamental laser beam. A q-th harmonic
will have q-times the oscillations in this introduced delay, giving rise to ∆qk = q · ω∆τ .
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Influences of the chromatic dispersion

In this section, we will discuss another observation in the presented experiment: We see an effect
from the chromatic dispersion in the data, that is imprinted as a deviation from the calculated
slope φcal. When we produce a slope φcal given by Equation 5.6, resulting in the solid black lines
in Figure 5.2 for harmonic 9 and 19, a deviation from the expected behavior at delays between
1000 to 2000 as is visible, where the experimentally retrieved phase is smaller than the calculated
phase φcal(1900 as). The deviation, described as Φcal − Φexp, is shown for all delays in the top
panel of Figure 5.4. Comparing Figure 5.4 with the calculated chromatic dispersion in Figure
4.11, we can see identical behavior. A mask of 100 µrad and a checker board pattern of 10 pixel
width was used to generate the two sources. With a voltage corresponding to a delay of 1900 as,
an additional CE phase of 3 mrad is imprinted on the delayed pulse, which corresponds to 1.25 as
in time. Both figures show an oscillatory behavior with small magnitude. When we divide out the
specific harmonic order from the top panel of Figure 5.4 and plot the curves in the bottom panel,
we get a spread for the difference between an expected CE-phase and the measured CE-phase
that is below 3 as.
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Figure 5.4: Top panel: Difference between the measured phase and the expected phase
from the given delay in attoseconds. The error of the measured values is on the order of
1 as for harmonics 11 to 19. Bottom panel: When the harmonic order (HO) is divided out,
all graphs lie on top of each other, which suggest a change of the fundamental laser.

5.3 Phase matching scaling

In Section 4.1.2, we introduced two different gas sources, which were used in this experimental
study: a pulsed gas valve with a gas profile of roughly 5 mm full width (measured by an ion signal
from a Channeltron) and a continuous flow glass capillary with an inner diameter of 200 µm.
When we studied the phase dependence of high harmonics generated by the pulsed gas valve, we
observed an abnormality in the delay dependence: When the relative position between laser focus
and gas source is changed, the delay dependence changes. The results are shown in Figure 5.5,
where we plot the phase of individual harmonics as a function of applied delay. For individual
focus positions, we change the delay between the two laser foci and collect a delay dependent
phase, as shown in the previous chapter. We move the focus from a position between the gas
jet and the spectrometer (indicated with positive positions in Figure 5.5) to a position, where
the gas jet would be between the focus and spectrometer (indicated with negative positions in
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Figure 5.5) and collect, in increments of 1 mm, focus dependent phase measurements. For posi-
tions further away from the spectrometer the phase increases less with each step in added delay.
This behavior was observed consistently for different SLM masks. On the bottom of Figure 5.5,
the delay was introduced with a mask distributing the light with a checker board pattern and
the slope for the 9th harmonic (left) and the 11th harmonic (right) change for different focus
positions. This behavior is also observable for a SLM mask with alternating lines. The slope in
the top panel of Figure 5.5 shows the same behavior as the bottom panel.
However, replacing the diffusive gas jet with a 200 µm capillary, we did not observe this ab-
normality anymore. The gas profile is completely different and at the tip of the capillary, we
get a very sharp density profile, that can still support two bright HHG sources separated by
200 µm separation. When comparing the findings of a diffusive gas jet with the findings using a
gas capillary in Figure 5.6, we get a completely focus independent change of phase, when using
the 200 µm capillary. In panels (a) and (b), we show the harmonic phase of harmonic 11 and 15
as a function of delay between the two driving laser fields. The harmonics are generated from
a checker board pattern SLM mask and no change in phase between different focus positions is
visible. The same is true for H17 and H23 in panels (c) and (d). However it should be noted that,
when the focus was placed 1.5 mm after the jet, H23 did not yield a satisfactory signal to noise
ratio in the fringe pattern and the phase was not plotted in the figure. Both experiments, given
in Figure 5.5 and Figure 5.6 were taken back to back. The optical alignment did not change and
only the gas source was replaced and optimized with a 3D-manipulator. For all experiments in
section 5.3, we used the supersonic gas jet and changes from the predicted slopes are visible,
when the laser is not placed in the center of the gas jet. We will discuss this change further in
the following section.
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Figure 5.5: Phase of harmonic 9 and 11 as a function of phase between the two driving
laser fields, Harmonics are generated from argon in a bell shaped pulsed valve. Top: SLM
mask based on grating. Bottom: SLM mask based on checkers. As we change the focus
from one side to the other side of the jet, the extracted phase changes its slope. A positive
value in the legend is equal to a focus placed after the gas jet and a negative value for a
focus placed before the gas jet.

80 5.3. PHASE MATCHING SCALING



CHAPTER 5. OPTICAL PHASE OF HIGH ORDER HARMONICS

0 2 4 6
0

20

40

60

80

100

ph
as

e 
[r

ad
]

 

 
(a)−H113mm

1.5mm
0mm
−1.5mm

0 2 4 6

(b)−H15

0 2 4 6
0

20

40

60

80

100

120

phase [rad]

(c)−H17

0 2 4 6
phase [rad]

(d)−H23

Figure 5.6: Phase of harmonics as a function of phase between the two driving laser fields.
Harmonics are generated in argon from a 200 µm gas capillary. As we change the focus of
the laser in respect to the gas, the slope of the harmonic phase does not change. Changes
are within the given error bars. A positive value in the legend is equal to a focus placed
after the gas jet and a negative value for a focus placed before the gas jet.

Study of phase matching behavior

In Figure 5.7a, we show the vertical profile of harmonic 11 produced from ethylene as a function
of applied phase difference ∆k between signal and reference. As we change the phase, the fringe
observed on the detector is also changing the position of its minima and maxima. The focus
of the lens is placed 7.5 mm before the gas jet and harmonics are generated at the center of
the gas jet. Harmonics are then traveling towards the detector and interfere in the far field. We
calculate a peak intensity of 125 TWcm−2, with a pulse energy of 110 µJ , a pulse duration of
30 fs FWHM and a spot size of 60 µm, 1/e2 Gaussian waist,with a lens of focal length f=75 cm.
We generate harmonics up to order 25 with an energy of up to 38.7 eV. In Figure 5.7b, we show
the vertical profile of harmonic 15 as a function of delay, produced from ethylene gas at a peak
intensity of 165 TWcm−2, with a pulse energy of 150 µJ , a pulse duration of 30 fs FWHM and
a spot size of 60 µm, 1/e2 Gaussian waist. As we change the phase between signal and reference
arm, the maxima are moving. We can see strong movement in the fringe pattern. Looking into
the generated fringe pattern from harmonic 19 driven in argon gas in Figure 5.7c, we can see a
bright on axis distribution with a divergence smaller than 2 mrad and a dim emission off axis
with a divergence of 8 mrad. Both contributions show the same fringe spacing and slope as a
function of delay.

When we now change the distance between the reference and signal arm from 120 µm to
180 µm, the angle between maxima reduces linearly by a factor of 1.5, resulting in tighter fringe
spacing as observed in Figure 5.7d, where nothing changed compared to Fig. 5.7c, but the fringe
spacing, as previously shown in Section 4.3.
In Figure 5.8, we show the extracted phase between reference and signal arm for individual
harmonics as a function of phase difference between reference and signal. The slopes follow
Equation 5.6 for all harmonics. In Figure 5.9, the focus is moved to 7.5 mm away from the focus
and the separation is set to 180 µm. Harmonics from order 9 to 19 are not following the relation
described in Eq. 5.6. We observe a smaller q-value in the experiment, when we look at the phase
value at a delay of 2π.
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Figure 5.7: (a) Fringe projection of harmonic 11 in ethylene interfering with a reference
source, separated by 120µm. Over 2π we observe 11 maxima (b) fringe projection of
harmonic 15 in ethylene interfering with a reference source, separated by 120µm. We
observe 15 oscillations over 2π (c) Fringe projection of harmonic 19 in argon interfering
with a reference source, separated by 120µm. The fringe projection shows 19 maxima over
2π and matches the spatial behavior of (for a phase of π to 2π): (d) fringe projection of
harmonic 19 in argon interfering with a reference source, separated by 180µm. The fringe
projection has a reduced spacing, which is hard to discern by eye, the phase is measured
from 0 to 2π
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Figure 5.8: Phase of harmonic 9 to 25 in argon interfering with a reference source, separated
by 120µm focused at 0 mm. The extracted phase follows q ·∆φ.
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Figure 5.9: Phase of harmonic 9 to 21 in ethylene interfering with a reference source,
separated by 180µm focused 7.5 mm before the gas jet

Investigating the focus-dependent behavior, we take a look at harmonic 9 to 13 from krypton,
where the focus and phase relation were changed at the same time. The step in phase was set
to π/16, so that for harmonics 15 and above the added phase value is expected to be & π and
applied unwrapping processes are not able to construct the appropriate change of phase, but
calculate a phase change smaller than π. For studies of harmonic order q, a step size of < π/q is
required to resolve the relation. In Figure 5.10a, we plot the phase of harmonic 9 as a function
of delay for different focus positions relative to the gas jet. We observe a linear increase as a
function of phase, but can see a change in slope for each focus dependent measurement. For a
focus after the jet, the slope is smaller than when the focus is placed at the center of the jet. The
slope of harmonic 9 is steeper with a focus placed before the gas jet. This behavior is also visible
in Figure 5.10b, where we plot the phase of harmonic 11 as a function of delay for different focus
positions and in Figure 5.10c, where we plot the same figure for harmonic 13 at the same focus
positions.
This behavior is hard to disentangle. High harmonic generation is a phase-matched process. Only
if the phases between fundamental and harmonics match, harmonics can be generated coherently.
Otherwise the coherence lengths is too short compared to the absorption length. The coherence
length is defined as Lcoh = 1

∆k , where ∆k is the phase mismatch, and the absorption length is
defined as Labs = 1

σρ , with σ the cross section for absorption and ρ the gas density [90]. Any
phase mismatch due to the properties of the laser or the medium have to be accounted for. One
of them being the focus dependent Gouy phase of a Gaussian laser beam, which might be the a
cause for the observed deviation. We define a derivative qfit out of Equation 5.6. For harmonic
9, we expect a derivative of qh = 9, while for harmonic 13 we expect a derivative of qh = 13.
We define the difference ∆q = qfit − qh and produce a graph of the focus dependent behavior of
∆q in Figure 5.11. The difference for all investigated harmonics has similar value. The change in
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slope is not given by the harmonic emission, but has to be given by the fundamental laser field.
If we plot the focus dependent Gouy phase for an expected rayleigh range of zR = 15mm, given
by our laser parameters, we see agreement with ∆q, if we assume a difference of two times the
gouy phase given by our laser parameters. If we assume a smaller Rayleigh range of zR = 7mm
and shift its crossing through 0 by 2 mm, we get better agreement between the focus dependent
Gouy phase and the experiment. Due to the increased interaction region with the pulsed valve,
we are sensitive to the focus dependent phase mismatch. In the bell-shaped gas jet, the rayleigh
range and gas density have a similar dimension and phase matching plays a more important role
as when the bell-shaped gas jet is replaced by a few hundred µm thick gas jet produced by a
capillary. Each harmonic has a different crossing through 0: harmonic 9 crosses 0 at a position
of -3 mm, harmonic 11 crosses at a position of -4 mm, while harmonic 13 crosses at a position
of -1 mm. This might be a hint to the optimal position of phase matching for the individual
harmonics. However, since both sources have the exact same focusing geometry, both beams will
have the same phase mismatch term stemming from the Gouy phase. The explanation of the
Gouy phase may not be appropriate.
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Figure 5.10: Harmonic 9 to 13
in krypton interfering with a
reference source, separated by
180µm. The extracted phase fol-
lows q · ∆φ, however, shows
focus-dependent offsets in slope.
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Chapter 6

Phase of the continuum electron

wave packet

In this chapter, we investigate the intensity dependence on the harmonic phase of emitted har-
monics. Citing [91], using a picture from Feynman’s path integrals [92], the harmonic dipole of
the q-th harmonic is given by

Dq =
∑

j

Aq
jexp[iΦ

q
j(rj(t

′, t, ~p))] (6.1)

with the path rj defined by the quantum orbit j of an electron set free at time t′ and recombining
at time t. The phase given to the harmonic is then defined as

Φq
j(rj(t

′, t, ~p)) = qωt−
∫ t

t′

(

(p−A(′′))2

2
+ Ip

)

dt′′ (6.2)

where the integral is the classical action S(t, t′) of the electron in the electric field. The solution
to the integral is explained through the Lewenstein model. Here we reduce our treatment from
all possible orbits again to long and short trajectories that contribute to HHG the strongest.

6.1 Classical action in the saddle point approximation

In the Lewenstein model, the induced dipole moment is given by Equation 3.27, which contains
an integral over momentum space. Over one optical cycle the strongest oscillation is given by
the classical action of the electron. Therefore, the major contribution to the integral is given by
stationary points of the classical action [21]. We can write this argument as

∇pS(p, t, t
′) = 0 (6.3)

which has the physical meaning of ∇pS(p, t, t
′) = x(t) − x(t′), where the electron born at time

t′ has to return to the same position x at time t. This statement is in harmony with our simple
man’s picture of the electron returning to the parent ion. Following through with the momentum
integration in the saddle point approximation, where only certain trajectories return to the parent
ion, the resulting dipole moment is

x(t) = i

∫ ∞

0

dτE cos(t−τ)dx(pst(t, τ)−Ax(t))dx(pst(t, τ)−Ax(t−τ))exp[−iSst(p, τ)]+c.c. (6.4)

where τ is the return time τ = t− t′. With this saddle point approximation, we get a stationary
momentum

pst(t, τ) = E(cos(t)− cos(t− τ)/τ) (6.5)
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which allows the electron trajectory to return to the same position and the classical action
becomes

S(t, τ) =

∫ t

t−τ

dt”

(

[pst −A(t”)]2

2
+ Ip

)

= (Ip + Up)τ − 2Up(1− cos(τ))/τ − UpC(τ) cos(2t− τ)

(6.6)
This way we acquire an analytical form of the classical action of the electron. When put into
Equation 6.1, we get the phase of the harmonic dipole as

Φq
j(t, τ) = qωt− S(t, τ) (6.7)

= qωt− (Ip + Up)τ − 2Up(1− cos(τ))/τ − UpC(τ) cos(2t− τ) (6.8)

As we change the intensity of the fundamental field, the ponderomotive energy increases and
besides an increase in the harmonic cutoff, we can observe a change in the phase of the harmonic
dipole, following Equation 6.8. In Figure 6.1, we plot the classical action given by Equation 6.6
as a function of harmonic order and intensity, where the harmonic orders were calculated out of
the solutions for ionization and recombination time by Equation 3.19 and 3.20. When we change
the intensity of the laser field, the phase of the emitted harmonics will experience a phase change
following S′ − S, which can be expressed in a first order approximation as

∆Φ(Up, τ) ≈ ∆Upτ + Ipτ (6.9)

where we omit the change in recombination time t, since the change due to classical action
will be bigger than the change of recombination time. The second term of Ipτ is included in
this approximation as we not only change the ponderomotive energy but potentially effect the
excursion time τ as well. In Figure 6.2, we can see that for a higher ponderomotive energy,
the excursion time of an electron associated with a fixed harmonic order is reduced. However,
when we calculate the acquired phase due to the classical action, the effect due to an increase in
ponderomotive energy has a bigger effect on the classical action than the effect of a shortened
excursion time. We pick the intensity dependent classical action −S19(I) imprinted on harmonic
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Figure 6.1: Phase due to the classical action in the electric field as a function of intensity
and harmonic order, calculated with Equation 6.6

19 out of Figure 6.1 and show the intensity dependence in Figure 6.3. We see a linear increase
in phase as the intensity increases. Until an intensity of 6 × 1014W/cm2, the acquired phase
calculated by the Lewenstein model in Equation 6.6 increases linearly, especially when considering
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Figure 6.2: Excursion times of an electron in a laser field with different ponderomotive
energies as a function of harmonic order. The ionization potential was set to the potential
of argon (15.76 eV).

the leading terms as given through Equation 6.9, which gives rise to a change in phase of the
q-th harmonic ∆Φq in Equation 6.10

∆Φq(∆I) = −αq∆I (6.10)

with αq depending on the involved trajectories. This nomenclature is used throughout the lit-
erature [93] and will be used to model the observed phase differences in the experiments and
compare it to reported values. In a follow-up publication by Lewenstein in 1995 [94], focusing
on the intensity dependent phase of high harmonics, Equation 6.10 can be readily seen, and
we use a formula out of the Lewenstein model for a Gaussian model potential to plot the same
result for different harmonics in Figure 6.4, where we extract the phase of given harmonics as a
function of intensity. In this figure, we can see a linear slope for all harmonics with a α-coefficient
of α = 11. Compared to Figure 6.3, we can see a linear slope for low intensities that does not
change its slope as a function of intensity. We can clearly see the effect of the total intensity
on the harmonic phase. Harmonic 39 gains an additional phase linearly with the driving laser
field’s intensity up to 7 × 1014W/cm2, while for harmonic 19 the linear dependence ends at an
intensity of 3×1014W/cm2. The discrepancies between the two figures 6.3 and 6.4 result from an
incomplete treatment in each approach. While for Figure 6.3 we use classically calculated times
of ionization and recombination for short trajectories, which will yield inaccuracies, we only use
a single saddle point solution for Figure 6.4, which does not differentiate between long and short
trajectories.

6.2 Phase of the wave packet in a single color field

In our experiment, the collinear interferometer allows us to change the relative intensity of the
laser in the individual focus spots, as shown by spot size measurements in Section 4.2.1. Initially,
both beams have the same intensity, according to an even distribution of pixels on the SLM.
By changing this distribution through associating more SLM pixels to one of the two beams,
we are able to tune the intensity of the individual sources. The total laser light incident on the
SLM does not change and we do not have a reference source with constant intensity but still
have a linear dependence on the difference in laser intensities between both foci. In Figure 6.5,
we show calculations and measured intensities of the two beams at the laser focus. We define
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with a freely chosen offset.

0 2 4 6 8 10
0

20

40

60

80

100

120

ph
as

e 
[r

ad
]

Intensity [10 14W/cm2]

 

 

19th harmonic
29th harmonic
39th harmonic

Figure 6.4: Phase of harmonic 19, 29 and 39 as a function of intensity of the driving laser
field, calculated using the SFA model [21], with no distinction between long and short
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a distribution as an intensity manipulation of 0%, where both sources have the same amount
of pixels. When we associate an extra 10% of the total amount of pixels with one of the two
beams, the second beam will lose 10% of its associated pixel and we define this as an intensity
manipulation of ±10%. The calculated intensities for each source will follow accordingly. The
error bar on the experimental value is an error estimate of 5% of the readout value of the CCD
camera. In the experiment we get a difference in intensity S1 − S2, as given in Figure 6.5, that
we use to study the intensity dependence of the electron wave packet in the continuum and
extract the parameter αq given in Equation 6.10. We collect the harmonic spectrum and phase
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Figure 6.5: Intensity for S1 and S2 as a function of intensity manipulation on the SLM.
The figure contains calculated variations and experimentally determined variations, which
both result in an intensity difference between the sources.

at different peak intensities of the driving laser field as a function of intensity difference between
the two foci. The total intensity is tuned by a half wave plate in front of a cube polarizer. The
harmonic spectrum for different diving field intensities is shown in Figure 6.6. As we increase
the intensity of the driving laser field, the cutoff increases, as expected by the cutoff law given
in Equation 3.21. To measure the intensity dependent behavior of the harmonic dipole phase,
we change the ratio of pixels associated with the two laser sources. In Figure 6.7a we show the
collected interference pattern of harmonic 11 emitted from both sources in argon gas when we
change the relative intensity between the two sources. As we change the relative brightness of the
two sources, only minimal changes are observable by eye. This is explained by considering the
fact that harmonic 11 is close to the threshold of argon (one photon above), and the electrons
on these trajectories do not gain a significant amount of energy in the electric field, i.e. they
do not gain a lot of phase. In Figure 6.7b we plot the intensity dependent interference pattern
of harmonic 17, which shows a stronger behavior; the position of maxima in the fringe pattern
shifts from left to right. Ultimately, as we change the relative brightness of the laser foci, we
reduce the emission of harmonics from one of the two sources. This yields a reduced contrast in
the fringes. For intensity differences of 6×1014W/cm2, the fringe contrast is visibly reduced in
Figure 6.7b.
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Figure 6.7: Fringe projection of harmonic 11 (a) and 17 (b) as a function of intensity
difference between the two laser foci. Negative intensity differences indicates that source 2
is brighter than source 1, while positive differences indicate that source 1 is brighter. The
black line is plotted to help the eye. No relative change to this line indicates no intensity
dependent behavior.
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(b) Argon 1.05×1014W/cm2
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(c) Krypton 1.3×1014W/cm2

Figure 6.8: Change in phase for
individual harmonics by chang-
ing the relative intensities from
one source to the other source.
For (a) the focus is 3 mm after
the gas jet, while for (b) and (c)
the focus is at the gas jet.

In Figure 6.8a, we show a change in phase for selected harmonics as a function of intensity
difference between the driving laser fields. The phase is relative to the phase extracted out of
the fringe pattern at zero intensity difference. When both sources have the same amount of
pixels, the intensity of each source was chosen to be 1.3 ×1014W/cm2 and the laser was placed
3 mm after the center of the gas jet. For harmonic 13, we do not observe a change in phase as a
function of intensity difference, while for harmonic 21 the phase changes by 4 rad and the phase
of harmonic 29 changes by 10 rad. Increased error bars for Harmonic 29 in Figure 6.8a show the
issue of reduced fringe contrast. The experimental findings indicate a harmonic order dependent
behavior: As we increase in harmonic order from H13 to H29 the absolute phase gain becomes
steeper with increases in intensity.
Following the argument of excursion time, we expect the same behavior. When the electron is in
the electric field for longer times and gains more kinetic energy, it will also acquire more phase.
With our spectrometer, we are also able to collect below-threshold harmonics. Harmonic 9 shows
opposite behavior compared to all other harmonics. Here the harmonic would reduce its acquired
phase as we increase the electric field strength. In the three step model, we cannot explain this
behavior. For a weaker field in Figure 6.8b, where the maximum difference in intensities is only
40 TW/cm2, compared to 60 TW/cm2, and the gas jet is placed directly in the focus we see similar
behavior. Harmonic 9 shows opposite behavior to the plateau harmonics and as we increase the
harmonic order, the gain in phase becomes bigger: for harmonic 21 we see a change in phase
of 2 rad, applying an intensity difference of -40 TW/cm2, and for harmonic 29 we see a phase
difference of 6.5 rad in Figure 6.8b. With krypton gas in Figure 6.8c, where we also plot the
change in phase of individual harmonics as a function of intensity difference, we can see similar
magnitudes for harmonic 21 and 29, compared to argon gas. However, the phase of harmonic 13
is not flat as a function of intensity difference any more. It has the same negative slope as higher
order harmonics. For all harmonics, we can generate a two dimensional picture in Figure 6.9,
where the gradual change is more visible.
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(a) Argon 1.3 ⋅ 1014W/cm2

(b) Krypton 1.3 ⋅ 1014W/cm2

(c), 1.2⋅ 1014W/cm2

Figure 6.10: α-coefficients as a function of harmonic order for a laser field with peak
intensities of 1.2-1.3×1014W/cm2. Laser is placed at the center of the gas jet.

For every harmonic order, we collected the intensity dependent phase and performed a fit to
Equation 6.10 using linear regression. The coefficients αq are extracted and the error is estimated
out of the residual of the linear regression and the uncertainty of the laser intensity, where we
add a relative error of -16%/+20%. We plot the coefficients as a function of harmonic order for
krypton and argon in Figure 6.10. The laser is placed at the center of the gas jet and the laser
intensity was set to 1.3×1014W/cm2. As a reference, we show the coefficients out of reference [95]
for short trajectories of harmonic 13 to 19 in argon. No error bar for harmonic 19 was given. The
α-coefficients for the short trajectories measured for argon and krypton in our experiment are
close to 1 for harmonics 13 through 19. As the harmonic order increases, the α-coefficient increases
as well. There is a discrepancy between Kr and Ar in the cutoff of the spectrum. However, when
moving the focus of the laser by 3 mm, we extract similar α-coefficients for Kr and Ar in the
cutoff. In Figure 6.11, we plot the α-coefficients for harmonics of argon and krypton. Increasing
the intensity from panel (a) through (c), we can see an overall decrease of the α-coefficients of
all harmonic orders. A small deviation for the α-coefficients of harmonics 15 and 17 is visible in
Figures 6.11a and 6.11b.
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(a) Argon 1.75 ⋅ 1014W/cm2

(b) Krypton 1.75 ⋅ 1014W/cm2

(c), 1.2⋅ 1014W/cm2

(c)

Figure 6.11: α-coefficients as a
function of harmonic order for
a laser field with peak inten-
sities of (a) 1.05×1014W/cm2,
(b) 1.3×1014W/cm2 and (c)
1.75×1014W/cm2. Laser is
placed 3mm after the center of
the gas jet.

As a function of harmonic order and intensity, we can see a change in the magnitude of the α-
coefficient. As we increase the driving laser’s intensity from 0.8 in panel (a) up to 1.75×1014TW/cm2

in panel (c), the cutoff region moves to higher harmonic orders, as seen in Figure 6.6. The tra-
jectories to generate harmonics below the cutoff change and, with this, the excursion times for
given harmonics. This will result in a difference in phase. This behavior is apparent for panels
(a) through (c) in Figure 6.11. As the intensity increases, the extracted α-coefficients reduce. For
selected harmonics, we plot the extracted α-coefficients as a function of intensity in Figure 6.12.
For low intensities, the coefficient for H21 is on the order of 5, while with increased intensity the
generation of this harmonic is done in the plateau and the coefficient reduces to 2. Harmonic 17
and 19 have the same trend, where the gain in phase changes its proportionality to the inten-
sity of the driving laser field. At low intensities, the coefficients are equal to 3-4, while at the
highest recorded intensity, the coefficients reach the same value as observed for harmonic 19. For
Harmonic 15, we do not observe a change in proportionality over the measured intensity range,
since the harmonic is in the plateau region at all intensities and has a coefficient equal to α = 1.
Harmonic order 11, however, shows an opposite sign in its coefficient that reaches a value of 0
when we increase the driving laser intensity.
The observations can be expanded to all harmonic orders: For argon in Figure 6.13a, we plot
the intensity dependent α-coefficient for the given harmonics. We can observe an overall shift of
harmonics with a high α-coefficient as a function of intensity. As we increase the intensity of the
driving laser field, the α-coefficients decrease. This can be explained with the associated electron
trajectories. With a high peak intensity, cutoff trajectories produce higher order harmonics and
harmonics previously generated by cutoff trajectories are now generated by electron trajectories
that spent less time in the electric field. In krypton in Figure 6.13b, we can observe the same
trends: the cutoff moves from H21 at the lowest intensity to H29 at the highest intensity, and
the α-coefficient reduces as we increase the laser intensity.
While investigating the behavior in the cutoff, another interesting region is the threshold area.
For argon, we expect harmonic 9 and 11 to be below the threshold with an ionization potential of
15.76 eV, while krypton has an ionization potential of 14.0 eV, resulting in harmonic 11 being an
above-threshold harmonic. This fact is mirrored in the extracted α-coefficients. While the behav-
ior changes for argon with harmonic 13, in krypton we can see the change happening in harmonic
11, where we do not observe an opposite slope compared to plateau harmonics anymore.
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Figure 6.13: α-coefficients for measured intensities and harmonic orders for argon (a) and
krypton(b). The α-coefficients are given on the color axis.
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6.2.1 Comparison to literature
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(a) Argon 1.3 ⋅ 1014W/cm2

(b) Krypton 1.3 ⋅ 1014W/cm2

(c), 1.2⋅ 1014W/cm2

(d) 1.5⋅ 1014W/cm2

(e) 1.5⋅ 1014W/cm2

(f) 0.7−1⋅ 1014W/cm2

(g) 1−3⋅ 1014W/cm2

Figure 6.14: Extracted α coefficient as a function of harmonic order. (a)-(b) are from
measurements in this thesis. (c) is done by [95] based on a Michelson interferometer, (d) is
based on an XFROG measurement done by [91] and [96]. (e) is a SFA calculation from [91],
(f) is based on an interference pattern in HHG from chirped driving fields by [97]and (g)
is an extraction of the intensity dependent yield of high harmonics by [98]. All referenced
measurements were performed in argon gas.

In Figure 6.14, we show our experimental results in argon and krypton with driving laser in-
tensities of 1.3×1014TW/cm2, given by (a) and (b) in the legend of the figure. Our measured
α-coefficients have an error estimate based on the residual out of the linear regression and the
uncertainty of the intensity calculation. We associate an error of 20% with our given intensity
estimate, which will result in a relative error on the α-coefficient of -16%/+20% through the in-
tensity and an additional error estimated by the linear regression. Our experimental results agree
well with given SFA calculations from [91] given by (e) and experimentally retrieved values from
this reference, given by outline (d) in Figure 6.14. The other referenced results [95, 97, 98] show
deviations from our shown results. In an interferometric study [95], using the same approach
as our experiment, with results plotted by (c) in Figure 6.14, the intensity of two independent
Michelson interferometer arms was changed so that the harmonic sources generated by each arm
had differing intensity from each other. As the intensity of one arm was increased, the phase of
the generated harmonic was changed and the interference fringes moved accordingly. Using the
relative position of fringes from short and long trajectories on the detector plane, an intensity
dependent phase difference between trajectories was measured for krypton and argon. However,
a measurement of the separate phase change of short or long trajectories was unfeasible, due
to interferometer instabilities. Our experiment is more stable and can measure the components
directly, resulting in smaller error bars.
Other experiments have shown the intensity dependent behavior for long trajectories [95,99,100]
and have shown the difference between long and short [101]. Theoretical calculations on this topic
were performed by [93], [94] and [79]. For the given intensity range shown in Figure 6.14, the ex-
pected intensity dependent wave packet in the continuum is well described with SFA theory given
by Lewenstein. Experimentally we observe a strong trajectory dependent phase in the harmonic
emission, where low order harmonics are influenced less by the external laser field and cutoff har-
monics are strongly influenced by the driving laser field. The second observation in this chapter
is the dependence of the harmonic phase as a function of the overall intensity magnitude of the
driving laser field. In Figures 6.3 and 6.4, based on theoretical calculations, the change in phase
as a function of driving laser field has a constant derivative for intensities of 2 to 7 ×1014W/cm2,
The calculations, done for Figure 6.3, are based on the classical motion of the electron and deviate
from the calculations based on the SFA in the low intensity regime. Our model does not account
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for multiple saddle point solutions of the SFA and estimates an α-coefficient of α ≈ 10 across all
intensities. However, our experimental findings do not agree with this statement. As the driving
laser intensity increases, the phase is less influenced by smaller changes in the intensity and
the reconstructed α-values decrease as a function of intensity. According to Figures 6.13a and
6.13b for low order harmonics, we can observe a very flat behavior as a function of intensity, as
the harmonics cannot be explained by the three-step model. These harmonics are not generated
by a freed electron gaining kinetic energy in the continuum. This feature was also previously
measured in Reference [102], where the α-coefficent for the 5th harmonic was measured to be
0.5-0.6 ×10−14cm2rad/W for an intensity of 6 ×1013W/cm2. A second influence on the phase of
the harmonics imprinted by the classical action of the electron is the ionization potential of the
target. We see small differences between krypton and argon,most pronounced in the threshold
region where the ionization potential difference between argon and krypton shifts the threshold
from the 11th harmonic to the 13th harmonic. In previous publications, a destructive interfer-
ence due to phases in mixed gases of helium and neon was observed in [103], where the phase
difference then is proportional to ∆Φ ≈ τ∆Ip and shows the difference in α-coefficients, due to
the difference in ionization potential that is present in the classical term of Equation 6.6.

6.3 Phase of the wave packet in a saturated medium

In previous experiments, the study of the intensity dependence on phases of harmonics was done
in intensity regimes with low intensities. Only a few of the previously listed references analyzed
the intensity dependence on the harmonic phase with intensities above 2 ×1014W/cm2. In this
section, I will discuss the phase dependence of high harmonics, when driven with laser fields
with intensities reaching 7 ×1014W/cm2. The study was performed on argon. As the intensity
reaches values greater than 2.5 ×1014W/cm2 [104], ionization rates are strong and the target is
getting depleted, meaning our first approximation of an un-depleted ground state |0〉 is no longer
valid. We can ultimately create a dense plasma that affects the absorption and phase matching
of HHG through the medium. We do not investigate the intensity-dependent yield of high har-
monics, but only focus on the intensity-dependent phase. We observe a decreased overall yield
in the experiment at high intensities, but no drop to zero, as harmonics can be generated in a
bigger volume at the wings of the focal volume. Calculating the classical action of the electron in
Figure 6.3 for harmonic 19, we expect a linear slope in the phase of the harmonic at these high
intensities. Experimentally, we start with two equally intense laser foci with a peak intensity of
3.8 ×1014W/cm2 and gradually change one source to an intensity of 0.8 ×1014W/cm2 and the
other source to 6.8 ×1014W/cm2. This results in an intensity difference of 6 ×1014W/cm2.
We record the interference pattern of the two sources on the detector. In Figure 6.15, where we
plot the interference pattern of harmonic 9 as a function of intensity difference between the two
foci, we can observe a changing fringe pattern, moving its maxima to more negative divergence
values, when we increase the intensity difference from zero to 6 ×1014W/cm2. At intensity dif-
ferences of > |4 × 1014W/cm2|, the yield on axis with a divergence angle of -1 mrad is reduced.
The intensities are so high that absorption and phase matching are affecting the harmonic yield.
Expanding the analysis onto all harmonic orders, we extract the phase of all harmonics out of
intensity dependent interference pattern. We plot the phase of individual harmonics as a function
of intensity difference in Figure 6.16 for a driving laser intensity of 3 ×1014W/cm2 and the phase
of individual harmonics for an intensity 3.8 ×1014W/cm2 in Figure 6.17. We see phase changes
of 2 rad over the given intensity difference of 6 ×1014W/cm2 for harmonic orders 9 to 17, while
for higher order harmonics the measured phases now change as a function of intensity difference
from a minimum of -12 rad to a maximum of +9 rad, resulting in an overall phase change for
harmonic 27 of 20 rad, while in the case of a low intensity driving laser field with a peak intensity
of 1.3 ×1014W/cm2in Figure 6.13a, we saw a phase change of 12 rad.
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Figure 6.15: Fringe position depicted by divergence on the detector of harmonic 9 from
Ar as a function of intensity difference between the two sources. The total intensity is
7.6 ×1014W/cm2
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Figure 6.16: Phase difference between the two sources as a function of harmonic order and
intensity difference, with a driving laser intensity of 3.0 ×1014W/cm2. Compared to lower
intensity ranges, the harmonics from 9 to 17 show a flat or negative behavior as a function
of intensity.
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Figure 6.17: Phase difference between the two sources as a function of harmonic order and
intensity difference, driven in a saturated medium for an intensity of 3.8 ×1014W/cm2.
Compared to lower intensity ranges, the harmonics from 9 to 17 show a flat or negative
behavior as a function of intensity. Increasing the intensity by 30% overall yields a more
extreme behavior for the low order harmonics, compared to Figure 6.16.

As the intensity reaches high values, the excursion time of electrons, producing harmonics
9 to 29, is reduced. The electrons recombining to these energies spend minimal time in the
electric field, especially when considering low order harmonics. At such intensities the ionization
potentials are field-dressed and can be shifted by the ponderomotive energy [105]. Ponderomotive
shifts are observed in above threshold ionization [27]. Harmonics above the ionization potential
are now below threshold harmonics and cannot be described with our typical three step model.
This is explicitly seen in Figure 6.18, where harmonics 9 to 15 have opposite behavior to harmonic
19 and all previously reported harmonics generated from a weaker field in Section 6.2. These
harmonics acquire an opposite phase as the laser field strength increases.
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Figure 6.18: Phase difference for individual harmonics as a function of intensity difference.
Harmonics 9 to 15 show an opposite behavior as a function of intensity, compared to
the behavior of harmonic 19. At large intensity difference values, the measurements are
compromised by vanishing fringe contrast on the detector.
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(a) Argon 3.8 ⋅ 1014W/cm2

(b) Argon 3.0 ⋅ 1014W/cm2

Figure 6.19: α-coefficients for harmonics driven by intense laser sources. Panel (a) and
(b) are very close in the overall behavior. Harmonic orders 9 to 17 have a negative α-
coefficient, while harmonics 19 to 29 have a small coefficient, compared to previous results
in weak driving laser fields.

We calculate the α-parameter for the measured harmonic orders by using Equation 6.10 and
use a linear regression. In Figure 6.19, we show the results of the linear regression for individual
harmonics. In the figure we can see coefficients α < 5 for all harmonic orders and negative
coefficients for harmonics below order 17, where the new threshold is shifted to (H17=26.85 eV).
This is a shift by 11 eV. The ponderomotive energy of the field is 23 eV at an intensity of
4 ×1014W/cm2. Comparing the two measurements with two different input pulse energies, we
can compare a fixed source of intensity 1.5 ×1014W/cm2 with a source at 4.5 ×1014W/cm2 and
a second source at 6.0 ×1014W/cm2, where we measure a phase difference for H25 of 8.5 rad
and 9.7 rad respectively. This will result in α-coefficents of 2.8 and 2.15. As seen in the previous
section, the coefficients decrease as a function of intensity in low intensity regions as well, when
driven with intensities at 4.5 and 6 ×1014W/cm2.

6.4 Phase of the wave packet in a two color field

In this section we report the intensity dependence of the harmonic phase in a two color field with
the experimental setup given in Figure 6.20. The 2nd harmonic is generated collinearly and the
delay between 785 and 392 nm light is compensated by Calcite. An additional wave plate rotates
the 785 nm light to make the fundamental and the second harmonic s-polarized. The resulting
spectrum is given in Figure 6.21. All reported harmonics are reported as harmonics of the 785 nm
light. Even and odd harmonics are generated, as discussed in Section 4.2.2. The magnitude of
even harmonics is approximately half of the magnitude of neighboring odd harmonics. As we
increase the driving laser field, the cutoff increases. We compensate for chirp in the fundamental
and have a transform limited 785 nm pulse in the interaction region. We estimate the 392 nm
pulse to be 50 fs in time, while the 785 nm is measured to be 30 fs FWHM.

Due to the fact that the 785 nm is chirped at the generation of the 2nd harmonic, our efficiency
is reduced to 10-15% and the resulting field strength of 392 nm is at a total of 3.7% of the total
field, estimated by the spot sizes given in Figure 6.22c, where the second harmonic component
is focused in three peaks. Two of the foci overlap with the fundamental and the third peak is a
summation peak of components tilted in opposite directions. The middle peak is the strongest,
but does not influence the more intense 785 nm laser foci. Taking the ratio of these peaks we
estimate that 3.7% of the total light is deposited in the second harmonic, overlapping with the
fundamental. In a two-dimensional picture, where we project the focus in one dimension as a
function of lens position, relative to a CCD-camera, we can observe the overall behavior of the
fundamental in Figure 6.22a and the overall behavior of the second harmonic in Figure 6.22b,
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Figure 6.20: Experimental setup with a nonlinear crystal generating the second harmonic of
785 nm. A SLM shapes the red spectral components and the second harmonic is generated
from the spatially shaped fundamental. Calcite matches the difference in time.
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Figure 6.21: Harmonic spectrum generated from a two-color field for different driving laser
intensities, where the intensities are calculated with a weak second harmonic component
of 3.7 %. Generated in argon.
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where most of the second harmonic does not spatially overlap with the fundamental. The total
peak intensity is calculated with Itotal = I785 + I392 + 2

√
I785I392.
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Figure 6.22: Spot size of the
red and blue components of the
shaped two-color field, in (a) for
785 nm as a function of focus,
in (b) for 392 nm as a function
of focus, and in (c) a rescaled fo-
cus projection at the focus of the
laser, showing the spatial over-
lap between 785 and 392 nm
light

6.4.1 Classical action in the saddle point approximation and two color field

When considering a perturbation to the fundamental laser field by introducing a weak second
harmonic field [84], the classical action changes depending on the vector potential of the second
field.

S2(tr , φ) = S1(tr)− σ(tr, φ) = S1(tr)−
∫ tr

t′
dτ~vSFA(τ, t

′) ~A2(τ, φ) (6.11)

In the given equation S1 is the unperturbed action, S2 the perturbed action, t′ the time of
ionization and tr the time of recombination. σ is the additional phase induced by the second
field, where ~vSFA(τ, tr) is the velocity of the unperturbed trajectory and ~A2(τ, φ) the vector
potential of the second field. In the experiments in Section 6.4, the second harmonic stays in the
perturbation regime, and when we alter the intensity of one beam, we will also see an altered
intensity of the second harmonic in the focus of the beam. We assume a linear change in intensity
of the second harmonic, when we change the intensity of the fundamental linearly. Furthermore,
we assume a vanishing difference in the integral

∫ tr
t′

dτ~vSFA(τ, t
′) ~A2(τ, φ) when the intensity is

altered. The dominating part of the harmonic phase is given by the much stronger electric field
of the fundamental. As we only change the intensity and do not alter the delay between the
fundamental and the second harmonic, we extract a α-coefficient based on Equation 6.10 in the
given two-color field with an intensity of Itotal = I785 + I392 + 2

√
I785I392.

6.4.2 Experimental measurements

When we generate harmonics by our synthesized two-color field, we record a detector image
as shown in Figure 6.23. We see fringes in both even and odd harmonics. The spectrum is
dominated by short trajectories on axis with a divergence of -2 to 0 mrad. We can see very faint
distributions from long trajectories at bigger divergence angles from -6 to 4 mrad. Out of the
given detector image, we select single harmonics and perform a fast Fourier transformation on
the fringe pattern. As discussed in the previous section and the first introduction in Section 4.3,
we can extract the phase of the fringe frequency and associate the phase with the phase value
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Figure 6.23: Two dimensional harmonic spectrum for a two color driving field, interfering
with an identical copy.

of the respective harmonic. As we change the relative intensities in the two foci, we extract the
intensity dependent phase between the two harmonic sources. We have discussed the intensity
manipulation in Section 4.2.1. In Figure 6.24 we show the intensity dependent phase, relative
to a phase between the two sources with no intensity difference, for long trajectories on the
left and the corresponding short trajectories on the right. The short trajectories show a similar
behavior to the single color case and we observe for harmonics 13 to 19 a uniform change of phase
as a function of intensity on the order of 3 rad across the given intensity difference in Figure
6.24. We are able to extract long trajectory behavior for harmonic orders 13 to 19 as well. All
other harmonic orders did not produce significant yield stemming from long trajectories. In the
left panel of Figure 6.24, harmonics produced by long trajectories have an intensity dependent
overall phase change of 13 rad. We are able to fit the information of all harmonics from the short
trajectories to the linear model, but only harmonic 13 to 19 produced from long trajectories to
the linear model. The overall behavior of long trajectories is expected to be stronger, due to
the longer excursion time in the electric field. In Figure 6.25 we show the harmonic dependent
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Figure 6.24: Change in phase for individual harmonics by changing the relative intensities
between the two sources. Left: Long trajectories. Right: Short trajectories.

and intensity dependent phase of harmonics generated from short trajectories. While for low
harmonics the slope is small, we see a bigger increase in phase for harmonics close to the cutoff.
For harmonic orders 8 to 15, we observe a phase change on the order of 1 rad over the total range
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of intensity differences, while for harmonic 19, we observe a phase difference of 3 rad between
-0.8 and +0.8×1014W/cm2 in intensity difference. The difference in phase rapidly increases as
a function of harmonic order for orders higher than 19. For harmonic 22, we observe a phase
difference of 9 rad and for harmonic 25 a phase difference of 14 rad.
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Figure 6.25: Change in phase for individual harmonics by changing the relative intensities
between the two sources. We applied a gate on the spatial profile of short trajectories. The
intensity of the driving laser is given as 1.5 ×1014W/cm2.

Extracting the α-coefficient for a given intensity of 1.5×1014W/cm2 in the two color field
yields different magnitudes in the coefficient for short and long trajectories. We show the ex-
tracted values in Figure 6.26. The coefficients for short trajectories show the same trend as in
the single color field. We observe an α-coefficient of 1 to 2 for harmonics of order 8 to 17, which
constantly increases with harmonic order, while for harmonics of order 19 to 21, we observe an
α-coefficient of 3-4. For the cutoff harmonics of order 22 to 25, we observe an α-coefficient of 8.
Harmonics from long electron trajectories have a reduced strength and depend more strongly on
the intensity of the driving laser field. In Figure 6.26, the α-coefficients of the detectable har-
monics from long trajectories are given by empty circles. For harmonic 13,15 and 17 we extract
an α-coefficient of 12, while the extracted intensity dependent phase of harmonic 19 is smaller
in amplitude, as shown in Figure 6.24, and the resulting α-coefficient has a value of 7. As we
study the α-coefficient for higher order harmonics, we can observe an asymptotic limit in our
experiment. Reaching harmonic 19 to 21, the parameters reach an asymptotic value associated
with the cutoff trajectories, as seen in Figure 6.26. This would suggest that harmonics 19 and
higher are produced by cutoff trajectories. In the detector image given in Figure 6.23, the diver-
gence between long and short trajectories becomes comparable with increasing harmonic order,
suggesting that the harmonics with harmonic energy > 32 eV (H21) are generated by the same
trajectory. In the experiment, due to low SNR for long trajectories, we have bigger systematic
errors on the α-coefficients for long trajectories, so that the shown α-coefficient for H19 may be
an underestimate of the real value of H19, with the cutoff starting at H21.
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Figure 6.26: Extracted α-coefficients for even and odd harmonics driven by a laser intensity
of 1.5×1014W/cm2 for a two color laser field with 3.7% light of wavelength λ =392 nm.

Compared to the results of harmonics driven with a single color field in argon in Figure 6.10,
we can generate a figure comparing the single color case to the two color case in Figure 6.27, where
we plot the α-coefficients for short trajectories driven by electric fields with similar intensities.
Here we see smaller coefficients for the two color field, compared to the single color field in argon.
However, the coefficients for krypton in a single color field agree well with the two-color data
for argon at similar intensities. On top of this, we see discrepancies in the harmonic spectra.
While for the single color case with an intensity of 1.75 ×1014W/cm2, we see a harmonic cutoff
at harmonic energies of 60 eV in Figure 6.6, we only see a harmonic cutoff of harmonic energies
of 42 eV in the two color field of strength 1.65 ×1014W/cm2 in Figure 6.21. The argumentation
of Section 6.4.1 holds true: The phase of the electron wave packet is dependent on the intensity
of the driving laser field, even when the driving laser field is a synthesized field of a intense laser
field with a weak perturbative field.
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 (a) Argon 1.75 ⋅ 1014W/cm2

(b) Krypton 1.75 ⋅ 1014W/cm2

(c) Argon two colors 1.65 ⋅ 1014W/cm2

(d) Argon two colors 1.4 ⋅ 1014W/cm2

Figure 6.27: Extracted α-coefficients for a driving laser intensity of 1.65×1014W/cm2 and
1.4×1014W/cm2 for a two color laser field with 3.7% light of wavelength λ =392 nm,
compared to the α-coefficients in argon and krypton from a single color field with similar
peak intensity.

6.5 Concluding remarks

In this chapter I have shown the versatility of the common path interferometer. It allowed us to
do a proof of principle experiment in the previous chapter to show a very impressive stability
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and also allowed us insight to the microscopic dependency of the electron wave packet in the
continuum on high harmonic generation. Vice versa, high harmonics then allow us to study the
phase of the electron wave packet under the influence of an external field. Here we have seen that
electrons born through tunnel ionization develop into a wave packet with very different phases
as a function of the driving laser field’s intensity. While the SFA theory [21] can describe the
electron wave packet in the continuum and can show the general dependence on the driving laser
field, we observe a phase of the electron wave packet that differs from SFA predictions, as the
magnitude of the driving laser field is changed.
With an additional perturbation, the phase of the electron wave packet is further studied in this
chapter. In the perturbative regime, we measure the intensity dependence of the electron wave
packet and see agreement between the intensity dependence of harmonics driven with a single
color field and the intensity dependence of harmonics driven by a two-color field with a second
weak component. The electron wave packet phase is strongly influenced by the overall intensity
of the driving laser field and not by the perturbation itself. When we drive the high harmonic
generation with an intense laser field with intensity of 3 to 6.8 ×1014W/cm2, we can observe
a very small intensity dependence given by small α-coefficients that does not agree with the
described SFA model, and harmonics below the strongly shifted threshold of 26 eV (H17) have
an opposite intensity dependence than previously reported plateau harmonics. In this chapter
we did not discuss the influence onto the yield of the collected high harmonics. A high intensity
can cause a drop in the high harmonic yield, which will however not affect the phase of the high
harmonics.
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Chapter 7

High harmonics driven with elliptical

fields

After the description of high harmonic generation with elliptically driven fields in Section 3.2.2,
with theory developed by Mikhail Frolov [52], we experimentally harness the knowledge and ex-
tract spectroscopic details from argon gas. We will show that the limitation in HHG spectroscopy
to only retrieve a single photoionization parameter can be overcome by the simple addition of
ellipticity to the driving laser field. By collecting the ellipticity dependent yield of HHG, we can
collect the angle and energy dependent target photoionization cross section (PICS) [17], where
the angle dependence has not been extracted prior to our publication [51]. In photoionization
experiments, we can define the photoionization cross section to be

σ(E, θ) =
σ0(E)

4π

[

1 +
β(E)

2
(3 cos2 θ − 1)

]

, (7.1)

where σ(E) is the energy dependent photoionization cross section and β(E) the energy depen-
dent dipole parameter. The angle θ describes the angle of electron emission in respect to the
polarization direction of the ionizing, linearly polarized light. Through the concept of time re-
versal and detailed balance, we postulated in section 3.2 that the photoionization process is
the time reversal of photorecombination, which is the third step of high harmonic generation.
Previously, the energy dependent σ(E) feature of the PICS was shown in high harmonic genera-
tion spectra [15, 38, 39]. However, we expand this investigation to the β-parameter, to show the
equivalence between photoionization measurements by synchrotron facilities and photoionization
measurements by HHG. Our experimental setup is a simple investigation of the harmonic yield
in an elliptically polarized laser field. We only have to measure the total harmonic yield and do
not rely on a measurement for the HHG polarization either. The measurements are done in the
presence of a strong field. However, at the point of recombination, the electric field is changing
sign and weak in field strength, so that the features of a field-free recombination are present in
the HHG yield. Other procedures, using HHG spectroscopy, for retrieving σ0 and β have been
derived theoretically [24, 106], but their requirements for either harmonic polarization measure-
ments [24] or stabilization of the relative phase of a two-color field [106] are experimentally more
challenging than our suggested experimental technique.

7.1 Theoretical tools for the photoionization measurements

As in Equation 3.41 in Section 3.2.2, we write the rate of high harmonic emission for a fixed laser
intensity as the factorization

Y ∝ W (E)σ(E), E = EΩ − Ip, (7.2)
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where the high harmonic yield Y is proportional to the product of the propagation factor W (E)
in the continuum (measured in cm−2s−1) and the energy dependent photorecombination cross
section σ(E), with the energy of the electron E. When describing the ellipticity dependent yield
of high harmonic generation (as previously described in Section 3.2.2 of Chapter 3), we get a
function Y (E, η) that depends on the ellipticity η of the electric field

F (t) = ǫ(x̂ cosωt+ ŷη sinωt). (7.3)

In the experiment, we normalize the ellipticity dependent yield with the harmonic yield collected
at an ellipticity of η = 0

Ŷ (E, η) =
Y (E, η)

Y (E, η = 0)
(7.4)

Previously [107, 108], the harmonic yield revealed a dependence on the ellipticity given by a
Gaussian distribution for harmonics generated out of a s-orbital with

Ŷ (E, η) ∝ e−αη2

(7.5)

However, for orbitals with angular momentum l > 0, the harmonic yield cannot be expressed
by the simple factorization given in Equation 7.2. The harmonic yield is now a sum of dipole
moments in perpendicular directions, as shown in Section 3.2.2. Through the use of the introduced
theory we can re-write the ellipticity dependent yield for a p-orbital as the sum of a harmonic
yield parallel to the major axis of the laser polarization with θ = 0◦ and a harmonic yield
perpendicular to the major axis of the laser polarization with θ = 90◦

Y (E, η) = W (E)[a−σ(E, 0◦) + a+σ(E, 90◦)] (7.6a)

∝ e−αη2

σ(E, 0◦)

[

1 + f(η2)
1− β(E)/2

1 + β(E)

]

, (7.6b)

where the yield now depends again on degenerate states in the expansion, yielding dipole moments
parallel (”+”) and perpendicular (”-”) to the laser’s major axis, as shown in section 3.2.2 of
chapter 3. For an s-orbital, the formula reduces to Equation 7.5 and for a p-orbital, this yields
the ability to get access to the angle dependent β-parameter, as the harmonic yield becomes
a function of the cross section at 0◦ and 90◦. f(η2) is defined as f(η2) = a+/a−, where a±
takes into account the difference for ionization between the ”+” and ”-” states. The yield for a
p-orbital is now energy-dependent and will allow us to extract both parameters σ0 and β(E) for
the description of photorecombination.
Equation 7.6b is the major finding of our published paper [51]: We are able to express the
harmonic yield as a function of β(E). After the normalization of the harmonic yield with the aid
of a reference harmonic, that shows the fastest exponential decay of the collected harmonics, we
can define a harmonic yield Ŷ (G), following Equation 7.5, and we can define R̂, which gives us
the deviation from the expected gaussian decay:

R̂(E, η) =
Ŷ (E, η)

Ŷ (G)(η)
− 1 = B(E)η2 (7.7)

The measured value for R̂ is used in a fit to determine the parameter B(E) in Equation 7.7 and
we write

B(E) = b
1− β(E)/2

1 + β(E)
, β(E) =

1−B(E)/b

1/2 +B(E)/b
. (7.8)

which yields the β-parameter as a function of energy, where f(η2) is approximated to be f(η2) ≈
bη2 and b is extracted from the reference harmonic.

110 7.1. THEORETICAL TOOLS FOR THE PHOTOIONIZATION MEASUREMENTS



CHAPTER 7. HIGH HARMONICS DRIVEN WITH ELLIPTICAL FIELDS

7.2 The photoionization cross section of argon

Figure 7.1: Experimental setup to measure the ellipticity dependent harmonic yield.

In this section we combine experimental measurements with the previously described theory
to extract the β-parameter in argon for energies accessible in our experiment. We measure the
harmonic yield as a function of ellipticity of 785 nm. The experimental setup is given in Figure
7.1, where we control the ellipticity with a half wave plate and quarter wave plate in front of
the focusing lens. To change the ellipticity, we rotate the half wave plate on an automated stage,
which alters the ratio of minor and major axis incident on the quarter wave plate. This way, we
realize a major axis that is always pointing towards the original s-polarization and we do not have
to account for a rotation of the major axis, until the light is completely circular polarized with
an ellipticity of η = 1. The electric field is given by Equation 7.3. The intensity is adjusted with
a half wave plate in front of a polarizing beam cube and is set to 3.8 ·1014W/cm2, resulting in a
Keldysh parameter of γ = 0.6. We optimize the harmonic yield by changing the distance between
gas source and lens. In the experiment, we collect the yield as a function of harmonic order and
ellipticity. In Figure 7.2, panel (a), we plot the yield, normalized to an ellipticity of η = 0, for all
harmonic orders. We observe a harmonic decay to zero at values of η = 0.3. Here we can see a
homogenous behavior of the harmonic yield as a function of ellipticity, except for harmonic orders
around order 33. At harmonic order 33, the re-colliding electron had a kinetic energy of roughly
37 eV, which has a reduced photorecombination cross section due to the Cooper minimum in the
argon 3p-orbital. In panel (b) of Figure 7.2, we plot the normalized harmonic yield of harmonic
23 as a function of ellipticity and fit an expected harmonic decay to it . We use the extracted
α-parameter to describe Ŷ (G) in Equation 7.7. For a similar decay in yield we would expect a
R̂-value of 0 as a function of ellipticity. However in Figure 7.3 panel (a), we plot the value of R̂ as
a function of ellipticity and harmonic order and we can see an increasing deviation from 0, as the
ellipticity increases. This increase in R̂ can be connected with the theoretically calculated ratio
of σ(E, 90◦)/σ(E, 0◦) in Figure 7.3, panel (b), where we plot the ratio as a function of electron
energy. Both figures show the strongest deviation at harmonic order 33 and the electron energy
associated with harmonic 33. After the calculation of R̂, we can use the fit, given in Equation
7.7 to extract the values of B(E) for all harmonic orders. In panels (a) and (b) of Figure 7.4,
we show the ellipticity dependent behavior of R̂ for harmonic orders 29 and 33, the deviation
becomes bigger with increased ellipticity, and we extract the values for B(E) with Equation 7.7.
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Figure 7.2: In panel (a) we show the experimentally collected harmonic yield as a function
of ellipticity and harmonic order from argon. The data is normalized to its values at an
ellipticity of η = 0 and in panel (b) we show a exponential fit to the ellipticity dependence
upon harmonic 23. Picture taken from [51]

Figure 7.3: (a) For harmonic 33 from argon a strong deviation given by R̂ is given as
a function of ellipticity. This deviation is strongly visible in the ratio of horizontal and
vertical photoionization cross section plotted in panel (b) for an energy of 40 eV. Picture
taken from [51]

After the extraction of B(E) for all harmonic orders, we can extract the energy dependent
β-parameter by solving Equation 7.8 and show the result in Figure 7.5. The experimentally
retrieved values in blue dots agree well with experimental photoionization experiments [12] in
red squares and theoretical photoionization calculations [13], plotted with a solid black line. A
deviation at low energies is visible and can be associated with inaccuracies in the calculation of
the electron wave packet at such low energies. The energy-dependent β-parameter shows different
angle dependencies in the recombination of an electron to the 3p-orbital. Electrons with an energy
of 37 eV have an uniform recombination cross section for all recombination angles, while electrons
with an energy of 20 eV have an increased cross section at angles of 90◦ and a node at 0◦, where
no recombination is expected. The overall recombination cross section has a local minimum at
37 eV, which can be seen in the spectra recorded in a later Figure 7.7. We test the stability of
the result by checking the harmonic yield at different focus positions.
In Figure 7.6 we show the ellipticity dependent yield of all harmonic orders for three different
phase matching conditions. The deviation at H33 survives. The feature can be extracted and is not

112 7.2. THE PHOTOIONIZATION CROSS SECTION OF ARGON



CHAPTER 7. HIGH HARMONICS DRIVEN WITH ELLIPTICAL FIELDS

H33

B=18.97

Ellipticity

R
(E

,η
)

0 0.05 0.1 0.15 0.2
0

0.2

0.4

0.6

0.8

1

Bη2

Experiment

(a)

^
^

(b)

Ellipticity

R
(E

,η
)

0 0.05 0.1 0.15 0.2
0

0.2

0.4

0.6
Bη2

Experiment

H29

B=13.00

^
Figure 7.4: Extracted value for R̂ as a function of ellipticity of the driving laser field
for harmonic 33 in panel (a) and harmonic 29 in panel (b). The coefficient B changes
drastically. Picture taken from [51]

influenced by the relative position between laser focus and gas jet. The harmonic cutoff in panel 3
is reduced, due to reduced phase matching and lower peak intensity. The presented β-parameters
are extracted from the harmonic data from the middle panel with a focus position 2.79 mm in
front of the gas source, while the left panel shows harmonic yield generated from a focus position
further away from the gas source and the third panel show the ellipticity dependence of harmonics
generated from a focus placed after the gas jet, closer to the spectrometer.

Photoelectron energy (eV)

β

20 40 60-1

0

1

2
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Exper.
Retrieved

Figure 7.5: β-parameter as given out of Equation 7.1 for returning electron energies be-
tween 0 and 60 eV. Theory is calculated using photoionization cross section models. The
red squares are given by a classical photoionization experiment at a synchrotron facility
and the circular blue marks are extracted out of our theory model and experimental data.
Picture taken from [51]
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Figure 7.6: Ellipticity dependent harmonic yield for harmonics 9 to 49. On the left the focus
position is placed before the gas jet. The middle panel is from a laser position between
the left panel and the gas jet, but still before the gas jet. The right panel is produced
by a laser focus placed behind the gas jet. The harmonic cutoff is reduced. However, all
panels show a deviation from the expected harmonic decay at harmonic orders 29 to 33.
The deviation is given independent of focus position.

7.3 Extension to long wavelength
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Figure 7.7: Harmonic yield in argon driven by 800 nm and 1500 nm light. The yields are
normalized to laser-gas interaction. Comparable gas densities and MCP gains were used.
We compensate for efficiency differences between the driving laser fields by multiplying
the spectrum from 1500 nm by a factor of 43.

We extend this experiment to longer driving wavelengths, in an effort to collect harmonics with a
wider energy range. Due to the scaling of the ponderomotive energy with λ2 and the cutoff law of
harmonic generation being proportional to the ponderomotive energy, we will see a higher cutoff
in HHG and can study a broader energy range with the same peak intensity. As we increase the
wavelength of the driving laser from 785 nm to 1500 nm, we collect a harmonic spectrum with a
longer cutoff. In Figure 7.7, we show a HHG spectrum as a function of photon energy in argon
driven by 785 nm in red and a spectrum driven by 1500 nm in black. We see dramatic differences
in the generated harmonic spectra. The spacing between harmonics, given by 2hν is reduced for
harmonics driven by 1500 nm light. The minimum in the Cooper minimum at 50 eV is more
pronounced and reduces the harmonic yield. The cutoff is extended to 120 eV, compared to 75 eV,
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when driven by 785 nm light. However at the same time, the conversion efficiency is reduced. We
multiplied the spectrum for 1500 nm by a factor of 43 (given an estimated conversion efficiency
∝ λ−6 = (1500/800)−6 [109, 110]). The two experiments were performed with different focusing
optics and pulse energies. The sclaingwroked really well in the given logarithmic scale. After
re-scaling, the intensity in the Cooper minimum is on the same scale. This shows the problem
present in HHG experiments driven with long wavelength lasers. In the Cooper minimum, the
spectral region of most interest, the signal is reduced to a minimum level due to conversion
efficiencies. Our signal to noise ratio is becoming poor. However, overall, the effect of the Cooper
minimum is more pronounced and the yield slowly recovers at energies above 80 eV to reach
values in yield comparable to the yield at energies below 35 eV. The presented spectrum, driven
with 1500 nm, was taken with a focus placed 5 mm in front of the gas jet. If we further test the
focus dependent behavior of generated harmonics, we can see a Gaussian behavior in the total
harmonic yield and ionization as a function of focus position in Figure 7.8. However, switching
to the opposite site with a focus position 5 mm after the gas jet, we can generate a harmonic
spectrum in Figure 7.9 and compare it to the previously given spectrum. In the red spectrum, the
yield in the Cooper minimum is reduced and is on the noise level. After threshold substraction,
no yield is visible at 50 eV. A analysis on the ellipticity dependent yield is not possible.
We move our lens back again and place the focus before the gas jet, with a resulting spectrum
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Figure 7.8: Focus dependent ionization and total harmonic yield for a driving laser field
at 1500 nm.

as shown in the black line of Figure 7.9. We again rotate the half wave plate on an automated
rotational stage and collect the harmonic yield as a function of ellipticity. In Figure 7.10, we
show the ellipticity and photon energy dependent yield. We can see a bright harmonic emission
at energies below 40 eV and a bright continuous emission at energies above 70 eV. In the Cooper
minimum around 50 eV, we can see no harmonic yield on the given linear color scale, but
normalized to each individual maximum, we can show the ellipticity dependence in Figure 7.11,
where we plot the normalized yield of harmonics as a function of ellipticity. Additional noise is
visible at the region of interest at 50 eV. No deviation from the expected exponential decay is
visible for harmonics above 30 eV. The previously measured deviation is gone or hidden in noise.
The laser intensity is estimated to be 1.7 ·1014W/cm2 with a Keldysh parameter of γ = 0.5.
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Figure 7.9: Harmonic yield in argon, driven by 1500 nm captured at two relative focus
positions.
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Figure 7.10: Raw harmonic yield as function of ellipticity and harmonic energy for driven
at 1500 nm. The focus is placed 5 mm before the jet.
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Figure 7.11: Harmonic yield normalized to the yield of individual harmonics at an ellipticity
of η = 0. Only discrete harmonic orders from 10 to 80 eV are plotted in this figure.

When we switch targets to krypton and ethylene, we can generate harmonic spectra for argon,
krypton and ethylene in Figure 7.12. The laser center wavelength was tuned to 1400 nm. Each
spectrum has a different shape as a function of harmonic energy. Argon has a Cooper minimum at
50 eV, where the yield is reduced. Krypton has a very slow decay in harmonic yield as a function
of increasing photon energy, which can be explained by the presence of a Cooper minimum of the
4p-orbital in krypton at 80 eV [16,111]. The photoionization cross section has an increased cross
section at 110 to 120 eV after the Cooper minimum. Since we did not observe photon energies
above 95 eV, we do not pass the Cooper minimum and we can only see a reduced cutoff and
no effect of the Cooper minimum. With ethylene, we reach a harmonic cutoff of 60 eV and no
structural feature is visible in the spectrum.
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Figure 7.12: Harmonic yield from ethylene, argon and krypton at 1400 nm.
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Chapter 8

The complex photoionization dipole

of nitrogen

This chapter serves as an introduction to the concept of measuring complex signals S(ω, t) =
|S(ω, t)|eiφ(ω,t) from high harmonic generation to study structural details of molecules. As in-
troduced in Section 3.2, high harmonic generation holds complex-valued information about the
recombination dipole matrix element d(ω, θ) = |d(ω, θ)|eiφ(ω,θ). The recombination process is the
time reversal of photoionization. Single-photon ionization has been used by chemists as a tool to
investigate atomic and molecular structures. However, in the weak field regime of photoioniza-
tion, phase information about the transitions cannot be easily retrieved.
In contrast to this, HHG offers direct access to amplitude and phase of the photoionization
cross section. Calculations of the complex photoionization dipole matrix element yields the cross
section σ(ω, θ) = |d(ω, θ)|2 and a phase in the matrix element φ(ω, θ). The values have been pre-
sented in nitrogen [112] and show energy and angle dependent fluctuations. A shape resonance
at 30 eV shows dramatic enhancement of the cross section and a variation of the phase as a
function of energy.
In our experimental setup, we do not have access to the relative phase between harmonics, but
can study the angle dependence of individual harmonics with molecular alignment. In nitrogen,
similar measurements have already been performed and showed similar observations: In a 2015
publication Camper et al, [113] used a binary phase mask to study the change in phase of har-
monics, as the molecules rotate in time and shows for harmonics 9 to 17 an oscillatory behavior
of the phase, while a measurement by Lock et al [114] showed no change in phase for harmonic
19. We show our results and try to extend the measurements to the molecular frame. In our
setup, we use a slightly different approach that gives us better control over the experimental
difficulties in such experiments.
In the previous chapter, where we established a quantitative relation between HHG and the
double differential cross section for the 3p orbital of argon, we did not have to consider other
orbitals in the interaction of light and matter. In contrast to atoms, molecules have an electronic
configuration approximated by single particle orbitals [115–117]. We describe the electronic con-
figuration with molecular orbitals, where the electron in the highest occupied molecular orbital
(HOMO) has the smallest binding potential with the molecule and the next lower lying orbital is
defined as the HOMO-1. In nitrogen, these two orbitals have ionization potentials of 15.6 eV for
the HOMO and 16.9 eV for the HOMO-1. These binding potentials are very close to each other
and ionization rates can become similar, so that electrons from either orbital can produce har-
monic emission. The HOMO is a molecular orbital described as a 3σg orbital and the HOMO-1
is described as a 1πu orbital. We show the orbital symmetries in Figure 8.1 in respect to the
molecular axis z given in the stick model on the right of the figure.
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Figure 8.1: HOMO of diatomic nitrogen on the left, HOMO-1 of diatomic nitrogen in the
middle in respect to the stick model of nitrogen on the right, where the molecular axis
points in the z-axis. Images were created with Jmol.

8.1 Fundamentals of describing the molecular frame signal

As seen in the QRS model in Section 3.2.2, the harmonic yield of molecules in the molecular frame
depends on the angle between the molecular axis and the laser polarization axis. In Section 3,
Figure 3.3 and in Figure 8.1, we show the description of the coordinate systems for the laboratory
and molecular frame: the molecule’s axis is given by the z-axis and the pump and probe laser
polarization is defined by the Z-axis. In nitrogen, when we assume that we only have ionization
from HOMO, we expect a signal influenced by the symmetry of the HOMO. The orbital has the
symmetry of a σg orbital, which has an angular density distribution that aligns with the molecular
axis and has two nodes perpendicular to the molecular axis. If we were to fix a nitrogen molecule
in space and were to rotate the probe polarization, we would see a harmonic signal that would
follow this molecular symmetry, but is influenced by the angle dependent ionization rate and the
angle dependent recombination cross section, as described by the QRS model in Section 3.2.2
Equation 3.44.
We use an ansatz suggested in [22] to describe the angle dependent signal of nitrogen as a sum
of cos2n θ-terms and sin2 θ cos2n θ-terms. In our expansion terms of order sin2 θ cos2n θ can be
expressed as the difference between higher order cos2n θ-terms, which reduces the expansion to
cos2n θ-terms. By adding an appropriate amount of terms of order n to the expansion, we will be
able to describe the correct angle dependence. We formulate the angle dependent yield S(θ, ω)
in the molecular frame of a harmonic with energy ω as

S(θ, ω) =
∑

n

Cn(ω) cos
2n θ. (8.1)

In the experiment we do not have access to a perfectly aligned molecule and the molecular frame
signal is convoluted in the laboratory frame signal. The molecular axis has a distribution function
that depends on the non-adiabatic alignment of the molecule. We can write the molecular axis
distribution ρ as

ρ(θ, t) = gi
eEi/kT

Z
|Ψi(θ, t)|2 (8.2)

where i = {J0,M0} are the quantum numbers of the involved states, g the nuclear spin state
weights, k the Boltzmann constant, T the rotational temperature and Z the partition function.
The molecular axis distribution ρ can be interpreted as a probability function of finding the
molecule at time t aligned at the angle θ.
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In the laboratory frame, we can define the time dependent signal as an integral over all angles θ

S(t) =

∫

ρ(θ, t)S(θ) sin θdθ =
∑

n

Cn

∫

ρ(θ, t) cos2n θ sin θdθ (8.3)

where we can solve the integral for a particular order n to be

∫

ρ(θ, t) cos2n θ sin θdθ = 〈Ψi| cos2n θ |Ψi〉 (t) (8.4)

as previously shown in Chapter 3, Equation 3.106. Each term of the expansion is averaged over
the molecular axis distribution. In the experiment, we measure the power spectrum of the emitted
light P (ω) and the phase of the light Φ(ω). We have a power spectrum

P (ω) = |F(d̈(t))|2 (8.5)

where d(t) = |d(t)|eiφ(t) is the induced dipole that holds information of ionization, propagation
and recombination, as previously discussed in Chapter 3. We also measure the phase of the
emitted light

Φ(ω) = arg(|F(d̈(t))|) − Φ(ω)ref (8.6)

where the phase is defined as the argument of the complex dipole and measured with respect to
our reference source in the Young’s double slit experiment. In the Young’s double slit, the sources
are identical, but are influenced by the change of the molecular axis distribution as we change
the time between rotational excitement and probing the molecules. As we measure the spectrum
and argument as a function of time between pump and probe, we can write the harmonic field
as a complex function of time between pump and probe pulses

S(ω, t) =
√

P (ω, t)eiφ(ω,t) (8.7)

where we can use our time dependent expansion given through Equation 8.3 to write the measured
signal S(ω, t) as

S(ω, t) =
∑

n

Cn 〈Ψi| cos2n θ |Ψi〉 (t) (8.8)

where the coefficients Cn are now complex and follow C = A + iB. We perform multiple linear
regression fits, in which we change the parameters, which define the molecular axis distribution.
We do so to minimize the residual and have more confidence on the molecular axis distribution.
For the smallest residue, we acquire values for the coefficients Cn that can be inserted in the
angle-dependent expansion in Equation 8.1 to define a molecular frame harmonic yield S(ω, θ).
In the case of nitrogen, we express the degree of alignment in the metric 〈cos2 θ〉 that describes
the projection of the molecular axis z onto the laser polarization axis Z: For a value of 1, we
have perfectly aligned molecules in respect to the Z-axis, while for a value of 0.33, we have
no preferential alignment of the molecules with respect to the laser polarization axis. In Figure
8.2, we show an example for the calculated expectation values for a molecular ensemble with a
rotational temperature of 25 K, excited by two 100 fs long 785 nm-pulse with an intensity of
14 TW/cm2 and 18 TW/cm2. As the expansion order increases, the expansion term has smaller
overlap with the rotational wave function and the expectation value in time has smaller values.
Higher order revivals can be fitted with higher order terms, while there is a diminishing difference
in the high order fractional revivals given by cos4 θ and cos6 θ. We need good confidence in the
data and a good degree of alignment to fit with a large basis set.
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Figure 8.2: Expansion terms as a function of time after the interaction with the first pump
beam at time 0 ps and a second pump delayed with 3.97 ps in respect to the first pump

8.2 Measurement of the complex dipole of Nitrogen

Figure 8.3: Experimental pump probe setup

We use a pump-probe scheme, where the pump pulse is inducing molecular alignment and the
probe is driving high harmonic generation, which is used as our spectroscopic tool. We can
control the relative delay between pump and probe pulses by changing the optical beam path
of the pump pulses by moving a mirror on a motorized linear stage. The experimental setup is
shown in Figure 8.3. In this setup, the probe arm is reflected off a beam splitter and is shaped
by a SLM to form a two source focus spot. The probe is focused by a f=75 cm lens into the gas
jet and harmonics are generated by both focus spots. As the harmonics travel into the far field,
harmonics from the two sources interfere and form a fringe pattern on the detector, which allows
us to detect the relative phase between the harmonic sources.
The pump arm is transmitted through the first beam splitter and contains initially 80% of the
total pulse energy. After shrinking the beam by a factor of two with a telescope, the beam is
split again by a set of two beam splitters in another interferometer inside the pump arm. By
controlling the relative delay between the two pump pulses, we can tune the interaction of the
pumps upon the molecular target and enhance the molecular alignment [118]. The pump beams
are focused with a separate lens of f=50 cm into the center of the gas jet as seen in Figure 8.3.
The pump and probe beams are recombined with a beam splitter. The pump focus is placed at
the center of the jet and is overlapped with one of the two probe beams.
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The spot size of the pumps are measured to be 68 µm by 83 µm and hold a pulse energy of 200 µJ
with a pulse duration of 100 fs, measured by a cross correlation between the measured probe
of 30 fs and the pump beams, which results in an experimentally determined pump intensity
of 21 TW/cm2 and a probe intensity of 110 TW/cm2. Temporal and spatial overlap is initially
achieved by overlapping the pump beam with the probe on a camera and checking for a spatial
interference pattern on the near field beam, when both beams are present. When overlapped
in space and time, we can see a circular interference pattern in the near field, where light is
interfering constructively and destructively with each other. The overlap between pump and
probe is then optimized on the live harmonic signal and we check that only one of the two
sources is interacting with the pump beams. In the data acquisition, amplitude and phase of the
harmonics are collected as a function of delay between pump and probe in step sizes of 40.04 fs.
This step size is a sufficient sampling in time to capture smallest features in the revival structure
from nitrogen, with a rotational period of 8.3 ps. In the later experimental data, we can see
smaller features with periods of 240-400 fs, that can be resolved with the given step size.
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Figure 8.4: Harmonic yield as a function of time between pump and probe for the bottom
and top source reproduced by a shaped focus to match the focus of the two slit experiment.

As explained in the previous section 3.5.2 and 4.2.1, when the SLM shapes the fundamental
beam spatially, the two sources are generated through the interference of two counter-rotating
Laguerre Gaussian beams with OAM l = +1 and l = −1. As described in Section 3.5.1, a
destructive interference at angles φ = π/2 and φ = −π/2 occurs, where φ is the angle in the
plane perpendicular to the laser propagation. It is causing the formation of two foci spots and
the generation of a tightly spaced Young’s double slit. Our experimental solution enables us
to generate a single source, able to represent a single source of our double slit experiment, as
shown in Section 3.5.1. We align the probe beams through the spectrometer and align our pump
beams spatially to one of the two sources. We check for overlap in both sources by generating an
individual source with OAM l = 0 and l = +1, and a fixed offset of φ = π or φ = −π, to cause a
destructive interference at the angle of one of the two sources in the double focus. An additional
tilt is applied to give the appropriate vertical offset, as proposed in Section 3.5.2. The individual
sources produce an intensity profile very similar to the individual sources, as seen in theoretical
calculations in Chapter 3 Section 3.5.2 and also given in the spot size measurements in Section
4.2.1. However, the phase profile in the calculations show a horizontal gradient (see Figure 3.25
in Chapter 3) and so our individual sources are not identical to the double slit sources. We can
use them, nevertheless, to check for spatial overlap between the sources and the pump beams in
our harmonic signal.
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Figure 8.5: Amplitude of harmonic 19 in the experiment. Experimental data versus fits
with different orders of fitting.

The first step is to properly align the pump beams in respect to a single source and to check
the overlap in the experiment beyond the spatial overlap on a CCD camera. When we plot the
delay dependent yield of the top and bottom sources in Figure 8.4, we see for the aligned source
a harmonic yield that strongly depends on the time between pump and probe: At 8.3 ps, the
yield is reduced to a value of 0.9 and at 12.1 ps, the yield increases to a value of 2. The yields are
normalized to their isotropic value, when no pump beam is present. We can see quarter revivals
at 6.1 ps, 10.2 ps and 14.2 ps. 1/8th revivals are visible at 5 ps, 7 ps, 9 ps and 11 ps. The
unaligned source, where no spatial overlap is visible with the pump pulse in the imaging setup,
is plotted in red and shows no periodicity in time. We do, however, observe a crosscorrelation
feature at 4 ps, when pump and probe are incident at the same time. To extract the molecular
frame signal, the linear regression is based on the experimental data after the interaction with
the pump pulse and the autocorrelation peak does not influence the real physical observations
between the unaligned reference source and the aligned second source. After we have checked
the individual sources and made sure that no rotational alignment is visible in our unaligned
source, we switch to the two-source interference mask and collect the harmonic yield and phase
as a function of time between pump and probe. The yield from the aligned source is normalized
to the total yield of both sources. In Section 4.3, Equation 4.8, we gave an equation for the total
harmonic yield, where the fringe-angle-integrated yield is equal to Itotal = I1 + I2. I1 and I2 are
identical sources, when no aligning pump beam is present. We then can define the isotropic yield
of our individual harmonic source to be I1,2,iso = Itotal/2. We normalize our delay dependent
yield measurement to this isotropic value and get the intensity of a single source as a function
of time. To calculate the amplitude of this source, we take the square root of the intensity.
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Figure 8.6: Interference pattern of harmonic 19 on the detector as a function of time
between pump and probe. The fringe spacing is 8 pixel, which equals 2π in phase. A shift
of 1 pixel equals a phase change of 0.78 rad. At 4.25 ps and 12.5 ps, we can observe a
change of this magnitude.

In Figure 8.5, we show the time dependent amplitude of harmonic 19, normalized to the
isotropic value. The experimentally collected data shows an amplitude of harmonic 19 between
0.5 and 2, when normalized to the isotropic value. At a time of 4.1 ps and 12.3 ps, we see a strong
anti-alignment dip in the harmonic amplitude, while we observe a maximum at 8.2 ps. Besides
quarter revivals at 2.1 ps and 6.1 ps, we can observe smaller revivals in between the mentioned
revivals, where the oscillation is on the order of 0.1 compared to the isotropic value. A fit with
the expansion in Equation 8.8 is performed and higher order terms are added. Only through the
addition of higher order terms with n = 2, 3, smaller features in the delay dependence can be
fitted. 1/8th revivals at 3 and 5 ps occur and are fitted with higher order terms. The phase of
harmonic 19 as a function of delay is extracted using fast Fourier transformations of the collected
Young’s double slit fringe pattern. In Figure 8.6, we show the fringe pattern of harmonic 19 as
a function of delay between pump and probe. We can observe a subtle fringe movement at a
time of 4.1 ps and 12.2 ps in the given fringe pattern. With a fringe spacing of 8 pixels, we get
a change in phase of π/4 = 0.79 rad for each pixel the fringe pattern moves. In the experiment,
the observed phase change is on the order of 0.5 rad in the fast Fourier transformation and the
equivalent pixel shift is on the order of 2/3 pixel for the shown harmonic, which we can resolve
as discussed in Section 4.3.1. We perform a series of Fourier transformations for all delays and
harmonic orders and extract the phase of individual harmonics as a function of time.

8.2. MEASUREMENT OF THE COMPLEX DIPOLE OF NITROGEN 125



CHAPTER 8. THE COMPLEX PHOTOIONIZATION DIPOLE OF NITROGEN

2 4 6 8 10 12 14

µm

-0.5

0

0.5

H
19

 [
ra

d
]

2 4 6 8 10 12 14
-0.5

0

0.5

H
17

 [
ra

d
]

2 4 6 8 10 12 14
-0.5

0

0.5

H
13

 [
ra

d
]

2 4 6 8 10 12 14

delay [ps]

-0.5

0

0.5

H
9 

[r
ad

] experiment
fit

Figure 8.7: Phase of harmonic 9, 15 and 19 as a function of time between pump and probe.
A fit, based on estimates for the alignment distribution, is shown.

From the measured interference, we obtain a complex valued quantity with
S(ω, t) =

√

P (ω, t)eiφ(ω,t), in which the imaginary and complex part depend on the phase and
amplitude measured in the experiment. To perform a linear regression, as shown in the Appendix
A, we split the complex number into real and imaginary part and perform two linear regressions,
as the equation splits into two linear equations. After we have performed the linear regressions, we
convert the complex numbers back into amplitude and phase. In Figure 8.7, we show the measured
phases of harmonic 9, 13, 17 and 19. At times of alignment and anti-alignment, we observe the
biggest phase offset compared to the reference source. The measured phase of harmonic 9 shows
a maximum in phase at a delay of 4.1 ps, while higher order harmonics show a minimum in phase
at this delay. Harmonic 19 shows a variation of up to 1 rad as a function of time to the isotropic
value. The shown fits, based on least square fits, show agreement with the overall trends, however
does not match the width of the peaks at times of anti-alignment at 4.1 ps and 12.4 ps. The
experimental curves show a broader feature in time than the fits can re-produce. No higher order
features, e.g. 1/8th revivals, are measured in the harmonic phase.
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Figure 8.8: Amplitude of harmonic 9, 15 and 19 as a function of time between pump and
probe. A fit, based on estimates for the alignment distribution, is shown.

In Figure 8.8, the delay dependent amplitudes of the same harmonics are given. Here, the
harmonic amplitude has the same trends for all harmonic orders, where the harmonic yield is
reduced at times of anti-alignment and increases at times of alignment. Harmonic 9 and 13 have
fluctuations as a function of time between 0.9 and 1.3, while harmonic 17 and 19 show stronger
fluctuations as a function of time. For harmonic 17 and 19, we can clearly see higher order revivals
at times of 3.1 ps and 5.1 ps. The previous inversion, visible in the phase of harmonic 9, is not
present in the amplitude of harmonic 9.

0 50 100 150

θ

1

2

3

4

5

6

am
pl

itu
de

H9
H11
H13
H15
H17
H19

0 50 100 150

θ

-1.5

-1

-0.5

0

0.5

1

p
h

as
e

Figure 8.9: Phase and amplitude of the harmonic emission in the molecular frame as a
function of angle between probe polarization and molecular axis for measured harmonics.
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Figure 8.10: Residual as a function of expansion terms for the fit of imaginary and real
part of experimentally collected harmonic 17 of aligned nitrogen.

In Figures 8.9 we used the extracted coefficients Cn to show the angle dependent amplitude
in the left panel and phase of the harmonic emission in the molecular frame in the right panel,
as defined in Equation 8.1. The shape resonance in HOMO from nitrogen at harmonic order
19 is showing a strong angle dependence in amplitude with a angle-resolved amplitude of six
times the isotropic value at an angle of θ = 0◦. We observe a phase difference of 1.6 rad between
harmonic emission at θ = 0◦ and θ = 90◦. A consistent feature, visible in the angle dependent
phase measurement is a feature at 90◦ that shows that the harmonic emission has a different
phase than harmonics emitted from 60◦. This feature can be explained with an occurrence of
harmonics from HOMO-1. The residuals for the imaginary and real part of the time dependent
signal of the 17th harmonic is given in Figure 8.10, where the addition of terms of order 2n = 6
do not improve the fit to the experimental data. As previously seen in Figure 8.2, orders 2n = 4
and 2n = 6 can predict smaller fractional revivals and do not differ drastically for the given
temperature and pulse intensities, so that a fit to 2n = 6 does not improve the delay dependent
fit to the experimental data. In Figure 8.11a, we plot the extracted phase and amplitude of
harmonic 15 as a function of angle between molecular axis and driving laser polarization. We
compare the angle-dependence to the angle dependence calculated by the factorization in QRS:

Dtotal(ω, θ) = NHOMO(θ))
1/2dHOMO(ω, θ) + (NHOMO−1(θ))

1/2dHOMO−1(ω, θ)e
i∆η (8.9)

where Dtotal(ω, θ) is the coherent sum of harmonic dipoles from HOMO and HOMO-1 with
the ionization potential difference of HOMO and HOMO-1 of 1.3 eV.Th ionization rates N(θ)
are given by a theoretical ionization calculation of HOMO and HOMO-1 by MO-ADK theory
extracted from [119] and d(ω, θ) is supplied from [112] with d =

√
σeiφ. For the ionization

rates of HOMO and HOMO-1, we use a ratio of 5:1 for the preferential ionization of HOMO
over HOMO-1 at 90◦. The angle dependent ionization rate for HOMO has a ratio of 9:1 for
ionizing parallel to the molecular axis compared to ionizing perpendicular to the molecular axis.
The angle dependent ionization rate is given in Figure 8.12. A phase difference given by the
classical action of the electron in the continuum is given by the ionization potential difference
between the two molecular orbitals and is accounted for by ei∆η. The theoretical PICS calculation,
given in Figure 8.13, then allow us to calculate the harmonic dipole as a product of the given
complex-valued amplitudes of ionization rate, photoionization cross section and electron wave
packet. The harmonic dipoles are plotted for harmonic order 15 to 19. Only by using non-
vanishing probabilities of HOMO-1 to the total harmonic dipole, we can match the retrieved
angle dependent phase of harmonic 15 and 17. Harmonic 19 can be explained by HOMO only,
but shows better agreement with the experiment, when a portion of HOMO-1 is added to the
calculated total dipole. Here we assumed a ionization rate similar to the MO-ADK model rate
given by publication [?], where the ratio of parallel to perpendicular ionization rate of HOMO
is given with 10:1. However, rates of 3.3:1 [?, ?] and 4.5:1 [?] have been measured. Since we
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did not measure the angle-dependent single-ionization yield in our experiment, we used the
MO-ADK rate. In this experiment, we report HHG from HOMO and HOMO-1 for low order
harmonics, which match the characteristic features of the photoionization cross section in phase
and amplitude. In previous work [?], features from HOMO-1 in nitrogen were restricted to cut-off
harmonics and harmonic orders of order 35 and higher. Here we report low order harmonics in
nitrogen that are generated from HOMO-1.

0 50 100 150
θ [degree]

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

am
pl

itu
de

 [a
.u

.]

experiment
HOMO+HOMO-1
HOMO

0 50 100 150
θ [degree]

-1.8

-1.6

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

p
h

as
e 

[a
.u

.]

(a) 15th harmonic
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(b) 17th harmonic
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(c) 19th harmonic

Figure 8.11: Harmonic amplitude
and phase of H15, H17 and H19
as a function of angle θ. The ex-
perimentally retrieved angle depen-
dent phase and amplitude is calcu-
lated for harmonic emission calcu-
lated by the factorization of the har-
monic yield in ionization rate, given
by MO-ADK [119], the phase differ-
ence due to the difference in ioniza-
tion potential and the complex pho-
toionization cross section
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Figure 8.12: Ionization rates for HOMO and HOMO-1 as a function of molecular axis
orientation. The data is taken from [119] and calculated for a driving laser intensity of
1 ·1014W/cm2. The HOMO-1 rate is multiplied by a factor of 5. Both orbitals have signif-
icant ionization rates at an angle of 90 deg.
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Figure 8.13: Photoionization cross section (a) for HOMO and phase in (b) as function
of harmonic energy and molecular axis orrientation. In panel (c) the amplitude for the
photoionization cross section of HOMO-1 is given and its phase in panel (d). A shape
resonance at 30 eV is visible followed by a Cooper minimum at 50 eV. At angles bigger
than 45◦ features are visible at lower photon energies.
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Chapter 9

The complex induced dipole of

ethylene

Experiments in HHG have been limited to the study of one dimensionally aligned molecules
[46,57,123] and, more recently, to the study of oriented molecules [124]. We extend the study to
the asymmetric rotor of ethylene, which allows us to study the dependence of HHG on two Euler
angles, which define the orientation of the molecule with respect to the polarization axis of the
pump and probe pulses. In Section 3.3.4, we showed that with a linearly polarized pump pulse
and an asymmetric rotor, we can extract the harmonic dipole as a function of the Euler angles
θ and χ. This extends the pioneering work of Varun Makhija [64] on strong field ionization of
two dimensionally aligned ethylene to the process of HHG. As we pump the molecular ensemble
with a non-adiabatic pump pulse, we form a rotational wave packet that depends on the two
Euler angles θ and χ, where we defined the angles in Figure 3.3 in Section 3.3 and Figure 9.1.
Since the laser polarization axis is directed along Z, the angular distribution will not depend on
the precession φ around the z-axis, as the pump pulse does not align this axis over the multiple
cycles of the laser. If we are able to describe the evolution of the molecular ensemble well, we can
extract the double-angle dependent yield and phase of the produced harmonics. We start with
the same ansatz as proposed in the previous chapter: We fix the molecule in space and rotate the
molecule to a particular set of χ, θ and probe the molecule with high harmonic generation. The
generated harmonic yield will depend on the molecular symmetry and will change as we change
the two angles. For nitrogen we used orders of cos2n θ with n = 0, 1, 2, 3 to describe any angle
dependence in θ, but for the dependence in χ and θ we have to use a basis set that can describe
any dependence in both angles. We chose Wigner functions Dj

m,k(θ, φ, χ) and can expand our
unknown signal S with

S(θ, χ) =
∑

j,k

Cj
kD

j
m,k(θ, φ, χ) (9.1)

where m = 0 and the dependence on φ is lost, due to the cylindrical symmetry around the Z axis
with a linearly polarized pump beam. In the experiment we do not have access to a perfectly
aligned molecule and the molecular frame signal is hidden in the convoluted laboratory frame
signal that is washed out due to the imperfect alignment. The molecular axis has a distribution
function that depends on the non-adiabatic alignment of the molecule. We can write the molecular
axis distribution ρ as a function of the angles θ, χ

ρ(θ, χ, t) = gi
eEi/kT

Z
|Ψi(θ, χ, t)|2 (9.2)

where i = {J0,M0} are the quantum numbers of the involved states, g the nuclear spin state
weights, k the Boltzmann constant, T the rotational temperature and Z the partition function.
The molecular axis distribution ρ depends on both angles and can be interpreted as a probability
function of finding the molecule at time t aligned at the angles θ, χ. We can write the time
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dependent signal as the integral over all angles of the product of the molecular frame signal of
HHG and the molecular axis distribution

S(t) =

∫

ρ(θ, χ, t)S(θ, χ) sin θdθdχ =
∑

j,k

Cj,k

∫

ρ(θ, χ, t)Dj
0,k(θχ) sin θdθdχ (9.3)

where we can solve the integral following Equation 3.106 for every summand with index j, k of
the expansion given in Equation 9.1

∫

ρ(θ, χ, t)Dj
0,k(θ, χ) sin θdθdχ = 〈Ψi|Dj

0,k |Ψi〉 (t) (9.4)

In our experiment, we measure the power spectrum and phase of the emitted light, given by the
power spectrum

P (ω) = |F( ¨d(t)|2 (9.5)

with d(t), the dipole moment of the electron. The dipole moment d(t) = |d(t)|eiφ(t) is a complex
number that holds phase and amplitude information of ionization, propagation and recombina-
tion. We measure in our Young’s double slit the phase Φ(ω)

Φ(ω) = arg(|F( ¨d(t)|)− Φref (ω) (9.6)

which is the argument of the dipole moment in respect to the reference source. The harmonic field
is a function of the pump-probe delay and can be written as the time dependent complex-valued
signal

S(ω, t) =
√

P (ω, t)eiφ(ω,t) (9.7)

or as a complex-numbered expansion

S(ω, t) =
∑

j,k

Cj
k(t) 〈Ψi|Dj

0,k |Ψi〉 (t) (9.8)

where C = A+ iB is a complex number and the expansion term 〈Ψi|Dj
0,k |Ψi〉 (t) a real number.

At no time during a revival is a molecular axis distribution given, where the molecular axis
aligns preferentially to a set of angles χ, θ in respect to the laser polarization of the pump pulse.
Only, while solving the time dependent molecular axis distribution and having a good confidence
level, we can extract structural features out of the complex-valued high harmonic yield of aligned
ethylene gas. Ethylene has a electronic structure given by the HOMO with an ionization potential
of 10.51 eV, while the next lower lying orbital has an ionization potential of 12.82 eV. This target
could potentially produce harmonics from the HOMO-2 orbital as well, as the ionization potential
is given at 14.69 eV. In Figure 9.1, we show the symmetry of the HOMO and HOMO-1 orbital
in respect to the stick model of C2H4 on the right.
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Figure 9.1: The molecular axis z of C2H4 is given by the C-C bond and the angle θ is
defined as the angle between the laser polarization along Z and the molecular axis z,
where the molecule’s intrinsic rotation around z is given by χ. On the left, we show the
symmetry of the HOMO and in the middle the symmetry of HOMO-1 with the arrows
and values giving the maximum in the electron density of the individual orbital.

9.1 Measurement of the absolute harmonic dipole

Figure 9.2: Experimental pump probe setup

As introduced in Section 8.2, we use the two source interferometry setup to measure the relative
phase between two harmonic sources generated from ethylene gas. In Figure 9.2, we use the same
optical setup as in the experiment with nitrogen, but block one of the two pumps. The probe
arm is shaped by the SLM into two sources through interference of two beams with opposite
angular momentum, explained in Sections 3.5.1 and 4.2.1. After the light passes a f=75 cm lens,
which will focus it at the position of the gas jet, we place a beta barium borate (BBO) crystal
in the laser beam. It creates the second harmonic of the fundamental laser and we control the
overlap between the fundamental and second harmonic with calcite plates and the polarization
of light with a half-wave plate. Both pulses are s-polarized after passing through the optics. The
relative flux of the second harmonic is 25% of the the total flux. Spot size measurements were
shown in Figure 4.7 of Chapter 4 for the 785 nm component and spot size measurements of the
second harmonic showed matching focusing behavior. The chirp of the 785 nm pulse is adjusted
with a grating based compressor inside the chirped pulse amplifier. The pulse has a measured
duration of 30 fs. The harmonic cutoff is a good indicator to find the shortest pulse, resulting in
the highest peak intensity and cutoff. The pulse duration of the second harmonic is estimated
between 50 and 60 fs and the intensity of the second harmonic is given with 0.1I785. As introduced
in Section 4.2.2, the synthesized electric field produces a harmonic spectrum of even and odd
harmonics in the experiment, while we now have two harmonic sources, driven by a two-color
field, that produce a interference for individual orders in the far field on our detector. We are
using two colors to increase the number of harmonics from 4 to 7 harmonics and we can study
a more detailed energy dependence in the experiment. In the experiment, we check the spatial
and temporal overlap between the pump and the two probes, as described in Chapter 8, where
the target was nitrogen. We switch between phase masks on the SLM and overlap the pump
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beam with a single beam, after which we switch back to the two-source phase mask and proceed
with the measurement of amplitude and phase. As a function of delay between pump and the
harmonic generating probe, we measure the amplitude of the light as well as the relative phase
between the reference and the signal. In the experiment, ethylene gas is expanding into a vacuum
chamber. The molecules can cool rotationally through supersonic expansion to a temperature of
40 K. With this temperature, the molecule’s initial rotational wave function is described by 700
rotational states. The aligning beam has a pulse duration of 150 fs FWHM, a spot size of 75 µm,
1/e2 Gaussian beam waist and a resulting intensity of 16 TWcm−2.
The intensity of the probe is measured and estimated with the two color field synthesization to
be 1.2 ·1014W/cm2. The molecule is rotationally excited and we can describe the evolution of the
wave packet using TDSE calculations [64], where we described the fundamentals of non-adiabatic
alignment of an asymmetric rotor in Section 3.3.4. As the molecule rotates, we expect to observe
changes in phase and amplitude. Depending on the molecular structure of the molecule, we will
be able to see stronger or weaker oscillations as we probe a different molecular axis distribution
at each delay point. In Figure 9.3, we plot the amplitude of harmonic orders 8,11,13 and 15 as a
function of time between pump and probe. At a time of 0 ps, a crosscorrelation peak is visible,
which reduces the harmonic signal, as we ionize more electrons out of |0〉, the ground state as
introduced in the SFA in Chapter 3, and reduce the amplitude of the ground state, which then
reduces the strength of the matrix element 〈k|~r |0〉 and the harmonic yield. For delays greater
than 0 ps, we can observe a baseline shift from 1 a.u. to 0.97 a.u., where a.u. stands for arbitrary
units in the chapter. The amplitudes are normalized to the recorded amplitudes, before the
pump pulse has interacted with the gas at times less than 0 ps. As the molecule forms revival
structures as a function of time after the initial kick, we see different amplitudes, when we probe
the molecule with our intense driving field and collect the harmonic emission. At a time of 9.1 ps,
we observe a J-type revival, where the amplitude for harmonic 15 initially increases and drops
immediately to its lowest local value of 0.92 a.u.. It then increases again to its local maximum at
9.5 ps, before the next revival occurs at a time of 10 ps: a C-type revival. Theses two revivals are
the most dominant revivals in the time-dependent behavior of non-adiabatically aligned ethylene
for the experimentally achievable rotational temperatures. Faster revivals are small in amplitude
and hard to discern from half-revivals of the C-type and J-type revival. J- and C-type revivals
reoccur at 18 and 20 ps and, when probed with HHG, show a different time dependence in respect
to the same revivals at 9.1 and 10 ps. At a time of 27 to 31 ps, there is no more clear revival
structure and the periodicity is not discernable by eye. At no time during a revival is a molecular
axis distribution, where the molecule aligns preferentially in θ and χ with respect to the laser
polarization of the pump pulse. Previously, in the case of nitrogen, we had an alignment of the
molecular axis with the laser polarization at every half and full B-type revival, where the revival
structure does not change after multiple revivals. This is not the case in ethylene.
While the harmonic amplitude was defined as the square root of the total intensity of Young’s
double slit, the phase is extracted out of the time dependent fringe projection. We show the
time-dependent fringe-projection of harmonic 11 in Figure 9.4. At each time, we perform a fast
Fourier transformation and extract the phase of the fringe frequency, which is equivalent to the
phase between the two harmonic sources.

Revival position time
A-type t = n/4A 1.71 ps
C-Type t = n/4C 10.07 ps
K-Type t = n/4A− 2B − 2C 2.11 ps
J-Type t = n/2(B + C) 9.12 ps

In Figure 9.5a, we plot the phase of harmonic orders 8,11 and 13 as a function of time between
pump and probe. At a time of 0 ps, we see a similar crosscorrelation peak between pump and
probe, as previously seen in the collected amplitudes. A completely washed out fringe pattern
appears in the detector image at a delay of 0 ps. The measured phases are relative to the extracted
phase of the harmonic emission at a delay of 0 ps, before the pump interacted with the gas. As
a function of time, we see changes in the phase. For harmonic 8 in Figure 9.5a at a time of
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9.1 ps, we observe a phase relative to the isotropic phase of 70 mrad, that reduces to 0 mrad at
a time of 9.7 ps between pump and probe. This feature correlates with the J-type revival of the
rotational wave packet. We see a broad feature in the phase of harmonic 8 at a time of 19 ps,
associated again with the J-type revival. Fast revivals with smaller amplitude are detected. The
phase of harmonic 11 in Figure 9.5b shows the strongest magnitude in oscillations as a function
of delay between pump and probe. At a delay of 9.1 ps the phase is measured to be 220 mrad
relative to the isotropic phase, before the pump interacts with the molecule. At a delay of 19 ps
we see a broad feature in time, where the phase changes by a an absolute value of 100 mrad from
a value at 18 ps. The phase shows another sharp feature at 27 ps, where the rotational wave
packet forms another J-type revival. The signal at 30 ps is a systematic error signal in our study
and does not influence the result of this study. It is a sharp feature in our measurement with a
much bigger error bar, compared to the measurements at other delay values. In Figure 9.5c, the
phase of harmonic 13 as a function of time has a reduced magnitude in oscillations. We observe
similar features as in the delay dependence of harmonics 8 and 11. A peak at 9.1 ps gives a phase
difference of 30 mrad compared to the isotropic value. A broader feature at 19 ps is visible in
the phase measurement, but only shows a oscillation of 40 mrad. The error bars for harmonic 13
are comparable to the observed modulation in phase.
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Figure 9.3: Measured amplitude of harmonics generated in Ethylene. Harmonics 8,11 and
13 show similar behavior. Harmonic 15 shows a stronger delay dependence.
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Figure 9.4: Measured interference pattern of harmonic 11 generated in Ethylene as a
function of pump probe delay. A raw pixel count of 14 pixel is equal to a phase difference
of 2π
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Figure 9.5: Measured phases of
harmonic 8,11,13 in ethylene
as a function of delay between
pump and probe

9.2 Extraction of the angle dependence out of the time-dependent

observations

We express the molecular frame signal with Equation 9.1, where we use orders up to j = 0, 2, 4
and k = 0, 2, 4. The time dependent laboratory frame signal can be written with Equation 9.8.
Our experimentally collected data in phase and amplitude is converted to a complex number,
while we cut the experimental and theoretical data to a window in time starting after the end
of the crosscorrelation peak. We perform a linear regression to our experimental data in the
window of 2 ps to 35 ps. The linear regression is explained in Appendix A. We perform multiple
linear regressions to find the molecular axis distribution that describes the experimental results
with the smallest residue. In each linear regression, we change the input properties to calculate
the molecular axis distribution. We create an array of pulse durations, pulse intensities and
temperature and for each linear regression, we get a value of χ2, which defines the quality of
the fit. We choose the minimum value, as it describes the best overlap to the experimental data.
After the extraction of the values of C in Equation 9.8, we convert the fit from the complex
values to amplitude and phase and compare the fit to our experimental data. In Figure 9.6a we
show the fit for the time-dependent amplitude of harmonic 8. The agreement between fit and
experimental data is good. Small features as a function of time can be expressed by our fit. In
Figure 9.6b experiment and fit agree as well. The experimental fit shows a deviation from the
experiment in the time window below 5 ps. We show the amplitude of harmonic 15 in Figure 9.6c.
Within our experimental error, the data and fit agree. Figure 9.6d shows the one-dimensional
expectation value of 〈Ψi| cos2 θ |Ψi〉 (t) of the projection of the molecular axis onto the lab frame
given Z axis, the metric used in nitrogen to describe the degree of alignment. We can observe
the characteristic revival times present in our time-dependent amplitude signal, where smaller
features cannot be expressed by this metric and warrant an expansion in the two angles θ and
χ.
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Figure 9.6: Fitted amplitudes of harmonic 8,11,15 in ethylene as a function of delay between
pump and probe

In the comparison of the experimentally collected phase and fit for the phase of harmonic 8 in
Figure 9.7a, we see good agreement between fit and data at the J-type revival at 9.1 ps. Features
at the J-type revivals at 19 ps and 27 ps can be fitted with our expansion as well. However, the
residual of the fit has a value of χ2 < 1, even, when fitted with an expansion that only uses the
leading termsD0

0 = 1 andD2
0(θ, χ). The fit is overfitting the experimental data. The experimental

determined error bars are smaller than the deviation of the fit from the experimental data. The
error bars are on the order of 9 mrad for the phase of harmonic 8 and 30 mrad for harmonic 11.
In Figure 9.7c, we can compare the fit with the smallest residue to the experimentally collected
phase of harmonic 15. We can see features in fit and data that coincide with the revival times
of the J-type revival at 9.1 ps and 18 ps. However, the residue of the fit is still with a value of
χ2 < 1 too small and we are overfitting the experimentally determined phase of harmonic 15.
For the phase of harmonic 11 in Figure 9.7b, we can report a fit with a χ2-value above 1. The fit
with the smallest residue is given in the figure. We can observe matching features between fit and
experiment. The retrieved modulations of up to 220 mrad can be matched by the fit. In Figure
9.8, we plot the residue χ2 as a function of terms in our expansion. When we use an expansion
of C0

0D
0
0 + C2

0D
2
0 , we get a residual for the imaginary part of the fit of χ2 = 1.25. By adding

D2
2 to the expansion, so that the fit is now the sum C0

0D
0
0 + C2

0D
2
0 + C2

2D
2
2, we get a reduced

residual of χ2 = 1.07, which reduces further, when adding higher order terms as shown in the
Figure. In Figure 9.9, the molecular frame amplitude and phase of high harmonic emission of the
11th harmonic is given as a function of the angles θ and χ. In panel (a), the amplitude shows a
local maxima at an angle of θ = 90◦, χ = 90◦, with a maximum of 1.5 times the isotropic value.
In panel(b), the angle dependent phase shows a positive phase for harmonics emitted from an
angle θ = 90◦, χ = 90◦ and a negative phase for harmonics emitted at angles θ = 0◦, χ = 45◦.
Investigating the reconstructed angle dependent phase of harmonic 11 as a function of expansion
terms in Figure 9.10, where we plot the phase in the molecular frame as a function of the angles
θ and χ, we can see that the biggest change in the molecular frame phase is produced when
changing from the top left panel (a) to the top right panel (b), where the additional term C2

2D
2
2

is added. Expansions with higher order terms in the bottom of the figure in panel (c) and (d), do
not change the overall trend in the dependency of the phase in the molecular frame: We measure
a phase difference of 1 rad between harmonics emitted at an angle of θ = 90◦, χ = 90◦ and
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harmonics emitted at an angle of θ = 45◦, χ = 0◦ in the retrieved molecular frame signal.
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Figure 9.7: Measured phases
and least square fit of harmonic
8,11,15 in ethylene as a func-
tion of delay between pump and
probe. In panel (d), we show
the one dimensional expectation
value of

〈
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〉

as a function of
delay for the estimated align-
ment parameters.
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Figure 9.8: Fit residue as a function of additional terms added to the expansion. The
residue is shown for the fit to the imaginary component of the complex signal.

Comparing the results for harmonic 11 with QRS calculations of the harmonic dipole of the
11th harmonic (supplied by Ahn Thu Le), we can plot the absolute value of the dipole moment
and the phase in Figure 9.11. We give the absolute value of the dipole generated with the HOMO
orbital in the top left panel (a) of the figure and its phase in the top right panel (b). In panel (a)
the maximum in the molecular frame resolved absolute value of the dipole is given at the angles
θ = 90◦, χ = 90◦, which follows the molecular symmetry of the HOMO given in Figure 9.1, where
the electron density of the orbital also has the maximum at these values. The molecular frame
resolved phase of harmonic 11 shows the opposite behavior in the χ angle, with a increasing phase
from φ(χ = 90◦) = 4rad to φ(χ = 0◦) = 4.5rad. In the bottom panels (c,d), we plot the absolute
value of the dipole generated out of the HOMO-1 orbital on the left (c) and its phase on the right
(d). The absolute value of the harmonic dipole out of HOMO-1 shows a maximum in its strength
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Figure 9.9: Amplitude (a) and phase (b) in the molecular frame retrieved from an expansion
with j = 4, k = 0 and lower order terms and fit to the time dependent amplitude and phase
of harmonic 11.

(a)

20 40 60 80
θ [deg]

70

50

30

10

χ
 [d

eg
]

-1

-0.5

0

0.5 (b)

20 40 60 80
θ [deg]

70

50

30

10

χ
 [

d
eg

]

-1

-0.5

0

0.5

(c)

20 40 60 80
θ [deg]

70

50

30

10

χ
 [

d
eg

]

-1

-0.5

0

0.5 (d)

20 40 60 80
θ [deg]

70

50

30

10

χ
 [

d
eg

]

-1

-0.5

0

0.5

Figure 9.10: Harmonic phase as a function of θ, χ extracted out of the fit. In panel (a), the
expansion is for terms of order D0

0 and D2
0. In panel (b) we add the term D2

2 and in panel
(c) we have the terms D0

0 , D
2
0, D

2
2 and D4

0 , while in panel (d), we further add the term D4
2 .

Adding additional terms, the result shows a phase difference between θ = 90◦, χ = 90◦

and θ = 45◦, χ = 0◦
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at the angles θ = 45◦, χ = 0◦, but an overall strength weaker by a factor of 3, compared to the
strength of the harmonic dipole out of HOMO shown in panel (a). The harmonic dipole of H11
from HOMO-1 resembles the molecular symmetry of HOMO-1 given in Figure 9.1. However, the
phase of the harmonic dipole shows an opposite behavior in χ again; with an increasing phase
from φ(χ = 0◦) = 3rad to φ(χ = 90◦) = 4.5rad. In the absolute values of the dipole, we can
see the symmetry of the molecular orbitals, while the phase does not resemble the molecular
orbital symmetry, but shows a maximum for HOMO at an angle of θ = 90◦, χ = 0◦ and the
HOMO-1 shows a local maximum at θ = 90◦, χ = 90◦. The molecular frame phase extracted in
our experiment in Figure 9.9, panel (b) does not match the phase of the HOMO dipole moment,
given in Figure 9.11 panel (b), while the extracted absolute value does match the harmonic dipole
calculated with QRS.

(a)

0 20 40 60 80
θ [deg]

90

70

50

30

10

χ
 [d

eg
]

0

1

2

3

4

×10-4

(b)

0 20 40 60 80
θ [deg]

90

70

50

30

10

χ
 [

d
eg

]
2.5

3

3.5

4

(c)

0 20 40 60 80
θ [deg]

90

70

50

30

10

χ
 [

d
eg

]

0

1

2

3

4

×10-4

(d)

0 20 40 60 80
θ [deg]

90

70

50

30

10

χ
 [

d
eg

]

2

2.5

3

3.5

4

Figure 9.11: QRS calculations for the amplitude in panel (a) of harmonics emitted from
HOMO and phase in panel (b). In panel (c) we show QRS calculations for the amplitude of
the induced dipole for harmonics out of the HOMO-1. In panel (d) we show the associated
phase.

However, considering ionization from HOMO and HOMO-1 with the given ionization poten-
tials of 10.52 and 12.82 eV, we define the total harmonic dipole, emitted from ethylene, as the
coherent sum of harmonic dipoles of the individual orbitals

dtotal = dHOMOe
iφHOMO +R · dHOMO−1e

iφHOMO−1 (9.9)

where the phase and amplitude are determined by the argument and absolute value of dtotal. We
give the absolute value in Figure 9.12 and the phase in Figure 9.13, where we assume a value for
R, which weighs the contribution of HOMO-1 to the total harmonic dipole, based on a relative
ionization rates, that we do not know experimentally. As soon as we add a value for R 6= 0
to the equation and plot the angle dependent phase and amplitude, we can see an improved
agreement between the experimentally retrieved data and the harmonic emission. In Figure 9.12
panel (a) we show the experimentally retrieved angle dependent amplitude of harmonic 11 with
a maximum in amplitude at θ = 90◦, χ = 90◦ of 1.5 a.u. and decrease in amplitude as a function
of θ and χ, while the amplitude at θ = 0◦ has a global minimum at every angle in χ, due to
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nodes of the HOMO and HOMO-1 at θ = 0◦. In panels (b) through (d), we show a molecular
frame amplitude of harmonic 11 calculated through the coherent sum of harmonic dipoles of the
HOMO and HOMO-1. In panel (b), no HOMO-1 is added and we see a harmonic amplitude
that has a maximum at θ = 90◦, χ = 90◦, and when we add a component from the HOMO-1
harmonic dipole in panel (c), the amplitude does not change at the angles θ = 90◦, χ = 90◦,
but we get a molecular frame dependent harmonic amplitude that now has a small component
at the angles θ = 45◦, χ = 0◦ that stems from HOMO-1. Comparing the calculations in panel
(c) with the experimentally retrieved data in panel (a), we can see still good agreement, where
the feature at θ = 45◦, χ = 0◦ is a very faint feature in both panels. As soon as we add more
weight to the dipole from HOMO-1 to the coherent sum, we can see increased contributions to
the total harmonic amplitude at θ = 45◦, χ = 0◦, which is still weaker by a factor of 3 compared
to the harmonic amplitude at θ = 90◦, χ = 90◦. When discussing the phase of harmonic 11
in Figure 9.13, we can see the necessity of including a harmonic dipole from HOMO-1 to the
total harmonic dipole. In the experimentally retrieved harmonic phase in the molecular frame
we can observe a phase difference of harmonics emitted from θ = 45◦, χ = 0◦ and harmonics
emitted from θ = 90◦, χ = 90◦ of ∆φ = 1 rad. When considering the harmonic phase of the
HOMO, calculated by QRS, the phase does show a phase difference of 0.5 rad, but opposite to
what we have experimentally retrieved. As soon as we add a component from HOMO-1 to the
total harmonic dipole, we can observe matching differences in the experiment and theory. The
molecular frame phase is a very strong indicator that the harmonic generation in ethylene is
driven by ionization from multiple orbitals.
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Figure 9.12: Molecular frame amplitude of H11 in the experiment (a), amplitude of the
dipole of HOMO only (b), amplitude of the dipole emitted from HOMO and HOMO-1 with
a value of R = 0.1 (c), and amplitude of the dipole emitted from HOMO and HOMO-1
with a value of R = 0.2 (d)

Retrieving the molecular frame amplitude and phase for all measured harmonics, we can
plot the angle dependence in Figure 9.14. In the retrieved molecular frame amplitude, we see
a local maximum at an angle of θ = 90◦, χ = 40 − 80◦. In the molecular frame phase of the
detected harmonics we can observe a local maximum in phase at θ = 90◦, χ = 40 − 80◦ and a
local minimum at angles θ = 45◦, χ = 0◦. These features match the molecular structure of the
HOMO and HOMO-1 orbital in ethylene, where the HOMO is a πu orbital and the HOMO-1 a
πg orbital. All fits, except for harmonic 11, are overfitting the experimentally collected imaginary

9.2. EXTRACTION OF THE ANGLE DEPENDENCE OUT OF THE TIME-DEPENDENT

OBSERVATIONS

141



CHAPTER 9. THE COMPLEX INDUCED DIPOLE OF ETHYLENE

(a)

0 20 40 60 80
θ

90

70

50

30

10

χ

-1

-0.5

0

0.5 (b)

0 20 40 60 80
θ

90

70

50

30

10

χ

-1

-0.5

0

0.5

(c)

0 20 40 60 80
θ

90

70

50

30

10

χ

-1

-0.5

0

0.5 (d)

0 20 40 60 80
θ

90

70

50

30

10

χ

-1

-0.5

0

0.5

Figure 9.13: Molecular frame phase of H11 in the experiment (a), phase of the dipole of
HOMO only (b), phase of the dipole emitted from HOMO and HOMO-1 with a value of
R = 0.1(c), and phase of the dipole emitted from HOMO and HOMO-1 with a value of
R = 0.2(d)

part of the complex signal.
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Figure 9.14: Measured molecular frame signal in amplitude (top) and phase (bottom)
for various harmonics 8 (a,e),11 (b,f),12 (c,g) and 15 (d,h), with the molecular orbital
structure given on the left.
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Chapter 10

Conclusion and outlook

As discussed in the motivation of this thesis, high harmonic generation is a non linear process
of photon up-conversion to the VUV/X-ray region and as such, it depends on the microscopic
and macroscopic properties of the medium and laser. Microscopically HHG can be expressed
through a three step model, which we have used to investigate the electron wave packet in the
continuum and perform coherent, dynamical measurements on the structure of the molecules.
On the macroscopic level, we investigated the phase of emitted high harmonics as a function of
a delayed driving laser field.
We get access to the phase of the harmonics by an interferometric technique. We systematically
improved the technique. Two neighboring foci are produced in a very controlled way from the
same driving laser pulse. The harmonics emitted from these two coherent sources interfere in the
far field and the phase difference between these two harmonics beams can be extracted from the
interference . If one now changes the condition in one of the foci, e.g. by aligning the molecules in
the gas of delaying the laser pulse, the phase shifts of the harmonics resulting from the change,
can be measured precisely. By delaying one source in respect to the reference source, as previously
discussed in Chapter 5, the phase of higher orders scales linearly with the fundamental phase
∆φq = q ·∆φ, which we can expect out of the time-dependent picture stated in the experimental
chapter. In the experiment, we show a temporal resolution of 12.5 as with error estimates of 1 as
and produce two identical sources of HHG.
An important assumption here is that the rayleigh range of the laser is much bigger than the
size of the gaseous target and no macroscopic phase mismatches effects the result. When this
assumption could not be held in a thicker gas medium, we observed a macroscopic effect on the
retrieved phase of high harmonics.
Microscopically, the phase of emitted harmonics is influenced by the electron wave packet in
the continuum and the phase of the photoionization cross section. In Chapter 6, we performed
intensity dependent measurements of the harmonic phase, which relates directly to the phase of
the electron wave packet in the continuum. We have shown a good agreement between SFA theory
[21] and our measured intensity dependent phase, which is expressed in SFA with ∆φ = −αI.
However this is only matching calculations in the given intensity regime of 1.3·1014W/cm2. For
higher intensities, SFA overestimates the intensity dependence of the phase. For very strong laser
fields, we see very strong phase modulations, however, the phase differences result in α-coefficients
much smaller than the previously calculated coefficients of 10 or the measured coefficients of 5
at low intensities would suggest.
When considering a driving laser field with a small perturbation, given by a second harmonic,
we can observe phase manipulations to the the emitted harmonics as expected by SFA by a
electric field of the given intensities. The second harmonic purely acts as an perturbation to the
recombination step and does not affect the electron wave packet in the continuum to alter the
phase of the harmonics.
In the experiments of Chapter 7, we have shown from simple ellipticity dependent measurements
of HHG that we can reconstruct the double differential photoionization cross section of argon’s
valence shell. As we self-probe the atom with different electron energies, we can see the strong
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influence from its Cooper minimum at 40 eV. At this energy, the differential cross section not
only has a local minimum as observed in the collected harmonic spectra in Figure 7.7, but also
has a completely different angular distribution with β = 0, compared with an electron with
20 eV energy upon recombination. At this energy the photorecombination cross section has a
angular distribution following ≈ 3 cos2 θ. The recombination cross section for an electron with
40 eV is angle-independent, so that the relative yield of harmonics emitted from electrons with
this particular energy have a smaller ellipticity dependence in the experiment.
After reconstructing the double differential photoionization cross section of an atom with a very
strongly defined Cooper minimum, we investigate features of the photoionization cross section in
molecular nitrogen. The photoionization dipole is a complex entity, where the operation 〈Ψk|d|0〉
does not have a real eigenvalue. High harmonics enable us to measure the phase and amplitude
of the photoionization cross section. We can study it as a function of non-adiabatic alignment
in nitrogen. In the atomic target of argon, ionization is occurring from the 3p orbital with an
ionization potential of 15.76 eV, while it is safe to assume that we do not ionize from the lower
lying orbital of 3s with an ionization potential of 27.63 eV. However in molecular targets, this
gap is much smaller. In the experiment in Chapter 8, we studied the high harmonic generation
of nitrogen and resolved the molecular-frame dependent phase and amplitude by means of non-
adiabatic alignment. We are able to relate the high harmonic yield measured in the laboratory
frame as a function of time to the molecular frame dependent yield and phase of the observed
harmonic radiation. In the angle dependent phase and amplitude, we can observe features that
cannot be explained by the emission of harmonics produced by electrons out of the HOMO only,
but have to be explained by a coherent sum of harmonic emission from the HOMO and the next
lower lying orbital HOMO-1 with a gap of 1.3 eV to the potential of the HOMO. Using the
factorization of HHG, we can construct the molecular frame induced harmonic dipole with given
ionization rates and photoionization cross section, while accounting for the phase difference of
the electron wave packet in the continuum, due to the difference in ionization potential. The
measured and theoretical constructed dependencies match.
A very interesting molecule to study is a asymmetric top such as ethylene. In ethylene, the
alignment pulse excites rotations in the nutation angle θ and in the angle of intrinsic rotation χ
and we get access to these angles in the experiment. Ionization experiments [64] show features
from HOMO and HOMO-1 in the angle dependent ionization yield measurements. We extend this
study to the plane of single-photon ionization using HHG, where we can measure the complex-
valued cross sections. In the experiment, phase oscillations are small and, although collected
over a very long period of time, we are at the limit in the signal to noise ratio. With standard
errors in the 10 mrad range, statistical error bars are excellent, but systematic errors and the
absolute resolution of the device start to play a bigger role. Some of the delay dependent phase
measurements are still noisy and only one harmonic out of 7 shows a reasonable agreement with
the expansion in Wigner functions. For this harmonic we get an angle dependent complex dipole
moment that can be explained with supplied QRS calculations. When both HOMO and HOMO-
1 induced dipoles coherently add to a total dipole, we can successfully show the angle resolved
complex harmonic dipole for an asymmetric rotor.

In the future one can further improve the experimental setup. By using a longer wavelength,
we can get better energy resolution and commercial SLM’s are available for 1500 nm. To get the
best energy-resolution, one can use optical gating techniques to create a quasi-continuum in the
spectrometer that might enable the energy-dependent phase measurement in an in-situ optical
experiment, that is so far only possible with RABBIT-type measurements [54]. Unfortunately
both techniques will result in a reduced yield and statistics that will make the experiment harder.
A different weak spot of the measurements is the ability to resolve the interference pattern. Higher
resolution detectors like XUV-cameras are limited in the active area and are very expensive. To
solve this, one can still rely on MCP-detectors, but increase the distance between interaction and
MCP detector and/or decrease the distance between the two slits. Combining these techniques
might give further insights to different processes in HHG.
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Appendix

A.1 Linear regression of a complex entity

Describing a unknown Y as a function of x with coefficients β and an error ǫ

Y = xβ + ǫ (A.1)

we can define the solution β of the equation as

β =

∑

xiyi
∑

x2
i

=
XY

X2
(A.2)

which we can write as the quotient of covariance and variance of the system

β =
Cov(x, y)

V ar(x)
(A.3)

Using weights Ω, we can write the solution β

β = (X ′ΩX)−1X ′ΩY (A.4)

where Ω is a diagonal matrix with off diagonal terms = 0. The generalized least squares reduces,
with S =

∑

wiir
2
i , wii =

1
σ2
i

to

(X ′TwX ′)β = XTwY (A.5)

and the solution
β = (X ′TX ′)−1X ′TY ′ (A.6)

with X ′ = wX, Y ′ = wY where the goodness of the fit is given by χ2
red

χ2
red =

1

ν

∑ (O − E)2

σ2
(A.7)

where ν is the number of degrees of freedom ν = N − P , with N number of observations and
P number of fitted parameters. We can define 3 areas for χ2

red with χ2
red >> 1, where the fit

does not reflect the data, χ2
red = 1 where the fit represents the data with the given error bars

and χ2
red << 1, where the data is potentially over-fitted or the error bars overestimated. In our

experiments in Chapter 9 and Chapter 8, we collect a complex value Y and we have to solve a
complex linear regression, which we can as

Re(Y ) + iIm(Y ) = X · (Re(β) + iIm(β)) (A.8)

where Re(Y ) is the real part of the complex number Y and Im(Y ) is the imaginary part of the
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complex number Y . X is a set of independent linear vectors. We can now write a set of two
equations that only share the same X

Re(Y ) +X · ·Re(β) (A.9)

Im(Y ) = X · Im(β) (A.10)

Our weights can be calculated on the basis of complex numbers z = a + ib, where through
conversion we can write a = A cos θ and b = A sin θ. We get

∆a = (cos2 θ∆A2 +A2 sin2 θ∆θ2)0.5 (A.11)

∆b = (sin2 θ∆A2 +A2 cos2 θ∆θ2)0.5 (A.12)

and with θ ≈ 0, which is the case for ethylene, we can write

∆a = ∆A (A.13)

∆b = A∆θ (A.14)

A.2 Spot size measurements

As seen in Chapter 4, we are able to shape the laser focus with a spatial light modulator. We
showed symmetric spot sizes as a function of focus for various approaches. When interfering
Laguerre Gaussian beams with OAM, we were able to generate a double focus in space that
allows us to generate interference pattern in HHG to collect phases between the two harmonic
sources. However, due to the interference requirement, these spatially shaped foci have to be
aligned carefully. In Figure A.1, we did not properly align the incoming laser beam in respect to
the surface of the SLM and the resulting focus as a function of relative position is no symmetric.
One source is weaker than the other and the overall focus is not symmetric in respect to 0 mm.
However, if we switch to a phase mask on the spatial light modulator that does not shape the
focus through interference effects, but uses the approach of tilted beams as introduced in Section
4.2.1, we can measure a completely symmetric and balanced two source focus in Figure A.2. These
two focus projections were taken back to back and nothing was changed, except the exposure
and the phase mask on the SLM. Asymmetric Laguerre Gaussian beams [127] have been studied
in other fields of research. In the reported experiments, we carefully align the optical beam path
and carefully check that the two sources are equal, as seen in Figure 4.7 in Chapter 4.
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Figure A.1: Beam waist projection of a LG two source interference focus as a function of
CCD camera position in respect to the laser focus.
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Figure A.2: Beam waist projection of a tilted beam two source focus as a function of CCD
camera position in respect to the laser focus
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Figure A.3: Beam waist projection of a LG two source interference focus as a function of
CCD camera position in respect to the laser focus. A second harmonic is present. On the
left, a filter to block 392 nm light was installed and on the right, a filter to block 785 nm
light was installed.

A.3 Bending effects

As the delay between the two foci is changed, we observed a change in phase between the emitted
harmonics. On top of this change in phase, we observed a small change in pointing of the harmonic
beam. This change can be explained with Figure A.4, as it shows a gradient in the phase of the
focus light that depends on the delay between the two foci. This shows that even with the rather
big separation of 100 µm of our two foci of Gaussian beam waist 40 µm, our double slit is still
influenced by interference effects. However, they are small and the harmonic sources are affected
the same way at each delay.
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Figure A.4: Phase distribution in the focus as a function of delay between the two foci.
The two foci have a center of mass on the black line and as we change the delay, the flat
phase profile tilts down with a gradient pointing down. At a phase of π, the profile is flat
again and then points in the opposite direction as the delay is increased.

A.4 SLM efficiencies

When a grating like mask is applied, we create a diffraction effect in the reflected light that
results in a less efficient reflectivity. In the masks, used in Section 5, we create a mask of two
opposite tilted beams and add a phase value of 0 − 2π on top of one beam, while the second
beam has a phase of 0 rad. At a delay of π between, we create a grating like structure with steps
of π between adjacent arrays. When the grating is created, the intensity drops and the ion signal
as a function of time in Figure A.6a reduces at a value of 1900 as to its minimum.
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Figure A.5: (a) Collected ionization signal as a function of delay between the two harmonic
sources. As we increase the delay on the mask, we generate a diffraction grating with groove
jumps of π at a delay of 1800 as. The efficiency of the SLM is decreased. (b) compensating
with the intensity by increasing the value by up to 50%, results in a almost flat intensity
signal as a function of delay.
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Figure A.6: (a) Collected fringe signal as a function of delay between the two harmonic
sources. As we increase the delay on the mask, we generate a diffraction grating with
groove jumps of π at a delay of 1800 as. The efficiency of the SLM is decreased and
the brightness of harmonics reduced(b) compensating with the intensity by increasing the
value by up to 50%, results in a almost flat intensity signal as a function of delay.

A.5 Rotational Constants

Molecule A B C α⊥/αXX α‖/αZZ αY Y Spin ratio
N2 [45] 0 1.99824 0 1.45 2.38 0 2:1
C2H4 [128] 4.864 1.001 0.828 3.63 5.022 3.25 7:3:3

Table A.1: Rotational constants
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