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Abstract

The development of novel functional materials is a complex task, since the overall device
performance is based on a variety of adjustable parameters. Given that the functionali-
sation at the molecular level via chemical engineering plays an as important role as the
macromolecular arrangement in the bulk material, the question for an improvement of
current generation nanomaterials cannot be addressed solely by one research area, or by
either experiment or modeling. Therefore, this thesis presents complementary approaches
to understand both the microscopic and mesoscopic aspects of novel functional nanostruc-
tured materials. The common denominator is our goal to characterize charge separation
processes that drive the generation of electric currents in organic photovoltaic devices.

The relevant charge separation processes are often described in terms of the dissociation
of an exciton, i.e., a bound electron-hole pair which is created within the donor domain
of a donor-acceptor material. This process is highly sensitive to the material’s nanomor-
phology, e.g., in so-called bulk heterojunction architectures. Therefore, it is necessary to
investigate the effect of intermolecular interactions, both at the electronic-structure level
and within dynamical treatments. This applies both to quantum dynamical approaches
that are necessary at the shortest time scales, and to statistical methods that are suitable
to describe the longer-time evolution.

In order to study the initial exciton dissociation step which is often ultrafast and cohe-
rent, a combination of (i) high-level ab initio and time-dependent density functional theory
(TDDFT) electronic structure methods serving to parametrise a suitable model Hamilto-
nian, and (ii) the Multi-Configuration Time-Dependent Hartree (MCTDH) method and
its multi-layer (ML-MCTDH) variant have been used. The MCTDH method is a powerful
quantum dynamical method which typically allows the treatment of up to 100 full quan-
tum degrees of freedom; the hierarchical ML-MCTDH approach can even go significantly



beyond this. The parametrisation of the model Hamiltonians upon which the quantum dy-
namical treatment is based has been carried out for small fragments of the overall material.
These fragments are chosen such as to represent the relevant intramolecular and intermo-
lecular interactions, while allowing as far as possible a high-level ab initio characterisation
with electronic structure methods in a reasonable amount of time.

With the aid of these methods, two types of functional organic systems were studied.
First, a novel donor-acceptor material composed of self-assembled oligothiophene-perylene
block co-oligomers, synthesised and spectroscopically investigated in the groups of S. Haa-
cke and S. Méry at Strasbourg University. The quantum dynamical simulations done on
this system served to rationalize the results obtained from time-resolved pump-probe spec-
troscopy, and explain the lack of efficiency of this system. In particular, it could be shown
that after exciton dissociation, the electron and hole remain on adjacent donor and acceptor
molecules, leading to a spatial confinement of oppositely charged carriers and eventually
to recombination. Second, a model for the well-known P3HT-PCBM material, i.e., a com-
bination of poly(3-hexylthiophen-2,5-diyl) donor and [6,6]-phenyl C61 butyric acid methyl
ester acceptor, was studied. Building upon a lattice model that was previously developed
in our group, we focus here on the inclusion of charge transfer exciton states in the donor
domain. The importance of such charge-separated species in regioregular oligothiophene
assemblies has recently been highlighted in several experimental studies. Besides the de-
scription of the generation of charge-transfer excitons, our study is aimed at quantifying
the influence of these pre-dissociated electron hole pairs on the charge separation between
donor and acceptor species and on free carrier generation. This aspect of charge separation
at P3HT-PCBM heterojunctions is here studied for the first time.

A second-generation block-co-oligomer donor-acceptor system designed by the Stras-
bourg group is found to be more efficient than the first generation mentioned above, but
the charge transfer falls into a slower time regime around tens to hundreds of picoseconds.
Therefore, Kinetic Monte Carlo (KMC) methods were used to address the charge sepa-
ration process. To this end, a Fortran90 code has been developed, which uses the First
Reaction Method algorithm to solve the relevant master equation. Additional information
about the delocalisation of the exciton has also been integrated into the KMC code, beyond
conventional implementations. It has been found that this delocalisation effectively lowers
the energetic barrier for free charge carrier generation and hence, delocalisation raises the



overall power conversion efficiency. First simulations done with this code on idealised and
randomly generated donor-acceptor morphologies have been carried out successfully, yiel-
ding realistic values for microscopic observables like charge carrier mobilities. Furthermore,
simulations on a coarse-grained structure of the second-generation block-co-oligomer sy-
stem designed by the Strasbourg group have been carried out, in view of investigating
charge carrier mobility.





Zusammenfassung

Die Entwicklung von neuartigen, funktionellen Materialien ist eine komplexe Aufgabe,
da die Gesamteffizienz der zu entwickelnden Materialien von einer Vielzahl von Faktoren
abhängt. Während die auf einer molekularen Ebene durchgeführte Funktionalisierung via
chemischer Reaktionsführung genauso wichtig ist wie die makromolekulare Anordnung,
kann die Frage nach einer geeigneten Verbesserung von gegenwärtigen Materialien nicht
nur auf einer dieser beiden Ebenen beantwortet werden. Die in dieser Arbeit präsentierten
Ergebnisse basieren auf der mirkoskopischen aber auch markoskopischen Betrachtung von
neuartigen, funktionellen Nanomaterialien und den daraus gewonnenen Erkenntnissen. Das
übergeordnete Ziel ist dabei das Verständnis und die Charakterisierung von Ladungsse-
parationsprozessen und die daraus resultierende Erzeugung von elektrischen Strömen in
organischen photovoltaischen Materialien.

Die relevanten Ladungsseparationsprozesse werden oft im Kontext der Dissoziation von
Exzitonen, gebundenen Elektron-Loch Paaren, beschrieben, welche innerhalb der Donor-
domäne eines beliebigen Donor-Akzeptor-Materials erzeugt werden. Dabei ist der Prozess
der Exzitonengenerierung abhängig von der Nanomorphologie des entsprechenden Materi-
als, typischerweise so genannten Bulk-Heterojunctions. Dahingehend ist es notwendig, die
Effekte von intermolekularen Wechselwirkungen sowohl mittels quantenmechanischer als
auch dynamischer Methoden zu betrachten. Um alle relevanten Zeitskalen und Prozesse zu
betrachten ist es weiterhin notwendig, auf sowohl eine deterministische Darstellung im Rah-
men von quantendynamischen Methoden als auch statistischen Methoden zurückzugreifen.

Um die oft ultraschnellen und kohärenten Exzitonendissoziationsprozesse zu unter-
suchen wurde eine Kombination aus high-level ab initio Methoden und zeitabhängiger
Dichtefunktionaltheorie (TDDFT) angewandt, um geeignete Modellhamiltonians zu para-
metrisieren, welche schließlich mittels der Multi-Configurational Time-Dependent Hartree



(MCTDH) und der Multilayer (ML-MCTDH) variante propagiert wurden. Die MCTDH
Methode hat sich als geeignete Methode erwiesen um eine voll quantendynamische Be-
schreibung von bis zu 100 Freiheitsgraden durchzuführen; die ML-MCTDH Methode er-
laubt gar bis zu 1000 Freiheitsgrade quantendynamisch zu behandeln. Die Parametrisierung
der Modellhamiltonians, auf welchen die quantendynamische Behandlung basiert, wurde
dabei für kleine, jedoch repräsentative Fragmente durchgeführt. Die geeignete Wahl dieser
Fragmente sollte sicherstellen, dass zum einen alle relevanten intermolekularen als auch
intramolekularen Wechselwirkungen enthalten sind, jedoch gleichzeitig eine möglichst ak-
kurate Beschreibung mittels high-level elektronenstrukturtheoretischer Methoden in gege-
bener Zeit möglich ist.

Mit Hilfe dieser Methodenkombination wurden zwei Arten von funktionellen orga-
nischen Materialien untersucht. Das erste untersuchte System ist ein neuartiges Donor-
Akzeptor System, bestehend aus selbstorganisierenden Oligothiophen-Perylenediimid Di-
meren, welche in der Gruppe von S. Haacke und S. Méry der Universität Straßburg syn-
thetisiert und spektroskopisch untersucht wurden. Die quantendynamischen Simulationen
an diesem System sollten die Ergebnisse der experimentellen, zeitaufgelösten pump-probe
Spektroskopie validieren und die dürftige Effizienz im Hinblick auf eine effektive Ladungs-
trennung erklären. Dabei konnte gezeigt werden, dass nach der Exzitonendissoziation Elek-
tron und Loch auf räumlich benachbarten Donor- und Akzeptorfragmenten lokalisiert wer-
den, was schließlich zu einem Rekombinationsprozess führen wird. Das zweite untersuch-
te System ist eine Kombination von Poly(3-Hexylthiophen-2,5-diyl) (P3HT) als Elektro-
nendonor und [6,6]-Phenyl-C61 Butansäure Methyl-Ester (PCBM) als Elektronenakzeptor,
welches schon hinreichend stark in diversen theoretischen und experimentellen Studien un-
tersucht wurde. Aufbauend auf einem Gittermodell, welches in unserer Gruppe entwickelt
wurde, wurde das Modellsystem um Charge Transfer Exzitonen in der Donordomäne erwei-
tert. Die Bedeutung von solchen Charge Transfer Exzitonen in regioregulären Oligothio-
phenaggregaten ist ein aktuelles Thema in der Wissenschaft, sowohl in experimentellen
aber auch theoretischen Abhandlungen. Neben der theoretischen Beschreibung zur Entste-
hung solcher Charge Transfer Exzitonen liegt ein besonderes Augenmerk auf dem Einfluss
dieser predissoziierten Elektron-Loch Paaren auf die Ladungsseparationsdynamik zwischen
Donor und Akzeptor sowie die Generierung von freinen Ladungsträgern. Dieser Aspekt der
Ladungsseparation in einem P3HT-PCBM System wurde in dieser Art und Weise in dieser



Arbeit zum ersten mal untersucht.

Neben dem zuvor erwähnten Donor-Akzeptor System erster Generation der Universität
Straßburg wurde eine zweite Variante dieses Systems entwickelt, welches sich bei bisherigen
experimentellen Untersuchungen als wesentlich effizienter erwies. Der interessante Prozess
der Ladungsseparation ist dabei allerdings auf einer Zeitskala von mehreren hundert Piko-
sekunden angesiedelt, sodass kinetische Monte Carlo Methoden verwendet werden mussten
um diese Prozesse zu modellieren. Dazu wurde ein Fortran90 Code entwickelt, welcher den
First Reaction Method Algorithmus verwendet und explizite Delokalisationsprozesse be-
handelt, welche in dieser Form in kommerziellen Programmpaketen nicht enthalten ist. In
vorangehenden Arbeiten konnte gezeigt werden, dass die Delokalisation von Exzitonen zu
einer effektiven Herabsetzung der energetischen Barriere der Ladungsseparation führt und
somit die Effizienz zur Stromumwandlung gesteigert werden konnte. Erste Simulationen
mit diesem Code an idealisierten und zufällig generierten Donor-Akzeptor Morphologien
lieferten realistische Werte für makroskopische Observablen wie Ladungsträgermobilitäten.
Weiterhin wurden Simulationen einer coarse-grained Struktur zur zweiten Generation des
Donor-Akzeptor Systems durchgeführt, ebenfalls mit Hinblick zur Untersuchung der La-
dungsträgermobilität.
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1 — Deutsche Zusammenfassung

Der steigende Energieverbrauch der Weltwirtschaft sowie der immer weiter ansteigende
Gehalt an Kohlendioxid in der Atmosphäre und der damit einhergehenden Erderwärmung
hat zu einer verstärkten Wahrnehmung über die Folgen einer stark globalisierten und in-
dustrialisierten Welt geführt. Gleichwohl steigt das Interesse an der Verwendung und auch
die wirtschaftliche Umsetzbarkeit von regenerativen Energien im Alltag immer weiter an.
So sind Automobile mit einem Hybridantrieb, also einer Kombination aus konventionel-
lem Verbrennungsmotor und emissionsfreiem Elektromotor, aus dem heutigen Alltag nicht
mehr weg zu denken. Steigende Rohstoffpreise für fossile Brennstoffe sowie deren Verknap-
pung in naher Zukunft führen zu einem großen allgemeinen und wissenschaftlichen Interesse
an alternativer und emissionsfreier Energiegewinnung. Der Vorteil von regenerativer und
alternativer Energiegewinnung liegt in den geographischen Begebenheiten der jeweiligen
Länder begründet. Skandinavische Länder können ihren Energiebedarf beispielsweise mit
Hilfe von Wasserkraftwerken decken. Nationen an der Atlantikküste profitieren von den
starken Winden und sind theoretisch in der Lage, einen nicht unerheblichen Anteil des
Energiebedarfs durch Windkraft zu decken. Wesentlich wichtiger sind allerdings Länder
mit einer gleichbleibend starken Sonneneinstrahlung, aber niedriger industrieller Entwick-
lung, wie beispielsweise viele afrikanische Nationen. In dritte Welt- oder Schwellenländern
würde eine zuverlässige Energieversorgung ebenso der humanitären Lage helfen, als das die
Grundlagen für Kühlschränke, Wasseraufbereitung und die allgemeinen Hygienestandards
gegeben wären. Doch nicht nur industriell gering entwickelte oder Schwellenländer würden
von der Energiegewinnung durch Sonneneinstrahlung profitieren, auch hoch entwickelte
Nationen wie beispielsweise Singapur könnten davon profitieren. Die aktuelle Energiever-
sorgung Singapurs beruht zum Großteil auf der Verbrennung fossiler Brennstoffe, welche
zu 100 % importiert werden müssen. Nicht nur die immense Luftverschmutzung könnte
reduziert werden, auch könnte ein Großteil des Haushaltbudgets eingespart werden. Selbst
in hoch entwickelten Nationen spielt ein besseres Verständnis von funktionellen Materalien
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wie Solarzellen eine wichtige Rolle. So sind Smartphones aus dem heutigen Alltag nicht
mehr weg zu denken. Jedoch ist die Haltbarkeit von Akkumulatoren sowie deren Flexibi-
lität ein wichtiger Faktor im Design neuartiger Produkte. Dabei spielt das Verständnis der
grundlegenden Prozesse auf einem mikroskopischen und molekularen Niveau eine ebenso
große Rolle wie auf einer makroskopischen Skala.

Der Fokus dieser Arbeit liegt in der theoretischen Beschreibung ultraschneller Prozes-
se in halbleitenden, funktionellen Materialien mittels elektronenstrukturtheoretischer und
quantendynamischer Methoden. Um diese Prozesse und zugehörige Materialien zu studie-
ren, wurden hoch parametrisierte Modellhamiltonians verwendet, welche mit Hilfe von hoch
akkuraten Elektronenstrukturmethoden parametrisiert wurden. In den meisten Fällen wur-
de eine Methodenevaluation durchgeführt, welche aus einer Kombination aus verschiede-
nen Dichtefunktionalen und der wellenfunktionsbasierten Methode der algebraischen dia-
grammatischen Konstruktion zweiter Ordnung (ADC(2)) basiert. Die Herangehensweise
zur Methodenevaluation wurde schon erfolgreich in diversen Theoriearbeiten angewandt.
Die zeitabhänginge Schrödingergleichung, welche die dynamische Evolution eines quan-
tendynamischen Systems beschreibt, wurde anschließend mit der multikonfigurationellen
zeitabhängigen Hartree Methode (MCTDH) gelöst. Die MCTDH Methode wurde schon
erfolgreich im Zusammenhang mit dem Studium ultraschneller Prozesse und verschiede-
nen funktionellen Materialien angewandt und eignet sich vor allem zur Beschreibung der
kohärenten Kurzzeitdynamik, wie sie oft in funktionellen Materialien auftritt. Prozesse auf
längeren Zeitskalen, wie beispielsweise im Nanosekunden oder gar Millisekunden Regime,
können aufgrund des Ressourcenbedarfs quantendynamischer Methoden nicht untersucht
werden. Um trotzdem Informationen über die Langzeitdynamik und somit die mesoskopi-
schen Eigenschaften funktioneller Materialien zu erhalten, wurde die kinetische Monte Car-
lo Theorie verwendet. Dazu wurde ein Fortran90 Programm geschrieben, welches explizit
elektronenstrukturtheoretische Informationen wie den Effekt der Anregungsdelokalisation
beinhaltet. Die Behandlung von Delokalisation ist nicht üblich in kommerziell erhältlichen
Programmpaketen, stellt jedoch einen wichtigen Teil in der Beschreibung funktioneller Ma-
terialien dar.

Das erste Projekt dieser Arbeit bezieht sich auf eine Kollaboration mit der Gruppe von
Prof. Dr. S. Haacke der Universität Straßburg. Hier wurde eine neuartige Kombination
von Donor-Akzeptor System basierend auf einem Polyhexylthiophen als Elektronendonor
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und einem Perylendiimid als Elektronenakzeptor synthetisiert und mittels zeitaufgelöster
Pump-probe Experimente untersucht. Durch die kovalente Verbindung eines Elektronendo-
nors und Elektronenakzeptors spielt dieses System eine wichtige Rolle im Design neuartiger
Materialien für organische Halbleiter. Experimentell wurden hierbei zwei unterschiedliche
Spezies untersucht. Zum einen wurde das System isoliert in einem Lösungsmittel, zum
anderen an einer selbstorganisierten, flüssigkristallinen Phase untersucht. Die experimen-
tellen Ergebnisse zu diesen beiden Fällen zeigten unterschiedliche Dynamiken. Während
es im isolierten System in Lösung nach der Absorption eines Photons durch den Donor
zunächst zu einem resonanten Energietransfer auf den Akzeptor kam, war dieser Pro-
zess in der flüssigkristallinen Phase nicht detektierbar. Hier kam es direkt zur Erzeugung
von Ladungsträgern, was im isolierten System erst nach dem resonanten Energietrans-
fer geschah. Die beteiligten Prozesse gingen mit stark unterschiedlichen Zeitskalen einher,
was nun durch elektronenstrukturtheoretische und quantendynamische Methoden inter-
pretiert werden sollte. Aus den elektronenstrukturtheoretischen Rechnungen am isolierten
Donor-Akzeptor System geht hervor, dass es nach der Photoanregung auf dem Donor
zu einer Planarisierung im Thiophenrückgrat, was schon in anderen wissenschaftlichen
Arbeiten ähnlicher Systeme als wichtiger Bestandteil der Dynamik identifiziert werden
konnte. Ebenso konnten vermiedene Kreuzungen zwischen den beteiligten Zuständen iden-
tiziert werden, welche Teil der Ringatmungsmoden des Donors sind. Ein einfaches Mo-
dell zur Beschreibung der Dynamik des isolierten Systems in Lösung brachte vibratio-
nell aufgelöste Kohärenzbeiträge hervor, welche mit der Frequenz einer Ringatmungsmode
übereinstimmen. Elektronenstrukturrechnungen am System in einer flüssigkristallinen Pha-
se zeigten einen starken Unterschied in der Energetik, im Vergleich zum isolierten System in
Lösung. So ist nun der energetisch stabilste Zustand der ladungsseparierte Zustand, welcher
ausgehend von der Anregung auf dem Donor schnell populiert werden kann. Das Modell
zur Dynamik der flüssigkristallinen Phase beinhaltete zwölf Donor-Akzeptor Dimere mit
insgesamt 156 elektronischen Zuständen und 47 Kernfreiheitsgraden. Die durchgeführte
Dynamik reproduziert die experimentellen Ergebnisse, zudem sah man, dass hauptsächlich
eine Konfiguration populiert wird, bei welcher die Ladungsträger räumlich nahe beieinan-
der sind.

Das nächste Projekt dieser Arbeit betrifft regioreguläres Poly-3-Hexylthiophen (rr-
P3HT), welches sehr oft in modifizierter Form als Elektronendonor in organischen So-
larzellen verwendet wird. Aktuelle experimentelle Untersuchungen haben gezeigt, dass die
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typische Annahme eines Frenkel-Bildes, räumlich gebundener Elektronen-Loch Paare, nicht
universell zutreffend ist. In diesen experimentellen Untersuchungen wurden lang anhalten-
de Oszillationen beobachtet, welche Polaronpaaren zugewiesen wurden. Um dieses System
zu untersuchen, wurde ein Modellhamiltonian auf Basis von elektronenstrukturtheoreti-
schen Rechnungen sowie der spektralen Dichte des Systems parametrisiert. Die Verwen-
dung der spektralen Dichte im Rahmen des harmonischen Oszillatormodells erlaubt es, das
System ohne eine Vorauswahl an aktiven Koordinaten und somit einer eventuellen Beein-
flussung der Dynamik zu untersuchen. Der Nachteil der verwendeten Darstellung ist aller-
dings das Ignorieren von Anharmonizitäten, hervorgerufen durch gekoppelte Oszillatoren
sowie der gesteigerte Ressourcenbedarf durch eine wesentlich höhere Dimensionalität. Das
Vernachlässigen von Anharmonizitäten spielt auf sehr kurzen Zeitskalen allerdings keine
Rolle, sodass der verwendete Ansatz gerechtfertigt ist. Das komplette Modellsystem bein-
haltet somit drei rr-P3HT Monomere mit insgesamt 120 harmonischen Oszillatoren sowie
sieben elektronischen Zuständen, welche untereinander diabatisch-elektronisch gekoppelt
sind. Eine anschließende Auswertung der mit der Multilayer-Variante von MCTDH (ML-
MCTDH) durchgeführten Dynamik zeigte periodische Oszillationen sowohl in der Popula-
tionsdynamik als auch in der Dynamik der vibronischen Kohärenzen. Eine Analyse mittels
Fouriertransformation zeigt, dass der Einfluss der beobachtetetn Oszillationen stark von
der betrachteten vibronischen Kohärenz abhängt. Es konnte gezeigt werden, dass sowohl
die Normalmoden in der harmonischen Darstellung als auch die elektronischen Kopplun-
gen einen starken Einfluss auf die beobachteten periodischen Oszillationen haben. Zudem
konnte gezeigt werden, dass ein nicht unerheblicher Anteil der Population in ladungssepa-
rierte Zustände transferiert wird.

Das dritte Projekt basiert auf Erkenntnissen, welche aus der vorherigen Studie zur
photoinduzierten Dynamik in rr-P3HT gewonnen wurden. Dazu wurde das experimentell
und theoretisch bisher bereits gut untersuchte System bestehend aus rr-P3HT als Elektro-
nendonor und dem Fullerenderivat [6,6]-phenyl-C61 Butansäure Methyl Ester (PCBM) als
Elektronenakzeptor um intermolekulare ladungsseparierte Zustände in der Donordomäne
erweitert. Bisher ging man davon aus, dass nach der Absorption eines Photons, ein gebunde-
nes Elektron-Loch Paar an der Grenzfläche zwischen Donor und Akzeptor in freie Ladungs-
träger dissoziiert. Man ging bisher nicht davon aus, dass intermolekulare, ladungsseparierte
Zustände eine wichtige Rolle in der Erzeugung von freien Ladungsträgern spielen. Aus dem
vorherigen Projekt ist jedoch ersichtlich, dass solche Zustände sehr wohl möglich sind. Infol-
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gedessen wurde ein typischer Modellhamiltonian um diese Zustandskonfigurationen erwei-
tert und das Wellenpaket mittels MCTDH propagiert. Um die große Anzahl an Normalm-
oden zu reduzieren, jedoch die physikalischen Eigenschaften des Systems beizubehalten,
wurde eine Transformation der Normalmodendarstellung in die Effektivmodendarstellung
durchgeführt. Diabatische Elektronenstrukturrechnungen zur elektronischen Kopplung der
verschiedenen Zustände zeigten deutlich, dass zwischen der Konfiguration der gebundenen
Elektron-Loch Paare und den nicht gebundenen Elektron-Loch Paaren in der Donordomäne
eine starke Kopplung existiert. Der schlussendliche Modellhamiltonian beschreibt ein Mo-
dellsystem bestehend aus 12 rr-P3HT als Elektronendonor sowie einem PCBM Molekül
als Elektronenakzeptor, zusammen mit 112 Freiheitsgraden und bis zu 182 elektronischen
Zuständen. Die Analyse der elektronischen Populationen zeigte eindeutlich, dass zwar die
Effektivität zur Generierung freier Ladungsträger nicht stark beeinflusst wurde, das Zu-
standekommen dieser Populationen jedoch über einen anderen Mechanismus stattfindet als
bisher angenommen. So zeigten Simulationen des gleichen Systems ohne homomolekulare
Donor-ladungsseparierte Zustände, dass die Population von ladungsseparierten Zuständen
an der Donor/Akzeptor Schnittstelle wesentlich höher ist als mit homomolekularen Donor-
ladungsseparierten Zuständen. Diese Ergebnisse zeigen vor allem, dass zwar das allgemein
anerkannte und oft angewendete Frenkel-Modell zur Wellenfunktionsbeschreibung die kor-
rekte Dynamik in gemischten Donor-Akzeptor Solarzellen darstellt, der Mechanismus wie
es zur Erzeugung von freien Ladungsträgern kommt jedoch noch nicht eindeutig geklärt ist.

Der letzte Teil dieser Arbeit beschäftigt sich mit der Dynamik auf den langen Zeitska-
len und der mesoskopischen Beschreibung dieser Dynamik. Um diese statistischen Simu-
lationen durchzuführen wurde ein Fortran90 Programm zur Lösung der Mastergleichung
unter Verwendung des First Reaction Method (FRM) Algorithmus geschrieben. Weiter-
hin wurde explizit der Effekt der Exzitonendelokalisation über mehrere Fragmente be-
trachtet, was standardmäßig nicht in kommerziell erhältlichen kinetischen Monte Carlo
Programmen enthalten ist. Um eine geeignete Morphologie für die anschließende stati-
stische Behandlung im Rahmen des FRM Algorithmus zu erhalten, wurden verschiedene
binäre Elektronendonor-Elektronenakzeptor Mischungen erstellt. Zum einen wurden wohl-
definierte Morphologien erstellt, welche eine klar definierte Schnittstelle zwischen Donor
und Akzeptor vorweisen können, zum anderen wurden zufällig generierte Morphologien
mittels Energieminimierung des Ising Hamiltonians erhalten. Dies resultierte in zwei un-
terschiedlichen Strukturen, welche entweder über eine maximal phasenseparierte oder pha-
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senaggregierte Morphologie verfügten. Die Simulationen der idealisierten Donor-Akzeptor
Morphologien zeigten, dass es unter bestimmten Umständen möglich ist, ein idealisiertes
Elektronengas zu erzeugen, welches sich durch sehr geringe Beeinflussung durch die Cou-
lombkräfte der anderen Ladungsträger auszeichnet. So waren in diesen Simulationen die
Ladungsträgermobilitäten als Funktion der Teilchendichte untersucht worden. Die Ergeb-
nisse zeigten, dass die Ladungsträgermobilitäten sowohl für das idealisierte als auch reale
Elektronengas nahezu identisch sind. Für die Simulation der zufällig generierten Morpho-
logien wurden sowohl Einteilchensimulationen als auch Mehrteilchensimulationen durch-
geführt. Im Rahmen der Einteilchensimulationen wurde untersucht, wie sich die energe-
tischen Fluktuationen des Materials und die Temperatur auf die Exzitonendissoziations-
effizienz sowie Ladungsträgermobilitäten auswirken. Während der Einfluss der energeti-
schen Unebenheit und der Temperatur auf die phasenaggregierte Morphologie stark war,
so war dies nicht der Fall für die maximal phasenseparierte Morphologie. Eine Besonder-
heit der Ladungsträgermobilitäten konnte für die phasenaggregierte Morphologie entdeckt
werden, bei welcher für niedrige Temperaturen eine Frenkel-Poole-artige Abhängigkeit von
der Feldstärke beobachtet werden konnte. Die Mehrteilchensimulationen zeigten im phase-
naggregierte Fall, dass die Ladungsträgermobilität als Funktion der Teilchenanzahl stetig
abnimmt. Für die phasenseparierte Morphologie konnte hingegen beobachtet werden, dass
die Elektronenmobilität sowohl für das reale als auch ideale Elektronengas nahezu identisch
ist, was auf die strukturellen Besonderheiten der gegebenen Morphologie zurückzuführen
ist.

Zusätzlich zu Simulationen an idealisierten als auch zufällig generierten Nanomorpho-
logien wurden Ergebnisse aus einer Röntgenstrukturanalyse als auch Molekularmechanik
verwendet, um die zweite Generation einer kovalent gebundenen Donor-Akzeptor Dya-
de mittels statistischen Simulationen zu untersuchen. Um möglichst akkurate Parameter
für die anschließenden Simulationen zu erhalten, wurden Transferintegrale aufgrund von
elektronischen Strukturrechnungen bestimmt. Dabei stellte sich heraus, dass die Transfer-
integrale für den Elektronentransfer entlang der π-Stapelung der Akzeptormoleküle um
den Faktor 50 beziehungsweise 106 größer sind als entlang der nächst möglichen Transfer-
pfade. Aus dieser Betrachung lässt sich schlussfolgern, dass die dreidimensionale Simula-
tionsbox zu einem nahezu eindimensionalen Elektronentransferpfad reduziert wird. In den
anschließenden Simulationen zeigte sich, dass die Ladungsträgermobilität als Funktion der
Teilchendichte stetig zu nimmt. Dies lässt sich dadurch erklären, dass das Teilchen, welches
am nähesten zur Detektorelektrode ist, einen starken Schubeffekt der dahinter liegenden
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Teilchen spürt und somit in Richtung Detektorelektrode geschoben wird. In Kombination
mit dem hohen Transferintegral entlang der π-Stapelung ergibt sich somit ein nahezu ein-
dimensionaler Transferpfad durch das Nanomaterial.

Die im Rahmen dieser Arbeit erhaltenen Ergebnisse zeigen, dass die Dynamik photo-
generierter Exzitonen sowie der Prozess der Exzitonendissoziation ultraschnell sowie von
quanten-kohärenter Natur sind. Weiterhin konnte gezeigt werden, dass im Rahmen einer
stochastischen Behandlung die mesoskopische Anordnung von Donor- und Akzeptorpaa-
ren eine entscheidende Rolle in der Dynamik der Ladungsträger spielt. Die Ergebnisse
können daher als Grundlage für eine weitergehende Behandlung ultraschneller Prozesse in
funktionellen Materialien im Hinblick auf eine multiskalen Modellierung dienen.
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2 — Introduction

What Took You So Long?

Kazuhira Miller

In recent years, the cost of fossil fuels has experienced a major increase. For example,
the price of imported raw oil rose from 65 Euro/tSKE in 1995 to 441 Euro/tSKE in 2012
[1]. Unfortunately, not only the cost of fossil fuels has risen, the greenhouse effect became
a major problem [2]. Therefore, in order to reduce the effects of global warming caused
by the greenhouse effect, alternative and regenerative energy sources have become a topic
of major interest [3, 4]. Due to geological and meteorological constraints, the availability
of the different regenerative energy sources depends on the country it is supposed to be
used. Norway for example has huge ressources to cover its energy needs by hydrodynamic
power. In fact, Norway is the only industrialised country that is able to cover its total
energy expenses by hydrodynamic power [5, 6]. On the other hand, solar energy has a lot
of potential, especially in countries with a high rate of solar radiation. In the beginning of
the developement of solar cells based on silicon, the energy-to-power conversion efficiency
was rather poor. Since then, a lot of progress has been made and typical solar cells based
on inorganic compounds can reach peak efficiencies of 45% [7]. The drawback of these
solar cells is the production cost due to the demand of high purity of the base material, i.e.
silicon [8]. On the other hand, photovoltaic devices made up from organic compounds have
emerged as a cheaper alternative in recent years [9–11]. Due to intense research conducted
to organic photovoltaic devices, dramatic increases in the power conversion efficiency could
be made and organic solar cells are now an affordable alternative to silicon based devices.
Furthermore, organic functional materials are also important for electronic devices such as
transistors, since such devices can be build on a molecular scale, rather than on a nanoscale,
as it is typical for silicon based functional materials [12].
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Figure 2.1: Overview over the field of applications for functional materials. Taken from
reference [13].

A scientific understanding of the functionality of these materials is of crucial importance
in order to build more efficient devices. The research for these kind of materials is going
into a variety of directions, ranging from the correlation between morphology and efficiency
to the molecular properties of the individual building blocks [14–19]. The aim of this work
is to provide an insight into the aforementionend correlation between the structure of the
functional materials and the properties resulting from that. To reach that goal, differ-
ent methods have been employed to study the photophysical properties of typical organic
functional materials. While the short time dynamics shortly after photoirradiation are
dominated by quantum effects and coherent processes, suitable model Hamiltonians have
been parametrised by high level electronic structure calculations. The dynamical treat-
ment has been done with the aid of the Multiconfigurational Time Dependend Hartree
(MCTDH) method in the multilayer formalism. Amongst others, a new type of donor-
acceptor (DA) co-polymer, experimentally developed and investigated in the group of S.
Haacke from Strasbourg University, has been investigated with the before mentioned com-
bination of methods. The novel DA system consists of a bis-thiophene derivative as an
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electron donor and a perylene-diimide derivate as an electron acceptor. As a special point
of emphasis, the correlation between the liquid crystal (LC) structure and the resulting
photophysical properties have been investigated. The second project covered in this thesis
is based on recent experimental results on regioregular poly-3-hexyl-thiophene (rr-P3HT),
where periodic time resolved signals have been attributed to long lived polaronic species.
This particular point of view leads to a new perspective when investigating functional
materials, since so far the appearance of polaronic signals in the standard Frenkel-type
description of organic semiconductors is not very common. The third project is tied up
to the second project, as the results from the investigation of RR-P3HT have been con-
nected to investigations covering a rr-P3HT domain as an electron donating unit and a
[6,6]-phenyl-C61-butyric-acid-methyl-ester (PCBM) molecule as an electron accepting unit.
The combination of P3HT/PCBM is an extensively studied organic solar cell, both on the
theoretical and experimental side [20–23]. In previous theoretical investigations, the ap-
pearance of polarons within the P3HT donor domain have been neglected. Therefore, a
typical model Hamiltonian describing the photophysical properties of a P3HT/PCBM sys-
tem has been used and extended to treat also polaronic effects within the P3HT domain.
The last project covers the long time dynamics and statistical methods in the framework
of a given bulk heterojunction (BHJ) nanomaterial. Specifically for this topic, a kinetic
monte carlo algorithm has been implemented into an efficient Fortran90 code, which should
enable to do first simulations on functional BHJ nanomaterials. As a result of the quantum
mechanical nature of such materials, delocalisation effects have been incorporated explicitly
into the program. In order to obtain a suitable and experimentally comparable observable,
the charge carrier mobility has been calculated as a function of particle density in the
system, both for idealised BHJ morphologies as well as randomly generated morphologies.

The thesis is organised as follows. First, a general introduction to the understanding of
organic photovoltaic devices will be given. Along with a phenomenological description of
the different processes in such materials, the basic equations to treat these processes will be
given and explained. Then, the theoretical background behind the applied methods will be
explained and the advantages and disadvantages of the different calculation schemes will
be emphasized. The last part of the thesis covers the results obtained for the four studied
topics, with the aim of understanding the principle processes following the photogeneration
of an exciton and the subsequent processes.
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3 — Energy & Charge Transfer in
Organic Polymers

The purpose of this chapter is to explain the basic principles of organic photovoltaic de-
vices and their associated properties and characteristics. The first section will provide a
general overview over the field of organic photovoltaic devices. Furthermore, the different
morphological realisations of these devices will be presented and discussed.

The second section will deal with the generation of bounded electron-hole pairs after
photoexcitation, so called excitons, and their dissociation into free charge carriers at a
donor-acceptor interface. Along these lines, the physical and mathematical treatment of
these processes will be viewed from different perspectives. Depending on which aspects
of the system one is interested in, one can either use a detailed molecular approach or a
coarse grained approach, which neglects the microscopic details, but allows the treatment
of an entire nanoscale domain.

The third and last section is about the theoretical treatment of these dynamical phe-
nomena, either at a quantum level or within a molecular site based representation. There-
fore, different theories will be introduced which, by the end of the day, describe the same
dynamical phenomena, yet from different perspectives.

3.1 Organic Photovoltaic Devices

Organic photovoltaic devices have become a promising alternative to conventionally used
silicon-based solar cells. The main drawback of conventional silicon-based organic photo-
voltaic devices is their production cost. In order to obtain an efficient photovoltaic cell
made of silicon, one needs natural resources of very high purity, with a maximum percent-
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age of impurities below 0.01 % [24]. This quality standard is called solar grade silicon. In
order to obtain such clean silicon one needs a huge amount of energy. Usual methods for
the purification process are the Czochralski process [25] and the Siemens process [26].

The Czochralski process requires as an input resource already silicon of very high pu-
rity. The input ressources are then melted inside a quartz crucible at around 1400 degrees
Celsius. Afterwards, a seed crystal is dipped into the molten silicon and slowly pulled
upwards. By controlling the rotation of the mounted seed crystal around its own axis and
the speed at which the crystal is being pulled out of the liquid, it is possible to obtain a
large single-crystal made of very pure silicon [27].

Figure 3.1: Overview over a wide variety of organic & inorganic solar cells and their
efficiencies. Taken from reference [7].

Today’s best known process for obtaining solar-grade silicium is the Siemens process.
Here, metallic silicon is treated with gaseous hydrochlorid acid, which forms liquid trichlor-
silane at a temperature of 600 K. Afterwards, a chemical vapor deposition technique is ap-
plied by which the liquid trichlorsilane is vaporised at 1400 K and blown over pre-existing
silicon seeds. This procedure can be repeated over and over again, until the desired purity
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of the silicon is achieved.

One can imagine that the energy consumption of these methods to produce solar grade
silicon is very high. A promising and cheaper alternative for photovoltaic devices are solar
cells based on organic compounds. At the beginning of the development of solar cells based
on organic compounds, these materials had an efficiency of below 5%. Due to intense re-
search an immense progress was made during the last decades and todays organic-based
solar cells reach efficiencies of up to 20%. In comparison to that, most silicon based solar
cells reach efficiences of about 25%.

Figure 3.1 shows a comparison of the efficiencies of different solar cells made of differ-
ent materials. Comparing the orange and blue traces, one can see that the advances of
crystalline silicon became smaller and smaller. One reason for the increase in efficiency
of the organic solar cells are new morphological realisations of these cells. In contrast to
silicon-based solar cells, which consist only of silicon as a material, typical organic solar
cells consist of at least two different compounds, one of which is an electron donating ma-
terial and one which is an electron accepting material. Hence, there also exist different
realisations of the morphological appearance of organic solar cells [28].

Donor
Acceptor

a) b)

Donor 
& 

Acceptor

Figure 3.2: Schematic illustrations of two different morphologies of donor/acceptor solar
cells. a) Bilayer morphology with a clear phase separation and b) Bulk-Heterojunction
(BHJ) morphology with intermixing donor/acceptor phases and larger interfacial area.

Figure 3.2 shows a sketch of two representative morphological realisations of organic
donor-acceptor solar cells. Figure 3.2a shows the simplest approach when combining an
electron donating material (blue) and an electron accepting material (red), resulting in a
bilayer solar cell. Figure 3.2b shows a sketch of a so-called Bulk Hetero-Junction (BHJ)
solar cell. Here, the donor (blue) and acceptor (red) materials are strongly mixed, which
leads to an increase of the donor-acceptor interface. This results in an increased efficiency
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for BHJ solar cells compared to the bilayer approach. In both figures, the grey area repre-
sents the cathode and anode, respectively.

The first organic solar cells exhibiting a bilayer morphology were produced by Tang et
al. in 1986, which used copper phthalocyanines and a perylene tetracarboxylic derivative
combined to a bilayer solar cell [29]. During the next few years, the efficiency of these
materials increased steadily by finding new combinations of organic compounds for the
fabrication of bilayer solar cells. In 1992 it was shown that the electron transfer from con-
jugated polymers to fullerenes is very effective [30]. However, the bilayer morphology of
the constructed solar cells was limiting the power conversion efficiency due to poor exciton
dissociation efficiencies and various other reasons. The most important reason was that
the free diffusion length of the excitons (of the order of 10 nm) was smaller than the width
of the domain size of the electron donating material. This leads to the effect that only
excitons which were generated near the donor/acceptor interface were able to dissociate
into free carriers. To overcome these drawbacks, Yu et al. strongly mixed the donor and
acceptor areas in order to increase the donor/acceptor interfacial area [31]. This reduced
the average distance the excitons have to travel until they reach the interface and the
exciton dissociation effiency was enhanced drastically. Much research is conducted to the
exploration of different processing techniques in order to enhance the interfacial area and
mixing of the donor and acceptor phases to further enhance exciton dissociation efficiencies.

After a brief overview over the different morphological realisations of donor-acceptor
BHJ nanomaterials, the key steps in the generation of free charge carriers from exciton
diffusion and dissociation will be explained in the following.

Figure 3.3a shows a schematic representation of the charge carrier generation in a typical
BHJ morphology. Here, red is the electron donating material and blue is the electron
accepting material. The different processes leading to the generation of free charge carriers
can be broken down into four steps:

1. After irradiation by light, a localised (or partially delocalised) electron-hole pair –
i.e., an exciton – is created in the donor material.

2. Through random exciton diffusion the exciton pair eventually reaches the donor/acceptor
interface.
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Figure 3.3: Working principle of a BHJ solar cell. a) Cartoon of a BHJ solar cell with a
percolation network connecting the donor phase (red) to the anode and the acceptor phase
(blue) to the cathode (both not shown here). b) Bound electron-hole pair (exciton) after
photoexcitation of the donor phase. c) Generation of free charge carriers upon exciton
dissociation and transfer to the respective electrodes.

3. At the interface, the exciton can dissociate into electron (orange) and hole (green).

4. Both types of carriers remain in their respective domains, i.e. the electron will be
transported in the acceptor material (blue) whereas the hole will be transported in
the donor material (red).

Due to different work functions of the respective electrodes (i.e. cathode and anode) or
the application of an external electric field, the electrons will diffuse towards the cathode
whereas the holes will diffuse to the anode.

Figures 3.3b and c show a more detailed description in terms of molecular energy levels
of the processes after photoirradiation. As it has been pointed out above, a bound elec-
tron/hole pair is created in the donor material after photoexcitation. Within an energy
level type description, one can say that the hole is located on the donor’s highest occu-
pied molecular orbital (HOMO), while the electron is associated with the donor’s lowest
unoccupied molecular orbital (LUMO). If the exciton reaches the donor/acceptor interface
((3) in figure 3.3 a)), the bound electron-hole pair will dissociate into free charge carri-
ers. Therefore, the electron will be transferred from the donors LUMO to the acceptors
LUMO, while the hole remains in the donors HOMO. The charges will then hop between
the different HOMO/LUMO levels of different donor/acceptor molecules until they reach
the respective electrode. As shown in figure 3.3c, the respective charge carriers will be
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collected at the electrodes, upon which a current can be measured.

Within this chain of processes, there are also several loss mechanisms associated with
the exciton and the free charge carriers, which will reduce the power conversion efficiency.
Notably, losses occur due to the following effects:

- Delayed dissociation of the exciton, i.e., a significant portion of the excitons may
not reach the interface and will eventually recombine. This factor can be controlled
by tuning chemical design, and by optimizing the donor domain size, i.e. creating
highly dispersed donor/acceptor mixtures and hence, increasing the donor/acceptor
interfacial area as in BHJ architectures.

- Depending on the material, exciton migration across the donor/acceptor interface
may occur. That is, after the exciton has reached the interface, it will not dissociate
into electrons and holes, but the bound electron-hole pair will be transfered from the
donor to the acceptor. Since there is no driving force anymore to separate electrons
and holes due to the energetically lower lying nature of the HOMO and LUMO on
the acceptor (see also figure 3.3b & c), the exciton will eventually decay without
being dissociated.

- A third loss mechanism relates to recombination at the interface. After the exciton
has dissociated at the interface, the electron and hole remain coulombically bound
to each other. This opens the pathway to geminate recombination, where electron
and hole will recombine into the ground state.

Even though much research has been done in order to reduce the loss mechanisms as-
sociated with BHJ morphologies, there is still a lot of work to do, as can be seen by the
huge gap in power conversion efficiencies between standard organic solar cells (orange in
figure 3.1) and multijunction cells (purple in figure 3.1).

As it has been pointed out earlier, the morphology of the donor and acceptor phases
is crucial for an efficient device performance. Various types of nanomorphologies have
recently been explored, including highly ordered (regioregular) domains and covalently
bound block-co-oligomer architectures [32–34]. With regard to the latter direction, our
collaboration partners at the University of Strasbourg have designed perylenediimide-based
donor-acceptor co-oligomers which form highly ordered lamellar mesophases, enhancing
exciton dissociation and charge transport to the electrodes [35, 36].
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3.2 The Generation of Excitons and Charges

The previous section was dealing with the overall device characteristics of organic photo-
voltaic cells and the impact of the morphology on the device performance. In this section I
will focus on a more in-depth characterisation of the fundamental processes in the material
and the definition of excitons and charge transfer states.

When a molecular crystal is irradiated with light, it absorbs a photon which is in res-
onance with the energy gap between the HOMO and LUMO. Therefore, an electron is
promoted from the HOMO level to the LUMO level, leaving an unpaired electron and a
hole behind in the HOMO while the other electron is now located in the LUMO. This state
is called an excited state in a molecular context, or in the framework of semiconductors,
an exciton. An exciton is an electrically neutral quasiparticle in which the excited electron
and the resulting hole are bound to each other via Coulomb attraction.

HOMO

LUMO

a) b) c)

+

-

-
+

Figure 3.4: a) Molecular energy levels before (left) and after (right) photoexcitation,
creating a bound electron-hole pair. b) Schematic illustration of an exciton on a molecular
lattice. Electron and hole remain bounded by Coulomb forces. c) Charge transfer state,
where electron and hole are not bound anymore and act as independent particles.

Figure 3.4 shows a sketch of the process after photoexcitation (a) as well as a cartoon of
an exciton and a charge transfer state (b & c). Figure 3.4 a) shows a sketch of the creation
of an exciton. Irradiation of a neutral molecule or molecular crystal with light results in the
creation of an exciton. Excitons, as an electron hole pair, can move through a molecular
system and hence, transport energy. From the sketch in figure 3.4b it is evident that an
exciton can have different sizes. These sizes are determined, amongst other factors, by the
dielectric constant of the medium. As for photovoltaic devices made of organic molecules,
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the dielectric constant is small and thus, the size of the exciton is rather small and confined,
usually limited to several molecular units within the donor or acceptor domain. In such a
case, one speaks of Frenkel excitons [37]. Figure 3.4b shows a case in which the exciton
is spread over a small number of monomers. Within the Frenkel picture, delocalization is
accounted for by coherent superpositions of site-local electron-hole pairs.

If the exciton reaches a donor-acceptor interface, it is able to dissociate into free charge
carriers. In between those two cases, i.e. a localised and bound electron-hole pair and
free electron and hole, an intermediate state is formed. This intermediate state is usually
called interfacial charge transfer state (or charge transfer state, or else interfacial charge
transfer exciton). In a charge transfer state, electron and hole occupy adjacent donor vs.
acceptor molecules. This is shown in figure 3.4c. Here, the electron and the hole remain
strongly coupled, due to their spatial proximity. A Coulomb barrier has to be surmounted
to separate the interfacial charge transfer state into free carriers.

As discussed in the recent literature [38], charge transfer states not only occur at the
donor/acceptor interface, but can also be generated in a pure donor domain. If this pre-
dissociation happens close to the donor/acceptor interface, it may increase the exciton
dissociation efficiency and hence, increase the overall power conversion efficiency. This
effect may also reduce the loss processes such as exciton recombination and charge recom-
bination.

The transfer of excitons within a given material can be described at different levels of
description:

- full quantum dynamical level, using the MCTDH method mentioned above. Our
recent study in reference [39] is an example of this – computationally very expensive
– approach;

- hopping type transfer, relying on Förster theory applied to neighboring sites [40, 41];

- diffusive transport, relying on diffusion equations for longer length scales [42].

In the following, we briefly comment upon the second and third approaches, which are
used in standard treatments.
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The Förster resonance energy transfer (FRET) type description of excitation transfer
is based on a molecular description involving Coulomb couplings and the spectral overlap
between two molecular aggregates [40, 43]. This approach is suitable if one is interested in
the behaviour on small length scales, but coherent effects intrinsic to the quantum regime
are neglected. If one is interested in the simulation and modeling of complete photovoltaic
devices, it is more suitable to think in terms of a diffusion type process, where one can use
classical equations. Figure 3.5 shows a sketch of the molecular based FRET process and a
macroscopic diffusion type process.

a) b)

Molecule A Molecule B

Figure 3.5: Cartoons of different exciton transport mechanisms. a) A FRET processes
between molecule A & molecule B. b) Diffusion type process, where the exciton diffuses
through a molecular lattice.

The FRET process shown in figure 3.5a is based on a molecular description. Here,
molecule A is in the excited state whereas molecule B is in the ground state. If the exciton
located on molecule A recombines into the ground state, it emits a virtual photon of
wavelength λ. If the wavelength of this virtual photon is in resonance with the energy gap
between the HOMO and LUMO level of the acceptor, an excitation on that molecule will
occur. Hence, the excitation energy has been transferred from the donor molecule A to the
acceptor molecule B.

In contrast to this molecular orbital type description, figure 3.5b shows a diffusion type
process of excitation energy transfer within a given macromolecular assembly. Here, the
excitation can be localised or delocalised over various fragments and the diffusion of the
excitation obeys ordinary diffusion equations known from classical mechanics.

The computational modeling of exciton diffusion in nanoscale BHJ materials is of crucial
importance to simulate the overall device performance. Since excitons are the precursors of
free charge carriers, exciton diffusion and its associated time and length scales have to be
modeled appropriately. In recent literature it has been shown that a FRET type descrip-
tion and a diffusion type description of exciton migration within a given material yields
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the same results in terms of exciton dissociation efficiency and exciton diffusion length
[44]. However, it has also been shown that the distribution of the exciton lifetimes for a
given BHJ material is not constant, but it follows an exponential distribution. Simulations
taking this behaviour into account are able to explain the too high exciton dissociation
efficiency usually obtained in statistical simulations such as KMC [41].

After the exciton has reached the donor/acceptor interface, it can dissociate into free
charge carriers. As mentioned above, before the free charge carriers are formed, an inter-
mediate state is created, which is usually called a charge transfer state. Here, electron and
hole are located on different fragments, but they still remain close to each other. From
figure 3.3b & c one can see that the energy level of the electron accepting material is lower
than the energy level of the electron donating material. Hence, it is energetically favourable
that the electron is transferred from the donor to the acceptor. Recently it could be shown
that the higher the energy of the initially created charge transfer state (also called “hot”
charge transfer state), the higher the exciton dissociation efficiency [45, 46]. Not only is
the exciton dissociation efficiency influenced by the energetics of the charge transfer state,
but also the overall process of charge separation. Charge separation takes place if the elec-
tron and hole can be treated as separate particles. Usually one refers to charge separated
states as soon as the charges overcome the Coulomb barrier or reach a material dependent
spatial separation. The process of charge separation does not only depend on the gain in
energy upon exciton dissociation, but also depends on the external and internal electric
fields, molecular arrangements and the associated transfer efficiencies [47–49]. If the step
between the creation of a charge transfer state and subsequent charge separation is not
efficient enough, recombination between the two attracting charges will take place, which
will ultimately lead to a loss process. If charge separation has occurred, the transfer of the
charges depends on multiple material dependent properties and again, different theories
can be applied to describe these process.

Figure 3.6a shows a sketch of the correlation between the structural order of the BHJ
nanomaterial and the associated charge carrier mobility and the theory best suited to
describe the charge migration. For low structural order (and hence, a large energetic dis-
order), one is within the hopping regime of charge migration [50]. Here one can apply
classical theories such as Marcus theory or semi-classical theories such as Marcus-Levich-
Jortner theory. As the name implies, in this regime the charges are localised on specific
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Figure 3.6: a) Correlation between the structural order of a BHJ nanomaterial and the
associated charge carrier mobility. b) Theories describing the structural disorder of a given
system.

molecular sites due to the low structural order and charges are hopping between the differ-
ent sites. For high structural order (and hence, a low energetic disorder), the wave function
of the charge carrier is delocalised over various fragments and hence, one has a coherent
or band-like transfer [51]. The charge can move mostly without any obstacles and charge
carrier mobilities are very high. This is the regime pertaining to inorganic semiconduc-
tors. Figure 3.6b shows a summary of the two limiting regimes describing either a hopping
transport or a band-like transport.

Although it may sound as if only the band-like regime allows for large charge carrier
mobilities, this is not the case. In real organic photovoltaic devices, and most noticeably
BHJ nanomaterials, there are domains with high and low structural disorder caused by the
huge flexibility of the large molecules. This leads to the result of domains in the material
where one has to use either theories explaining the transfer within the hopping regime on
long time scales or theories that explain the transfer within the band regime – involving
quantum coherent transport – on short time scales. Hence, in order to fully understand
the mechanisms in organic photovoltaic devices, one has to employ multiscale modeling
techniques that cover both extreme ends of the time scales [52–54].

3.3 Theoretical Description of Exciton & Charge Trans-
port

As pointed out in the previous section, in order to gain an overall understanding of the
fundamental processes taking place in organic BHJ nanometerials, it is inevitable to con-

27



3 — Energy & Charge Transfer in Organic Polymers

sider not only the dynamics on short time scales, but also the behaviour on longer time
scales. The problem is that there are many different processes happening on different time
scales and even single processes like charge transport contribute to different time scales
and length scales. From a molecular point of view, the transport of excitation energy is
usually described within a kinetic description in terms of a FRET [40] process, as pointed
out in the previous section. The FRET transfer rate is given as

kFRET = 1
τ

(
R0

r

)6
(3.1)

with

R6
0 ∝

∫ ∞
0

FD(λ)εA(λ)λ4dλ (3.2)

Equation 3.1 states that the rate for excitation energy transfer depends on the inverse life-
time of the donor state as well as a term depending on a system specific “Förster radius”
R0, which is shown in equation 3.2. The latter term is proportional to the overlap of the
fluorescence (or emission) spectrum of the donor (FD(λ)) and the absorption spectrum
of the acceptor (εA(λ)). Hence, in order to have an efficient excitation energy transfer,
the molecules have to be spatially close to each other and their respective energy gaps for
donor flourescence and acceptor absorption have to be of the same order of magnitude.
Equation 3.1 can readily be employed in large scale methods such as molecular dynamics
or KMC simulations. When dealing with small systems and short length scales, quantum
effects play a non-negligible role and one has to use more appropriate methods.

Usually one employs Hamiltonian based methods and resorts to a site-based Hamilto-
nian, [55–57].

Ĥ = ε
∑
n

a†nan + J
∑
n

(
a†nan+1 + a†n+1an

)
(3.3)

Equation 3.3 is a typical Hamiltonian to treat the exciton transfer on a lattice within a
quantum mechanical framework. Here, ε is the energy of the exciton in the molecular
system, a†n (an) is the creation (annihilation) operator of an exciton at molecular site n,
written in terms of second quantisation. The second term describes the transfer of an ex-
citon from one site to its neighbor, mediated by the coupling J . In a quantum mechanical
representation, the exciton transfer is mediated by the coupling of the individual transi-

28



Theoretical Description of Exciton & Charge Transport

tion dipole moments. Note that the Hamiltonian shown in equation 3.3 is representend
in a purely electronic picture. This representation can be extended with electron-phonon
couplings, introducing additional terms, which will result in a more detailed representation
of the molecular properties. The introduction of phonon modes and electron-phonon cou-
plings will influence the energetic landscape of the system under study. The reason is that
modified resonance effects will appear, along with dynamically trapped molecular sites and
energy barriers in the energetic landscape, requiring the description of exciton transfer on
different time scales.

The theoretical treatment of electron transfer within a classical framework is usually
done by Marcus theory [58]. Here, one assumes that the electron is transferred from a
spherical donor to a spherical acceptor molecule, which is mediated by a classical inter-
molecular coordinate, or polarization coordinate [59–61]. Along with these assumption and
some mathematical operations, one obtains for the Marcus transfer rate

kij = 2π
~
J2
ij

√
1

4πkBT
exp

(
−(∆G0 + λ)2

4λkBT

)
(3.4)

Here, the transfer of a charge from molecule i to j depends on the electronic coupling Jij
between the two molecules, the temperature T , the difference in Gibbs free energy ∆G0 and
the reorganisation energy λ. Pictorially, this can be represented as shown in the graphical
representation of Figure 3.7.
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Figure 3.7: a) Classical Marcus-Theory, where a charge is being transported from the
reactant to the product. Additionally, the reorganisation energy λ and the Gibbs free
energy ∆G0 are shown. b) Correlation between normal region and inverted region with
the associated Gibbs free energy. c) Semi-classical Marcus-Levich-Jortner-Theory including
the splitting of the final accessible product state into several states.

29



3 — Energy & Charge Transfer in Organic Polymers

Figure 3.7a illustrates classical Marcus theory, where a charge is being transferred from
a reactant R to a product P . The magnitude of ∆G0 as compared with λ plays an im-
portant role in classical Marcus theory [62]. If the value of ∆G0 is smaller than λ, then
the rate increases as |∆G0| increases. In a Marcus-type transfer, one usually refers to that
kind of behaviour as the normal regime, see also figure 3.7b. As soon as |∆G0| is larger
then λ, the transfer rate decreases again with increasing |∆G0|, which is called inverted
regime. The reason for this behaviour is that the intersection between the two parabolas
associated with P and R moves upwards with increasing |∆G0| and hence, the activation
energy for the reaction becomes higher.

An extension of the classical Marcus theory is the semi-classical Marcus-Levich-Jortner
theory [63], pictorially represented in figure 3.7c. Here, one assumes that the charge transfer
is coupled to a low-frequency intermolecular classical coordinate as well as to a high-
frequency intramolecular coordinate. By imposing that one has a single initial state but
several final states, indicated by the vertically spaced energy levels in figure 3.7c, one has
several possible pathways to charge transfer, instead of only a single pathway in classical
Marcus theory.

As an analogue to the classical (or semi-classical) representation of charge transfer given
in the Marcus-Theory and Marcus-Levich-Jortner-Theory, several model Hamiltonians for
a quantum description have been developed. In particular, the Su-Schrieffer-Heeger (SSH)
[64, 65] Hamiltonian has been succesfully used to describe charge phenomena in molecular
crystals.

Ĥ = M

2
∑
i

ẋ2 + k

2
∑
i

(xi+1 − xi)2 −
∑
i,σ

ti+1,i
(
c†i+1,σci,σ + h.c.

)
(3.5)

Here, the first term is the kinetic energy of the nuclei, expressed in terms of the time-
derivative of the coordinates, also called group displacement in the context of poly-acetylene.
The second term is the potential energy associated with a bond deformation in an harmonic
approximation, with the force constant k. The last term is the electron interaction energy
associated with a hopping process. In particular, ti+1,i is the transfer integral between two
fragments, c†i+1,σ (ciσ) is the creation (annihilation) operator of an electron of spin σ at
site i + 1 (i). In the case of strong electron-phonon coupling, the transfer integral can be
influencend by bond deformation of the associated transfer channel.
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Even though different multiscale modeling approaches have been employed successfully
to simulate loss processes in BHJ nanomaterials [66], open questions still remain. A chal-
lenge remains the treatment of the eliminated degrees of freedom, which one has to sacrifice
by going from a small length scale, and hence from an atomistic point of view, to a large
length scale [67]. Nevertheless, there are already successful applications of such methods
that model overall device performances using a coarse grained approach to obtain reliable
results from simulations [68, 69].

3.4 The Role of Coherent Quantum Dynamical Ef-
fects

Until a few years ago, the standard approach for the description of excitation energy trans-
fer (EET) and charge transfer (CT) relied entirely on classical kinetic equations describing
a hopping-type transport [63].While this assumption is valid to a certain degree and es-
pecially forstatistical modeling like Kinetic Monte Carlo approaches, important deviations
froma kinetic description were observed in recent time-resolved experiments,highlighting
the influence of coherence effects on the short time dynamics [70–72].

Previously, the generally accepted assumption for π conjugated polymeric systems was
that exciton transport lies in an incoherent hopping type regime since the relevant elec-
tronic couplings were assumed to be small. Therefore, decoherence effects were taken to
be pronounced and a hopping type mechanism was thought to be appropriate to model
exciton transport in conjugated materials. However, recent investigations on functional
materials show that electronic couplings tend to be strong enough to retain quantum
coherent effects in such systems. As a result, a description of EET via a hopping mech-
anism is not always appropriate. In particular, recent studies include photon echo ex-
periments — more specifically, three-pulse photon echo peak shift (3PEPS) experiments
[73, 74] – that have been used to study quantum coherent effects in poly[2-methoxy-5-
(2’-ethylhexyloxy)-p-phenylene vinylene] (MEH-PPV) and related materials. In order to
interprete the experimental results, theoretical calculations employing the SSH Hamilto-
nian have been performed. The analysis revealed that first a delocalised excitonic state has
been formed, which is subjected to dynamic localisation based on an initial decay of the
3PEPS signal. The dynamic localisation could be explained by decoherence effects that
act on a timescale of 100-200 femtoseconds. Following this localisation, the subsequent
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transfer of the localised exciton can be described by classical hopping theories.

Based upon the 3PEPS photon echo experiment, it could be shown that the initial ex-
citon transfer in systems exhibiting an intermediate electronic coupling is indeed of quan-
tum coherent nature. An open question is, though, whether the initial coherent transfer
is limited along a conformational subunit, i.e., whether the transfer is intramolecular, or
whether the transfer proceeds between different conformational subunits, i.e., whether it
is intermolecular. To answer this question, two-time anisotropy decay (TTAD) [70, 71] ex-
periments have been carried out, again on MEH-PPV phases. The results show again that
a quantum coherent transfer could be observed, which was interpreted as an intrachain
transfer along the polymer backbone, rather than an interchain transfer between different
chains of the polymer. The conclusion of this study was that the low frequency polarons
of the polymer backbone play a significant role in the coherent exciton transport since
they effectively reduce decoherence effects along the chain [75]. Theoretical calculations
support the perspective of a quantum coherent transfer within the first 200 femtoseconds
[76]. In the latter study, a description by the Redfield equations [77] was used for a model
dimer system, involving certain limitations of the theoretical treatment (notably, Redfield
theory assumes a separation of “system” and “bath” time scales which is not appropriate
for the systems under study). These theoretical simulations showed that short-lived coher-
ent transport tends to lead to a higher exciton dissociation yield. On the other hand, the
same studies conclude that an increased disorder in functional materials implies shorter
coherence lifetimes, which leads to energetic trapping effects, thereby limiting the excitons’
ability to reach an interface and dissociate into free charge carriers [76].

The observations summarized above have led to a shift in perception, such that it is
today generally accepted that coherent transfer of delocalised excitons takes place on the
shortest time scale, of about 100-200 femtoseconds. This first, coherent phase is followed
by localisation of the excitation on a conformational subunit of the polymer and a sub-
sequent hopping type transport. The occurence of both quantum dynamical effects and
a classical hopping type transfer to describe the exciton transport in such systems leads
to the necessity of employing complementary quantum and classical-statistical techniques
– and, eventually, multiscale modeling techniques – to describe the elementary transport
processes in functional nano materials.
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imation and Beyond

4.1 The Schrödinger Equation and Born-Oppenheimer
Approximation

In order to describe a microscopic system appropriately, one has to go from a classical
approach to an approach which is capable of treating systems quantum mechanically, ac-
cording to their quantum nature. While a classical system is completely described by New-
tons laws, the quantum mechanical counterpart has been proposed by Erwin Schrödinger
in the beginning of the 20th century [78]. In the very general form, Schrödingers equation
resembles wave-like equations of motions.

i~
∂

∂t
|Ψ(~r, ~R, t)〉 = Ĥ |Ψ(~r, ~R, t)〉 (4.1)

Equation 4.1 states that a quantum mechanical system is fully described by the time de-
pendent function |Ψ(~r, ~R, t)〉. In this particular case, the wave function is a function of the
electrons ~r, the nuclei ~R and time t.

The operator Ĥ is the Hamiltonian of the system and contains all particle interactions.
For a molecular system, the Hamiltonian looks as follows (in atomic units, i.e. me = 4πε0 =
~ = 1)

Ĥ =
M∑
k

− 1
2mk
∇2
k︸ ︷︷ ︸

T̂n

+
N∑
i

−1
2∇

2
i︸ ︷︷ ︸

T̂e

−
M∑
k

N∑
i

Zk

|~ri − ~Rk|︸ ︷︷ ︸
V̂en

+
M∑
k

M∑
l 6=k

ZkZl

| ~Rk − ~Rl|︸ ︷︷ ︸
V̂nn

+
N∑
i

N∑
j 6=i

1
|~ri − ~rj |︸ ︷︷ ︸
V̂ee

(4.2)
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Here, the first two terms (T̂n and T̂e) describe the kinetic energy of the nuclei and the elec-
trons, respectively. The third term (V̂en) describes the electron-nuclei attraction, whereas
the last two terms describe the nuclei-nuclei repulsion (V̂nn) and the electron-electron re-
pulsion (V̂ee).

In the case that the Hamiltonian is not time-dependent, one can perform a separation
ansatz of the wave function into a product of a spatial dependence ~x and a temporal
dependence t.

|Ψ(~x, t)〉 = |ψ(~x)〉 · |θ(t)〉 . (4.3)

By inserting the wave function given in 4.3 into the Schrödinger equation 4.1 and
performing some rearrangements, one obtains the time-independent Schrödinger equation

Ĥ |ψ(~r, ~R)〉 = E |ψ(~r, ~R)〉 , (4.4)

with the complete time dependent wave function |Ψ(~x, t)〉 taking the form

|Ψ(~x, t)〉 = |ψ(~x)〉 · e−iEt/~. (4.5)

One can easily see that by substitution of equation 4.5 into equation 4.1, one obtains the
time independent Schrödinger equation in 4.4.

The proposed Schrödinger equations 4.1 and 4.4 are only analytically solvable for small
two body systems. Since chemical systems consist in most cases of more than two bodies,
various approximations can be made. The most important approximation is called the
Born-Oppenheimer [79] approximation and relies on the mass differences between electrons
and nuclei (mk ≈ 1800 me). The result of this approximation is that the electrons move
in the static coulombic potential created by fixed nuclei positions. Since the nuclei are
supposed to be spatially fixed, their kinetic energy is equal to zero. In the so-called
adiabatic approximation, the potential energy Vnn (see equation 4.2) is a constant and
one obtains an electronic Schrödinger equation with an Hamiltonian that only depends
parametrically on the nuclei positions.

Ĥel(R) = T̂e + V̂ee − V̂en (4.6)
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Using the above stated Hamiltonian and inserting it into equation 4.4 while using a wave
function that is a product of an electronic term which depends only parametrically on the
nuclei positions ~R and a nuclei term, i.e. |ψ(~r, ~R)〉 = |φe(~r; ~R)〉 ⊗ |ϕn(~R)〉, one obtains the
so-called Born-Oppenheimer surfaces.

Ĥel(R)(|φe(~r; ~R)〉 ⊗ |ϕn(~R)〉) = E(R)(|φe(~r; ~R)〉 ⊗ |ϕn(~R)〉) (4.7)

Due to the Born-Oppenheimer approximation it was possible to separate the electronic
degrees of freedom from the nucleic degrees of freedom. With this ansatz it is now possible
to construct the Born-Oppenheimer surfaces, which play a central role in chemistry and
especially in parametrised model Hamiltonians used for quantum dynamical simulations.

In spite of the Born-Oppenheimer approximation, it is still not possible to solve systems
consisting of more than one interacting electron due to the V̂ee term. An approximation
based on the Born-Oppenheimer formalism are the Hartree-Fock equations, which reduce
the problem of solving a coupled N-dimensional differential equation into N uncoupled
differential equations.

4.2 Beyond Born-Oppenheimer: Non-Adiabatic Ef-
fects

As pointed out in the previous section, the Born-Oppenheimer approximation is of cru-
cial importance to study the dynamics of molecular systems. However, many phenomena
in molecular physics cannot be described in the framework of the Born-Oppenheimer ap-
proximation, especially in photochemistry and photophysics. Such phenomena include the
dynamics at avoided crossings and conical intersections. In this context, it is inevitable to
go beyond the Born-Oppenheimer approximation to study excited-state quantum dynam-
ical evolution of molecular systems.

By solving equations 4.6 and 4.7 one obtains a set of electronic eigenfunctions {φi(~r; ~R)},
which carry a parametric dependence on the nuclear coordinates. The total wave function
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4 — The Born-Oppenheimer Approximation and Beyond

Ψ(~r, ~R, t) can be written as a sum over products of these electronic eigenfunctions and
nuclear wave functions ϕi(~R),

Ψ(~r, ~R, t) =
∑
i

ϕi(~R)φi(~r; ~R). (4.8)

Inserting equation 4.8 into the time dependent Schrödinger equation 4.1, multiplication
from the left by a chosen electronic eigenfunction φe(~r; ~R) and integration over the elec-
tronic degrees of freedom, one obtains coupled equations for the nuclear wave functions
ϕ(~R).

[
T̂n + E(R)

]
ϕj(~R)−

∑
i

Λ̂jiϕi(~R) = i~
∂

∂t
ϕj(~R) (4.9)

with the off-diagonal matrix elements

Λ̂ji = −〈φj(~r; ~R)|T̂n|φi(~r; ~R)〉. (4.10)

Equation 4.10 defines the nonadiabatic coupling operators, which are neglected when ap-
plying the Born-Oppenheimer approximation. One can see immediately from equation 4.10
that the operator Λ̂ji describes the coupled motion and dynamical interaction of the elec-
tronic degrees of freedom and the nuclear degrees of freedom. In a more intuitive fashion,
a matrix representation can be used, i.e. in this case for a two-state model,

i~
∂

∂t

ϕ1(~R)
ϕ2(~R)

 =
T̂n + E1(~R) Λ̂12(~R)

Λ̂21(~R) T̂n + E2(~R)

ϕ1(~R)
ϕ2(~R)

 (4.11)

Note that equation 4.11 has been formulated in an adiabatic representation. The nonadi-
abatic couplings are calculated in various electronic structure packages. These couplings
become very large at avoided crossings, and diverge at conical intersections.

For quantum dynamical simulations, it is often more intuitive and preferable from a
numerical point of view to use a diabatic representation of the matrix formulation shown
in equation 4.11, where the kinetic energy couplings Λ̂ij(~R) are replaced by potential
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type couplings. To this end, the electronic wave functions are transformed by a unitary
transformation,

Φdia(~r; ~R) = S(~R)φadia(~r; ~R) (4.12)

which leads to the following equation

i~
∂

∂t

ϕ̃1(~R)
ϕ̃2(~R)

 =
T̂n + V dia

1 (~R) V12(~R)
V21(~R) T̂n + V dia

2 (~R)

ϕ̃1(~R)
ϕ̃2(~R)

 (4.13)

As mentioned above, the diabatic representation is generally more convenient, since the
derivative couplings can be ill-behaved and show a singularity at conical intersections, such
that integration is more difficult than for a continous function such as the potential type
couplings in equation 4.13. Furthermore, the diabatic states have a well defined electronic
character, which is more intuitive to understand than the adiabatic representation. For a
more detailed derivation and discussion, see reference [80].

4.3 Diabatization Strategies

4.3.1 Quasi-diabatic representations

Following the discussion in the previous section, the question arises if it is always possible
to define a adiabatic-to-diabatic transformation

Φdia(~r; ~R) = S(~R)φadia(~r; ~R) (4.14)

in such a way that the kinetic energy coupling terms Λ̂ji are eliminated. An analysis by
Mead and Truhlar [81] shows that a strictly diabatic basis does not exist, except for special
cases such as diatomics or isolated two state systems in polyatomics. This results in the
construction of a quasi-diabatic representation, where one constructs a non-unique basis
which approximately eliminates the derivative couplings Λ̂ji.

In many situations of interest, it is justified to consider an isolated two-state system,
focussing on a particular two-state avoided crossing or conical intersection. For this partic-
ular case, an adiabatic-to-diabatic transformation exists [81], as pointed out above. When
performing a Taylor expansion of the potential energy surface around the intersection, only
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4 — The Born-Oppenheimer Approximation and Beyond

the lowest order terms are found to be responsible for the singularity of the coupling terms
Λ̂ji [82]. This dominant contribution is thus eliminated via an unitary transformation,
which yields as quasi-diabatic basis.

A wide variety of methods exists which perform a unitary transformation of the adi-
abatic representation to a quasi-diabatic representation [83–85], yielding besides the on-
diagonal potential energies also the off-diagonal potential energy terms, see also equation
4.13. Molecular properties such as dipole moments are found to be smooth with respect
to the chosen quasi-diabatic basis, further justifying the use of this particular basis.

4.3.2 Diabatization by projection onto reference states

The off-diagonal couplings are of crucial importance for the quantum dynamic modeling
of the properties of functional polymeric materials. In the studies reported in the present
work, these couplings were obtained by a diabatization procedure described by H. Tamura
[86], who has been collaborating on the projects reported in this thesis. This procedure
is especially suited for interacting molecular fragments, especially for cases where these
fragments are not covalently bound.

In the approach of reference [86], the quasi-diabatic states ΦI are expressed as mixtures
of adiabatic states ΨJ , i.e. Φ1 = Ψ1cosθ − Ψ2sinθ and Φ2 = Ψ1sinθ + Ψ2cosθ, here shown
for a two state system. The off-diagonal coupling is expressed as the energy gap between
the adiabatic states ΨJ , i.e. EJ and the adiabatic to quasi-diabatic state mixing θ. Written
in matrix form  V1 V12

V12 V2

 =
E1cos2θ + E2sin2θ 1

2 (E1 − E2) sin2θ
1
2 (E1 − E2) sin2θ E1cos2θ + E2sin2θ

 (4.15)

One possibility to solve equation 4.15 is by determining the state mixing θ via integration
of the non-adiabatic coupling along the reaction coordinate R, i.e.

dθ

dR
= 〈Ψ1|

∂

∂R
|Ψ2〉 (4.16)

with the constraint that the state mixing θ is zero at the initial state and π/2 at the final
state.
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The method by H. Tamura [86] works as follows, e.g., for a molecular dimer:

(i) Reference states Φref,I are prepared, which consist of molecular orbitals localized on
the isolated molecules of the dimer, i.e. of the non-interacting system.

(ii) Adiabatic excited states ΨJ of the interacting system are calculated.

(iii) The quasi-diabatic states ΦI are expressed as a linear combination of the adiabatic
states of the interacting system ΨJ prepared at (ii) in such a way that the overlap
between ΦI and Φref,I is maximized.

Thus, the diabatic states are represented as

ΦI =
∑
J

CIJΨJ with CIJ = 〈ΨJ |Φref,I〉 (4.17)

Finally, the diabatic on-diagonal potential energy terms and off-diagonal diabatic coupling
terms are obtained via

V dia
I (~R) = 〈ΦI |Ĥ|ΦI〉 and V dia

IJ (~R) = 〈ΦI |Ĥ|ΦJ〉 (4.18)

where Ĥ is the electronic Hamiltonian of the system.
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This chapter provides an overview of the methods used in order to parametrize the model
Hamiltonians for the quantum dynamic simulations. Therefore, a short introduction will
be given to basic concepts in quantum chemistry such as the Hartree-Fock [87] equations.
Furthermore, the concept of density functional theory [88, 89] and the linear response of
a density [90, 91] to an external perturbation will be explained, as it is an efficient way
to reduce computational costs of quantum chemical calculations. Special emphasis will be
laid on the charge transfer error caused by the application of several TD-DFT functionals.
The chapter will be concluded with a short overview over state of the art wave function
based methods [92–94], which are commonly used as benchmark tools for density functional
theory methods.

5.1 The Hartree-Fock Method

Even though the Born-Oppenheimer approximation reduces the computational effort for
the calculation of molecular systems quite extensively, the remaining critical term is the
electron-electron repulsion. Therefore, systems with more than two electrons (i.e. most
systems of chemical relevance) are not analytically solveable. The Hartree-Fock method
is capable of reducing this problem in an elegant fashion. The obtained Hartree-Fock
equations are a result of the application of the variational principle to a Slater determinant.
A Slater determinant is a wave function ansatz which obeys Pauli’s antisymmetry principle.
A time-independent wave function with coordinates ~r1, ~r2 and spin σ1 and σ2 can thus be
expressed via a Slater determinant as follows (for a two electron problem):

|φe(~r, σ; ~R)〉
SD

= 1√
2!

∣∣∣∣∣∣χ1(1) χ2(1)
χ1(2) χ2(2)

∣∣∣∣∣∣ (5.1)
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The Pauli principle requires that a wave function changes sign upon changing the coordi-
nates of the electrons. If one would use a simple product ansatz for a wave function, this
property would not be fulfilled. For a simple Hartree product ansatz, i.e.

|φe(~r, σ; ~R)〉
HP

= χ1(1)χ2(2) (5.2)

one obtains for exchanging the coordinates (which is the same as if one would put electron
one in orbital two and vice versa) of two electrons:

|φe(~r, σ; ~R)〉
HP ′

= χ1(2)χ2(1). (5.3)

One can easily see that |φe(~r, σ; ~R)〉
HP
6= − |φe(~r, σ; ~R)〉

HP ′

, hence the Pauli principle is
not valid. A Slater determinant therefore ensures that |φe(~r, σ; ~R)〉

SD
= − |φe(~r, σ; ~R)〉

SD′

.

When applying the variational principle to a Slater determinant (with the constrained
that the spin orbitals χ are orthonormal to each other), one obtains the Hartree-Fock
equations for the individual spin orbitals χ. For a single spin orbital, the equation looks
as follows: ĥ(1) +

∑
k 6=i

[
Ĵk(1)− K̂k(1)

]χi(1) = εiχi(1) (5.4)

with the Coulomb operator Ĵk and the exchange operator K̂k defined as

Ĵk(1)χi(1) =
[∫

χ∗k(2)r−1
12 χk(2)dτ2

]
χi(1) (5.5)

K̂k(1)χi(1) =
[∫

χ∗k(2)r−1
12 χi(2)dτ2

]
χk(1) (5.6)

The Coulomb operator in equation 5.5 describes the averaged potential that electron (1) in
spin orbital i experiences. The exchange operator in equation 5.6 describes the exchange
of electron (1) in orbital i with an arbitrary electron (2) in orbital k. From this point, two
things should be made clear. First, the exchange operator 5.6 is a purely quantum mechan-
ical phenomenon and does not have a classical analogon. Second, the Coulomb potential
that a single particle experiences is a mean potential, as one can see from the summation

42



Density Functional Theory

over all orbitals k in equation 5.4. Hence, the Hartee-Fock equation is a mean field equation
since one particle experiences only an averaged potential of all other particles.

5.2 Density Functional Theory

An alternative to the Hartree-Fock method is the Density Functional Theory (DFT).
Whereas the wave function depends on 4N variables (three spatial coordinates and a spin
coordinate, with N being the number of electrons), the density of a given system of N
electrons depends only on the three spatial coordinates. The relation between a density
and a wave function is given as follows

ρ(~r) = N
∫
· · ·

∫
〈φe(~r1 . . . ~rN , σ1 . . . σN ; ~R)|φe(~r1 . . . ~rN , σ1 . . . σN ; ~R)〉d~r2 . . . d ~rNdσ1 . . . dσN

(5.7)

By integrating the density ρ with respect to the index r, one obtains the overall number of
the electrons, i.e. N =

∫
ρ(~r)d~r. Very important for the applicability of density functional

theory to quantum chemistry and molecular problems in general, are the two Hohenberg-
Kohn theorems [95]. The first Hohenberg-Kohn theorem proofs the existence of an unique
mapping of the ground state density of a given system to a wave function of a given system.
In DFT, the electrons of a system interact with each other via an external potential. To
show that a mapping of the wave function to a density is valid, consider the two potentials
V̂1 and V̂2. Both of these potentials are supposed to lead to the same degenerate density
ρ0(~r). Furthermore, assume that

E1 = 〈ψ1|Ĥ1|ψ1〉 < 〈ψ2|Ĥ1|ψ2〉

= 〈ψ2|Ĥ2|ψ2〉+ 〈ψ2|Ĥ1 − Ĥ2|ψ2〉

= E2 + 〈ψ2|V1 − V2|ψ2〉

= E2 +
∫
ρ(~r) (V1(~r)− V2(~r)) d~r. (5.8)

By performing the same mathematical procedure for E2 = 〈ψ2|Ĥ2|ψ2〉 < 〈ψ1|Ĥ2|ψ1〉, one
obtains

E2 = E1 +
∫
ρ(~r) (V2(~r)− V1(~r)) d~r. (5.9)
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Taking the sum of 5.8 and 5.9 yields the unequality E1 +E2 < E2 +E1, which is a reductio
ad absurdrum. Unfortunately, the first Hohenberg-Kohn theorem does not predict how
to obtain the density of a given system. Therefore, the second Hohenberg-Kohn theorem
shows that a given trial density ρ̃ obeys the variational principle and hence, minimises the
energy E of the system, resulting in E0. Since the first Hohenberg-Kohn theorem proofed
that there is a unique mapping of a given wave function to a density, one can write

E0[ρ̃] = 〈ψ̃|Ĥ|ψ̃〉 ≥ 〈ψ|Ĥ|ψ〉 = E0[ρ0]. (5.10)

The second Hohenberg-Kohn theorem proofs that the energy calculated with a correspond-
ing density is always larger then the exact energy E0. Therefore, one can determine the
density that yields the smallest energy.

To reduce the computational cost of the calculation of molecular systems, the so-
called Kohn-Sham equations have been derived [96]. The Kohn-Sham equations resemble
a Schrödinger type of equation, valid for a fictious system of non-interacting electrons with
the constraint that the obtained density is the same density as for the interacting system.
The corresponding Hamiltonian can be expressed as a sum of one electron operators and
the resulting energy functional takes the following form:

E[ρ(~r)] =
N∑
i

(
〈χi| −

1
2∇

2
i |χi〉 − 〈χi|

M∑
k

Zk

|~ri − ~Rk|
|χi〉

)

+
N∑
i

〈χi|
1
2

∫ ρ(~r′)
|~ri − ~r′|

d~r′|χi〉+ Exc[ρ(~r)] (5.11)

The above stated equation is the Kohn-Sham equation. The first term on the right is
the kinetic energy of the electrons. The second term is the Coulomb attraction between
electrons and nuclei. The third term is the Coulomb repulsion between the density of
electron i and the remaining density. The last term is the so-called exchange-correlation
functional. It contains all non classical corrections to the electron-electron repulsion, such
as exchange and the kinetic energy operator. Employing the same formalism to find the
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set of orbitals χ that yield the lowest energy of the system, one obtains the differential
equations for the Kohn-Sham orbitals

Kµν = 〈χµ| −
1
2∇

2 −
M∑
k

Zk

|~ri − ~Rk|︸ ︷︷ ︸
vext(~r)

+
∫ ρ(~r′)
|~ri − ~r′|

d~r′︸ ︷︷ ︸
V [ρ,~r′]

+Vxc|χν〉 (5.12)

The key difference between Hartree-Fock theory and DFT is that it is exact. One just has
to know Exc as a function of the density ρ. Hohenberg and Kohn proved that a functional
of the density must exist and thus, a lot of effort has gone into finding a suitable exchange
correlation functional. In reality there exists a wide variety of different functionals in order
to solve that particular problem, like the well known DFT functional B3LYP [97].

5.3 Linear Response and The Charge Transfer Error

As it has been pointed out in the chapter before, the Hohenberg-Kohn theorems and also
the Kohn-Sham equations are time-independent equations. They can be used to obtain a
ground state density and the corresponding properties of a molecular system associated
with such a density. In order to perform time-dependent calculations, analogue theorems
to the Hohenberg-Kohn theorems and a set of working equations comparable to the Kohn-
Sham equations have to be obtained. The time-dependent analogue to the first Hohenberg-
Kohn theorem is the Runge-Gross theorem [98]. The Runge-Gross theorem is comparable
to the first Hohenberg-Kohn theorem, except that an additional action functional of the
time-dependent density is necessary, i.e. A[ρ]. For this particular action functional, the
exact time-dependent density is a stationary point. Unfortunately, there seems to be a
proof that the Runge-Gross theorem is erroneous and the use of the action functional is
not appropriate to derive a set of time-dependent working equations [99].

However, the linear response formalism as an ad hoc extension of time-independent
DFT can still be used to extract time-dependent information such as excited states. Due
to the linear response formalism, the same exchange correlation functionals used for time-
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independent DFT can be used for linear response DFT. First, the density will be expressed
in terms of time-dependent Kohn-Sham orbitals χ(~r, t) = c(t) · ϕ(~r)

ρ(~r, t) =
∑
i

|χ(~r, t)|2 =
∑
i,j

c∗i (t)cj(t)︸ ︷︷ ︸
Pij(t)

ϕ∗i (~r)ϕj(~r). (5.13)

The time dependency of the system has been transferred to the so-called reduced density
matrix Pij(t). Inserting the reduced density matrix Pij(t) into the time-dependent analogue
of the Kohn-Sham equation, one obtains

i
∂

∂t
Pij(t) =

∑
k

(Kik[ρ]Pkj(t)− Pik(t)Kkj[ρ]) (5.14)

with Kij[ρ] being the time-independent Kohn-Sham Hamiltonian of the ground state (see
also equation 5.12). Suppose now that the external potential vext(~r) in equation 5.12
comprises of a small time-dependent perturbation g(~r, t), then Kij[ρ] (which becomes then
time-dependent as well) and Pij(t) can be expanded in a time-series. Inserting these time-
series into equation 5.14 and collecting all terms of zeroth, first, second and higher orders,
one obtains several differential equations. The zeroth order terms yield the differential
equations for ground state DFT. In first order, one obtains the differential equations for
linear response DFT, which look like

i
∂

∂t
P

(1)
ij (t) =

∑
k

[
K

(0)
ik P

(1)
kj − P

(1)
ik K

(0)
kj +K

(1)
ik P

(0)
kj − P

(0)
ik K

(1)
kj

]
(5.15)

The first-order change of the Kohn-Sham Hamiltonian K
(1)
ij is given by

K
(1)
ij = gij(~r, t) + ∆F (0)

ij . (5.16)

The first-order change for the reduced density matrix P (1)
ij (t) are non-zero only if i refers to

an occupied and j to an unoccupied orbital, which is caused by the idempotency relation
(ρ2 = ρ). As a result, equation 5.15 splits into two coupled equations which are complex
conjugate to each other, i.e. P (1)

ij (t) = P
(1)∗
ji (t). Taking the Fourier transformation of these
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equations, one obtains the TD-DFT working equations. For a better understanding, the
indices i, j label occupied orbitals whereas the indices a, b label virtual orbitals.

ω∆Pia(ω) = (εa − εi)∆Pia(ω) +
∑
jb

[〈aj|ib〉+ 〈aj|δvxc|ib〉] ∆Pjb(ω)

+
∑
jb

[〈ab|ij〉+ 〈ab|δvxc|ij〉] ∆Pbj(ω) (5.17)

and

−ω∆Pia(ω) = (εa − εi)∆Pia(ω) +
∑
jb

[〈ib|aj〉+ 〈ib|δvxc|aj〉] ∆Pjb(ω)

+
∑
kl

[〈ij|ab〉+ 〈ij|δvxc|ab〉] ∆Pjb(ω) (5.18)

The above states equations 5.17 and 5.18 can be rewritten as a pseudo eigenvalue equation,
also known as the Casida equations [100]

 A B

B∗ A∗

 ∆Pia
∆Pai

 = −ω
1 0

0 −1

 ∆Pia
∆Pai

 (5.19)

with the matrix elements A and B defined as

Aia,jb = (εa − εi)δijδab + 〈ia|jb〉+ 〈ia|δvxc|jb〉 (5.20)

Bia,jb = 〈ia|bj〉+ 〈ia|δvxc|bj〉 (5.21)

Taking a closer look at equation 5.20, one can gain some fundamental insight into TD-DFT.
The first term of Aia,jb describes the energy difference between an occupied and a virtual
orbital to which the excitation occurs. The second term arises from the response of the
Coulomb integral Ĵ , see also equation 5.5. The last term describes the linear response of
the exchange-correlation functional vxc. Within the time-dependent Hartree-Fock scheme,
the last term would correspond to the response of the exchange integral K̂ (equation 5.6).
From equation 5.20 and 5.21 one can also see why the TD-DFT scheme fails to accurately
predict charge transfer energies and states. Assume that an electron is transfered from the
occupied orbital i located on molecule 1 to the virtual orbital a located on molecule 2. If
the spatial overlap between those two orbitals is zero, then the product 〈ia| is also zero.
Hence, the second and third term in equation 5.20 are zero and the only quantity that
remains is the difference in orbital energies, at least for particular exchange correlation
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functionals, which is a fairly bad first estimate. To overcome these drawbacks, hybrid
approaches combining the linear response of density functional theory and Hartree-Fock
theory have been developed. Equations 5.20 and 5.21 are then modified to

Aia,jb = (εa − εi)δijδab + 〈ia|jb〉 − cHF 〈ij|ab〉+ (1− cHF )〈ia|δvxc|jb〉

Bia,jb = 〈ia|bj〉 − cHF 〈ib|aj〉+ (1− cHF )〈ia|δvxc|bj〉 (5.22)

In addition to equations 5.20 and 5.21, the hybrid approach shown in equation 5.22 in-
troduces now the response of the Hartree-Fock exchange. The magnitude to which this
Hartree-Fock exchange is included in hybrid TD-DFT functionals is determined by the co-
efficient cHF , which depends on the used hybrid exchange-correlation functional. A detailed
derivation of the linear response TD-DFT equations can be found in reference [91].

5.4 Post Hartree-Fock Methods

As it has been outlined in the previous section, time-dependent Density Functional Theory
(TD-DFT) is not a suitable approach to treat charge transfer states in a satisfying manner.
In order to overcome the drawbacks of TD-DFT, the focus of this section is put on Post-
Hartree-Fock methods, i.e. methods that require a converged Hartree-Fock wave function.
These self-consistent Hartree-Fock wave functions are used as a starting point for different
methods such as Møller-Plesset perturbation theory (MP) [101], Coupled-Cluster theory
(CC) [102] or the Algebraic Diagrammatic Construction (ADC) [103]. Here we will focus
on the usage of the ADC method to second order, i.e. ADC(2). The reason for focussing
on ADC(2) is that it is a reliable and accurate method to determine excited states. Even
though CC with perturbatively corrected double excitations (CC2) yields reliable results
and sometimes even better results then ADC(2), it is not the method of choice here. The
reason is that CC2 treats double excitations only perturbatively, while ADC(2) treats
double excitations explicitly.
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Post Hartree-Fock Methods

The easiest way to derive the ADC(2) equations is via the intermediate state represen-
tation (ISR) [104]. The intermediate states |Ψ#

I 〉 are orthogonalised with respect to the
ground state and all other states obtained from applying the excitation operator ĈI to the
ground state |Ψ0〉. The excitation operator looks as follows

ĈI ∈
{
ĉ†aĉi; ĉ

†
bĉj ĉ

†
aĉi, a < b, i < j; . . .

}
(5.23)

Applying the excitation operator ĈI on some wave function, one obtains all classes of singly,
doubly, etc. excited states, i.e. |Ψ#

I 〉 = ĈI |Ψ0〉. As it has been mentioned before, the states
|Ψ#

I 〉 are neither orthogonal to each other nor are they orthogonal to the ground state. A
step wise Gram-Schmidt orthogonalisation of these states has to be performed in order to
obtain orthonormal states. Along with these intermediate states, a shifted Hamiltonian
matrix Ĥ − EN

0 is constructed.

MI,J = 〈Ψ̃I |Ĥ − EN
0 |Ψ̃J〉 (5.24)

Here, |Ψ̃I〉 labels a Gram-Schmidt orthogonalised intermediate state. By choosing now
the N th order Møller-Plesset ground state as the starting point for the calculation of the
shifted Hamiltonian matrix, one arrives at the N th order ADC(n) equation. Diagonalising
equation 5.24 yields the ADC(n) eigenvalues and the corresponding eigenvectors. The
eigenvectors are needed for further calculation of observables, such as transition dipole
moments and oscillator strength. In general, the expectation value of any operator is
defined as

〈Ô〉mn = 〈Ψm|Ô|Ψn〉 (5.25)

Due to the diagonalisation of equation 5.24, one obtains the corresponding eigenvectors
XI,n of the corresponding intermediate state Ψ̃I . By multiplication of the eigenvector with
the corresponding intermediate state basis, one obtains the excited state wave functions
|Ψn〉

|Ψn〉 =
∑
I

XI,n|Ψ̃I〉 (5.26)
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By inserting the completeness relation of quantum mechanics, i.e. ∑I |Ψ̃I〉〈Ψ̃I |, into equa-
tion 5.25 and using equation 5.26, one obtains an expression for the calculation of expec-
tation values in terms of the eigenvectors of the shifted Hamiltonian

〈Ô〉mn = X†mÔXn. (5.27)

After outlining the principles of the ADC calculation scheme, it is worth to discuss the dif-
ferences between ADC and other excited states methods, e.g. coupled cluster in particular.
The main disadvantage of the CC approach is the calculation of excited state properties.
While all available CC methods such as equation-of-motion coupled cluster (EOM-CC)
or coupled cluster linear response (CCLR) are size-consistent, the main drawback is the
non-hermiticity. This leads to a twofold wave function representation, one left and right
eigenvector as solution of the CC secular matrix. In contrast, the ADC methods are Hermi-
tian and fully size-consistent and hence, require the calculation of the ADC secular matrix
only once. With respect to scaling, both CC(2) and ADC(2) scale with n5 (with n being
the number of the orbitals), resulting in the same computational effort for the computation
of the excited states.

It should be emphasized that while the calculation of excited states is more efficient for
the ADC scheme, the treatment of the ground state wave function |Ψ0〉 is better for CC
methods due to the direct accessibility of the ground state wave function within the CC
scheme. As it has been pointed out earlier, the ground state wave function for the ADC(n)
scheme is represented by the corresponding perturbative treatment of the ground state
wave function, i.e. the MP(n) ground state. This hinders the calculation of molecules with
a strong multi-reference ground state character, such as molecules with a low HOMO-
LUMO gap. Here, CC methods might be more advantageous due to the usage of the
corresponding CC ground state wave function.
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In order to follow the time evolution of a molecular system, one first has to answer the
question which time and length scales one is interested in. If one is interested in atomic
length and time scales, one has to resort to deterministic methods such as quantum dy-
namics or molecular dynamics. In these deterministic methods, typical time scales range
from attoseconds and femtoseconds (quantum dynamics) to picoseconds or microseconds
(classical molecular dynamics). These methods require the calculation of either the wave-
function or else positions and momenta for a given trajectory at each time point. This can
be very challenging as the amount of information one obtains becomes very large. Hence,
one is restricted to the study of small molecular systems. For example, in the context of
exciton migration, only small moleuclar lattices can be studied.

On the other hand, if one wants to study mesoscopic or macroscopic observables, one
has to use stochastic methods, such as Monte Carlo theory. In these stochastic methods,
the positions and momenta are random variables which define a point in phase space. To
gather information about macroscopic observables one has to adequately sample the phase
space of a given system.

In the following, a brief outline of the relevant deterministic and stochastic methods
employed in this thesis will be presented. Also, the differences between the various methods
will be highlighted and discussed.
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6.1 Quantum Dynamics and the Multi-Configuration
Time-Dependent Hartree Method

The previous section dealt with solving the time-independent Schrödinger equation (TDSE)
in order to obtain information about the distribution of energy levels, the construction of
potential energy surfaces, and properties like bond lengths, dipole moments, etc. In the
present section, we are concerned with the solution of the time dependent Schrödinger
equation,

i~
∂

∂t
Ψ(~x, t) = ĤΨ(~x, t) (6.1)

where ~x typically refers to a set of nuclear coordinates. Eq. (6.1) describes the time evo-
lution of non-stationary states, i.e., wavepackets – coherent superpositions of the system’s
eigenstates – that are created in pulsed optical laser experiments. Solutions to the time-
dependent Schrödinger equation enable us to visualize the movement of wavepackets in
many dimensions.

6.1.1 Numerical Representation of the Wave function

The numerical solution of the time-dependent Schrödinger equation is feasible by represent-
ing the time-evolving wave function on a multidimensional discretized grid. However, this
strategy is limited to few degrees of freedom, due to the exponential scaling of the procedure
with dimensionality. Therefore, more approximate methods need to be considered. Among
these, the time-dependent Hartree approach is a very approximate, single-configurational
scheme. The multi-configurational time-dependent Hartree (MCTDH) approach plays an
outstanding role since this scheme interpolates between the exact solution for small sys-
tems, and approximate solutions for large systems.

To give an overview, the following approaches are most relevant in our context:
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i) Standard approach: Expansion of the wave function in a time-independent product
basis,

Ψ(x1, x2, . . . , xN , t) =
K1∑
i1

K2∑
i2

. . .
KN∑
iN

Ai1,i2,...,iN (t)χ(1)
i1 (x1)χ(2)

i2 (x2) . . . χ(N)
iN

(xN)

=
K1∑
i1

K2∑
i2

. . .
KN∑
iN

Ai1,i2,...,iN (t)
N∏
n=1

χ
(n)
in (xn) (6.2)

Based on the above form of the wave function, differential equations for the time-dependent
coefficients are formulated. This scheme scales exponentially as a function of the number
of degrees of freedom, and is typically able to handle 5-6 degrees of freedom.

ii) Time-dependent Hartree (TDH) approach: Representation of the wave function as
a single configuration with a time-evolving coefficient and time-evolving so-called single
particle functions (SPFs) for each degree of freedom,

Ψ(x1, x2, . . . , xN , t) = A(t)φ1(x1, t)φ2(x2, t) . . . φN(xN , t)

= A(t)
N∏
i=1

φi(xi, t) (6.3)

This scheme scales linearly as a function of the number of degrees of freedom and is there-
fore computationally advantageous. However, the method is a mean-field scheme that is
not able to describe correlations correctly.

iii) Multi-configuration Time-dependent Hartree (MCTDH) approach: Representation
of the wave function as a sum of TDH type configurations,

Ψ(x1, x2, . . . , xN , t) =
K1∑
i1

K2∑
i2

. . .
KN∑
iN

Ai1,i2,...,iN (t)
N∏
n=1

φ
(n)
in (xn, t) (6.4)

This form of the wave function, which employed time-dependent coefficients and time-
dependent basis functions (SPFs), combines the merits of the standard approach and the
time dependent Hartree approach. Indeed, this method turns out to be capable of produc-
ing accurate results for high-dimensional, correlated systems. Since the MCTDH method
is the “workhorse” in the quantum simulations shown in the following chapters, we will
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address this approach in some more detail below.

Before proceeding, we point out that equations of motion can be derived in all of the
three cases from the time-dependent variational principle, i.e., the Dirac-Frenkel variational
principle,

〈δΨ|Ĥ − i ∂
∂t
|Ψ〉 = 0 (6.5)

where δΨ refers to the linear variation of the wave function, involving time-dependent co-
efficients and/or time-dependent basis functions.

6.1.2 The Multi-configuration Time-Dependent Hartree Approach

This section presents the equations of motion of the MCTDH approach. A detailed deriva-
tion and review over the MCTDH method can be found in references [105, 106].

For ease of notation, we re-write the wave function of Eq. (6.4) in two different forms.
First,

Ψ(x1, x2, . . . , xN , t) =
∑
I

AI(t)ΦI(x1, x2, . . . , xN , t) (6.6)

where the multi-index I = (i1, i2, . . . , iN) was introduced, along with the configurations
Φi(x1, x2, . . . , xN , t).

Second, we re-write Eq. (6.4) in the form

Ψ(x1, x2, . . . , xN , t) =
∑
i

φ
(κ)
i (xκ)Ψ(κ)

i (x1, . . . xκ−1xκ+1 . . . xN) (6.7)

where the SPFs φ(κ)
i are multiplied by the so-called single-hole functions (SHFs) Ψ(κ)

i that
absorb all information regarding the remaining degrees of freedom.
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With these definitions, the equations of motion of the MCTDH method, derived from
the Dirac-Frenkel variational principle, read as follows:

iȦJ(t) =
∑
L

〈ΦJ(~x, t)|Ĥ|ΦL(~x, t)〉AL(t) (6.8)

iφ̇
(κ)
jκ (~x, t) = (1− P (κ))(ρ(κ))−1〈Ĥ〉(κ)φ

(κ)
jκ (~x, t). (6.9)

with the projector within the κth subspace,

P (κ) =
nκ∑
j=1
|φ(κ)
j 〉〈φ

(κ)
j | (6.10)

the reduced density matrix in the κth subspace,

ρ
(κ)
jl = 〈Ψ(κ)

j |Ψ
(κ)
l 〉 (6.11)

and the mean-field Hamiltonian operator,

〈Ĥ〉(κ) ≡ 〈Ĥ〉(κ)
jl = 〈Ψ(κ)

j |Ĥ|Ψ
(κ)
l 〉 (6.12)

Note that if one uses a complete basis of SPFs, the r.h.s. of the EOM for the SPFs is zero,
and one obtains the exact result in a time-independent basis set.

The density matrix ρ(κ) is similar to the one-particle density commonly used in elec-
tronic structure theory. Diagonalisation of the density matrix yields the so called natural
populations and natural orbitals, which can be used as a tool to check whether a calcula-
tion is converged.

The mean fields Hamiltonian shown in equation 6.12 is also defined via the SHFs. Ex-
pressing the Hamiltonian with the aid of the SHFs, one obtains the mean field expectation
value except for the κth degree of freedom. In conjunction with equation 6.9, this means
that the wave function φ

(κ)
jκ (~x, t) experiences a field caused by all other remaining degrees

of freedom, similar to the mean field approach in Hartee-Fock theory.
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6.1.3 Multi-Layer MCTDH

Even though the MCTDH method is very efficient compared to the standard method, it
only allows a propagation of up to 20-100 degrees of freedom and only a few electronic
states (generally using the so-called multi-set formulation).

In comparison with the standard method, the MCTDH method does not eliminate the
exponential scaling problem, but it significantly reduces the subspace dimensions for which
the exponential scaling occurs. The key reason for the more efficient scaling of the MCTDH
method in comparison with the standard method is the use of a “second layer” in the wave
function representation, since the SPFs (in the “first layer”) are in turn represented in a
time-independent basis (i.e., the “second layer”).

The “layered” approach can be used to extend the MCTDH wave function to even more
layers with time-dependent coefficients. This results in the so-called Multilayer MCTDH
(ML-MCTDH) method, which allows to treat up to 1000 degrees of freedom [107]. The
ML-MCTDH wave function is a modified MCTDH wave function, which looks as follows:

Ψ(~x, t) =
N∑

j1...jf

Aj1(t) . . . Ajf (t)
f∏
κ

φ
(κ)
jκ (~x, t) (6.13)

where the SPFs are now representated in a second layer of time-dependent 2nd-layer SPFs,

φ
(κ)
jκ (~x, t) =

N∑
i1...if

Bi1(t) . . . Bif (t)
f∏
κ

χ
(κ)
iκ (~x′, t) (6.14)

The first layer wave function Eq. (6.13) is the same as in the standard MCTDH method.
Whereas in standard MCTDH, the single particle functions φ are expressed in terms of a
primitive basis, the single particle functions in the ML-MCTDH method are expressed in
another set of single particle functions χ. This recursive scheme can in principle be extended
to a huge number of layers. In combination with the multi-dimensional problem under
investigation, it is possible to construct a variety of different layering schemes for the ML-
MCTDH wave function. The partitioning often corresponds to the “natural” partitioning
of the system (e.g., if the system is defined in terms of a number of electronic states or
lattice sites), but often trial-and-error is necessary to obtain the best partitioning scheme.
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In the subsequent chapters following the introductory part, a diagrammatic represen-
tation of the ML-MCTDH wave function will be shown for the respective simulations. In
these representations, each node represents a set of vectors of coefficients which are con-
nected to each other without loops. This allows for an efficient graphical representation of
the ML-MCTDH wave function.

6.2 Monte-Carlo Theory

In contrast to the deterministic theory behind the previously proposed quantum dynamical
methods, statistical methods have also been employed in this thesis. In particular the
Kinetic Monte Carlo (KMC) [89] theory has been used to study charge carrier and exciton
transport. One important point is that by going to the macroscopic scale, one has to be
aware that the point of view on the dynamics changes as well. For deterministic theories
one has the full resolution of position and momenta for a given trajectory and hence, gets
information about the detailed dynamics. In stochastic theories such as KMC, one specifies
at which time the configuration in phase space changes from one configuration to another.
The fundamental equation that has to be solved is the so called Master Equation,

dPα
dt

=
∑
β

[WαβPβ −WβαPα] (6.15)

In equation 6.15 t is the time, α and β are arbitrary configurations in phase space with
their corresponding probabilities Pα and Pβ. Wαβ and Wβα are the transition probabilities
to go from one point in phase space to another and vice versa. As one can see, the Mas-
ter Equation is a gain/loss equation. Summing equation 6.15 with respect to time for all
configurations α, i.e. ∑α

dPα
dt

one can see that the total probability is conserved.

The derivation of equation 6.15 is straightforward and can be accomplished by the
classical Hamiltonian’s equations of motion. The probability P of finding a configuration
α in the phase space density ρ at any time is given by

Pα(t) =
∫
Rα

ρ(p,q, t)
hD

dpdq (6.16)

Here, the integration is over the region Rα that corresponds to a discretized configuration
α. As a result, the explicit information about individual trajectories containing position
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and momenta are not important. Since we lose information about the phase space density
ρ(p,q, t), it is only possible to define a probability that the system is in a certain config-
uration α. Furthermore, hD shows up in the denominator, which is Planck’s constant to
the power of the dimensionality D of the system.

In order to obtain the equations of motion to monitor the time evolution of a system,
equation 6.16 has to be differentiated with respect to time.

dPα
dt

=
∫
Rα

1
hD

∂ρ(p,q, t)
∂t

dpdq (6.17)

Since only the phase space density ρ(p,q, t) depends on time, one can apply the Liouville
equation for the time derivative of a density

∂ρ

∂t
= −

D∑
i=1

[
∂ρ

∂qi

∂H

∂pi
− ∂ρ

∂pi

∂H

∂qi

]
(6.18)

where H = p2

2m + V (q) is the Hamiltonian of the system. Inserting 6.18 into equation 6.17,
one obtains the following equation

dPα
dt

=
∫
Rα

D∑
i=1

1
hD

∂ρ

∂pi

∂H

∂qi
dpdq−

∫
Rα

D∑
i=1

1
hD

∂ρ

∂qi

∂H

∂pi
dpdq (6.19)

The first term of equation 6.19 becomes then

∫
Rα

D∑
i=1

1
hD

∂ρ

∂pi

∂H

∂qi
dpdq =

D∑
i=1

∫ +∞

−∞

1
hD

∂ρ

∂pi
dp
∫
Rα

∂V

∂qi
dq (6.20)

By making the assumption that the region Rα is defined entirely by the positions q, one
can extend the integration over the momenta to ±∞. This allows one to go from phase
space to configuration space (see reference [108] for a detailed derivation). In turn, this
means that equation 6.19 and 6.20 becomes zero.

∫ +∞

−∞

1
hD

D∑
i=1

∂ρ

∂pi
dp︸ ︷︷ ︸

=0

·
∫
Rα

1
hD

D∑
i=1

∂V (qi)
∂qi

dq = 0 (6.21)
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The remaining second term of equation 6.19 becomes then

∫
Rα

D∑
i=1

1
hD

∂ρ

∂qi

∂H

∂pi
dpdq =

∫
Rα

D∑
i=1

1
hD

∂

∂qi

(
pi
mi

ρ
)
dpdq (6.22)

Exploiting the divergence theorem for the integration over the coordinates, one obtains for
the time derivative of the probability of configuration α

dPα
dt

= −
∫
Rα
dS

∫ +∞

−∞

1
hD

D∑
i=1

niq̇iρ(p,q, t)dp (6.23)

In equation 6.23, the first integration is a surface integral over the area Rα. The second
integral describes the flux through the surface Sα separating the region Rα from some other
region Rβ.

The final step in order to obtain the master equation proposed in equation 6.15 is to
decompose the flux in two ways, once an inward flux and once an outward flux. This
results in the following equation

dPα
dt

=
∑
β

∫
Sαβ

dS
1
hD

(
D∑
i=1

niq̇i

)
Θ
(

D∑
i=1

niq̇i

)
ρ(p,q, t)dp (6.24)

−
∑
β

∫
Sβα

dS
1
hD

(
D∑
i=1

niq̇i

)
Θ
(

D∑
i=1

niq̇i

)
ρ(p,q, t)dp (6.25)

Equation 6.25 has already some similarities to the master equation proposed above (6.15).
The first term of equation 6.25 describes the flux from region Rβ into region Rα, whereas
the second term describes the opposite. Furthermore, Θ is the Heaviside step function.

One important point when calculating observables with stochastic methods like KMC
is the validicty of the Ergodic hypothesis, meaning that every point in phase space can be
reached with a single trajectory in the course of the time evolution. Alternatively, instead
of having a long simulation time to ensure the ergodic hypothesis, it is also possible to
calculate many independent trajectories with a shorter simulation time. This means that
the time-averaged observable Ō should be equal to the phase space averaged observable Ô.

Ô = 1
N

N∑
i=1

O(i) = lim
t→∞

1
t

∫ t

0
O(t)dt = Ō (6.26)
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To ensure that the ergodic hypothesis in equation 6.26 is valid, one has to make sure that
during the simulation time t, all possible configurations in phase space can be visited once.
One can already see that one would have to run a simulation for t = ∞, which is numer-
ically not possible. Therefore, one has to choose a simulation time (or equivalent a huge
number of shorter trajectories) that are sufficiently representative for the global behaviour
of the system.

One possible way to solve the master equation 6.15 is the First Reaction Method (FRM)
algorithm. Even though there are a lot of different methods and algorithms to solve
the master equation, the FRM has been successfully used for the simulation of charge
carrier phenomena in photovoltaic devices [32, 109–112]. In FRM, an initial configuration
i changes to another configuration j within the time interval ∆tij according to

∆tij = − ln r
kij

(6.27)

with r being a random number uniformally distributed between 0 and 1. The advantage
of the FRM is the generation of a list of all possible changes for configuration i. From
the generated list of possible events, the event with the shortest waiting time is going to
happen. This also ensures that at every iteration, a change in configuration occurs and
a new configuration in phase space is populated. In general, the propagation scheme for
such a KMC calculation looks as follows:

1. Generate an initial configuration and set the time to some initial value

2. Generate a queue of events that are allowed to happen. Each event is associated with
its characteristic waiting time ∆tij

3. Choose the event with the shortest waiting time and perform the change in configu-
ration

4. Go back to step 2 until the stop criterion is reached

This procedure can be applied to a variety of different events, ranging from exciton
diffusion to exciton dissociation and exciton recombination. In particular, this scheme has
been applied to the following events: (i) Exciton diffusion, (ii), exciton recombination, (iii)
exciton dissociation, (iv) charge transfer, (v) charge collection.
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At the end of a given simulation, the macroscopic observables can be calculated. In
particular, the charge mobilities µ have been calculated, as they are defined via

µ = d

t · F
. (6.28)

Here, d is the traveled distance of the charge, from its point of origin (i.e. where the
exciton was dissociated) to the electrode. t is the time until the charge was collected at the
electrode and F is the applied electric field. The charge mobility has been calculated for
every simulated charge and in the end, the average of all mobilities has been determined.
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In this section, we introduce a typical electron-hole lattice Hamiltonian employed for quan-
tum dynamical simulations of photoinduced processes in aggregated functional materials.
Our concept is to use a first-principles parametrized version of such a Hamiltonian in order
to faithfully represent the excited-state properties of aggregate species. Accurate super-
molecular calculations are usually not available for the system sizes of interest, such that
a fragment-based representation – based on reasonably accurate calculations for monomer
or oligomer fragments – is a sensible approach.

When constructing a lattice model [113–117], each lattice point typically represents a
specific monomer (or else oligomer), which is characterised by its on-site potential energy
terms as well as couplings to neighboring lattice points. The construction of these on-
diagonal and off-diagonal potential terms – usually from electronic structure calculations
for small oligomer species – is a crucial ingredient in the lattice model. In sections 4.2
and 4.3 the importance of these electronically on-diagonal and off-diagonal potential en-
ergy terms was highlighted. In particular, the off-diagonal potential-type coupling terms
describe, e.g., excitation energy transfer and charge transfer processes.

From the perspective of molecular aggregates, the off-diagonal electronic coupling ele-
ments have a direct influence on the electronic stucture of aggregated chromophores. In this
context, the difference between H- and J-aggregates [118] will be highlighted and explained
in the context of so-called Frenkel states [37, 119].

7.1 Electron-Hole Lattice Model

In order to treat excitation energy transfer and charge transfer phenomena on equal foot-
ing, we use a lattice representation in an electron-hole (e-h) basis. Each lattice point
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corresponds to a molecular fragment that carries a local excitation or a charge. To trans-
late electronic structure information – typically from potential energy surface cuts of small
oligomer species – to this electron-hole representation, a diabatization procedure has to be
employed (see section 4.3). In figure 7.1, the construction of the e-h lattice representation
is illustrated for two cases: (i) an oligothiophene tetramer which is discretized into four
identical monomer sites, (ii) two stacked oligothiophene tetramers, where each tetramer is
now taken as an individual oligomeric lattice site.

ν
1 2 3 4

1

2

ν

a)

b)

Figure 7.1: a) Sketch of a monomer resolved discretization of the electron-hole lattice
Hamiltonian. b) Sketch of an oligomer resolved discretization of the electron-hole lattice
Hamiltonian.

In the following, we will label e-h states |νµ〉, with the convention that electrons are
located at site ν while holes are located at site µ. Electrons and holes are usually allowed to
occupy all sites of the lattice. Simultaneous occupation of the same lattice site corresponds
to a Frenkel exciton configuration (i.e., a localized e-h state). Restrictions may apply if
one is not dealing with homogeneous systems such as the oligothiophene tetramer shown
above, but rather heterogeneous systems such as donor-acceptor systems (see chapter 8)
where holes are located on the donor species while electrons are located on the acceptor
species.
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7.2 Frenkel Hamiltonian: H and J Aggregates

As has been mentioned in the previous section, discrete lattice points represent a specific
site. The overall molecular Hamiltonian describing the system is therefore a sum of the
invidivual site Hamiltonians, including off-diagonal coupling-type contributions, i.e.,

Ĥ =
∑
νµ

∑
ν′µ′

Ĥνµν′µ′ |νµ〉〈ν ′µ′| (7.1)

with

Ĥνµν′µ′ = δνν′δµµ′
(
Ĥ0
νµν′µ′

)
+ Ĥcoup

νµν′µ′ . (7.2)

Equation 7.2 can be split up into an electronically diagonal zeroth-order part (first term)
and an off-diagonal part containing electronic couplings describing excitation energy trans-
fer (EET) as well as exciton to charge transfer couplings (second term). In particular, these
terms look as follows

Ĥ0
νµνµ = Ĥeh

νµνµ + Ĥvibr
νµνµ. (7.3)

and

Ĥcoup
νµν′µ′ = ĤEET

νµν′µ′ + ĤCT
νµν′µ′ (7.4)

As it has already been mentioned, equation 7.3 is electronically diagonal in the e-h basis
specified earlier. The first term in this equation describes the intrinsic electron-hole inter-
action energy, i.e. the energetics of the system that can often be derived from an effective
Coulomb barrier. The second term is related to vibronic contributions, arising from the
coupling of the electronic subsystem to the vibrational (“phonon”) subsystem. The poten-
tials appearing in the second term of equation 7.3 can either be obtained by (i) a direct
ab initio calculation of selected potential energy surface cuts and a subsequent diabatic
mapping procedure [83–85] or (ii) from a linear vibronic coupling approach [80, 120, 121],
as it will be shown later. Typically, the vibronic part of the Hamiltonian looks as follows

Ĥvibr
νµνµ = δνν′δµµ′

∑
i

(1
2 p̂

2
i + V̂i,νµ

)
. (7.5)
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Equation 7.5 is the very general form of a vibrational Hamiltonian with the kinetic energy
operator and a state-specific potential energy operator. As mentioned previously, the po-
tential energy operator V̂ can be obtained via different techniques, among which the linear
vibronic coupling approach will be highlighted later.

The electronically off-diagonal part of the Hamiltonian, i.e. equation 7.4, contains two
types of site-to-site couplings. First, there are Frenkel-type couplings between localized e-h
pairs. Second, there are electron/hole transfer integrals, corresponding to the transfer of
electrons and holes between different sites. Usually one assumes that only nearest neighbor
couplings are relevant for the dynamical evolution of a system. In particular, the first term
of equation 7.4 takes the explicit form of

ĤEET
νµν′µ′ = δνµδν′µ′ (δν′ν+1J + δν′ν−1J) (7.6)

while the second term takes the form

ĤCT
νµν′µ′ = δνν′ (δµ′µ+1thole + δµ′µ−1thole) + δµµ′ (δν′ν+1telec + δν′ν−1telec) (7.7)

The explicit calculation of the excitonic coupling J occurring in equation 7.6 and the trans-
fer integrals thole and telec occurring in equation 7.7 is of crucial importance to accurately
model functional nano-structured materials [86].

Besides the accurate calculation of the excitonic coupling J appearing in equation 7.6,
it is also crucial to determine the correct sign of the calculated coupling constant J. De-
pending on the sign of the excitonic coupling J, the chromophore is either of H-aggregate
type or else of J-aggregate type [118]. This implies that the bright state, i.e. the state that
is experimentally prepared due to a vertical excitation, is either higher or lower in energy
than the monomeric state.

To highlight the above point, consider a general two-state system of the form

Ĥ =
εXT J

J εXT

 (7.8)

The eigenvalues are given as E1/2 = εXT ± J . Let us first consider the case J > 0. By
inspecting the eigenvectors of this system, one notices that the eigenvector corresponding
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to the higher energy state, i.e. (εXT + J), reads ~E1 = (1, 1)T , while the eigenvector cor-
responding to the lower energy state, i.e., (εXT − J), reads ~E2 = (1,−1)T . One can see
that the eigenvector describing the lower energy state exhibits a nodal plane, while the
eigenvector corresponding to the higher energy state does not. Transferring this picture to
transition dipole moments for these two states, which are composed in an additive way of
monomeric transition dipole moments, one can say that the oligomer transition dipole mo-
ments show constructive (in the case of ~E1) or destructive interference (in the case of ~E2).
Now, if one assumes that the excitonic coupling J takes a negative value, the argument is
reversed: One obtains as eigenvector for the higher energy state ~E1 = (1,−1)T and for the
lower energy state ~E2 = (1, 1)T .

Relating these observations to electronically coupled organic chromophores, one refers
to an H-aggregate if the optically allowed transition takes the system to the higher excited
state (J > 0), while an optically allowed excitation to the lower energy state corresponds
to a J-aggregate (J < 0). The optical excitation in either an H aggregate or a J-aggregate
also has a direct influence on the dynamical evolution of the system. In the case of an H-
aggregate, the system carries a certain amount of excess energy, which can help to overcome
energetic barriers. On the other hand, this energy can be dissipated in the course of internal
conversion processes. For the same reason, bright states of H-aggregates often have a very
short lifetime.

7.3 Vibronic Effects: Linear Vibronic Coupling Model

As has been mentioned earlier, the linear vibronic coupling (LVC) [121] model represents
a simple approximation to the nonadiabatically coupled potential energy surfaces of the
molecular system. The LVC approach is based on a shifted harmonic oscillator model, and
is usually formulated in the normal mode basis. Here, one assumes that the photoexcitation
of the normal mode in the ground state generates a wave packet in the Franck-Condon
[122–124] region of the excited state, with the excited state being shifted from the ground
state equilibrium geometry.
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Figure 7.2: Sketch of the shifted harmonic oscillator approach used for the quantum
dynamics in this chapter. A wave packet is excited from the optimised ground state to the
Franck-Condon region in the excited state and can evolve free.

Figure 7.2 shows a sketch of the LVC scheme, also called the shifted harmonic oscillator
approach. The overall potential is given as a sum of contributions of the ground state (S0)
and the excited state (here, S1),

V̂ (x) = 1
2ωx

2|S0〉〈S0|+
1
2ω(x− x0)2|S1〉〈S1|

= 1
2ωx

2|S0〉〈S0|+
(

1
2ωx

2 − ωx0x+ 1
2ωx

2
0

)
|S1〉〈S1|

= 1
2ωx

2|S0〉〈S0|+
(

1
2ωx

2 + κx+ ∆
)
〉|S1〉〈S1| (7.9)

where mass and frequency-weighted coordinates were used. In equation 7.9, the first term
describes the non-shifted ground-state potential, whereas the remaining terms describe a
shifted potential, with the linear coordinate dependent term κx, where κ is referred to as
vibronic coupling constant. The last term in equation 7.9 is a vertical shift.

In order to obtain the vibronic coupling constant κ, one can either calculate the Franck-
Condon gradient or else the optimized excited-state geometry (by geometry optimization).
Within the LVC model, both give identical information about κ. Usually, one refers to
ground state normal modes, such that the scalar product of the excited-state gradient and
the normal-mode vector yields the vibronic coupling constant κ.
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7.4 Effective-Mode Transformation

The effective-mode approach to study short-time dynamics in nonadiabatically coupled
systems is based on previously introdcued linear vibronic coupling approach. The starting
point for the derivation of an effective mode description are the vibronic coupling coeffi-
cients κi as well as the corresponding set of normal modes {xi} [125]. In the following, the
effective mode decomposition will be explained for a two-state system. The LVC Hamilto-
nian, written in matrix formalism, looks as follows

Ĥ =
N∑
i=1

ωi
2
(
p̂2
i + x̂2

i

)
1 +

 κ(1)
i xi λ

(12)
i xi

λ
(12)
i xi κ

(2)
i xi

 . (7.10)

where the diagonal entries of the matrix correspond to the shifted potentials of Eq. (7.9).
Equation 7.10 shows the molecular Hamiltonian for an arbitrary two state system with
N normal modes. Here, ω, p̂ and x̂ describe the frequency, momentum and position op-
erator of a given normal mode, respectively. 1 is the unit matrix. Note that the given
Hamiltonian also accounts for conical intersections, due to the coordinate dependence of
the off-diagonal coupling term.

In order to reduce the dimensionality of the system from N = NNM normal modes to
N = NEM effective modes, one has to apply an orthogonal coordinate transformation of
the form X = T x, with T being the transformation matrix [125, 126]. This scheme leads
to a decomposition of a general Hamiltonian Ĥ into two terms:

Ĥ = ĤEM + Ĥres (7.11)

Here, ĤEM is the Hamiltonian containing the effective modes which couple directly to the
electronic subsystem, with a dimensionality that is smaller compared to the full normal
mode approach. The term Ĥres contains the residual modes which do not couple to the
electronic subsystem, but to the effective modes. Due to the orthogonal transformation,
the NEM effective modes entirely define the coupling to the electronic subsystem. Thus,
the effective Hamiltonian ĤEM reads as follows.

ĤEM =
NEM∑
i=1

Ωi

2
(
P̂ 2
i + X̂2

i

)
1 +

C(1)
i Xi Λ(12)

i Xi

Λ(12)
i Xi C

(2)
i Xi

+
NEM∑

i,j=1,j>i
dij
(
P̂iP̂j + X̂iX̂j

)
, (7.12)

69



7 — Lattice Model Hamiltonians

with NEM < NNM . Comparing equations 7.10 and the first two terms of 7.12, one can
easily see that both Hamiltonians describe the same physical behaviour of the system. The
last term in equation 7.12 describes the bilinear coupling between the NEM effective modes.
The residual part of the Hamiltonian in equation 7.11 contains the remaining N − NEM

residual effective modes and their bilinear coupling to the first layer of effective modes,
which couple to the electronic subsystem.

Ĥres =
N∑

i=NEM+1

Ωi

2
(
P̂ 2
i + X̂2

i

)
1 +

N∑
i=1

N∑
j=4,j>i

dij
(
P̂iP̂j + X̂iX̂j

)
(7.13)

Along with the residual Hamiltonian shown in equation 7.13, additional transformations
can be carried out. The subspace of the residual modes can now be coupled to the first
layer of effective modes, described by equation 7.12 via different schemes:

• In the first scheme, the remaining residual bath is coupled to all effective modes,
where the residual bath can be seen as a separate bath for the effective modes.

• The second scheme is closely related to a Mori-type description [127], where one
creates a band-like structure of underlying residual baths. The dimensionality of the
resulting Hamiltonian is a multiple of the first layer of effective modes. With each
successive order, the dynamics of the system is captured on longer time scales.

• In the third and last scheme, one employs again a Mori-type description, but trun-
cates the chain at a chosen order M. The remaining bath modes are then diagonalised
and act as a dissipative bath for the M -th layer of effective modes.

The following figure shows a schematic representation of the three different schemes for
a two effective mode approach. An overview of the different schemes can be found in
references [128–130].

Figure 7.3a shows a graphical representation of the first scheme of the bath Hamilto-
nian. The diagonal terms represent the effective mode frequencies and the off-diagonal
terms the effective mode couplings dij. Here, only the first two effective modes couple di-
rectly to the electronic subsystem, whereas the remaining effective modes act as a residual
bath. The second mentioned scheme is shown in figure 7.3b and is related to a Mori-type
description. The dij coupling matrix has a band diagonal form and the couplings between
each subblock correspond to effective mode pairs. As more layers of effective-mode pairs
are added, the better is the long-time description of the resulting dynamics. The last
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Figure 7.3: Sketch of the three different realisations of the decomposition into effective
modes and residual modes. a) A secondary bath is coupled to the primary effective modes.
b) Mori-type description of the effective mode construction. c) Truncated Mori-type chain
with a Markovian closure.

scheme mentioned previously is schematically shown in figure 7.3c and can be understood
as a combination of the first and second scheme shown in figures 7.3a and b, respectively.
Here, the Mori chain is truncated at a certain order and the remaining bath modes are
diagonalised in order to yield a dissipative residual bath.

The dynamical calculations employed in this thesis have been performed using the
third scheme. The simulations employing the effective mode description shown in the first
half of this chapter have been done for various truncations of the residual effective mode
chain. The chains have usually been truncated at low orders, say at the 4th or 5th order,
which has been shown to give sufficiently accurate results for the short time as well as
the longer time dynamics [131, 132]. In addition, we employ a rediagonalization step,
by which the truncated band-diagonal representation in a reduced effective-mode space
is re-transformed to a normal-mode like form. This approach has proven to be favorable
numerically in conjunction with MCTDH calculations.
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7.5 The Ising Model

In the previous sections, lattice models have been used for the generation of Hamiltonians
for quantum dynamical simulations. In a complementary approach, the purpose of this
chapter is the application of these lattice models for statistical modeling via the Kinetic
Monte Carlo (KMC) methodology. Typically, an Ising Hamiltonian is used for creating
model bulk heterojunction (BHJ) morphologies, which can then be used for subsequent
propagation using classical-statistical techniques.

Originally, the Ising Hamiltonian has been developed to study ferromagnetism in solid
phases, such as crystals [133]. Many years later, in a pioneering study performed by
Watkins et al. [111], the same Hamiltonian was employed to create suitable model mor-
phologies for subsequent use in a KMC algorithm. This set-up has been successfully applied
to study a wide range of phenomena, ranging from exciton diffusion and dissociation [44,
134] to surface recombination [135] and even complete current-voltage curve modeling [136–
138].

The original formulation of the Ising Hamiltonian, with nearest-neighbor spin interac-
tions, is given as follows,

Ĥ = −1
2
∑
ij

Jijs
z
i s
z
j (7.14)

with the sum over all spins i and j of the system. Jij is the interaction between the spins
and szi the z-component of spin i. As reported in reference [111], this methodology can
also be applied to general molecular systems involving interacting sites; the mapping to
the Ising Hamiltonian is appropriate when a coarse graining approach of the individual
sites is carried out, as in the generation of suitable morphologies for KMC simulations.
As originally proposed by Watkins et al., one calculates the energy of a two adjacent sites
with opposite charge character, i.e., donor and accceptor, with the Hamiltonian shown in
equation 7.14. The energy difference ∆ε then determines the probability of a swapping
event, i.e.

P (∆ε) = exp[−∆ε/kt]
1 + exp[−∆ε/kt] (7.15)
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However, this method of calculation is not straightforward to apply in practice [111]. There-
fore, an alternative but mathematically equivalent description developed by Heiber et al.
[139] has been used in this thesis. The idea behind this approach is that the change in en-
ergy is thought of as breaking ”bonds” in the initial state and the formation of new ”bonds”
in the final state. Then, the change in energy is calculated as the difference between the
total energy of the initial bonds and the final bonds, i.e.

∆ε = −∆N1J −∆N2
J√
2

(7.16)

where J is the interaction energy and ∆Ni is the change in nearest neighbor bonds and next-
nearest neighbor bonds, respectively. Once the change in energy is known, the probability
of a swap in site character, i.e. swapping a donor site and an acceptor site or vice versa,
according to equation 7.15 is calculated. Finally, a random number generator is used to
determine if a change in site character is performed or not. This scheme is then repeated
until a desired morphology has been created. By choosing the sign of the interaction energy
J one can choose between a phase aggregated or phase separated morphology, as shown in
chapter 12.
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8 — Charge Separation in a Liquid
Crystalline Donor-Acceptor Ma-
terial

The first project presented addresses studies on a liquid crystalline donor-acceptor (DA)
material, employing state-of-the-art electronic structure and high level quantum dynami-
cal methods. The theoretical studies on this system are motivated by experimental work
by the groups of S. Méry and S. Haacke at Strasbourg University, with whom our group
has shared a joint DFG/ANR project on “Molecular Level Approaches to Photosensitive
Naonstructured Materials”.

In particular, in an experimental paper published by Roland et al. [140, 141], the
group of S. Haacke reports on a charge transfer on a sub-100 femtosecond time scale in
a novel DA system for organic solar cells. The study of the syste focuses on ultrafast
transient UV/VIS absorption spectroscopy for the isolated DA system in solution and for
the system arranged into a smectic liquid crystalline (LC) phase. For these cases, very
different dynamical behaviours are observed. Whereas the system in solution exhibits an
ultrafast excitation energy transfer (EET) (160 fs time scale) followed by a slower charge
separation (2.5 ps time scale), quite the opposite is observed for the system in a LC phase.
For the self-assembled system in a smectic LC phase, an immediate charge separation
without a preceding EET step is observed. The timescale for the formation of the charge
separated state is below 100 fs. The purpose of our theoretical study is to explain these
findings.

Table 8.1 shows the characteristic time scales obtained from time-resolved ultrafast
spectroscopic investigations. Even though the LC system looks promising at first sight,
due to the ultrafast charge separation step, this system also shows a very high recom-
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Table 8.1: Characteristic timescales from time resolved experiments. Taken from refer-
ence [141].

EET CT Recombination
Solution 130 fs 2.7 ps 55 ps

LC - 60 fs 70 ps

bination rate, which will limit its practical use as a component for photovoltaic devices.
While the spectroscopic studies provide an insight into the dynamics of the system upon
photoexcitation, the origin of the high recombination rate was unclear at the time of in-
terpreting the experiments. Since standard spectroscopic methods lack spatial resolution,
a molecular picture of the recombination process could not be provided.

Theoretical models, on the other hand, do provide the required spatial resolution since
the resolution mainly depends on the choice of the model system. The model system
should be capable of capturing the ultrafast character of the EET and charge separation
and provide an insight into a possible mechanism of the recombination process. Therefore,
a site-based model system has been set up in line with the electron-hole Hamiltonian
described in section 7.1. Dynamical studies were carried out with the ML-MCTDH method.

8.1 Model System and Model Hamiltonian

The model system for the theoretical investigations is based on the preliminary electron
diffraction and molecular modeling techniques presented in reference [142]. There, the
molecular structure of the LC phase has been studied and evidence is provided for a unique,
strongly tilted structure in the LC phase. Steady-state spectroscopic studies suggest that
the donor species is assembled in a J-aggregate, leading to the observed red shift.

To understand the dynamics of the LC phase, representative fragments from the LC
phase structure have been taken, for which high-level electronic structure calculations have
been performed. This fragment-based information is used to parametrise a suitable model
Hamiltonian for a quantum dynamical treatment. The fragment-based approach is sup-
ported by the steady state spectra which reveal that the spectrum of the isolated DA
System is the sum of the individual spectra of an isolated D and an isolated A. Hence,
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several fragments from the LC structure were taken, in particular representing nearest-
neighbor aligned DA dimers and stacked DA dimers, for which electronic structure studies
were performed. Dynamical calculations were subsequently carried out for a much larger
assembly, as shown in figure 8.1.

a) b)

D
D

A

c)

Figure 8.1: a) Molecular structure of the DAD triad with highlighted D and A moieties.
b) Sketch of the DAD triad arranged in a smectic LC phase, where siloxane chains act as a
scaffold. c) Stacked DAD triads. The transparent shading indicated that these molecules
have been omitted from the electronic structure calculations to save computational time.

Figure 8.1a shows the molecular structure of a DAD triad. The donor part consists of a
bis-thiophene derivative, whereas the acceptor consists of a perylene diimide moiety. Var-
ious experiments and theoretical studies on bis-thiophene and perylene diimide molecules
suggest that these materials are suitable precursors for the construction of efficient solar cell
devices [143–145]. Figure 8.1b shows a sketch of the DAD system upon self-organisation in
a smectic LC phase. The pronounced tilt angle induced due to the self-organisation leads
to an increased inter-layer overlap between stacked D and A units. Figure 8.1c shows a rep-
resentative fragment which has been taken from the molecular assembly. The highlighted
blue and red parts (representing donor and acceptor, respectively) show that dominant
inter-chain interactions can occur in the smectic LC phase.

As has been pointed out in the introductory part of this chapter, a suitable model
system and model Hamiltonian has to be capable to capture the mechanism leading to
the ultrafast charge separation in the LC phase. Since on such short time scales coherent
effects might play an important role, it is mandatory to use quantum dynamical methods.

The model Hamiltonian has been set up in a generalised electron-hole (e-h) representa-
tion in a single excitation subspace, in line with the general approach delineated in chapter
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7. Furthermore, the model Hamiltonian will be restricted to a DA dimer as a fundamental
building block, rather than a DAD trimer, in order to reduce computational costs. This
is justified by the separable nature of the individual contributions of the monomers to the
excited states, as can seen both from our calculations and from the experiments.

In the following, a basis is constructed such that the electron is located on site ν while
the hole is located on site µ. Localised electron-hole pairs (i.e. electron and hole on the
same fragment) correspond to an locally excited configuration (XT) on either the D or
A moiety, e.g. |DXT

i 〉 = |ν = i, µ = i〉. Conversely, if electron and hole are located on
different monomers, these configurations correspond to a charge separated (CS) state, i.e.
|D+

i A
−
j 〉 = |µ = i, ν = j〉. In the following, different CS states will be characterised by their

electron-hole distance in monomer units. In this notation, CS(n) describes an electron-hole
separation over n ≡ i− j monomer units. For the dynamical treatment of a representative
fragment of the LC phase, a model employing 12 DA pairs has been used. This gives rise
to 168 electronic states, i.e. 12 |DXT 〉, 12 |AXT 〉 and 144 CS states.

In the basis specified above, the Hamiltonian of the system takes the following form,

Ĥ = Ĥel + Ĥel−ph

= Ĥon−site + Ĥ intra
coupl + Ĥ inter

coupl︸ ︷︷ ︸
Ĥel

+Ĥel−ph (8.1)

Here, the term Ĥel includes all the electronic interactions such as on-site energies and
inter/intra-molecular diabatic couplings. The last term in equation 8.1 represents the
linear coupling of the phonon modes to the electronic subset.

Ĥon−site = εD

ND∑
i=1
|DXT

i 〉〈DXT
i |+ εA

NA∑
i=1
|AXTi 〉〈AXTi |+

ND∑
i=1

NA∑
j=1

εD+
i A
−
j
|D+

i A
−
j 〉〈D

+
i A
−
j | (8.2)

The on-site Hamiltonian contains the on-site energies for the different states, which are
supposed to be equal for all fragments in a diabatic representation. The energies for the
CS states are defined by the intrinsic Coulomb attraction between an electron and a hole,
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resulting in an effective Coulomb barrier. The latter is here constructed from TDDFT
calculations (see below). Next, the electronic couplings of the Hamiltonian look as follows

Ĥ intra
coupl = J intra

DA

ND∑
i=1

NA∑
j=1

(|DXT
i 〉〈AXTj |δij + h.c.)

+ κintra
D

ND∑
i=1

(|DXT
i 〉〈D+

i A
−
i |+ h.c.) + κintra

A

NA∑
i=1

(|AXTi 〉〈D+
i A
−
i |+ h.c.) (8.3)

and

Ĥ inter
coupl = JD

ND−1∑
i=1

(|DXT
i 〉〈DXT

i+1|+ h.c.) + JA

NA−1∑
i=1

(|AXTi 〉〈AXTi+1|+ h.c.)

+ J inter
DA

ND∑
i=2

(|DXT
i 〉〈AXTi−1|+ h.c.)

+ κinter
D

ND∑
i=1

(|DXT
i 〉〈D+

i A
−
i−1|+ h.c.) + κinter

A

NA∑
i=1

(|AXTi 〉〈D+
i+1A

−
i |+ h.c.)

+ te

ND∑
i=1

NA−1∑
j=2

(|D+
i A
−
j 〉〈D+

i A
−
j±1|+ h.c.) + th

ND−1∑
i=2

NA∑
j=1

(|D+
i A
−
j 〉〈D+

i±1A
−
j |+ h.c.).

(8.4)

Equation 8.3 describes the excitonic coupling JDA as well as the exciton to charge transfer
couplings, κD and κA, in a DA chain between covalently bonded D and A moieties. In
contrast, equation 8.4 describes the excitonic as well as exciton charge transfer couplings
between different layers of DA chains, e.g. between the highlighted fragments in figure
8.1c. The last two terms in equation 8.4 describe the transfer integrals for electron and
hole transport, respectively.

Finally, the electronic part of the Hamiltonian is modulated by the last term shown
in equation 8.1, i.e., the vibronic coupling part of the Hamiltonian. This part describes
how displacements in the nuclear geometry give rise to energetic fluctuations and hence,
tune energy levels in and out of resonance. At the same time, such vibronic couplings can
modulate the diabatic couplings. In the present study, the electron phonon coupling has
been obtained from state-dependent potential energy surfaces (PES) for selected vibra-
tional modes. The chosen PES have been identified by an analysis of the Franck-Condon
gradients and represent high frequency bond length alternation (BLA) modes on the D
and A fragments as well as a low-frequency torsional degrees of freedom located solely on
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the D moiety [146]. Furthermore, an intermolecular mode specific to the LC phase has
been taken into account, representing a mode modulating the distance between two layers
of DA chains. Overall, the electron phonon (vibronic) coupling part of the Hamiltonian
reads as follows,

Ĥel−ph = T̂ph({ζD}, {ζA}, {ζDA})

+
∑
i

V̂ XT
D ({ζDi }, {ζDAi }) |DXT

i 〉〈DXT
i |+

∑
i

V̂ XT
A ({ζAi }, {ζDAi }) |AXTi 〉〈AXTi |

+
∑
i

∑
j

V̂DA({ζDi }, {ζAj }, {ζDAij }) |D+
i A
−
j 〉〈D+

i A
−
j | (8.5)

The kinetic energy operator T̂ph is chosen to be electronically diagonal in order to fulfill
the requirement of a diabatic Hamiltonian. The potential energy terms V̂ represent the
abovementioned selected PES cuts of the system. In the next section, we describe how
these PES cuts were calculated explicitly in order to fit them to analytical funtions and
implement them into a given model Hamiltonian for subsequent wave packet propagation.

8.2 Electronic Structure Calculations

According to the model Hamiltonian presented in the previous section, electronic struc-
ture calculations on representive fragments taken from the smectic LC phase have been
carried out. The highlighted structure shown in figure 8.1c has been optimised using the
ωB97XD DFT functional [147] along with the SVP basis set [148, 149] as implemented in
the Gaussian09 [150] software package. Based on this optimised geometry, excited state
calculations employing the ADC(2) method and def2-SVP basis set have been done, using
the Turbomole program package [151].

As has been pointed out in chapter 5, the ADC(2) method is a high-level ab initio based
Green’s function method. This method is suitable as a benchmark tool to find a suitable
DFT functional that represents the electronic structure of the system in an appropriate
way. Whereas for an isolated chain of neighboring D-A units a suitable DFT functional
could be found [146], this was not the case for the stacked alignment shown in figure 8.1c.
Due to the stacked alignment of the molecules and the close proximity of the D and A
moieties, DFT functionals with an inherent dispersion and long-range correction had to
be used. This limits the choice of available DFT functionals to ωB97XD or CAM-B3LYP
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[152]. Recently there has been a benchmark study on the performance of the ωB97XD
for the excited states of thiophene molecules [153]. The results of that study have been
compared to ADC(2) calculations and are fairly similar. Since the D moiety of the system
under investigation is a thiophene derivative, the use of the ωB97XD functional is well
justified. However, while the obtained DFT ground state structure seems to be plausible,
the excited states obtained from the ωB97XD functional were not always in agreement
with the energetics found from our ADC(2) calculations. Therefore, the energetics defined
in our model Hamiltonian refers throughout to the ADC(2) results.

Figure 8.2 shows the molecular geometry of an optimised DA dimer, representing the
highlighted area of figure 8.1c along with the excited states obtained with the ADC(2)/def2-
SVP method.

S1 / CT
E

ex
 = 3.05 eV

a)

S2 / D-XT
E

ex
 = 3.17 eV

b)

S3 / A-XT
E

ex
 = 3.90 eV

c)

Figure 8.2: Excitations calculated with the ADC(2) method and the def2-SVP basis set.
Shown are the natural transition orbitals as provided by the TheoDORE program package
[154–156].

Figure 8.2a-c shows the three relevant excited states which have been identified from
the ADC(2)/def2-SVP calculations and a natural transition orbital (NTO) analysis [157].
Figure 8.2a shows the first excited state. From the NTO analysis one can deduce that this
state corresponds to the charge transfer (CT) state. The second excited state corresponds
to the locally excited D-XT state, i.e. the experimentally prepared initial state. One can
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see that the energy gap between the bright excited D-XT state and the CT state is only
0.12 eV. On the other hand, the S3 state (figure 8.2c) is clearly the excited A-XT state,
lying 0.73 eV above the bright D-XT state.

The diabatic coupling, mediating the transfer from one state to another, have been
obtained by a diabatisation procedure as explained in section 4.3 and references [158, 159].
Briefly, a projection of the adiabatic wave function |Ψ〉 onto reference wave functions with
defined character, i.e., of locally excited or charge transfer type, is carried out. Then, the
diabatic wave functions |Φ〉 are expressed as a linear combination of the adiabatic wave
functions, i.e. the adiabatic wave functions act as basis for the diabatic wave functions.
Finally, the matrix element 〈Φi|Ĥ|Φj〉 is calculated, which gives the value of the respective
diabatic coupling. In the following table 8.2, the diabatic couplings and transfer integrals
are shown, obtained from the diabatisation procedure outlined above.

Table 8.2: Electronic diabatic couplings, calculated with the LC-BLYP functional.

J intraDA κintraD κintraA JD JA J interDA κinterD κinterA te th

0.02 0.002 2 ×10−4 -0.10 -0.03 0.059 0.025 0.023 5 ×10−4 0.0013

From the table, one can see that the entries corresponding to the intra-molecular trans-
fer, i.e. the Hamiltonian in equation 8.3, are much smaller then the couplings of the
Hamiltonian in equation 8.4. The reason for that behaviour is due to the fact that the
calculated diabatic couplings are proportional to the overlap of the corresponding wave
functions. Since the overlap for an intermolecular transfer is much larger then for the
intramolecular transfer, the diabatic couplings are also much larger.

The magnitude of the intramolecular couplings from table 8.2 are also in accordance
with the experimental results for the system in solution, see also table 8.1. Here, first an
EET step from the D-XT to the A-XT state happens, followed by slower CT state forma-
tion. This is reflected by the diabatic couplings, where the coupling between the D-XT and
A-XT states is one order of magnitude larger then the coupling between the A-XT and CT
state. The coupling between the D-XT and CT state is zero. For the smectic LC phase,
this behaviour is the opposite. Here, the experiment suggests that the CT state formation
happens immediately after photoexcitation to the bright D-XT state. In combination with
the excitation energies shown in figure 8.2, this behaviour is supported by the large D-XT
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to CT couplings. Even though the coupling for an EET process is twice as high as for the
CT state formation, this process does not happen due to the energetics. From figure 8.2
one can see that the A-XT state, i.e. the final state of the EET process originating from
the D-XT state, is energetically out of reach.

After the initial CT state has been formed, the subsequent spatial separation of elec-
tron and hole obeys Coulombs law. To incorporate the energetics of the spatially separated
electron-hole states, the Coulomb barrier has been calculated explicitly. To do so, vari-
ous D-A conformations have been taken from the smectic LC phase, each mimicking a
distinct electron-hole configuration. Donor and acceptor fragments not participating in
the calculation of the Coulomb barrier have been replaced by point charges, modeling the
distribution of local dipole moments. Furthermore, an external electric field of 50 V/µm
has been included in the calculation in order to enhance charge separation.

i-1 i-1

i i

i+1 i+1

N
D

N
A

. . .

CS(-1)
a) b)

Figure 8.3: a) Schematic representation of a LC DA stack consisting of ND donor moleu-
cles and NA acceptor molecules. The highlighted CS(-1) configuration is the state to which
the initial charge separation occurs, according to electronic structure calculations. b) Cal-
culated Coulomb barrier. The barrier has been obtained with the ωB97XD functional and
the SVP basis set, as implemented in the Gaussian09 software package.

Figure 8.3 shows (a) a sketch of the calculation set up as well as (b) the resulting
Coulomb barrier. As mentioned above, monomers not participating in the calculation
of a specific electron-hole distance for the Coulomb barrier have been replaced by point
charges, representing the dipole moment between two fragments. (We note, though, that
polarization effects are not correctly represented at this level of treatment.) Translating
this explicitly to the highlighted CS(-1) configuration in figure 8.3, the donor fragments
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i − 1 & i + 1 as well as the acceptor fragments i & i − 2 (not shown) would be replaced
by point charges. This calculation set up has been used to calculate the Coulomb barrier
for up to a electron-hole distance of ±9 DA units. Figure 8.3 shows the resulting barrier
with an applied external electric field of 50 V/µm. One can see that the CS(-1) state (see
figure 8.3a) is strongly stabilised and acts as a local trap. The other CS states are much
higher in energy and one can expect that these states get barely populated, even though
the D-XT state lies roughly 0.1 eV above the CS(-1) state. The reason for the high barrier
between the CS(-1) state and the CS(0) or CS(-2) state is the negligible overlap between
donor/donor and acceptor/acceptor molecules. Due to the unique alignment of the cova-
lently bonded D-A units within the smectic LC phase, the overlap between different layers
of D-A molecules is very small and hence, a lot of energy is needed to promote an electron
(hole) from one acceptor (donor) to the other.

Once the energetics of the system have been defined, the potential energy surfaces
(PES) have to be calculated. From the analysis of the Franck-Condon gradients, several
important modes were identified, for which PES cuts were calculated.

y
D/AΘ

D

x
D

x
A

a) b)

c) d)

Figure 8.4: a) Molecular representation of a DA dimer, taken from the LC structure.
Additionally shown are the degrees of freedom for which the PES are calculated. b) PES
for the xD mode. c) PES for the xA mode. d) PES for the θD mode. Green curves
correspond to the CS(-1) state, red to the D-XT and blue to the A-XT state.
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Figure 8.4a shows a DA fragment from the smectic LC phase with the most relevant
degrees of freedom (DOF). Figure 8.4b shows the PES for the high frequency BLA mode
located between the two thiophene rings on the donor fragment. Upon photoexcitation
from the ground state (not shown) to the bright D-XT State, the bond length shortens.
Furthermore, one can see that the PES of the D-XT and the CS(-1) state intersect each
other, highlighting the importance of the BLA mode for the dynamics. Due to a sufficient
amount of excess energy, the wave packet should be able to reach the intersection between
the two states. The BLA on the acceptor does not play such a central role. A crossing
between the D-XT and CS(-1) does exist, but is higher in energy then the crossing in the
BLA located on the donor. Nevertheless, the BLA on the acceptor does play a role in the
dynamics since it modulates the electronic energy levels due to the linear vibronic coupling
ansatz. The same observation can be made for the torsional DOF as for the BLA on the
acceptor. Even though no crossing exists, the torsional DOF plays in important role in
generating a continuum of vibronically resolved states. Furthermore, it was shown in lit-
erature that the combination of high frequency modes and low frequency modes is crucial
for the transfer pathways, even though there may not be directly observable intersections
in the selected PES cuts [126]. For all three PESs, one can see that the A-XT state lies
well above the D-XT and CS(-1) state. Hence, the A-XT state does not play a role in
the dynamics of the smectic LC phase, which was already confirmed by the time resolved
spectroscopic experiments.

The PESs in figure 8.4b-d have been calculated at a discrete set of geometries. In order
to implement a continouus PES into the proposed model Hamiltonian, these discretised
points have to be fitted by appropriate analytical functions. For the BLA and intermolec-
ular modes, a Morse potential function has been used, whereas a cosine series has been
employed for the torsional DOF. Specifically, the analytical expressions look as follows

v(x) = D0 (1− exp(−α(x− x0)))2 (8.6)

and

v(θ) = a1cos(θ) + a2cos(2θ) + a3cos(4θ) (8.7)

From these analytical expressions, the following parameters have been obtained.
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Table 8.3: Parameters obtained from a fit to the calculated PES, as shown in figure
8.4b-d.

GS ES CT
D0 0.2210 0.2425 0.2514

xD α 0.9095 0.9804 0.9235
x0 -0.0103 -0.1453 -0.0886
D0 0.2210 0.2337 0.2418

xA α 0.8905 0.9225 0.8833
x0 -0.0097 -0.0870 -0.0635
a1 5.83E-4 5.24E-4 4.92E-4

θD a2 -1.4E-3 -0.0185 -0.0118
a3 7.66E-4 2.80E-3 2.50E-3
D0 0.0086 0.0165 0.0317

yD/A α 0.668 1.037 0.733
x0 7.18 7.18 6.23

It should be noted that the electronic structure calculations performed to parametrise
the intermolecular mode yD/A did not yield a bond length reduction between the donor
and acceptor moiety upon CS(-1) state formation. Therefore, the potential minimum has
been shifted artificially by 0.5 Å due to the Coulomb attraction between opposite charges.

8.3 Quantum Dynamics Simulations

Once the elements of the Hamiltonian proposed in equation 8.1 to 8.5 have been defined,
high-dimensional quantum dynamics simulations can becarried out. Prior to that, it is
beneficial to analyse the spectrum of the Hamiltonian, i.e. the eigenvaluesand eigenvectors
after photoexcitation to the bright D-XT state. Since the A-XT states are energetically and
dynamically irrelevant for the formation of the charge transfer state, they will be neglected
in the following. This will reduce the total number of states of the model Hamiltonian from
168 to 156, i.e. 12 D-XT and 144 CS(n) states, where the CS states’ energies are defined
by the Coulomb barrier shown in figure 8.3b. Figure 8.5a shows the diabatic (I) as well as
local-adiabatic (II) eigenvalues of the Hamiltonian. The diabatic eigenvalues correspond
to the on-site energies εD and εD+

i A
−
j

from equation 8.1. Here one can see that the only
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Figure 8.5: a) Diabatic (I) and adiabatic (II) eigenvalues of the electronic Hamiltonian
after numerical diagonalisation. b) Graphical representation of the eigenvectors of the
electronic Hamiltonian after diagonalisation, illustrating the mixing between the D-XT and
CS(-n) manifold. Entries below the dashed line correspond to wave function coefficients
for the D-XT state, whereas entries above the dashed line correspond to wave function
coefficients for the CS(-n) state.

energetically favourable CS state is the one below the D-XT on-site energy, which corre-
sponds to the CS(-1) state. In the local-adiabatic representation, the coupling between the
D-XT manifold and the CS manifold has been neglected. One can see that the influence of
the transfer integrals on the CS(n) states is negligible, which is not surprising due to their
small magnitude. The D-XT manifold shows a splitting into 12 adiabatic eigenvalues. Due
to the sign of the excitonic coupling shown in table 8.2 one can see that the bright state is
the energetically lowest state.

From the graphical representation of the eigenvectors in figure 8.5b one can see that the
bright D-XT state on the lower band edge of the D-XT manifold shows a non-negligible
CS(-1) state mixing. This mixing intensifies until the fifth state, afterwards the CS(-1)
contribution to the D-XT state gets lower again. Due to the linear vibronic coupling ap-
proach, dynamical changes in the nuclear geometries will induce fluctuations in the energy
levels and hence, open or close specific pathways of exciton migration or dissociation. From
the analysis presented above, one can deduce that the CS(-1) state will be energetically
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accessible, while the remaining CS(n) states may not be accessible immediately. A full
quantum dynamical treatment of the proposed model Hamiltonian is therefore necessary
in order to obtain insight into the mechanism after photoexcitation.

The full quantum dynamics have been done using the ML-MCTDH method with 156
electronic states (12 D-XT & 144 CS states) and 48 DOF. In addition to the 47 DOF from
the system (i.e. 12 xD, 12 θD, 12 xA & 11 yD/A), an additional effective mode has been
constructed to account for the missing reorganisation energy due to the reduced amount
of DOFs of the system. Furthermore, simulations involving the isolated DA system in so-
lution have been performed, employing the MCTDH method in multi-set formalism. Here,
the three experimentally observed states (i.e. excitonic D, excitonic A and CT state) along
with three DOF and an additional solvent coordinate to account for the influence of the
solvent on the dynamics, have been used. Details regarding the electronic structure of the
isolated DA system can be found in reference [146]. Figure 8.6a shows the population of

a) b)

Figure 8.6: a) Individual excitonic donor and CS(-1) populations for the simulation of
the smectic LC phase. The initial excitonic state is a delocalised J-aggregate. b) Dynamics
of the isolated DA system in solution. In line with the experiment, first an EET followed
by a slower build up of the CT state can be observed.

the invidiual D-XT states and the CS(-1) states. Electronic structure calculations and the
red-shifted steady-state absorption spectrum indicate a J-aggregate type delocalisation of
the initial wave packet over several units [141]. Therefore, the initial wave packet is taken
to be delocalised over all 12 accessible donor molecules present in the model Hamiltonian.
From the population plot, one can infer that an ultrafast exciton dissociation into charge
separated states is occurring. This is also in accordance with the reported experimental
results, see also table 8.1. Interestingly, the quantum dynamics reveal two time scales of
the population transfer: one ultrafast time scale in the ≈ 60 fs regime and one slower
time scale in the 200 fs regime. The slower time scale can be attributed to the build-up
and decay of a quasi-stationary coherent superposition between the initial D-XT and the
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resulting CS(-1) states. Figure 8.6b shows the population dynamics for the isolated system
in solution. Again, the experimentally bright D-XT state has been prepared as the initial
state for the wave packet dynamics. One can see that first, an EET from the D-XT to
the A-XT state is occurring, followed by a slower CT state formation. Again, this is in
agreement with the experimental results reported in table 8.1.

As has already been pointed out, the population dynamics of the smectic LC phase
simulations in figure 8.6a reveal two time scales, with the slower one originating from a
coherent superposition state between the D-XT and CS(-1) state manifold. Figure 8.7a

a) b)

Figure 8.7: a) Imaginary part of the electronic coherence ρD−XT/CS(−1). b) Real part
of the electronic coherence ρD−XT/CS(−1). The imaginary part of the electronic coherence
determines the transient population flux, which can be seen in the population dynamics
in figure 8.6. The real part shows that a long-lived coherent superposition between the
D-XT and CS(-1) state emerges, which is responsible for the two-timescale dynamics in
the population plot.

shows the imaginary part of the electronic coherence, i.e. ρD
XT−CS(−1)

i,i−1 = 〈DXT
i |ρ̂|D+

i A
−
i−1〉

with ρ̂ = |ψ〉〈ψ|. The imaginary part of the electronic coherence determines the fast ≈
50 fs population flux [160] from the D-XT to the CS(-1) state, as it can be seen in figure
8.6a. The real part of the coherence suggests that a coherent superposition state is formed,
which lasts for about 200 fs until it disappears again.

So far the ultra fast mechanism leading to the initial charge seperation could be elu-
cidated. Yet, the analysis lacks an explanation of the high recombination rate, which has
been reported experimentally. Therefore, the spatial extension of the electron-hole sepa-
ration has been analysed. Since the proposed model system and model Hamiltonian has
all electron-hole interactions included, it should give some evidence about the high recom-
bination rate. Figure 8.8 shows the CS(n) state populations along with the cumulative
population of the individual D-XT states, i.e. PXT

D = ∑
i P

XT
Di

. It is obvious that all pop-
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Figure 8.8: Spatially resolved populations of the different CS states. The ultrafast exci-
tonic decay of the integrated D-XT populations matches the rise of the initial CS(-1) state.
The other CS(±n) states are barely populated due to the high Coulomb barrier and small
transfer integrals.

ulation accumulates in the CS(n=−1) state, with the population of the other CS(n 6= −1)
is nearly zero. One of the reasons for this behaviour is the huge Coulomb barrier between
the individual CS(n) states, limiting the transfer efficiency. Another important point is the
small value of the transfer integrals. From table 8.2 one can see that the electron (te) and
hole (th) transfer integrals are of the order of 10−3. In combination with the high Coulomb
barrier, a transfer along the molecular axis is not possible and these two effects contribute
as major factors to the high recombination rate. Since electrons and holes remain spatially
close to each other, they are more likely to undergo recombination rather than efficient
charge separation.

In addition to the fully delocalised initial condition prepared in the bright D-XT J-
aggregate state, various degrees of delocalisation have also been used as an initial state.
From figure 8.5b it is obvious that the fully delocalised initial state is the lowest eigenstate
in an adiabatic representation due to the nodeless structure of the wave function. Therefore,
localisation should increase the initially available excess energy and maybe facilitate new
pathways. The following figure shows the results for the quantum wave packet dynamics
with various degrees of delocalisation. Figure 8.9a shows the overall CS state populations
for various degrees of initial delocalisation. One can see that the amount of CS states
generated does not deviate very much with increasing delocalisation. Except for a localised
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Figure 8.9: Influence of different initial delocalisation lengths on the overall CS state
population. a) Overall CS state populations for different delocalised initial conditions. b)
Distribution of the different CS(-1) states depending on the initial delocalisation length.
c) D-XT state populations at 0 femtoseconds and after 20 femtoseconds starting from a
localised initial condition to highlight the very fast excitonic delocalisation.

initial condition, the integrated CS state populations are fairely even. Figure 8.9b shows
the distribution of the accessible CS(-1) states depending on the initial condition. Again,
the same behaviour can be seen as for figure 8.9a, where the different delocalisation lengths
do not change anything in the dynamics. In conjunction with the CS state populations
from figure 8.9a this leads to the conclusion of an efficient and fast exciton delocalisaton
over the whole lattice. Figure 8.9c emphasizes this behaviour. One can see that the initial
localised excitation spreads equally over the whole lattice after already 20 femtoseconds,
indicating a fast and efficient exciton delocalisation. After the exciton delocalisation, the
CS(-1) states are populated.

8.4 Summary and Conclusion

High-level electronic structure calculations as well as state-of-the-art quantum dynamics
simulations based on a first-principles parametrised model Hamiltonian have been con-
ducted to elucidate the ultrafast mechanism of exciton dissociation leading to the genera-
tion of charge separated states in a liquid-crystalline donor-acceptor co-oligomer combina-
tion. The proposed model system and the model Hamiltonian are based on a generalised
linear vibronic coupling approach in combination with the knowledge of experimental ob-
servations. Electronic structure calculations were performed for suitable fragments taken
from the smectic LC phase. These calculations reveal that an ultrafast exciton dissociation
into free charge carriers should be possible due to the small energy gap between the bright
excitonic donor state and the charge transfer state. Furthermore, the electronic structure
calculations revealed that the excitonic acceptor state, responsible for the EET as seen
in the isolated system in solution, is energetically out of reach and hence, EET does not
play a role in the dynamical treatment of the system. The calculated diabatic couplings
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emphasize the possibility of an ultrafast exciton dissociation, indicated by a reasonably
large coupling value.

A population analysis of the quantum dynamics simulations showed that the exciton
dissociation is occurring on an ultrafast time scale, namely within the first 50 femtosec-
onds. Furthermore, the population analysis indicated a second time scale, which is of the
order of 200 femtoseconds. This second time scale could be interpreted as the build-up
and decay of a quasi-stationary coherent superposition of the initial excitonic donor state
with the charge separated state. Further analysis of the charge separated state populations
revealed that the spatial extension of the electron-hole distance remains on the order of
one monomer unit. This is not very surprising if one recalls the high Coulomb barrier and
the small transfer integrals. Ultimately, this spatial localisation of electrons and holes will
lead to recombination processes on longer time scales, contrary to the desired charge sepa-
ration into free charge carriers. Upon exciton localisation, this behavior does not change,
even though the initial wave packet now possesses more excess energy. Due to very fast
and efficient exciton delocalisation, the charge separation process happens after exciton
delocalisation.

Summarizing the combined electronic structure and quantum dynamics simulations, it
can be stated that the molecular packing plays a central role in the energetics of the system
and the subsequent dynamics upon exciton dissociation. Even if exciton dissociation might
be the kinetically fastest process, this will not lead to an efficient generation of free charge
carriers. Interestingly, this behaviour was also observed for other donor-acceptor systems
composed of oligo(p-phenylenevinylene) and perylene diimides [161, 162]. A detailed un-
derstanding of the influence of molecular packing on the photophysical properties is needed
for the efficient design of more efficient organic photovoltaic devices in the future.

8.5 Outlook to 2nd Generation DA Systems

In view of the inefficient charge generation in the first-generation DAD system, a second
generation of DnA dyad co-oligomers was devised [35, 36] with the aim of increasing the CT
lifetime while preserving a near 100% CT formation efficiency. An increased CT lifetime is
indicative of a reduced recombination rate and a higher photocurrent yield. This new co-
oligomer generation features both chemical modifications and a different molecular packing
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as compared with the first-generation material. As detailed in references [35, 36, 163],
the second-generation material is organized into highly ordered lamellar mesophases that
feature well-defined donor and acceptor domains; the latter are interleaved such as to form
a zipper-like structure [36, 163].

A D

Figure 8.10: Sketch of 2nd generation DA materials arranged into a LC phase. One can
see the different ordering patterns with planes consisting either of DA or AD dimers.

Figure 8.10 shows a sketch of the second generation DA system arranged into a meso-
scopic phase. From both figures one can see that there is an alternating stacking pattern
of AD in every even row and DA in every odd row. While the acceptors are in contact with
each other via two dimensions, the donors are interacting only in one dimension with each
other. The dimension in which both D and A are overlapping with the next DA dimer is
caused by the strong π-π interaction of the acceptors.

As for the aspect of chemical design, the donor and acceptor cores are closely related
to the first-generation material, but additional linking moieties are now sandwiched be-
tween the D and A parts, as illustrated in figure 8.2. Notably, the additional δ (benzene
containing) and δ+ (benzothiadiazol containing) variants are investigated. In addition, a
δ− (amino) moiety is optionally attached to the donor building blocks. Finally, several D
units may be concatenated to form, e.g., δ−Dnδ

+A units, whose length tends to increase
both the CT formation time and the CT lifetime [164].

Spectroscopic investigation reveals that in the presence of the δ spacer, the transfer
mechanism remains similar to the first-generation material (see figure 8.11a and table 8.1),
such that donor-acceptor excitation energy transfer precedes charge transfer. The main
effect of the spacer is an increase of both EET and CT lifetimes. However, in the presence
of the δ+ spacer, the mechanism changes drastically (see figure 8.11b). Here, the EET
step is now absent, and charge transfer occurs directly from the photoexcited donor (Dδ+)
moiety, on a time scale of ∼90 ps. Further, the δ− (amino) moiety leads to a significant
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Figure 8.11: Schematic illustration of DδA, Dδ+A and δ−Dδ+A species and the relevant
EET and CT transfer steps from time-resolved spectroscopy [164]. The measured time
scales refer to solution phase measurements with chloroform solvent.

(up to threefold) extension of the CT lifetime, see figure 8.11c.

The spectroscopic observations are backed up by electronic structure analysis (see fig-
ure 8.12), revealing an additional excitation on the δ+ moiety (DS1) in addition to the
principal donor transition (DS2). A more detailed analysis confirms that this transition is
involved in the (Dδ+)→A charge transfer [164].

Figure 8.12: Excited state electronic structure of the Dδ+A species, showing the most
relevant electronic transitions. As compared with figure 8.2, note the additional excitation
on the δ+ moiety (DS1) which is now involved in the D-A charge transfer.
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Outlook to 2nd Generation DA Systems

An extensive analysis of the influence of the donor length n with respect to charge
transfer formation and recombination times for both the Dnδ

+A and δ−Dnδ
+A has been

done. As it was already seen from figure 8.11, the influence of the δ versus δ+ spacer on
the charge transfer formation time was quite dramatically, which is believed due to the
absence of the excitation energy transfer. From table 8.4 one can see that the influence of
the donor length Dn of the Dnδ

+A compound does not effect very much the charge transfer
formation and recombination times. In contrast, the influence of the donor length for the
δ−Dnδ

+A compound is much stronger. Especially for the charge transfer recombination
kinetics, an increase of the charge transfer lifetimes from 400 ps to 2.3 ns could be observed.
It is believed that the reason for this increase is due to the shielding effect of the δ− group,
which enhances the separation distance of electron and hole and thus, leading to a longer
CT life time.

Table 8.4: Charge transfer formation and recombination times of 2nd generation DA
systems. Various lengths of donors have been used for the corresponding measurements.
All times in picoseconds.

Dnδ
+A δ−Dnδ

+A
n CT Formation CT Recombination CT Formation CT Recombination
0 90 410 20 400
1 90 480 14 2300
2 150 440 14 1100
3 140 430 - -

In order to explain the findings of the slow charge transfer formation and recombina-
tion times as compared to the first generation system (see also table 8.1), an analysis of
the rates within the Marcus-Levich-Jortner formalism has been done. The results of the
electronic couplings obtained from this analysis are shown in the following table.

From table 8.5 one can see that the electronic coupling values are in general very small
and on a comparable order of magnitude as for the first generation system, see also table
8.2. In view of the future design of molecular functional materials and especially the
experimentally observed increase in CT lifetimes, a reduction in the electronic coupling
is desireable, which seems to lead to an increase in the charge transfer life time. This
observation, where a decrease of the electronic couplings is accompanied by an increase in
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Table 8.5: Electronic couplings for charge separation and charge recombination processes.
Results have been obtained from measurements in chloroform. All values in meV.

Compound Process Coupling

D1δA
Formation 2.39

Recombination 0.54

D1δ
+A Formation 1.38

Recombination 0.50

δ−D1δ
+A Formation 0.89

Recombination 0.31

charge transfer lifetime, can be explained by the overlap between the relevant molecular
orbitals. According to V 2 = V 2

0 exp(−βRcc) [165] with V being the electronic coupling,
it is proportional to the electron-hole distance and thus also the overlap of the relevant
molecular orbitals. In conjunction with the observations made that electron push and
pulling effects increase the charge transfer formation life time, one can deduce that the
average electron-hole distance is increased by electron pushing and pulling effects.
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Poly-3-hexyl-thiophene (P3HT) is a typical material used as donor phase in BHJ nano
materials for organic photovoltaic devices. Depending on the processing technique, differ-
ent types of morphological packing orders exist. The material typically exhibits either a
regio-regular (RR) or a regio-random (RRa) structure. Due to its optoelectrical properties,
RR-P3HT is superior to RRa-P3HT, with charge carrier mobilities usually one order of
magnitude higher for the RR-P3HT material [166].

While the conventional picture is that the photogenerated species in RR-P3HT are
H-aggregate type excitons, it has become clear over recent years [167, 168] that photoex-
citation also generates coupled charge pairs, or polaron pairs (PP). In the present section,
this process of polaron pair generation is investigated by studying stacked oligomer species.
Our study connects to the recent experimental investigation by de Sio et al. [168] where
coherent oscillatory signals were observed and assigned to vibronic signals accompanying
polaron pair generation. In related studies [169], such signals were also observed but their
origin was unclear.

To study the role of charge transfer excitons, we analyze small stacks of oligothiophene
tetramer (OT-4) species. We combine state-of-the-art electronic structure calculations
with a linear vibronic coupling (LVC) model, either within the full dimensionality of the
normal-mode space, or else using the effective-mode methods described above. Dynamical
ML-MCTDH calculations are performed for this model Hamiltonian, typically for a total
of 40 normal modes per fragment, amounting to 120 modes for a stacked trimer, and 200
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modes for a stacked pentamer. Finally, charge separation within the donor domain can
obviously influence the carrier generation at the donor/acceptor interface. This aspect will
be addressed in detail in chapter 10, for a model system representative of the P3HT/PCBM
donor-acceptor system.

9.1 Model Hamiltonian: Excitons and CT-Excitons
in Stacked OT-4 Oligomers

The model system used to study the ultrafast polaron pair generation consists of three
oligothiophene tetramer (OT-4) molecules stacked upon each other, leading to an aggregate
with H-type characteristics.

P3HT-1

P3HT-2

P3HT-3

q(i,1)

q(j,2)

q(k,3)

electronic coupling

couplingelectronic

a) b)

Figure 9.1: a) Molecular representation of OT-4 trimer used for the quantum dynamics
simulations. b) Schematic representation of the OT-4 trimer along with its associated
normal modes q and electronic couplings between the individual fragments.

Figure 9.1a and b shows the molecular geometry of the system as well as a schematic
sketch of the individual molecules with their associated normal modes and the electronic
couplings. Each OT-4 monomer is associated with its own subset of normal modes {q},
obtained from electronic structure calculations. The electronic coupling is obtained from
a quasi diabatisation scheme which has also been used to obtain the electronic couplings
for the investigation in the previous chapter [158, 159], see also section 4.3 for details.

As in the preceding section, the corresponding model Hamiltonian is set up in single
excitation subspace in a generalized electron-hole (e-h) representation. The electron is
located at site νe = ν, whereas the hole is located on site µh = µ. Localised e-h pairs (i.e.
electron and hole located on the same fragment) correspond to a Frenkel excitonic config-
uration (XT), |XTi〉 = |ν = i, µ = i〉 (with i = 1, . . . , 3). Conversely, if an e-h pair is not
located on the same fragment, the configuration represents a charge transfer (CT) state,

100



Model Hamiltonian: Excitons and CT-Excitons in Stacked OT-4 Oligomers

i.e. |M+
i M

−
j 〉 = |ν = i, µ = j 6= i〉. Here, we have made the approximation that electron

and hole are always located on neighboring fragments. In a more generalised approach,
one would not restrict the distance between an e-h pair to one fragment, but also allow
the population of CT states with |M+

i M
−
j 〉 = |ν = i, µ = j = i + 1, i + 2, i + 3, . . .〉. In

the presented simulations, a total of three OT-4 molecules has been used along with seven
electronic states (three XT and four CT states).

The overall Hamiltonian Ĥ can be split into three terms,

Ĥ = Ĥel
0 + Ĥph

0 + Ĥvibronic (9.1)

where the first term (Ĥel
0 ) corresponds to the purely electronic part of the Hamiltonian

including the electronic couplings, while the second term (Ĥph
0 ) corresponds to the zeroth-

order vibrational (phonon) Hamiltonian, and the third term (Ĥvibronic) subsumes all vi-
bronic interactions. The electronic part of the Hamitonian reads as follows,

Ĥel
0 = εXT

3∑
i=1
|XTi〉 〈XTi|+ εCT

2∑
i=1

(
|M+

i M
−
i+1〉 〈M+

i M
−
i+1|+ |M+

i+1M
−
i 〉 〈M+

i+1M
−
i |
)

+ J
2∑
i=1
|XTi〉 〈XTi+1|+ h.c.

+K1
(
|XT1〉 〈M+

1 M
−
2 |+ |XT2〉 〈M−

1 M
+
2 |+ |XT2〉 〈M+

2 M
−
3 |+ |XT3〉 〈M−

2 M
+
3 |+ h.c.

)
+K2

(
|XT1〉 〈M−

1 M
+
2 |+ |XT2〉 〈M+

1 M
−
2 |+ |XT2〉 〈M−

2 M
+
3 |+ |XT3〉 〈M+

2 M
−
3 |+ h.c.

)
(9.2)

Here, the first two terms are the on-site energies for the different states, i.e. excitonic
(εXT ) and charge transfer states (εCT ). The third term J is the electronic diabatic cou-
pling between the excitonic states and the Ki terms are the exciton to charge transfer state
couplings.

The zeroth-order vibrational part is given as follows within the harmonic approxima-
tion,

Ĥ0 =
NOT4−1∑
i=1

1
2ωi(p

2
i + q2

i ) +
NOT4−2∑
j=1

1
2ωj(p

2
j + q2

j ) +
NOT4−3∑
k=1

1
2ωk(p

2
k + q2

k) (9.3)
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Here, each monomer i, j and k has its own subset of site-local degrees of freedom.

Next, the vibronic part of the Hamiltonian can be represented as a sum over local and
non-local contributions,

Ĥvibronic = Ĥ local + Ĥnonlocal (9.4)

While all modes are taken to be local in our model (i.e., confined to a given fragment), the
local or non-local nature of the vibronic couplings depends on the nature of the excited
state, i.e., on whether we are considering a localised excitonic state (local) or a charge
transfer configuration (non-local). Specifically, the local vibronic contributions involve the
excitonic states,

Ĥ local =
NOT4−1∑
i=1

ciqi |XT1〉 〈XT1|+
NOT4−2∑
j=1

cjqj |XT2〉 〈XT2|+
NOT4−3∑
k=1

ckqk |XT3〉 〈XT3| (9.5)

while the non-local vibronic contributions involve the charge-separated species,

Ĥnon−local =
NOT4−1∑
i=1

κiqi
(
|M+

1 M
−
2 〉 〈M

+
1 M

−
2 |+ |M

−
1 M

+
2 〉 〈M

−
1 M

+
2 |
)

+
NOT4−2∑
j=1

κjqj
[(
|M+

2 M
−
1 〉 〈M

+
2 M

−
1 |+ |M

+
2 M

−
3 〉 〈M

+
2 M

−
3 |
)

+
(
|M−2 M

+
1 〉 〈M

−
2 M

+
1 |+ |M

−
2 M

+
3 〉 〈M

−
2 M

+
3 |
)]

+
NOT4−3∑
k=1

κkqk
(
|M+

3 M
−
2 〉 〈M

+
3 M

−
2 |+ |M

−
3 M

+
2 〉 〈M

−
3 M

+
2 |
)

(9.6)

Since the charge transfer states are defined between two fragments, the corresponding
vibronic couplings are also non-local and hence defined between two fragments.
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The electronic part of the Hamiltonian shown in equation 9.2 can be rewritten in matrix
form, highlighting the coupling between the different excitonic and charge transfer states.

Hel
0 =



εXT J K1 K2

εXT J K2 K1 K1 K2

εXT K2 K1

εCT

εCT

εCT

εCT


(9.7)

The on-site energies, vibronic couplings and diabatic electronic couplings are based on
electronic structure calculations employing density functional theory on a ground state
optimised oligothiophene stack, composed of an OT-4 dimer. Due to the huge size of
a stacked oligothiophene chain, the ground state optimised structure has been obtained
from density functional theory using the ωB97XD [147] and SVP basis set [148, 149] as
implemented in Gaussian09 [150].

9.2 Electronic Structure Calculations

The electronic structure calculations have been carried out using a stacked dimer of two
OT-4 molecules. From these dimer calculations, all the relevant parameters for the quan-
tum dynamics simulations have been obtained, i.e. excitation energies, diabatic couplings
and vibronic couplings. Most of the electronic structure calculations have been carried
out using DFT methods, i.e. the ωB97XD functional as implemented in the Gaussian09
software package. However, due to the expected high charge transfer character, high-level
ab initio methods such as ADC(2) were performed as well in order to validate the relia-
bility of the mentioned DFT functional. In particular, it has been shown by H. Lischka
and collaborators that ωB97XD gives good results for P3HT when compared to ADC(2)
[153]. We could confirm this observation in our calculations, see figure 9.2. All excited
state calculations are based on the optimised ground state geometry.

Figure 9.2 shows the comparison of the excited states between the ωB97XD DFT
method and the ADC(2) wave function based method. From the transition density plots
one can see that the the ωB97XD DFT functional and the ADC(2) wave function method
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ADC(2)
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Figure 9.2: Properties from the analysis of the transition density matrices for a stacked
oligothiophene chain, composed of two OT-4 molecules, as provided by the TheoDORE
program package [154–156]. The x-axis represents the position of the electron, whereas the
y-axis represents the position of the hole. Diagonal entries correspond to the XT manifold,
off-diagonal entries correspond to the CT manifold. In both cases, the DFT optimised
ground state structure has been used. The excited states of the upper row have been
calculated with the ADC(2) method, the excited states of the lower row with the ωB97XD
functional. In both cases, the SVP basis set was employed.

are in excellent agreement. Both methods describe the first two excited states as mainly
Frenkel states, with the S2 state exhibiting a non negligible CT character. The S3 state
is in both cases a pure CT state. Furthermore, the S3-S2 gap between the two electronic
states is similar for both methods, namely 0.48 eV for the ωB97XD functional and 0.51 eV
for the ADC(2) method.

In view of the good performance of the ωB97XD DFT functional, the vibronic coupling
constants have been calculated using TDDFT calculations with the ωB97XD DFT func-
tional.

Figure 9.3a shows the vibronic coupling constants associated with each normal mode
of the system. As one can see, there are two dominant modes, which are collective modes
of CC stretch type. These two modes exhibit large vibronic coupling values since they
belong to deformations within the π electronic structure and are therefore responsible for
the optical properties of the system.

Furthermore, there exist a lot of very small vibronic coupling constants contributing to
the overall spectral density of the system. From equation 7.9 one can see that the value of
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a) b)

Figure 9.3: Calculated vibronic couplings κ for the bright S2 state from the calculation
of an OT-4 dimer. One fragment was chosen to be frozen, while the normal modes of the
other fragment have been used for the determination of the vibronic couplings. a) Full
normal mode vibronic couplings. b) Normal mode vibronic couplings above a threshold
value of 0.005 eV. The reorganisation energy changes only marginally.

the vibronic coupling corresponds to the shift of the excited state minimum. Hence, small
values of the vibronic coupling constant are equal to a small and mostly negligible shift
in the excited state minimum and therefore, these modes do not contribute much to the
excited state dynamics.

For the subsequent dynamics a threshold value has been introduced which eliminates
couplings below this specific value. Since the vibronic couplings are related to the reorgani-
sation energy λ via λ = ∑

i κi/2ωi, the threshold value should not be chosen too generously,
as it can change the overall dynamics of the system. Figure 9.3b shows the reduced set
of vibronic couplings after imposing a threshold value. The difference in reorganisation
energy between the full normal mode representation and the reduced set of normal modes
is 3% and thus, the approximation should give reliable results.

Another important characteristic for the dynamics is the relation between the difference
in on-site energies and the diabatic couplings. Electronic couplings are going to have a
significant effect if they fall into a similar ranges as the differences between on-site energies.

From table 9.1 one can see that the difference in on-sit eenergies between the bright XT
and CT state is 0.48 eV. Interestingly, the diabatic coupling is nearly half of this energy
splitting, and will therefore likely give rise to an ultrafast charge transfer. Furthermore,
one can see that the excitonic coupling J has a positive sign, conforming to the assumption
of an H-aggregate type wave function.

105



9 — Mixed Frenkel/CT States in Regioregular Oligothiophene Aggregates

Table 9.1: On-site energies and diabatic couplings obtained from ab initio calculations.
The on-site energies have been obtained from ωB97XD, whereas the diabatic couplings
have been obtained using the LC-BLYP functional. All parameters are given in eV.

On-site energies Diabatic couplings
εXT εCT K1(LUMO) K2(HOMO) J
0.00 0.48 0.23 0.09 0.12

With the information about the electronic part at hand, one can diagonalise the elec-
tronic part of the Hamiltonian, shown in equation 9.2. This will give information about the
adiabatic state distributions and allow a first guess at the subsequently following dynamics.

XT manifold

CT manifold

Figure 9.4: Graphical representation of the eigenvectors of the numerically diagonalised
electronic Hamiltonian shown in equation 9.2. The eigenvectors are plotted columnwise
and in ascending order. Entries below the dashed line correspond to the excitonic manifold,
while entries above the dashed line correspond to a charge transfer configuration.

Figure 9.4 shows a graphical representation of the eigenvectors and eigenvalues of the
numerically diagonalised electronic Hamiltonian. Entries below the dashed line correspond
to the XT manifold, while entries above the dashed line correspond to the CT manifold.
The eigenvectors are shown columnwise in ascending order. For the model system shown
in figure 9.1, the bright state is the S3 state. From the eigenvector analysis, one can infer
that the S3 state exhibits a non negligible mixing with the CT states, which is in agreement
with the analysis of the electron-hole distribution for the dimer system shown in figure 9.2.
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The lowest energy state also shows a significant mixing of the XT manifold with the CT
manifold. Additionally, one can see that the population of the fragment in the middle is
the highest, indicating a localisation of the excitonic portion of the wave packet on this
particular fragment.

9.3 Dynamics Simulations

9.3.1 Quantum Dynamics in Normal Mode Representation

Quantum dynamics simulations have been carried out using the ML-MCTDH method, as
in the previous chapter. The model system features a total of three OT-4 molecules and
seven electronic states. As has been pointed out in the previous section, a reduced set
of normal modes has been used for the quantum dynamics simulations, leading to a total
of 120 normal modes (40 per fragment). In recent time resolved experiments, very short
pulses with a duration of a few femtoseconds have been used [170]. The generation of
these pulses comes with the cost of a very large spectral width, suggesting that the entire
excitonic manifold is excited, creating an electronic wavepacket. Therefore, we report here
on simulations using a localised excitation on the central OT-4 fragment.

Figure 9.5a shows the diabatic populations of a simulation with a localised initial con-
dition. One can see that a very fast decay of the initially localised wave packet occurs
during the first few femtoseconds, which is accompanied by fast oscillations. These rapid
oscillations also appear in the population traces of the charge transfer states, indicating a
transfer between the intially localised excitonic wave packet and the charge transfer states.
Furthermore, one can see that slower oscillations appear in the population traces on longer
time scales. In figure 9.5b one can see the spatially resolved electron-hole populations.
At the beginning of the simulation, the excitonic wave packet is localised on the central
OT-4 fragment, see also figure 9.1a and b. During the first ten femtoseconds, the excitonic
wave packet splits into a coherent superposition of an excitonic wave packet and a charge
transfer state and subsequently relocalises again. This splitting and relocalisation possibly
give rise to the fast oscillations, seen in the upper population plot. It is also worth noting
that the results from the diagonalisation of the electronic Hamiltonian shown in figure 9.4
indicate that the lowest energy state has a high contribution of excitonic character for the
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a)

b) 0 fs 2 fs 4 fs 6 fs 8 fs
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Figure 9.5: Diabatic electronic populations for a P3HT trimer with a localised initial
condition on P3HT-2, see also figure 9.1b. a) One dimensional plot of the diabatic popu-
lations for excitonic and charge transfer states. b) Electron hole resolved populations for
selected time cuts. The x-axis represents the position of the hole while the y axis represents
the position of the electron. Numbers refer to the respective P3HT-i fragment. Electron
and hole occupying the same fragment represent a Frenkel exciton state.

P3HT-2 fragment, which is also the result of the present dynamical simulations.

In addition to the analysis of the populations, electronic coherence between excitonic
and charge transfer states has been analyzed. Electronic coherence corresponds to the
off-diagonal elements of the electronic density matrix and, hence, to expectation value of
off-diagonal operators like Ĉ = |XT〉〈CT|, i.e.,

ρXT,CT(t) = Tr{ |XT〉〈CT| ρ̂(t)}

= Tr{ |XT〉〈CT| |Ψ(t)〉〈Ψ(t)|}

= 〈Ψ(t)|XT〉〈CT|Ψ(t)〉 (9.8)

where the trace (Tr) refers to the electronic and phonon modes and the density opera-
tor ρ̂(t) = |Ψ(t)〉〈Ψ(t)| derives from the time-evolving overall wave function state from the
MCTDH propagation. The electronic coherence indicates the presence of a coherent super-
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position state whose characteristic phase factor derives from the transition energy between
the relevant states, i.e., differences in adiabatic egenvalues. For a two-state system, this
can be straightforwardly seen as follows, for a wave function of the form,

|Ψ(t)〉 = c1 e
−iE1t/~|1〉+ c2 e

−iE2t/~|2〉 (9.9)

such that the electronic coherence matrix element ρ12 read as follows,

ρ12 = 〈Ψ(t)|1〉〈2|Ψ(t)〉 = c∗1c2e
i(E1−E2)t/~ (9.10)

where the orthogonality of the states |1〉 and |2〉 was used.

In general, information about the adiabatic eigenvalues of the system can be ob-
tained from the Fourier transformation of the wavepacket autocorrelation function C(t) =
〈Ψ(t = 0)|Ψ(t)〉, yielding the absorption spectrum.

In high-dimensional systems, it is often found that the imaginary part of the electronic
coherence, which determines the state-to-state population flux, decays to zero after a tran-
sient period, while the real part of the electronic coherence persists, indicating that a
coherent superposition state persists. This is illustrated, e.g., in Figure 6.7 of the previous
chapter.

The analysis of the electronic coherence will be performed first for the electronic Hamil-
tonian in the absence of vibrational contributions. Afterwards, the full Hamiltonian as
shown in equations 9.1 to 9.6 will be analysed.

Figure 9.6a shows the real part of the expectation value of the electronic coherence
between the excitonic state located on the center fragment and a corresponding charge
transfer state. One can see that the electronic coherence features two different oscillatory
signals, one with a fast periodicity and a second with a slower periodicity. Transforming
these data from the time domain to the frequency domain by a Fourier transformation
yields the spectrum shown in figure 9.6b. According to equation 9.10, each of these peaks
corresponds to a transition between two states with an energy difference as obtained from
the spectrum. In order to assign the peaks to certain transitions, one has to know the
adiabatic eigenvalues of the system, which are obtained by Fourier transforming the auto-
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a) b) c)

d) e) f)

Figure 9.6: a-c: Simulations employing only the electronic Hamiltonian with all cou-
plings. a) Time resolved expectation value of the electronic coherence ρ2−7, where the
states 2 and 7 correspond to an excitonic and a charge transfer state, b) Fourier transfor-
mation of a. c) Fourier transformation of the autocorrelation function C(t) to obtain the
absorption spectrum needed to interpret panel b.
d-f: Simulations employing only the electronic Hamiltonian without the excitonic cou-
pling J . d) Time resolved expectation value of the electronic coherene ρ2−7. e) Fourier
transformation of d. f) Fourier transformation of the autocorrelation function C(t).

correlation function C(t), yielding the absorption spectrum in figure 9.6c. Here, the state
at 3.26 eV is the excitonic state corresponding to the bright state in an H-type aggregate.
The state at 3.1 eV is the dark state in an H-type aggregate. The peaks at 3.86 and 4.09
eV correspond to the charge transfer states. The configuration of these adiabatic states
can be identified from the representation of the eigenvectors in figure 9.4. One can see
that the lowest energy state at 3.11 eV corresponds mostly to an excitonic configuration
on the center fragment. The bright state at 3.26 eV corresponds to a delocalised excitonic
configuration.

With the aid of the absorption spectrum of figure 9.6c one can infer that the peak at
0.14 eV in figure 9.6b stems from the transition of the third state to the first state, which
would correspond to an excitonic transition, since the third and first state have a very
high excitonic character of 73 and 90 percent, respectively. The peak at approximately 1.0
eV corresponds to the transition from the first to the seventh state, which is mainly the
transfer from the excitonic to the charge transfer state.
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Figures 9.6d-f correspond to a simulation with no excitonic coupling present, i.e. J = 0
in equation 9.2. Hence, only the transfer between the excitonic and the charge transfer
state is allowed. This is also reflected in the coherence, shown in figure 9.6d. Here, only
the fast oscillatory pattern of figure 9.6a remains, which stems from the exciton-to charge-
transfer state dynamics. Subsequently, only one peak emerges from the corresponding
Fourier transformation, which corresponds to the energy gap of the excitonic and charge
transfer state, as can be seen from figure 9.6f.

After the analysis of the electronic coherence in the absence of any normal modes, the
same analysis protocol has been applied to the simulation with a total of 120 degrees of
freedom. In contrast to the one dimensional Fourier transformation in the analysis above,
a windowed Fourier transform is used, such that the 1D time-domain data set is trans-
lated to a 2D time-frequency domain representation. A Hann filter is used for the moving
time-domain window [171], as implemented in the MatLab software suite [172]. A window
width of 50 femtoseconds has been used.

a) b)

Figure 9.7: Two dimensional Fourier transformations of the full system Hamiltonian
employing seven electronic states and 120 normal modes and a localised initial condition
on the P3HT-2 fragment, see also figure 9.1b. a) Fourier transformation of the XT-XT
ρ2−1 coherence. b) Fourier transformation of the XT-CT ρ2−7 coherence. Upper panels:
Expectation value of the respective coherence, damped with an exponential function and
a time constant of 200 fs. Right panels: one dimensional Fourier transformation of the
electronic coherence.

Figures 9.7a and b show the two dimensional windowed Fourier transformation of the
electronic coherence between two XT states (figure 9.7a, ρ2−1) and between an XT state
and a CT state (figure 9.7b, ρ2−7). Comparing these two figures, one can see that the two
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dimensional Fourier transforms are quite similar. Both figures show a dominant contri-
bution in the 0.2 eV frequency region on the short time scale as well as on a longer time
scale. Additionally, the Fourier transformation of the XT-CT coherence ρ2−7 also shows
a high-frequency contribution in the 1 eV region on the short time scale. Based on the
above analysis of the electronic coherence, this contribution can be assigned to the XT-CT
transition, which is characteristic of the analysed coherence. A significant difference be-
tween the two simulations can be seen in the intensity of the low frequency 0.2 eV signal.
Comparing these intensities for the ρ2−1 XT-XT and ρ2−7 XT-CT coherence, one can see
that the 0.2 eV signal is much stronger for the XT-XT coherence (1.9 eV) than for the
XT-CT coherence (1.1 eV).

Considering the spectral density in figure 9.3 once again, it is obvious that the highest
contribution to the spectral density arises from normal modes centered around 1500 cm−1

(approx. 0.2 eV), i.e. in the same spectral range as the low frequency signal obtained from
Fourier transforming the electronic coherence. From the above analysis of the pure elec-
tronic dynamics, it is known that the low frequency signal stems from excitonic coherence,
initiated by the delocalisation of the initially localised wave packet. In conjunction with
the presented analysis we therefore conclude that a combination of excitonic couplings and
normal modes both contribute to the observed signal. This also explains why the low
frequency 0.2 eV signal is more intense for the ρ2−1 XT-XT coherence than for the ρ2−7

XT-CT coherence.

9.3.2 Effective Mode Dynamics

As it has been pointed out in the introductory part of chapter 9 and section 7.4, an effective
mode decomposition of the normal mode representation has been done in order to reduce
the total number of degrees of freedom, while keeping the physical properties of the system
unchanged. The model Hamiltonian used for the dynamics is the same as for the normal
mode approach, except that it is now set up in the basis of effective modes {Xi} instead
of a normal mode basis {xi}. Since both approaches are based on the LVC approach, the
model Hamiltonians shwon in equations 9.1 to 9.6 can be used for the dynamical treatment
of both methods. In the following, the results with different layers of effective modes will
be presented. The n-th layer dynamics feature a total of 7N effective modes.
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a)

c)

b)

d)

e) f)

Figure 9.8: Comparison of the diabatic populations and electronic coherences of different
effective mode layers with the normal mode ansatz. a) Diabatic XT2 populations. b)
Diabatic charge transfer populations. c) Real part of the electronic ρ2−1 coherence. d) Real
part of the electronic ρ2−7 coherence. e) Imaginary part of the electronic ρ2−1 coherence.
f) Imaginary part of the electronic ρ2−7 coherence.

Figure 9.8a and b show the diabatic populations of the XT2 state and of the sum
over CT states (∑CT), for different numbers of effective-mode layers. For reference, the
dynamics in the normal-mode representation are shown in black. While the XT2 state
populations, shown in figure 9.8a, are exactly reproduced for the short time dynamics and
differ only slightly for longer times for three layers of effective modes, the charge transfer
populations, shown in figure 9.8b, differ more, even for 5 layers of effective modes. Never-
theless, the qualitative behaviour is reproduced by the effective mode approach.
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Figure 9.8c and d show the real part of the expectation value of the electronic coherence
between two XT states and between an XT and CT state, respectively. While the short
time dynamics are represented exactly for all layers under investigation, the three-layer
simulations differ again for longer times. The four and five-layer simulations also represent
the qualitative behavior of the normal mode simulations quite well.

As for the simulations employing the normal mode ansatz, a windowed Fourier transfor-
mation of the electronic coherences is performed for the different layers of effective modes.
The same window width and Hann filter as for the previously shown Fourier transforma-
tions has been used.

3L

4L

5L

a) b)

c)

e)

d)

f)

Figure 9.9: Two dimensional Fourier transformation of different layers of effective modes.
a) and b) Real part of the ρ2−1 and ρ2−7 electronic coherence for 3 effective mode layers.
c) and d) Real part of the ρ2−1 and ρ2−7 electronic coherence for 4 effective mode layers.
e) and f) Real part of the ρ2−1 and ρ2−7 electronic coherence for 5 effective mode layers.
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Figures 9.9a to f show the two dimensional Fourier transformation of the real part
of the electronic ρ2−1 and ρ2−7 coherences, respectively. Comparing these results to the
normal-mode Fourier transformation in figure 9.7a and b, one can clearly see that the same
behaviour could be reproduced by the effective mode ansatz. For figures 9.9a, c and e one
can see that a dominant contribution in the 0.2 eV regime can be seen, which is apparent
over nearly the whole simulation time. From the analysis done in the previous section, this
signal can be assigned to excitonic coherence, due to a delocalisation effect, since a localised
initial condition has been used. In contrast, figures 9.9b, d and f show an additional signal
at approximately 1.0 eV. This signal can be assigned to the XT-CT transfer. As for the
simulation employing the normal mode approach, one could see that the intensities of the
0.2 eV and 1.0 eV signals change depending on the observed coherence, i.e. the ρ2−1 or
the ρ2−7 coherence. This is also the case for the simulation employing the normal mode
approach. For all three simulations employing different layers of effective modes, one can
see that the 1.0 eV signal rises, depending on the observation of the Fourier transformation
of coherence ρ2−1 or coherence ρ2−7. At the same time, the 0.2 eV signal loses intensity.
Both observations are in agreement with the normal mode simulations.

9.3.3 Summary and Conclusion

Recent experimental investigations performed on RR-P3HT indicated the formation of
polaron pairs, accompanied by coherent oscillatory signals. In order to elucidate the mech-
anism of the polaron pair formation and the origin of these oscillatory signals, high level
electronic structure calculations have been carried out in order to parametrise a high-
dimensional model Hamiltonian within the linear vibronic coupling framework. Ground-
state DFT calculations on a stacked OT-4 oligomers have been performed in order to obtain
the ground state normal modes which are necessary for the construction of the linear vi-
bronic coupling Hamiltonian. Furthermore, excited electronic states have been calculated
within the same framework and compared against high level ab initio ADC(2) calculations.
In particular, the electron and hole distribution per chain has been analysed. The result
showed that the electronic bright state, corresponding to an H-type aggregate features al-
ready a minor mixture between the locally excited state and charge transfer states. Based
on the ground state optimsed structure, electronic diabatic couplings between the excitonic
and charge transfer state have been calculated. While the splitting between the excitonic
and charge transfer state is very large, the diabatic couplings are approximately 1/2 of this
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energy gap, indicating a fast and efficient transfer.

The quantum dynamics simulations have been carried out using the ML-MCTDH pro-
gram. The model Hamiltonian featured a total of three P3HT chains, each consisting of a
reduced set of 40 normal modes. Furthermore, seven electronic states have been included
in the dynamical treatment. While the main focus was put on the analysis of the elec-
tronic coherence between an excitonic and a charge transfer state, the population analysis
showed that an efficient and fast charge transfer state formation could be observed. This
is in agreement with an analysis of adiabatic eigenvalues of the electronic Hamiltonian,
which predicted a localisation of the excitonic wave packet in the middle of the stack and a
non-negligible amount of charge transfer. The analysis of the electronic coherence revealed
two main processes within the system. Firstly, there is the transfer from the excitonic
to the charge transfer manifold, associated with a high frequency oscillation of about 1.0
eV. Secondly, there is a lower-frequency process in the 0.2 eV region. This process could
be explained by a combination of excitonic delocalisation and normal mode contributions.
Due to the huge number of degrees of freedom for the system, the low frequency process is
subjected to contributions from normal modes in the same frequency regime. By analysing
the spectral density, one can see that the modes located in the same frequency regime as
the excitonic delocalisation have a large impact on the excited state dynamics. The inter-
action between the excitonic delocalisation and the normal modes in the same frequency
regime lead to an increase of the low frequency signal, which could be responsible for
the coherent oscillations in recent experiments. In addition to the simulations performed
within the normal mode representation, an effective mode decomposition of the normal
mode subspace {xi} into varying layers of effective modes {Xi} has been performed. Our
results from quantum dynamical simulations showed remarkable similarities to the results
obtained from the normal mode approach, while reducing the computational effort.

Though the present study may explain the coherent oscillations found in recent experi-
mental studies on RR-P3HT, still some uncertainties remain. On the one hand we did not
include the influence of temperature on the dynamics, i.e. the simulations are carried out
at 0 K. In a real system, temperature effects will lead to more flexibility in the system and
hence, to local trapping effects or a faster decoherence of the wave packet, which in turn
will lead to less long-lived coherent oscillations. Furthermore, the model system featured
only a total of four charge transfer states, since the electron-hole distance has been lim-
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ited to one monomer. Including long-range electron-hole separation might also change the
overall dynamics. While one could argue that a stack consisting of three OT-4 molecules
might be too small, analogous simulations for five stacked OT-4 units did not show any
noticeable differences in the dynamics.

Overall, a comprehensive study of the excited state dynamics of a small model fragment
representing RR-P3HT with a large number of degrees of freedom has been presented, and
coherent effects have been explained in terms of electronic and vibrational coherence.
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a P3HT/PCBM Model System

The combination of Poly(3-hexylthiophene-2,5-diyl) (P3HT) and the fullerene derivative
[6,6]-phenyl-C61 butyric acid methyl ester (PCBM) is a well known organic photovoltaic
system, whose charge separation dynamics has been studied extensively by both theoretical
and experimental groups [131, 173–175]. The experimental studies report on an ultrafast
(∼ 50 fs) formation of a interfacial charge transfer state, while the subsequent generation
of free carriers can be either ultrafast or slow, depending on the material’s morphology
[175]. In particular, a regioregular morphology has been shown to favor ultrafast long-
range charge separation. In view of this, it is conjectured that due to the delocalisation of
carrier species in regioregular architectures, the effective Coulomb barrier is significantly
decreased, which will lead to ultrafast free charge carrier formation. Furthermore, the ef-
fect of hot charge transfer states has also been invoked in order to explain these findings [45].

In a recent study in our group [131], a model Hamiltonian for a regioregular P3HT/PCBM
system was constructed where both excitonic and carrier delocalization was taken into ac-
count. In the present work, this Hamiltonian is augmented by the presence of charge
separated states in the donor (P3HT) domain. To this end, the Hamiltonian developed
in the preceding section is combined with the model of [131]. The present study is aimed
to show whether the generation of charge transfer excitons in the P3HT domain is (i) fa-
vorable to free carrier generation, due to additional pathways for charge separation, or (ii)
unfavorable since the additinal charge-separated species act as traps.

In combination with the previous findings, where an efficient formation of P3HT/P3HT
charge separated states could be observed, a model Hamiltonian to study the ultrafast
dynamics in a P3HT/PCBM BHJ including the aforementioned P3HT/P3HT charge sep-
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arated states has been constructed and used for high-dimensional quantum dynamical
simulations.

The parametrization of the model is entirely in line with [131]. An effective mode
approach has been used [125, 176], as discussed earlier. The effect of P3HT charge transfer
excitons can therefore be assessed by direct comparison with the previous results for this
system.

10.1 Introduction and Model Hamiltonian

The model system that is studied consists of 13 P3HT monomers and a single PCBM
“super-site” (subsuming the distribution of a PCBM aggregate which is not accounted for
explicitly), in line with the study of [131].

13 12 11 ... 2 1 0

PCBM

P3HT

... ...

Figure 10.1: Sketch of the simulation setup featuring a total of 13 P3HT monomers
as electron donors and a PCBM manifold as an electron acceptor. With respect to the
electronic couplings, only nearst neighbors couplings have been employed.

An effective mode ansatz is employed, where each monomer has a total of eight effective
modes obtained from the procedure outline above (see section 7.4) which results in a total of
112 degrees of freedom. The excitonic (XT type) P3HT states are coupled to each other via
nearest neighbor exciton couplings. Furthermore, there are couplings between the XT and
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CT state manifolds, where one now has to distinguish between (i) homomolecular charge
separated (CS) states (within the P3HT domain) and (ii) heteromolecular charge transfer
(CT) states (between a P3HT and the PCBM manifold). While the homomolecular XT to
CT state couplings are defined between each neighboring monomer, the heteromolecular
XT to CT state coupling is only defined at the interface.

As mentioned above, the model Hamiltonian represents an extension to the Hamiltonian
of [131], and is also closely related to the model Hamiltonians that have been used in
the previous sections. The new feature is the inclusion of homomolecular charge transfer
excitons in the donor domain. The setup is again a generalised electron-hole representation
{|µν〉}, with the electron occupying site µ and the hole occupying site ν. Locally excited
states correspond to the Frenkel state manifold, with electron and hole both occupying
the same monomer, i.e. |XTn〉 = |µn, νn〉, with the number n referring to the specific
fragment, see figure 10.1. The Frenkel states are only defined within the P3HT manifold.
Non-local occupations of electrons and holes on different monomers correspond either to
the CT state manifold or the CS state manifold. Within the CT state manifold, the
electron is located on the PCBM molecule, whereas the hole is located somewhere in the
P3HT manifold, i.e. |CTnn′〉 = |µn, νn′〉 , n = 0, n′ 6= n. Conversely, for the CS states, both
electron and hole are located within the P3HT manifold, but not on the same monomer, i.e.
|CSnn′〉 = |µn, νn′〉n 6= n′ 6= 0. The corresponding Hamiltonian is an augmented version of
the Hamiltonian presented in reference [131] and can be split into an electronic part (Ĥel)
and an electron-phonon part (Ĥel−ph),

Ĥ = Ĥel + Ĥel−ph (10.1)
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The electronic Hamiltonian comprises on-site energies and diabatic electronic couplings,

Ĥel = εXT
13∑
n

|XTn〉 〈XTn|+
13∑
n

εn,CT |CT0,n〉 〈CT0,n|+
13∑
n,m

εn,CS |CSn,m〉 〈CSn,m|

+ J
12∑
n

(|XTn〉 〈XTn+1|+ h.c.) + λ (|XT1〉 〈CT0,1|+ h.c.)

+ t
12∑
n

(|CT0,n〉 〈CT0,n±1|+ h.c.) +K1
12∑
n

(|XTn〉 〈CSn,n±1|+ h.c.)

+K2
12∑
n

(|XTn〉 〈CSn,n±1|+ h.c.) +K (|CS1,2〉 〈CT0,2|+ h.c.)

+ le
∑

(|CSn,n′〉 〈CSn±1,n′ |+ h.c.) + lh
∑

(|CSn,n′〉 〈CSn,n′±1|+ h.c.) (10.2)

The first three terms of 10.2 are the on-site energies for the XT, CT and CS states, re-
spectively. All on-site energies are taken from electronic structure calcaulations employing
the TDDFT level of theory, in conjunction with the LC-BLYP functional as detailed in
references [158, 177]. The on-site energies of the CT states in particular have been adapted
to resemble the Coulomb barrier for electron/hole separation in these kind of materials, see
also reference [159] and stem from an explicit calculation of the barrier. In contrast, the
Coulomb barrier for the CS states has been constructed from a simple model employing two
charged point-like objects with distance rij and a dielectric constant εr = 3.5 representative
of P3HT (see previous chapter). The fourth and fifth term in equation 10.2 represent the
excitonic nearest neighbor coupling as well as the XT-CS coupling, respectively. Next, t de-
scribes the transfer integrals that couple heteronuclear charge separated states. The terms
K1 and K2 in equation 10.2 describe the homomolecular exciton dissociation in terms of
electron or hole transfer to a neighboring P3HT molecule, respectively. The coupling K

in the ninth term of equation 10.2 describes the coupling between the homomolecular CS
and the hetermolecular CT state. Finally, the last two terms in equation 10.2 describe the
electron and hole transfer within the homomolecular CS state manifold, respectively.

The phonon part of the Hamiltonian is similar to the phonon part shown in the previous
section. Again, a linear vibronic coupling model has been assumed, in combination with
the previously introduced effective mode approach,

Ĥel−ph =
8∑
i

(
1
2Ωi

(
P̂ 2

i + Q̂2
i

)
+

13∑
n

ci,n |XTn〉 〈XTn|+
∑

n

ci,n |CT 〉 〈CT |+
∑

ci,n |CS〉 〈CS|

)
(10.3)
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As it has been pointed out earlier, each fragment shown in figure 10.1 has a total of eight
degrees of freedom associated with each state, as can be seen from equation 10.3. This
leads to a total of 112 degrees of freedom. The number of electronic states has been varied,
ranging from a total of 26 electronic states when omitting the CS state manifold, to 27
states when including a single CS state at the interface or to 50 electronic states, where
the complete CSn,n±1 manifold has been included. Furthermore, even simulations with the
complete CS state manifold have been done, employing a total of 182 electronic state and
112 degrees of freedom.

10.2 Electronic Structure Calculations

To parametrise the model Hamiltonian introduced in the previous section, several electronic
structure calculations had to be carried out. On the one hand, electronic structure calcu-
lations were performed to parametrise the electronic part of the Hamiltonian, i.e. equation
10.2. On the other hand, the phonon part of the Hamiltonian in equation 10.3 had to be
parametrised. In order to accomplish this, the effective mode approach as outlined in the
previous section has been used, employing the third scheme with a truncated Mori chain
and a residual bath, see also figure 7.3c. To obtain the effective mode parameters, the
normal mode displacements as well as the excited state gradients had to be calculated.
From these data, the effective modes can be constructed as outlined in references [125,
176]. Since the studies carried out in this chapter employ a reference Hamiltonian from
reference [132], only the differences with respect to the original Hamiltonian will be intro-
duced, notably the diabatic couplings between the XT state and the homomolecular CS
states as well as between the homomolecular CS states and the heteromolecular CT states
along with the excitation energies to the CS states. Here, the diabatic couplings between
homomolecular CS states correspond to the results discussed in the preceding section.

Figure 10.2 shows a sketch of the calculation setup as well as the resulting coupling
and excitation energies. Further, the relevant configurations of the system are shown with
their molecular orbital configurations. The matrix underneath shows (i) on the diagonal,
the respective excitation energy and (ii) as off-diagonal entries, the diabatic coupling to
the respective state. As in the case of homomolecular CT state formation in RR-P3HT
in the previous section, one can see that the diabatic coupling between the XT states to
the homomolecular CS states is very large. In particular, the diabatic coupling describing
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2 1 0

P3HT
PCBM

XT1

CS(2-/1+) CS(1-/2+)

CT(0-/1+) CT(0-/2+)

XT2

2 1 02 1 0

XT1 XT2 CS(2-/1+) CS(1-/2+) CT(0-/1+) CT(0-/2+)

XT1 0.100 0.100 0.357 0.139 0.119 0.007

XT2 0.100 0.139 0.357 0.014 0.013

CS(2-/1+) 0.722 0.001 0.005 0.002

CS(1-/2+) 0.533 0.019 0.165

CT(0-/1+) 0.000 0.102

CT(0-/2+) 0.140

Figure 10.2: Sketch of the investigated model system as well as the molecular orbital
configurations of the electronically excited states under investigation. The table at the
bottom shows on the diagonal the on-site energies and on the off-diagonal the diabatic
electronic couplings between the respective states.

electron transfer is 1
2 of the energy spacing between the XT and corresponding CS state.

Furthermore, one observes a significant XT to CT0,1 coupling. The diabatic XT2 state
couples to the homomolecular CS state manifold as well as to the heteromolecular CT0,1

and CT0,2 state. One can also see that the homomolecular CS1,2 state, where the electron
is located on the P3HT/PCBM interface, exhibits a large coupling to the heteromolecular
CT0,2 state. This leads to the conclusion that spatially extended CT0,i states can be di-
rectly populated from the CSj,i manifold, which is a mechanism that was not included in
the previous study published in [132]. The transfer integrals for the hole transport between
CT0,1 and CT0,2 are also fairly large and on the same order of magnitude as the energy
gap between both states, indicating an efficient hole transport along the stacking direction.
From this analysis, it is clear that additional charge separation pathways are available due
to the participation of the homomolecular CS states.
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Three different simulation protocols with a varying number of electronic states were
implemented. For the simulation that employed the total CSi,j state manifold, a Coulomb
barrier for the homomolecular CS states was introduced as follows,

ECS
µν = e0 −

1
4πε0εrrµν

(10.4)

similarly to [113] and various other studies. Here, e0 is the exciton binding energy and is
chosen such that Eµ=i,ν=i = 0 for a XT state configuration, and rµν describes the distance
between electron and hole within the homomolecular CS state manifold. In addition to
the homomolecular CS Coulomb barrier, which is only relevant for the simulation with the
complete CS state manifold, a Coulomb barrier for the heteromolecular CT state manifold
is present in all simulations. This barrier has been calculated explicitly with ab initio
methods, as discussed in reference [132].

a) b)

Figure 10.3: Coulomb barriers used for the quantum dynamics simulations. a) Coulomb
barrier between the P3HT and PCBM molecules. b) Coulomb barrier within the RR-P3HT
stack. The barrier has been obtained using equation 10.4 with εr = 4.

Figures 10.3a and b show the calculated Coulomb barriers for the heteromolecular CT
states and for the homomolecular CS state manifold, respectively. In figure 10.3a, the x-axis
shows the respective CT0,i configuration, with i labeling the different P3HT monomers, see
also figure 10.1. At the beginning of the Coulomb barrier, a steep increase of the energy of
the respective CT0,i configuraton can be seen. If the electron-hole separation corresponds
to a distance of four monomer units, the barrier begins to get shallower. After the electron-
hole distance reaches a distance of six monomer units, the maximum of the energetic barrier
is reached and the energy decreases again. CT configurations corresponding to a CT0,i with
i > 6 correspond to so called free charge carrier configurations, which is also indicated by
the vertical dashed line.
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The Coulomb barrier for the homomolecular CS state manifold has been calculated
with the aid of equation 10.4. Here, the x-axis corresponds to the CS1,i+1 configuration,
i.e. i = 1 corresponds to a CS1,2 configuration. In contrast to the Coulomb barrier
presented in figure 10.3a, the energy rises continously, which is due to the neglect of an
external electric field, differently from the calculations for the heteromolecular Coulomb
barrier.

10.3 Quantum Dynamics Simulations

Quantum dynamical simulations have been carried out with three different simulation
setups:

- First, only a single CS1,2 state configuration at the P3HT/PCBM interface has been
employed, which is coupled directly to the CT0,2 state, leading to a total of 27
electronic states.

- Second, a CS manifold with an electron-hole distance of one monomer unit has been
included. This leads to a total of 50 electronic states.

- Finally, the complete CS state manifold with all possible configurations has been
employed, yielding a total of 182 electronic states.

All simulation setups featured a total of 13 P3HT monomers as electron donating material
and a single PCBM monomer as an electron accepting material. The total number of
degrees of freedom is 112 for all three simulation setups. With respect to the initial
conditions, three different cases for all simulation setups have been investigated:

- First, the intitial XT wave packet has been placed on the P3HT-1 fragment, close to
the P3HT/PCBM interface.

- Second, the XT wave packet has been placed on the P3HT-2 fragment.

- As a last initial condition, a delocalised wave packet prepared in the bright H-
aggregated state has been used.

In the following, we discuss the results obtained for the three scenarios described above.

126



Quantum Dynamics Simulations

10.3.1 Single CS1,2 State

The simulations employing a single CS1,2 state at the P3HT/PCBM interface feature a total
of 27 electronic states. Of these 27 electronic states, 13 belong to the P3HT XT manifold,
13 belong to the CT0,i manifold and the remaining electronic configuration belongs to the
CS1,2 state. The adiabatic energy of the CS1,2 state has been scaled by factor of four, which
resembles typical values for the dielectric constant εr found in organic photovoltaic devices.

XT1 XT2 CS(1-/2+) CT(0-/1+) CT(0-/2+)

XT1 0.100 0.100 0.139 0.119 0.007

XT2 0.100 0.357 0.014 0.013

CS(1-/2+) 0.133 0.019 0.165

CT(0-/1+) 0.000 0.102

CT(0-/2+) 0.140

2 1 0

P3HT
PCBM

XT1

CS(2-/1+) CS(1-/2+)

CT(0-/1+) CT(0-/2+)

XT2

2 1 02 1 0

Figure 10.4: Sketch of the model system as well as the molecular orbital configurations of
the states used for the quantum dynamics simulations. The CS2,1 state has been omitted
from the dynamical treatment. The table at the bottom shows the relevant diagonal on-site
energies as well as the diabatic couplings.

Figure 10.4 sums up the simulation setup for the interfacial area between P3HT and
PCBM. As compared to the electronic structure analysis of figure 10.2, the CS1,2 state con-
figuration has now been neglected. Since the CS1,2 state is not able to couple to the CT0,2

state directly, its presence can be seen as a loss process for the overall CT state population.
Hence, this state has been omitted from the investigation in the present simulation set up.
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For the quantum dynamical simulations, different initially localised states have been
used. First, a localised excitation has been placed at the P3HT/PCBM interface, i.e. the
initial excitation is located on the P3HT-1 fragment. Complementary to this simulation, a
localised excitation has been placed on the P3HT-2 fragment. From figure 10.4 it is obvious
that both the XT1 and XT2 state can lead to a heteromolecular CT0,i state configuration.
Finally, a delocalised excitation representing an H-type aggregate wave function has been
used.

a) b) c)

d) e) f)

Σ XT Σ CS Σ CT Σ Free Carrier

Figure 10.5: Electronic populations of the different states under investigation. a-c show
the populations of a simulation with a singe P3HT/P3HT CS1,2 state, whereas d-f show the
results from a simulation without the P3HT/P3HT CS1,2 state. a and d: Initial condition
localised on P3HT-1. b and e: Initial condition localised on P3HT-2. c and f: Initial
condition prepared in the bright delocalised state.

Figures 10.5a-f show the time-dependent populations for the simulation employing ho-
momolecular CS states (a-c) and in the absence of homomolecular CS states (d-f). By
comparing figures 10.5a and d one can see that the introduction of the homomolecular
CS1,2 state does not significantly affect the generation of free charge carriers. The overall
population of the XT and heteromolecular CT0,i states is also lower than for the simulation
without the homomolecular CS state. A more interesting result is obtained for the initial
condition placed on the P3HT-2 fragment, shown in figures 10.5b and e. In contrast to
the results shown in figures 10.5a and d, one can see a strong coherent transfer between
the XT and homomolecular CS state, emphasized by the fast oscillations during the first
50 femtoseconds. Afterwards, a slower oscillatory pattern with a frequency of about 23
femtoseconds is visible. This slower oscillatory signal can also be seen in the simulation
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employing a localised initial condition on the P3HT-1 fragment. More interesting is the
increase in population of the free charge carriers by about 50 %. For the simulation employ-
ing a delocalised H-aggregate wave function, the population dynamics with the inclusion
of a single CS state do not change in comparison with the population dynamics of the
simulation in the absence of a single interfacial CS state, see figures 10.5c and f.

The following comparison highlights the free charge carrier populations as well as
the population of the interfacial CT0,1 state between simulations with and without a
P3HT/P3HT CS1,2 state.

Figure 10.6: Comparison between the population of the interfacial P3HT/PCBM
CT0,1 state as well as the free charge carriers between a simulation with and without
a P3HT/P3HT CS1,2 state. Solid lines represent the CT0,1 state, dashed lines represent
the free charge carriers. a) Localised initial condition on P3HT-1. b) Localised initial
condition on P3HT-2. c) Delocalised initial condition.

Here, figure 10.6a shows the initial XT state localised on the P3HT-1 fragment. While
the free carrier population, represented by the dashed lines, does not change much upon
introduction of the P3HT/P3HT CS1,2 state, the population dynamics of the interfacial
CT0,1 state changes much more. During the first 50 femtoseconds, the rise in population
is equal for both simulations performed, i.e. with and without the P3HT/P3HT CS1,2

state. While the population of the simulation without the P3HT/P3HT CS state reaches a
stationary population with only minor fluctuations, the population dynamics for the sim-
ulation with the inclusion of a P3HT/P3HT CS state are different. Here, the population
of the interfacial CT0,1 state decreases after approximately 50 femtoseconds and oscillates
around this stationary value.

The results from the simulation with the XT initial condition localised on the P3HT-2
fragment are shown in figure 10.6b. The free carrier populations shown with dashed lines
show a higher population for the simulation employing a P3HT/P3HT CS1,2 state at the
interface. More dramatic is the change in the population of the interfacial P3HT/PCBM
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CT0,1 state. While for both simulations the CT0,1 population reaches a stationary value
after about 50 femtoseconds with only minor fluctuations, the population of the CT0,1 state
with a P3HT/P3HT CS1,2 state is only half of the population without the additional CS1,2

state.

In figure 10.6c, the results for a delocalised initial condition are shown. Again, the
dashed line shows the free carrier population, which is fairly symmetric for both simula-
tions performed. On the other hand, the population dynamics for the interfacial CT0,1 state
are very different. While the population of the P3HT/PCBM CT0,1 state in the absence
of a P3HT/P3HT CS1,2 state increases monotonically during the time of the simulation,
the CT0,1 state in the presence of a CS1,2 state shows a much lower population.

10.3.2 CSi,i±1 State Manifold

For the simulation employing a homomolecular CSi,i+1 and CSi+1,i state manifold, the
same simulation setup has been used, i.e. 13 P3HT monomers act as an electron donating
material and a single PCBM monomer acts as an electron acceptor. With the introduction
of the CSi,i+1 & CSi+1,i state manifold, the total number of electronic states rises from 27 to
50. Again, three different initial conditions have been used, with the initial wave function
localised either on the P3HT-1 or the P3HT-2 fragment. Furthermore, a delocalised H-
aggregate wave function has been used. With respect to the diabatic electronic couplings,
the scheme provided in figure 10.2 has been used as a guideline for the electronic couplings.

Figures 10.7a-f show the diabatic populations obtained for the simulation in the pres-
ence of a homomolecular CS state manifold (a-c) and in the absence of the CS state
manifold (d-f). Due to the computational demanding nature of the simulation setup, only
300 femtoseconds have been propagated, as opposed to 500 femtoseconds for the previous
simulation setup. For all three initial conditions shown in figures 10.7a-c one can see that
the dynamics reaches a stationary state after approximately 100 femtoseconds and only
small fluctuations can be seen in the populations. Interestingly, the time scale of the low
frequency oscillations on top of the homomolecular CS state and XT state populations is
the same as for the investigations of the intrastack CT state formation in the previous
chapter. These oscillations are present for all three initial conditions under investigation.
Further, one can see a very fast component during the first 30 femtoseconds of the sim-
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a) b) c)

d) e) f)

Σ XT Σ CS Σ CT Σ Free Carrier

Figure 10.7: Electronic populations of the different states under investigation. a-c show
the populations of a simulation with homomolecular P3HT/P3HT CS states, whereas d-
f show the results from a simulation without P3HT/P3HT CS states. a and d: Initial
condition localised on P3HT-1. b and e: Initial condition localised on P3HT-2. c and f:
Initial condition prepared in the bright delocalised state.

ulation, which is responsible for the ultrafast transfer from the XT state manifold to the
homomolecular P3HT/P3HT CS state manifold. Comparing the amount of generated free
charge carriers for the simulation employing a homomolecular CS state manifold (i.e. fig-
ures 10.7a-c) to the simulation without a CS state manifold (i.e. 10.7d-f), one can see
for the localised initial conditions on fragment P3HT-1 and P3HT-2 that the amount of
free carriers is less for the simulations with a CS state manifold than without a CS state
manifold. In contrast, the simulation employing a delocalised H-aggregate wave function
shows the opposite dynamics.

Again, the free charge carriers as well as the population of the P3HT/PCBM interfacial
CT0,1 state with respect to the presence and absence of a P3HT/P3HT CS1,2 state will be
shown.

Figure 10.8a shows the results for a simulation with the initial condition localised on
the P3HT-1 fragment. While the free charge carrier populations, shown with dashed lines,
are nearly the same for long times, the dynamics of the CT0,1 state are very different.
For both simulation setups, i.e. with and without P3HT/P3HT CSi,i+1 and CSi+1,i states,
the P3HT/PCBM CT0,1 state shows a strong increase during the first few femtoseconds
of the simulation. In contrast to the simulation without P3HT/P3HT CS states, where a
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a) b) c)

Figure 10.8: Comparison between the population of the interfacial P3HT/PCBM
CT0,1 state as well as the free charge carriers between a simulation with and without
a P3HT/P3HT CSi,i+1 and CSi+1,i state manifold. Solid lines represent the CT0,1 state,
dashed lines represent the free charge carriers. a) Localised initial condition on P3HT-1.
b) Localised initial condition on P3HT-2. c) Delocalised initial condition.

steady state population of the CT0,1 state after 50 femtoseconds is reached, the CT0,1 state
in the presence of P3HT/P3HT CS states decays from the initially high value to nearly zero.

For the simulation with the XT initial condition localised on the P3HT-2 fragment,
the same observation as for the initial condition localised on the P3HT-1 fragment can be
made. Again, the population of the free charge carriers approach the same steady state
value for longer simulation times. Opposed to that, the interfacial P3HT/PCBM CT0,1

state dynamics are very different. Most notable is the change in overall population for
longer times, where the CT0,1 state population in the presence of a CSi,i±1 state manifold
decays nearly completely for long simulation times. There is also a difference in the short
time dynamics, where one can see that the population of the CT0,1 state is delayed by
a couple of femtoseconds, as compared to the simulation without the P3HT/P3HT CS1,2

state.

The results for the simulation with a delocalised initial condition are shown in figure
10.8c. Interestingly, the presence of a P3HT/P3HT CSi,i+1 and CSi+1,i manifold does not
only influence the population dynamics of the interfacial CT0,1 state, but that of the free
charge carriers as well. While for the previous initial conditions the behaviour of the free
charge carrier dynamics were fairly symmetric, this is not true for the delocalised initial
condition. Here, one can see that the presence of the CSi,i+1 and CSi+1,i state manifold
leads to a faster creation of free charge carriers and also to a more steady population. In
contrast, the free charge carrier populations in the absense of a CSi,i+1 and CSi+1,i state
manifold increases monotonically with the progression in simulation time. The population
dynamics of the interfacial CT0,1 state are very different again, with a steady increase of
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population for the simulation without the CSi,i+1 and CSi+1,i state manifold and a steady
state of the CT0,1 population in the presence of the CSi,i+1 and CSi+1,i state manifold.
Also the overall value of the P3HT/PCBM CT0,1 state is very different.

10.3.3 Full CSi,j State Manifold

The simulations employing the full CSi,j state manifold contain a total of 182 electronic
states in addition to the 112 degrees of freedom. The energetics of the homomolecular CS
state configurations have been adapted to a simple Coulomb model, as in figure 10.3b. Due
to the large number of configurations, only up to 200 femtoseconds have been propagated.
As it could be seen from the previous simulations, 200 femtoseconds should be sufficient
enough to account for the ultrafast exciton dissociation mechanism and hence, contain all
relevant information about the quantum dynamics after photoexcitation. In the following,
first the results for the different state configurations will be compared to the results without
the homomolecular P3HT/P3HT CS state manifold. Then, the influence of the presence
of the homomolecular P3HT/P3HT CS states on the dynamics of the free charge carriers
and the interfacial P3HT/PCBM CT state will be investigated.

a) b) c)

d) e) f)

Σ XT Σ CS Σ CT Σ Free Carrier

Figure 10.9: Electronic populations of the different states under investigation. a-c show
the populations of a simulation with homomolecular P3HT/P3HT CS states, whereas d-
f show the results from a simulation without P3HT/P3HT CS states. a and d: Initial
condition localised on P3HT-1. b and e: Initial condition localised on P3HT-2. c and f:
Initial condition prepared in the bright delocalised state.

Figure 10.9a-f show the diabatic electronic populations for simulations with the com-
plete homomolecular P3HT/P3HT CS state manifold, i.e. 182 electronic states along with
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112 phonon degrees of freedom in a harmonic approximation. Here, figures 10.9a-c show the
results from the simulation in the presence of the P3HT/P3HT CS state manifold, whereas
figures 10.9d-f show the same simulation protocol but in the absence of the P3HT/P3HT
CS state manifold. As in the simulation of the P3HT/P3HT CSi,i±1 state manifold, one can
see a very fast and efficient transfer from the initial XT state manifold to the homomolec-
ular P3HT/P3HT CS state manifold for all three initial conditions under investigation.
While for the other simulation setups with either a P3HT/P3HT CS state located at the
P3HT/PCBM interface or with a P3HT/P3HT CSi,i±1 state manifold periodic oscillations
were observable, these oscillations are still present, but have a much weaker amplitude.
Considering the fact that even more state crossings are present for the current simulation
etup than for the other simulation setups, this behaviour seems to be plausible. Further,
one can see that the amount of P3HT/PCBM charge transfer is comparable for all three
initial conditions. Also, as in the simulation employing a P3HT/P3HT CSi,i±1 state man-
ifold, one can see very fast oscillations during the first few femtoseconds of the simulation,
which vanish completely after approx. 30 femtoseconds. Since after these 30 femtoseconds
no more changes in the population between XT and P3HT/P3HT CS states occur, it can
be stated that the fast oscillatory signal stems from the XT to CS state transfer.

a) b) c)

Figure 10.10: Comparison between the population of the interfacial P3HT/PCBM
CT0,1 state as well as the free charge carriers between a simulation with and without
a P3HT/P3HT CSi,j state manifold. Solid lines represent the CT0,1 state, dashed lines
represent the free charge carriers. a) Localised initial condition on P3HT-1. b) Localised
initial condition on P3HT-2. c) Delocalised initial condition.

Figures 10.10a-c show the population of the free charge carriers and the interfacial
P3HT/PCBM CT0,1 state for simulations with and without the homomolecuar P3HT/P3HT
CS state manifold for different initial conditions. For all three initial conditions investi-
gated, one can see huge differences in the excited state behaviour with respect to the
interfacial P3HT/PCBM CT0,1 state. For the initial condition localised on the P3HT-1
fragment, shown in figure 10.10a, one can see a strong increase in population of the CT0,1
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state on a very fast timescale. While the population of this state is at approx. 0.3 for the
simulation without the P3HT/P3HT CS state manifold, it decreases dramatically for the
simulation with the P3HT/P3HT CS state manifold. The free charge carrier generation,
shown with dashed lines in figure 10.10a is not as much affected by the presence of the CS
state manifold.

The same behaviour for the initial condition localised on the P3HT-2 fragment, shown
in figure 10.10b, as for the simulation with the initial condition localised on the P3HT-1
fragment can be observed. Again, one can see a very different dynamical behaviour of the
population dynamics of the interfacial P3HT/PCBM CT0,1 state. In contrast to the pre-
viously analysed population dynamics, the free charge carrier populations in this case are
more affected due to the presence of the homomolecular P3HT/P3HT CS state manifold.

Finally, the population dynamics with a delocalised initial condition have been anal-
ysed as well, shown in figure 10.10c. As in the dynamics employing a P3HT/P3HT CSi,i±1

state manifold in the previous section, the excited state dynamics upon photoexcitation
are very different. While for the simulation without the P3HT/P3HT CS state manifold,
the population of the interfacial CT0,1 state increases steadily, the same charge trans-
fer configuration remains nearly unpopulated for the simulation with the homomolecular
P3HT/P3HT CS state manifold. Interestingly, the overall population of the free charge
carriers are nearly identical as well. These results indicate that an alternative pathway of
exciton dissociation is opened due to the presence of the CS states, besides the dissocation
pathway at the donor/acceptor interface.

10.3.4 Summary and Conclusion

Building upon previous studies on the charge separation dynamics in P3HT/PCBM sys-
tems [131, 175], the model Hamiltonian of reference [131] has been augmented by the
inclusion of mixed Frenkel/charge-transfer states in the regioregular donor phase, in line
with the results of the previous section. To reduce the very large number of degrees of
freedom in the system, an effective mode decomposition of the full normal mode represen-
tation, employing a truncated Mori chain representation, has been used. This leads to a
reduction from 3N-6 normal modes to 8 effective modes per fragment, resulting in a total
of 112 degrees of freedom and several electronic states for a system consisting of 13 P3HT

135



10 — Charge Carrier Generation in a P3HT/PCBM Model System

and a single PCBM monomer.

Electronic structure calculations have been performed with a model system consisting
of two P3HT monomers and a single PCBM “super-site”. The analysis of the diabatic
electronic couplings and the on-site energies of the different states, i.e. XT states located
on P3HT, CS states between two P3HT monomers, and CT states between P3HT and
PCBM units, indicate an efficient charge separation process of the XT wave function into
either the CS or CT states. Furthermore a non-negligible electronic coupling between the
CS and CT states is observed.

Employing quantum dynamical simulations based on the ML-MCTDH method, we
have addressed three different dynamical scenarios: First, a P3HT/P3HT CS state has
been allowed only at the interface, which couples subsequently to the P3HT/PCBM CT
state. Second, a manifold of CS states has been included in the model Hamiltonian, with
the constraint that the electron hole separation distance within the CS manifold was only
allowed for nearest neighbors. The third model system consists of the full homomolecular
P3HT/P3HT CS state manifold, where the energetics of the CS state manifold have been
modeled according to a simple Coulomb type description. This results in a total of 27
electronic states for the first model, i.e. 13 XT states, 13 P3HT/PCBM CT states and
one P3HT/P3HT CS state, 50 electronic states for the second model and 182 electronic
configurations for the third model.

From the results of the quantum dynamical simulations it is clear that the P3HT/P3HT
CS states strongly influence the interfacial P3HT/PCBM CT state formation, and reduce
the participation of the interfacial CT state. The free charge carrier populations is affected
to a lesser extent - but clearly in such a way that the presence of the CS states leads to a
reduction of te free carrier yield. With the current parametrization, it therefore turns out
that the CS states act as an effective trap, even though more exciton dissociation channels
are available.

In summary, it turns out that the inclusion of homomolecular P3HT/P3HT CS states
leads to additional, competing charge separation pathways in functional BHJ nanomate-
rials. While the first results presented in this thesis seem to be promising in terms of the
overall understanding of free charge carrier generation, there are still open issues. In par-
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ticular, it is not yet clear under which circumstances an increase of free carrier generation
would be expected. One should point out that the current model Hamiltonian does not
include microelectrostatic effects, neither does it treat the surrounding environment via an
explicit or implicit type of description. Furthermore, real world photovoltaic devices use
an applied external electric field, enhancing exciton dissociation and the transport of elec-
trons and holes towards their respective electrode. Nevertheless, the present study makes
first steps towards a realistic quantum dynamical study of the charge carrier generation
including the effect of charge transfer excitons in the donor phase.
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Part III

Kinetic Monte Carlo Modeling of
Exciton and Charge Carrier

Dynamics





The studies of exciton migration and charge transfer presented in the previous chap-
ters have been performed employing a deterministic quantum dynamical approach. As
has been pointed out in part I of this thesis, this is a highly accurate methodology, which
is, however, only suitable for short length and time scales. In order to obtain an over-
all understanding of the processes of a given material after photoexcitation, not only the
short time dynamics are important, but also the long time dynamical behaviour. After
the characteristic quantum effects induced by photoexcitation – i.e., coherent wavepacket
motion, vibronically hot states, multiple nonadiabatic crossings – are over, a long time
thermodynamically and kinetically driven dynamics sets in that can largely be treated by
classical-statistical methods. In this context, one obtains macroscopic observables such as
charge density distributions and charge carrier mobilites, which can be directly compared
to experimental results. Especially the Kinetic Monte Carlo (KMC) method has been
successfully applied to study a variety of nanoscaled systems used for photovoltaic devices
[178–181]. This is, therefore, the method of choice for the studies reported in this chapter.

This study prepares the ground for an in-depth analysis of a second-generation donor-
acceptor system devised by the Strasbourg group, which has been introduced in section 8.5.
In this system, charge separation occurs on a time scale of tens to hundreds of picoseconds,
such that a quantum dynamical treatment is not appropriate. Preliminary results for the
carrier dynamics in this system will be reported below.

The remainder of the chapter is divided as follows. First, the KMC program that has
been written in the frmework of this thesis will be introduced. Then, the calculation of
rates will be explained, connecting to the first part of this thesis. Finally, the results
obtained from the KMC method will be presented.
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The theoretical methodology and the algorithm employed to solve the Master Equation has
already been presented in the first part of this thesis. Here, we outline the implementation
of the KMC method into an efficient Fortran90 code, along with the principal workflow
and steps of the program.

generate morphology
via

minimisation of
Ising Hamiltonian

put excitons on generated
morphology

propagate excitons

propagate charge carriers

calculate observables

Figure 11.1: Overview and necessary prerequisites to perform simulations with the Ki-
netic Monte Carlo code.

Figure 11.1 shows a graphical overview over the most important steps in the KMC sim-
ulation. A suitable morphology has been generated with the Ising Hamiltonian, following
reference [139]. To briefly summarize the generation of the morphology:

1. A random distribution of donors and acceptors is generated, and each of these sites
has an energy ε associated to it.
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2. Sites are switched to minimize the energy of the overall system, which is done by
successively switching sites depending on the number of neighboring monomers and
calculating the corresponding energy, i.e.

∆ε = −∆N1J −∆N2
J√
2
. (11.1)

Here, ∆N1 and ∆N2 account for the change of the numbers of first nearest neighbor
and second nearest neighbor bonds, respectively. J is the interaction energy and controls
whether interactions between identical monomers or between different monomers are ben-
ficial. Thus, the choice of J leads either to phase separation or phase aggregation, as
demonstrated in the following example. The generated morphology can then be used for
subsequent KMC simulations.

a) b) A

D

Figure 11.2: Morphologies obtained from energy minimisation of the Ising Hamiltonian.
a) Phase aggregated morphology. b) Phase mixed morphology.

Figures 11.2a and b show two different morphologies obtained from energy mimization
of the Ising Hamiltonian. Figure 11.2a has been obtained with a positive interaction en-
ergy J and resembles typical BHJ nano morphologies. Here, one has large domain sizes of
either electron donating (red) or electron accepting (blue) material. For a negative value
of the interaction energy J , a mostly phase mixed structure is being obtained, as it can
be seen from figure 11.2b. Again, red marks the electron donating material while blue
represents the electron accepting material. It is obvious that due to the phase separation
of the different materials, one obtains a very large interfacial area.
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The generated morphologies can then be used to propagate excitons and charge car-
riers via the KMC approach. Excitons are generated at random sites within the electron
donating material and can propagate without an external force freely within the respective
material. The timescale of the individual hops depends on the resonant energy tansfer
(RET) rate, see the discussion given in the first part of this thesis. In particular, the rate
expression looks as follows:

kRET = k0

(
R0

rij

)6

f1 (∆Eij) (11.2)

with

f1(∆Eij) =

exp(−
∆Eij
kT

) ∆Eij > 0

1 ∆Eij ≤ 0
(11.3)

Equation 11.2 is comparable to the standard FRET rate introduced in the first part of this
thesis. Here, k0 is the exciton hopping coefficient and can be interpreted as the inverse
exciton lifetime [110, 173]. R0 is the lattice spacing and rij is the distance between sites.
The last term f1 (∆Eij) stems from the Metropolis ansatz [182] which determines whether
a Boltzmann factor is included in the calculation or not, depending on the energy difference
of the initial and final site. In the following simulations, all site energies are subjected to
random fluctuations caused by a Gaussian energy distribution. The parameters for the
width of the energy distributions, i.e. σD/A, have been taken from experiments in reference
[68] and are summarized in the following table.

Table 11.1: Parameters used for the calculation of the RET rates.

k0 σD σA ED EA

2 ps−1 75 meV 65 meV 3.75 eV 3.25 eV

If the exciton reaches the donor-acceptor interface, exciton dissociation is switched on,
besides the possibility of a RET step from the donor to the acceptor material. The rate
for exciton dissociation is based on Miller-Abrahams theory [183].

kex−diss = k0e
(−2γrij)f1 (∆Eij) (11.4)
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Again, k0 is the exciton dissociation coefficient. In the following simulations, k0 is set to
1015s−1 in order to highly favor the exciton dissociation in comparison to the RET process.
γ is the inverse exciton localisation parameter [110], rij is the distance between sites and
f1 (∆Eij) is the same function as defined in equation 11.3. While the difference in energy
for the RET process was just based on the difference in site energies, the change in energy
for exciton dissociation depends on multiple parameters.

∆Eij = ELUMOD,i − ELUMOA,j + EB − EGP (rij) + Fy (11.5)

In equation 11.5, the first and second term are the energies of the HOMO and LUMO
energy levels of the donor and acceptor, respectively, EB is the exciton binding energy
and has been taken from the optical gap of RR-P3HT, as experimentally determined in
reference [184]. The last two terms are the geminate pair binding energy (EGP (rij)), which
is a function of the site distance, and the energy gradient F , induced by the applied external
electric field in the y direction of the material. The geminate pair binding energy is defined
as follows,

EGP (rij) = e2

4πεrε0rij
(11.6)

The geminate pair binding energy strongly depends on the relative dielectric constant of
the material εr and the distance between sites rij. All relevant parameters are subsumed
in the following table.

Table 11.2: Parameters used for the calculation of the exciton dissociation rates.

k0 γ ELUMO,D ELUMO,A EB εr

1015 s−1 1 nm−1 -2.68 eV -4.20 eV 0.7 eV 3

If the exciton dissociates at the donor-acceptor interface, the charge carrier transport
rates have to be evaluated. In the present thesis, charge carrier transport is based on
Marcus-Levich-Jortner (MLJ) rates. (In other publications on KMC simulations for pho-
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tovoltaic devices, the Miller-Abrahams rate has also been successfully applied to study
charge carrier dynamics [68, 110, 111]). The MLJ rate reads as follows,

kMLJ = 2π
~

|Vij|2√
4πkBTλs

∞∑
N=0

( λi~ω )N

N ! exp

(
− λi
~ω

)
exp

(
−(∆Eij + λS +N~ωintra)2

4λSkBT

)
(11.7)

Equation 11.7 shows the rate equation for charge carrier transport with the MLJ rate
equation (see also figure 3.7c). Here, Vij is the transfer integral, λi and λS are the internal
and environment reorganisation energy, respectively. The internal reorganisation energies
λi for electron and hole transfer have been calculated according to the scheme provided
in reference [185], whereas the environmental reorganisation energy is difficult to calculate
[186, 187]. Thus, the environmental reorganisation energy has been approximated to be
smaller than the internal reorganisation energy. The term ~ω corresponds to the vibra-
tional quantum of a generalised intramolecular coordinate – treated within a harmonic
approximation – and is taken to be 0.2 eV.

The difference in energy ∆Eij does not depend soleley on the LUMO and HOMO energy
levels for electron and hole transfer, respectively, but also on the external electric and field
and the Coulombic energy created by the remaining charge carriers in the system,

∆Eij = Ej − Ei + EField + ECoulomb (11.8)

Depending on the direction in which the charge carrier, i.e. electron or hole, is hopping,
the EField term can be either positive or negative. If one of the charge carriers in the
system reaches an electrode, it will get extracted immedately and the simulation is stopped.
Finally, the charge carrier mobility of the respective particle is evaluated as shown in
equation 6.28. The final parameters used for the calculation of the Marcus-Levich-Jortner
rates are shown in the following table.

Table 11.3: Parameters used for the calculation of the Marcus-Levich-Jortner rates.

Ve Vh λe λh λs ~ω

0.5 meV 13 meV 0.3 eV 0.4 eV 0.1 eV 0.2 eV
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The final simulation setup for the propagation of exctions and charges then looks as
follows.

+

-

Figure 11.3: Simulation setup of the morphology for a Kinetic Monte Carlo trajectory
with indicated electrodes and periodic boundary conditions.

Here, the central panel shows the generated morphology that is used for the KMC sim-
ulations. At the top and bottom are the electrodes, which are responsible for the externally
applied field and for charge carrier collection. To each of the sides of the simulation box,
periodic boundary conditions have been applied, which is illustrated by the transparent
repetition of the morphology. This means that if a particle leaves the simulation box to
one side, a particle with the same charge will enter the simulation box from the opposite
side.

As an extension to typical KMC simulations, a mechanism leading to exciton delocali-
sation has been implemented. While typical KMC simulations do not treat delocalisation
at all or only in a very crude fashion [110], an explicit mechanism for exciton delocalisation
has been implemented into the KMC scheme. After the exciton has been localised on a
single site, the adjacent sites are ordered by energy until a certain delocalisation length
has been reached. The following delocalisation happens into the direction of the smallest
energy barrier and is supposed to be instantaneous, i.e. it does not account for an advance
in time t. Then, the rates for exciton migration or exciton dissociation are calculated and
the fastest process will be executed, according to the KMC scheme. Pictorially, the process
looks as follows
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Figure 11.4: Sketch of the implemented delocalisation mechanism of an excitonic point-
like object. The delocalisation does not have a favoured direction. Red corresponds to the
Donor phase, blue corresponds to the acceptor phase.

Here, red corresponds to the electron donating material while blue corresponds to the
electron accepting material. After an exciton has been created randomly on a electron
donating site, it will instantaneously delocalise in the direction of the smallest energetic
barrier. In the example, the delocalisation is fixed to a width of three sites. After the
delocalisation, all possible processes will be evaluated and associated with its characteristic
time scales. As one can see from figure 11.4b, the delocalisation leads to an increase in
possible events.
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In the following, the results obtained by our Kinetic Monte Carlo simulations will be pre-
sented. First, the macroscopic charge carrier mobilities for the electrons will be shown for
three different idealised BHJ morphologies. Therefore, simulations employing an increas-
ing number of charge carriers have been propagated according to the FRM algorithm. As
soon as one of these charges has been extracted at the electrodes, the corresponding charge
carrier mobility has been calculated and the simulation has been stopped. Afterwards, a
new trajectory with the same number of charge carriers has been started in order to obtain
reasonable statistics. For each generated idealised BHJ morphology, simulations have been
performed with and without Coulombic forces between the particles. Simulations without
the influence of the Coulombic forces can be seen as a simulation of an idealised electron gas.

After the discussion of the results employing the idealised BHJ structures, simulations
for a randomly generated structure according to the Ising Hamiltonian will be presented.
Here, two different morphological realisations of a mixed DA BHJ nanodevices will be
presented. For one morphology, a maximal aggregation with distinct donor and acceptor
domains was generated and for the second morphology a strongly mixed donor/acceptor
system was generated. Again, simulations with and without Coulombic forces have been
carried out, in addition to simulations featuring multiple charge carriers or a single charge
carrier.

Finally, a coarse-graining approach to model the charge carrier dynamics in the second
generation donor-acceptor system of the Strasbourg group, introduced in section 8.5, is
detailed, along with the subsequent KMC dynamics for the generated structure. The
coarse graining has been done based on an X-ray structure of the thin-film architecture of
the second generation donor-acceptor system, as reported in references [36, 163].
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12.1 Idealised BHJ Nanomorphologies

As pointed out earlier, idealised BHJ nanomorphologies have been created and used for
subsequent KMC simulations. The simulations employ a varying number of charge car-
riers, ranging from as few as two particles to as many as 15. As soon as one of these
particles has been extracted, the corresponding charge carrier mobility was calculated, the
current simulation was stopped and a new simulation was initiated. This has been done in
order to have the same number of particles for each simulation and for the corresponding
calculation of the charge carrier mobility.

+
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+

-

+b) c)

A

D

Figure 12.1: Idealised BHJ nanomorphologies used for the subsequent following Kinetic
Monte Carlo simulations. a) Horizontally separated BHJ morphology. b) Vertically sepa-
rated BHJ morphology. c) Columnwise phase separated BHJ morphology.

Figures 12.1a-c show the generated idealised BHJ nanomorphologies. In all three cases
studied, the anode has been placed on top, while the cathode has been placed at the
bottom. As soon as a charge carrier reached either the top or bottom of the device, the
simulation was stopped. On the other hand, periodic boundary conditions have been ap-
plied to the left and right side of the device.

From the morphology presented in figure 12.1a it is obvious that all the generated
charge carriers will have to travel the same distance to reach the anode or cathode, re-
spectively. Therefore, in the absence of Coulombic forces, one can expect that the charge
carrier mobility will have the same value independently of the number of charge carriers.
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Figure 12.2: Electron mobility as a function of the number of particles for structure
12.1a.

Figure 12.2 compares the resulting charge carrier mobilities for a simulation employing
the BHJ structure from figure 12.1a with and without Coulombic forces. For the simulation
without Coulombic forces, one can see that the electron mobility adopts a constant value
with some minor fluctutations.

For the simulation with Coulombic forces one can see that at first the electron mobility
slightly increases, followed by a steady decrease. The steady decrease of the mobility can
be explained by the fact that with an increase in the number of simulated particles, the
charge carrier density also increases. Since the Coulombic forces acting on each particle
increase with increasing charge carrier density, the particles will first start to drift away
from each other, minimising the influence from the Coulombic repulsion. Therefore, it can
happen that charges perform a hop to an energetically unfavourable site.

Next, the results employing the idealised BHJ structure from figure 12.1b will be shown.

a) b) c)

Figure 12.3: a) Electron mobility as a function of the number of particles for structure
12.1b. b) Initial position of the extracted charge carrier with and without Coulombic forces.
c) Average starting position of the extracted charge carrier as a function of the number of
particles.

Again, in figure 12.3a the results from a simulation employing Coulombic forces (with
reference calculations without Coulombic forces) have been plotted. For the simulation
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without Coulombic forces, the result is very different from the results shown in figure 12.2.
Here, one can see a steady increase in electron mobility. The reason for this steady increase
of the mobility is that the distribution of initial positions of the charge carriers along the y
dimension of the morphology extends with increasing number of particles. Therefore, with
an increasing number of particles it is more likely that the extracted charge carrier has to
travel a short distance in a short amount of time, resulting in an increase of the charge
carrier mobility.

For the simulation employing Coulomb repulsion between the charge carriers, one can
see a slow but steady decrease of the electron mobility. The reason for this behaviour can
be explained with the aid of figure 12.3b. Here, one can see the initial positions of the
extracted charges for a simulation with 15 charge carriers and a total of 105 individual
trajectories. Upon inclusion of the Coulomb repulsion, one can see that an increase of
exctracted charges stems from the bottom region of the device. These charges experience
a huge Coulombic repulsion. In order to avoid regions with a high repulsive potential,
the charges will diffuse along the x axis towards a region with lower Coulomb repulsion,
followed by a diffusion towards the electrodes. Since the calculated electron mobility is the
average over all these single charge carrier mobilities, the effective charge carrier mobility
will be lowered.

In figure 12.3c, the average initial position of the extracted charge carrier is shown as
a function of the number of particles in the simulation. It is obvious that in the sim-
ulation without Coulombic forces, the average starting position of the extracted charge
moves towards the anode with an increasing number of particles. On the other hand, when
Coulombic forces are present, the average starting position starts to move more towards
the anode, but at a certain charge carrier density, falls off again. This behavior can be
explained by the diffusion of the extracted charge in a lateral direction, in order to avoid
areas with high Coulombic forces.

Finally, the results for the idealised BHJ structure in figure 12.1c will be shown. Figure
12.4a shows the electron mobilities for a simulation with and without Coulombic forces
between the charge carriers. It is obvious that both simulations give the same trend and
behaviour of the charge carrier mobilities, unlike for the simulation of the other morpholo-
gies shown in figures 12.1a and b. The reason for the nearly same mobility values in both
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simulations can be seen from figure 12.4b. Here, the distribution of the initial position
of the extracted charge carrier is shown. Again, both simulations reveal nearly the same
distribution of the initial positions of the extracted electrons. Therefore, one can say that
due to the unique characteristic of the morphology shown in figure 12.1c, the particles
behave nearly as an idealised electron gas. Due to the spatial separation of different blocks
of donor and acceptor material, the particles can move without much influence from the
other charges.

a) b)

Figure 12.4: a) Electron mobility as a function of the number of particles for structure
12.1c. b) Initial position of the extracted charge carrier with and without Coulombic forces.

The following table compares the average initial starting position in the direction of the
electrodes for the different morphologies. The results have been obtained from simulations
employing 15 particles and 105 trajectories.

Table 12.1: Average initial position of the extracted charge for the different idealised
morphologies under investigation. See also figures 12.1a-c.

Morphology with E-Coulomb without E-Coulomb
A 51 51
B 68 91
C 80 80

One can see that for the morphology shown in figure 12.1a and c, the average starting
position of the extracted electron does not depend on the Coulombic forces. However,
only the structure shown in figure 12.1c does show the same mobilities with and without
Coulombic forces between the individual charge carriers. Due to the unique structure of
the morphology, isolated domains of electron conducting material are obtained, in which
the charge carriers can move nearly without any disturbances due to other charge carriers
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in the system. The unique alignment also facilitates the transport of the electrons into the
direction of the field and to the anode. This is not the case for structure 12.1a, where single
columns of isolated electron or hole transport materials are not present. Here, the charge
carriers can not be treated as isolated particles and hence, Coulombic forces influence the
charge carrier mobilities. While for low charge carrier densities, the resulting mobiltiy
is nearly the same for simulations with and without Coulombic forces, this is not true
anymore for higher charge densities. The obtained electron mobilities for structure 12.1b
is very much influenced by the number of charge carriers in the system. As it has been
pointed out earlier, with an increase of charge carriers simulated, the average starting
position of the extracted charge will shift to the bottom of the device. Then, the charge
starts to drift laterally towards an area with lower Coulombic forces, followed up by a
diffusion towards the anode.

12.2 Randomly Generated BHJ Nanomorphologies

In addition to the simulations carried out for idealised BHJ nanomorphologies in the previ-
ous section, calculations for randomly generated structures were performed as well. These
structures should resemble a much more realistic picture of commonly used BHJ nan-
odevices and have been created via the previously introduced Ising Hamiltonian. This
method has already been used succesfully in the generation of BHJ nanomorpologies for
KMC simulations [111, 139]. However, there are also other methods in order to generate
a suitable starting morphology, which are based on an improved Cahn-Hilliard diffusion
equation formalism in conjunction with field theoretical methods [66, 188]. The remainder
of the section is organised as follows. First, the results from a phase aggregated, randomly
generated structure will be shown. Afterwards the results from a maximal phase sepa-
rated structure will be analysed. Furthermore, simulations featuring a single particle have
also been done for both morphologies in order to study exciton dissociation efficiencies as
a function of the temperature T and the energetic disorder parameter σ. The energetic
disorder parameter describes the deviation of the energies of the different sites according
to a gaussian based energy distribution. This approach has also been successfully applied
to various Kinetic Monte Carlo simulations [188, 189]. Also the mobility of a single charge
carrier as a function of the applied external electric field has been studied.
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a) b) c)

Figure 12.5: a) Phase aggregated BHJ morphology. b) Electron mobilities as a function
of the number of particles with and without Coulombic forces. c) Dissociation efficiency
as a function of the maximum allowed delocalisation length.

Figures 12.5a and b show the generated structure for the phase aggregated simula-
tions and the results obtained from different many particle simulations of the generated
structure, respectively. The structure shown in panel a) has been obtained using the Ising
Hamiltonian with a positive sign of the coupling J, as it has been pointed out earlier. 50000
KMC steps have been performed to obtain the shown structure. The results shown in panel
b) have been obtained from simulations employing a total of nparticles x ntrajectories = 106,
meaning that both the number of particles and the number of trajectories has been variied.
Once a particle has been extracted, the simulation has been stopped and the charge car-
rier mobility of the respective extracted particle has been calculated. One can see for low
charge carrier densities that the simulation with and without Coulombic forces follow the
same trend, i.e. an increase in electron mobility. Once the density of the charge carriers
reaches a certain value, the electron mobility for the simulation with Coulombic forces
decreases. This is the same trend that was obtained from the simulation of the idealised
morphology in figure 12.1b and the subsequent simulation in figure 12.3a. By comparing
the morphologies in figure 12.5a and 12.1b one can see that the two morphologies are quite
similar, i.e. both featuring an anode to cathode donor and acceptor domain. Therefore,
the same argumentation for the electron mobilities is valid. For the simulation without
Coulombic forces, the initial position of the extracted charge shifts more toward the anode
with increasing number of particles, while for the simulation with Coulombic forces and
high charge carriers, the charges will first laterally drift away from regions of high Coulom-
bic density and then move towards the anode. Figure 12.5c shows the exciton dissociation
efficiency for different lengths of delocalisation. Upon increasing the delocalisation length,
the exciton dissociation efficiency increases. However, it seems to reach an asymptotic
value at around 90 %. While the delocalisation of the excitons increases the overall exciton
dissociation efficiency, the unique morphology of the phase aggregated structure also leads
to about 10 % of loss processes, i.e. exciton recombination within the donor material and

157



12 — Results

resonant energy transfer from the donor to the acceptor.
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Figure 12.6: Electron mobilities as a function of
the temperature T and the electric field for a phase
aggregated morphology.

Table 12.2: Exciton dissociation
efficiencies as a function of temper-
ature T and energetic disorder σ

1
4σ σ 2 σ

450 K 73.8 % 64.5 % 51.6 %
300 K 73.2 % 58.8 % 37.8 %
150 K 68.2 % 36.9 % 24.7 %
100 K 63.4 % 27.3 % 25.5 %

Figure 12.6 shows the electron mobilities for a single particle simulation for varying
external electric fields and temperatures. For all four cases studied, the electron mobility
decreases with increasing field strength. Since the electric field strength stands in the de-
nominator for the calculation of the mobility, increasing fields will lead to a reduction of
the mobility. While the obtained mobilities for the 450 K and 300 K simulations are fairly
even, the simulation at low temperature start to deviate from the high temperature simu-
lations. For the 150 K simulation one can see for external electric fields between 1.0 · 108

and 4.0 · 108 V/m that the mobility is nearly stationary and does not deviate much. For
higher electric fields, the mobility decreases again. This behaviour is more apparent for
the simulation at 100 K. Here one can see a strong increase in mobility between 1.0 · 108

and 3.0 ·108 V/m, with a decrease following afterwards. In recent literature this behaviour
is explained by the Frenkel-Poole behaviour [119, 190]. At the beginning of the simulation,
the disorder of the material is larger than the energetic gradient induced by the electric
field, which leads to a decrease in mobility. The area with increasing mobilities is called the
normal region, where the natural logarithm of the field is proportional to the square root
of the field, hence also the abscissa is in units of the square root of the electric field. The
subsequent decrease in mobility is related to the field being much larger than the disorder
of the material. The hopping rate can not increase anymore. While the field does increase,
the mobility decreases since the field strength needed for the calculation of the mobility is
in the denominator, see also equation 6.28.
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Table 12.2 above shows the exciton dissociation efficiencies as a function of the temper-
ature T and the energetic disorder parameter σ. One can see for all three values of σ that
with increasing temperature, the exciton dissociation efficiency increases. Additionally, for
a given temperature, the exciton dissociation efficiency decreases with increasing energetic
disorder σ. This behaviour is plausible if one considers the energetic disorder σ as a mea-
sure for energetically trapped states. For high energetic disorder for a given material, a
lot of local energetic minima are apparent, which lead to an increase in trapped excitonic
states and hence to a higher ground state recombination probability. On the other hand,
for low energetic disorder, the generated excitons can move along the lattice without much
hinderance and hence, reach the donor/acceptor interfacial area before the recombination
to the ground state occurs.

Following the discussion of the phase-aggregated structure, the results from the phase-
separated structure will be discussed.

a) b)A

D

Figure 12.7: a) Phase separated BHJ morphology. b) Electron mobilities as a function
of the number of particles with and without Coulombic forces.

Figure 12.7a shows the morphology used for the simulations of a phase separated donor-
acceptor BHJ nanomaterial. Again, the morphology has been obtained by using the Ising
Hamiltonian with a negtive J coupling between the sites, leading to a maximal phase
separated structure. One can see that within the material, distinguishable domains with
different orientations are present, where the charge carriers can either travel parallel or
perpendicular to the applied external electric field. Also, the structure resembles typi-
cal morphologies for self-organised donor/acceptor systems in a liquid crystalline mate-
rial, like it has been found for an improved version of the bisthiophene/perylenediimide
donor/acceptor system studied in chapter 6 of this thesis [36]. The resulting electron mobil-
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ities for simulations employing different numbers of particles is shown in figure 12.7b. As for
the simulation for the phase aggregated morphology, a total of nparticles x ntrajectories = 106

simulations per datapoint has been carried out. In contrast to the results shown in figure
12.5b, the results in 12.7b have a higher error bar due to higher statistical fluctuations.
Furthermore, the simulations with and without Coulombic forces seem to be more identical
than for the simulation of the phase aggregated morphology. The reason is that due to the
high interfacial area of the material, the generated electrons can diffuse within independent
acceptor domains. Also due to the unique structure, the charge carriers can only diffuse
in two directions, as to the four directions in the phase aggregated morphology. Both of
these effects contribute to the very similar electron mobilities for the simulation with and
without Coulombic forces.
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Figure 12.8: Electron mobilities as a function of
the temperature T and the electric field for a phase
separated morphology.

Table 12.3: Exciton dissociation
efficiencies as a function of temper-
ature T and energetic disorder σ

1
4σ σ 2 σ

450 K 97.7 % 98.0 % 99.8 %
300 K 97.9 % 97.7 % 99.3 %
150 K 97.5 % 97.7 % 98.2 %
100 K 97.8 % 97.7 % 98.4 %

Figure 12.8 shows the electron mobility for a single charge propagated in the phase
separated morphology shown in figure 12.7a as a function of the applied external electric
field. In contrast to the same simulation carried out for the phase aggregated simulation,
the low temperature regime does not show the typical Poole-Frenkel behaviour, as com-
pared to figure 12.6. The reason is that the electron is partially diffusing in domains with
a component perpendicular to the field. Following equation 6.28, the parameter t in the
denominator rises while the distance, measured as the part parallel to the field, remains
constant. Therefore, the mobility should decrease monotonically. The temperature plays
the same role as for the simulation in the phase aggregated morphology, i.e. high temper-
atures lead to a higher electron mobility.
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Table 12.3 shows the exciton dissociation efficiences as a function of the temperature
T and the energetic disorder parameter σ. In contrast to the observations made for the
phase aggregated structure, the exciton dissociation efficiency has a very high overall value
and it does neither depend on the temperature nor on the energetic disorder very much.
Interestingly, the exciton dissociation efficiency even seems to increase with increasing
energetic disorder, as opposed to the trend seen for the phase aggregated morphology
simulations in table 12.2. This behaviour can be explained with the high interfacial area.
Since the excitons are always located at an interface between donor and acceptor, it always
has the possibility to either dissociate into free charge carriers or perform a resonant energy
transfer within the donor regime or into the acceptor regime. For high energetic disordering,
it is more likely to dissociate than to propagate within the donor material or perform a
resonant energy transfer to the acceptor, resulting in slightly higher exciton dissociation
efficiencies.

12.3 Coarse Graining and Modeling of 2nd Genera-
tion DA Systems

The coarse graining approach for a second generation donor-acceptor system, which has
been experimentally synthesised and investigated by S. Méry et al. [35, 36, 163], has been
done on the basis of a crystallographically resolved structure and the visual molecular
dynamics (vmd) package [191]. With information about the unit cell, which has been
obtained from X-rray crystallography, a simulation box for subsequent Kinetic Monte Carlo
simulations could be generated. Of particular interest and in order to validate the chosen
model system and parameter settings, the electron mobilities as a function of the particle
density ρ, applied external electric field F and electron transfer integrals te have been
calculated. The following figure will show a sketch of the coarse graining approach to
obtain the model morphology for the Kinetic Monte Carlo scheme.

Figure 12.9a shows an excerpt of the crystallographically resolved structure of the full
atomistic representation along the crystallographic b-axis with highlighted unit cell. One
can see that along the crystallographic a-axis, the donor molecules, consisting of a modi-
fied bisthiophene derivative, are separated by a void due to their hexyl side chains. The
acceptor molecules, consisting of a perylene-diimide core, are followed by another accep-
tor moiety, with a separation distance of approximately 12 Å. Along the crystallographic
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Figure 12.9: a) Full atomistic representation of the second generation donor-acceptor
system with highlighted unit cell. b) Schematic representation of the coarse grained beads
along different crystallographic axes.

c-axis, there are two different ordering patterns. Once, there is the ordering of A-D, while
every other row features a bonding pattern of D-A molecules. The distance between the
centroid of two donor or acceptor molecules is approximately 70 Å, while the distance
between the different layers of donor-acceptor molecules is about 4.4 Å. A schematic rep-
resentation of the ordering pattern along the a- and b-axis can be found in figure 12.9b.
The view along the schematic b-axis is similar to the full atomistic representation shown in
figure 12.9a. From the view along the schematic a-axis one can see the strong π-stacking
of the acceptor moieties. Additionally, the donor molecules are also π-stacked. From the
sketch of the coarse grained structure one can already infer that a hole transfer is mainly
one dimensional along the crystallographic b-axis, perpendicular to the π-stacking of the
donor molecules. The electron transfer on the other hand is at least two dimensional, with
possible transfer directions along the crystallographic a- and b-axis.
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The parametrisation of the Kinetic Monte Carlo scheme has been done mostly using
information from quantum chemical calculations. The most important parameters for the
simulations performed are listed in the following table.

Table 12.4: Important parameters for the Kinetic Monte Carlo simulations. ~ω and σ
can be adjusted accordingly, while other parameters have been obtained from ab-initio
calculations. All values are in eV.

~ω LUMO σ λi λs,a λs,b λs,ab

0.2 -2.29 0.065 0.27 0.52 0.49 0.52

Table 12.4 shows the most important parameters which remain unchanged in the follow-
ing simulations. ~ω is a chosen frequency needed for the rate calculation via the Marcus-
Levich-Jortner formalism, see also equation 11.7. The LUMO energy along with σ are
responsible for the energetic fluctuations in the system, caused by the gaussian disordered
energy ansatz. While the LUMO energy has been taken from quantum chemical calcula-
tions employing the CAM-B3LYP functional, the energetic disorder parameter σ has been
taken from experimental investigations on PCBM electron acceptors [68]. The internal
reorganisation energy λi has been calculated according to the scheme provided in refer-
ence [185]. The solvent reorganisation energies λs,jk for an electron hop in the different
directions has been calculated using the Born-Hush approach [192].

λs = e2

4πε0

( 1
2r(j) + 1

2r(k) −
1

RCC

)( 1
n2 −

1
ε

)
(12.1)

In equation 12.1 r(j) and r(k) are the radii of electron densities on the different fragments
j and k and RCC is the centroid-centroid distance of the hopped particle. n and ε are the
refractive index and the dielectric constant of the solvent, respectively. For the present
calculation of the solvent reorganisation energies, n ≈ 1.5 and ε ≈ 3.5, as both resemble
typical values for organic photovoltaic devices.

The proposed coarse grained model and parametrisation has been used for subsequent
Kinetic Monte Carlo modeling. Therefore, simulations with different external applied elec-
tric fields, transfer integrals and particle densities have been carried out. Experimentally,
typical applied external electric fields range from 106 − 108 V

m
[193], while typical particle

densities are on the magnitude of ρ
[

1
cm3

]
≈ 1015 [194–197]. Since the transfer integrals are
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a function of the overlap between adjacent molecular orbitals, these values depend criti-
cally on the intermolecular distance between two molecules [198]. Nevertheless, transfer
integrals have been calculated employing the fragment charge difference scheme (FCD), as
it has been outlined in references [199, 200]. A suitable implementation of the FCD scheme
can be found at reference [201], which also features an online service for the calculation
of transfer integrals. Following this scheme, one obtains the following electron transfer
integrals.

v
ij,bv

ij,a

v
ij,ab

Figure 12.10: Definition of the three types of trans-
fer integrals used for the calculation via the FCD
approach.

Table 12.5: Numerical values of
the electron transfer integrals calcu-
lated via the FCD approach. All val-
ues in eV.

vij,a vij,b vij,ab
1.3e−5 0.1 0.002

Figure 12.10 shows an atomistic representation of the stacking of the acceptor moieties.
As it has been pointed out above, the value of the transfer integrals depends on the over-
lap of the molecular orbitals. Along with figure 12.10, one can deduce that the electronic
coupling vij,b will have the highest value and that a charge will be transfered along this
direction. Conversely, the transfer integrals vij,a and vij,ab will have much smaller values
and thus, a transfer along these directions will be less probable. Table 12.5 shows the
calculated numerical values according to the FCD method and the implemented version of
reference [201].

Kinetic Monte Carlo simulations have been carried out using the coarse grained struc-
ture from X-ray crystallography and the calculated electron transfer integrals. Further, an
external electric field has been applied in the crystallographic b direction, with a magni-
tude of F = 107V/m. The number of charge carriers simulated at the same time has been
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varied, to obtain charge carrier mobilities for low charge carrier densities and high charge
carrier densities.

a) b)

Figure 12.11: Calculated mobilities as a function of particle density for the coarse grained
structure of the second generation DA system. An external electric field of F = 107V/m
has been applied in both cases. a) σ = 65 meV. b) σ = 130 meV

Figures 12.11a and b show the obtained charge carrier mobilities calculated with equa-
tion 6.28. A double logarithmic representation of the calculated mobilities with respect
to the particle density has been chosen in order to obtain a linear dependence between
the electron mobility µelec and the particle density ρ. As it has been mentioned earlier,
typical charge carrier densities in photovoltaic devices are on the order of ρ

[
1

cm3

]
≈ 1015.

In that region, the electron mobilities are varying between 10−3 to 10+5 cm2

V s
, depending on

the chosen magnitude of the transfer integrals. One can also see that the ratio for the
charge carrier mobilities between the different simulation set ups is approximately 102,
which is in agreement with the definition of the rate calculation in Marcus-Levich-Jortner
theory, see also equation 11.7. Here, the rate depends quadratically on the electronic cou-
pling. The reason for the steady increase in charge carrier mobility can be adressed to
the chosen coarse grained structure, see also figures 12.9a and b. For the transfer of the
electrons within the acceptor domain, one basically has a two dimensional model. Due
to the 50 times higher transfer integrals along the crystallographic b direction, see also
table 12.5, this two dimensional model is effectively reduced to a one dimensional transfer
path. The applicaiton of an external electric field along the crystallographic b direction
also enhances the transfer along this singular pathway. With an increase in charge carrier
densities, the particles which are the closest to the electrode will also be pushed further
towards the detection electrode by the remaining charges behind them. All of these effects
lead to the steady increase in charge carrier mobilities. The reason for the marginal dif-
ference with respect to the charge carrier mobilities between figures 12.11a and b can also
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be explained by the high value of the electron transfer integrals. While the simulations in
figure 12.11b employing the transfer integral from table 12.5 are not very different from
the corresponding simulation shown in figure 12.11a, the simulations with smaller transfer
integrals, i.e. tex0.01, show some deviations for high charge carrier densities. One can see
that the electron mobility seems to reach a steady value for these kind of simulations.

12.4 Summary and Conclusion

In comparison to the results presented in the previous chapters, this chapterwas dealing
with a statistical approach to understand the processes infunctional organic materials.
Here, the mesoscopic time and length scale hasbeen explored along with the long-time dy-
namics and macroscopic observables such as charge carrier mobilities. Based on the Ising
Hamiltonian and the first reaction method (FRM), a Fortran90 code has been written for
Kinetic Monte Carlo simulations on functional organic polymer materials. In contrast to
standard KMC simulations on photovoltaic devices, exciton delocalisation has been explic-
itly taken into account via a new approach.

The subsequently performed simulations have been carried out for two different kinds of
morphological realisations. On one hand, different idealised BHJ nanomorphologies have
been created, where minimal structural defects were present. On the other hand, randomly
generated BHJ nanomorphologies with either a phase aggregated structure or a maximum
phase separated structure have been created via the Ising Hamiltonian. Every simulation
has been carried out either with a real electron gas, i.e. with Coulombic forces acting
between the particles, or with an idealised electron gas, where no interactions between
the charged particles were allowed. The simulations on the idealised morphologies lead
to diverging results. Idealised morphology a showed that the introduction of Coulomb
interaction leads to a decrease in mobility as a function of the particle density, while in
the absence of Coulombic forces, the electron mobility remained constant. In contrast,
morphology b showed that the electron mobility rises with increasing particle density, but
only in the absense of Coulomb interaction. If Coulomb interactions were allowed between
the particles, the mobility decreased slightly. It has turned out that for the simulation of
the idealised electron gas, the starting position of the extracted electron shifted towards
the anode with increasing particle density, leading to a shorter distance and time until
the extraction happens. For the real electron gas, i.e. the simulation with Coulombic
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interactions, a minority of the extracted charge carriers was generated at the bottom of
the device. Therefore, the electron first had to avoid areas of high Coulombic density
and hence, the time until the extraction at the anode happens was highly enhanced. For
the idealised morphology c, electron moblities for the idealised and real electron gas were
nearly identical, which is due to the unique structure of distinctive donor and acceptor
columns and hence, leading to a nearly ideal behaviour of the real electron gas.

For the randomly generated BHJ nanomorphologies, two distinct cases were investi-
gated. As a first, a maximally phase aggregated and a maximally phase separated struc-
ture was studied. The phase aggregated structure looks similar to the ideal morphology b
and hence, the trend of the mobilities with and without Coulombic interactions are similar
to the mobilities of idealised morphology b. Furthermore, single particle simulations have
been carried out as well to study the mobility as a function of the external electric field and
the temperature. Here, one could see that for low temperatures, a Poole-Frenkel behaviour
of the electron mobility could be detected, which has also been reported experimentally
for several photovoltaic devices. Additionally, the exciton dissociation efficiency as a func-
tion of the temperature and the energetic disorder has been investigated. Here, one could
see that the exciton dissociation efficiency increases with increasing temperature and with
decreasing energetic disorder, leading to the conclusion that devices with less structural
defects are beneficial.

The results from the simulation of the phase separated structure are somewhat differ-
ent. Here, one can see that the mobilities for the simulation of the real and ideal electron
gas are similar, indicating that the real electron gas behaves nearly ideal. This is due
to the unique structural organisation, where individual donor and acceptor domains are
present. Interestingly, the single particle simulations of the electron mobility do not show
a Poole-Frenkel type behaviour, even for low temperatures. Also the mobility in general is
much lower due to the unique structure of the BHJ nanodevice. The exciton dissociation
efficiency has also been investigated as a function of the temperature and the energetic
disorder, showing nearly no dependence of these parameters. This can be explained by
the high interfacial area of the material, leading to a very high dissociation efficiency in
general without much loss processes.
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In addition to the results on idealised and randomly generated morphologies, simula-
tions for a coarse grained structure of a covalently bonded donor-acceptor system have
been presented. This system is the second-generation variant of the donor-acceptor sys-
tems developoed by the Strasbourg group, see also the discussion of section 8.5. The coarse
grained structure has been obtained from crystallographic X-ray measurements and molec-
ular modeling techniques. The performed Kinetic Monte Carlo simulations were used to
identify the impact of the charge carrier density on the resulting electron mobilities. In
order to obtain highly accurate transfer rates, the Marcus-Levich-Jortner formalism has
been used, with parameters obtained from quantum chemical calculations. The subse-
quently obtained results show a steady increase of the charge carrier mobility with the
particle density, even for simulations with higher energetic disorder. This behaviour can
be explained by the unique structure of the coarse grained system along with its transfer
integrals. Ultimately, the high transfer integrals lead to a one dimensional transfer path-
way throughout the entire coarse grained structure, due to the 50 times higher transfer
integrals along the π stacking direction as compared to any other direction. Simulations
with a higher energetic disorder show the same behaviour for high values of the transfer
integrals. The obtained charge carrier mobilities for smaller transfer integrals and high
particle densities show a steady charge carrier mobility.

To conclude, it can be said that the Kinetic Monte Carlo simulations presented in this
chapter provide an interesting insight into the macroscopic observables and the mesoscopic
length and time scales of BHJ nanodevices. While these results might be interesting in
terms of the time scale they cover, the quantum regime of these processes is not captured
and can have a significant influence on the dynamics. For the simulations for the idealised
and randomly generated morphologies, the presented simulations have been carried out for
a two dimensional structure. Here, real devices are usually three dimensional, implying
that the results might be altered by the additional spatial dimensionality in future studies.
The results from the coarse grained structure lack structural disorder, which may lead to
an overestimation of charge carrier mobilities. Further, the simultaneous treatment of elec-
tron and hole dynamics are also missing, which may also influence the particle mobilities.
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Live [...] That Is All I Can Tell You

Naomi Hunter

The work presented in this thesis opens new avenues to the theoretical understanding
of the fundamental processes in functional organic nanomaterials. The description of these
processes on a microscopic scale, i.e., on length scales up to tens of Angstroms and time
scales of femtoseconds to picoseconds, can be achieved at a full quantum mechanical level
of description. To this end, we employ electron-hole lattice models parametrized from
first principles – i.e., using a detailed electronic structure characterization of the relevant
fragments – together with high-dimensional wavepacket propagation methods, notably the
Multi-Layer Multiconfiguration Time-Dependent Hartree (ML-MCTDH) approach. This
level of analysis is able to capture coherent short-time transients while taking into ac-
count the delocalization of excitonic and carrier species. Since the relevant elementary
processes are often ultrafast, this approach is a unique tool to understand the elementary
steps of exciton dissociation and carrier transport. However, the generation of charge car-
riers represents a typical multiscale problem, and processes on longer time scales and in
macromolecular assemblies equally play a crucial role in the determination of the efficiency
of organic solar cell devices. Therefore, simulations on the mesoscopic scale, relating to
length scales of nanometers and time scales from picoseconds to microseconds, were also
performed, using statistical methods of Kinetic Monte Carlo (KMC) type. Eventually,
these two ends of the spectrum should be combined in a multiscale modeling approach.

The first project presented in this thesis was based on a collaboration with the groups of
Dr. S. Méry and Prof. S. Haacke from Strasbourg University. Experimental investigations
of a novel perylene diimide based block-co-oligomer donor-acceptor (DA) combination via
time resolved UV-vis spectroscopy revealed major differences in the charge transfer dynam-
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ics, depending on whether the DA system in solution or in a liquid crystalline phase was
studied. In order to interpret these results, an electron-hole type model Hamiltonian was
employed, in conjunction with high-level ADC(2) calculations and a quasi-diabatization
scheme, and quantum dynamical calculations were carried out for up to 156 states and 48
modes. This analysis shows that an intermolecular charge transfer channel opens in the
liquid crystalline phase, explaining the pronounced difference to DA system in solution.
This charge transfer pathway is due to a unique DA stacking resulting from a strongly
tilted alignment in the liquid crystalline phase. Moreover, our studies show that despite
an initial, ultrafast charge separation, long-range carrier generation is inefficient due to
small transfer integrals for electron (hole) transfer along with a high Coulomb barrier. In
agreement with this analysis, the experiment shows a high recombination rate.

The second project was based on recent experimental investigations of neat regioregular
P3HT, where long lived periodic oscillations were detected and attributed to the formation
of polaron pairs. To understand the electronic or vibrational origin of these oscillations, we
carried out simulations for three and five stacked tetrathiophene (OT-4) units, including
a large number of normal modes exhibiting non-zero vibronic couplings. For the stacked
trimer aggregate, calculations for seven states and 120 modes were performed, showing
that charge transfer exciton formation sets in within tens of femtoseconds, due to strong
electronic couplings. In line with previous studies, a significant mixture of excitonic and
charge transfer states was indeed observed in our electronic structure calculations, at the
ADC(2) level. Oscillatory signals in the experimentally observed range are found – around
1600 cm−1 – which can be attributed to a combination of high-frequency CC stretch type
modes and excitonic couplings in the same energy range.

Based on the results of the second project, we investigated whether the formation of
charge transfer excitons in neat regioregular poly-3-hexyl-thiophene (P3HT), again mod-
eled by stacked OT-4 species, modifies the carrier generation in a typical organic functional
material based on P3HT as electron donating and fullerene (PCBM) as electron accepting
materials. To this end, we augmented a parametrized Hamiltonian that was previously
developed in the group, such as to include the formation of P3HT charge transfer excitons
and their coupling to the exciton dissociation step at the P3HT/PCBM interface. The
simulations comprised 13 OT-4 fragments and a single fullerene “super-site”. Several sets
of simulations were carried out – for 27, 50 or 182 electronic states – depending on whether
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the P3HT charge transfer exciton manifold was partially or fully included. It turns out
that the presence of P3HT charge transfer excitons leads to a significant reduction of trap-
ping in the interfacial P3HT/PCBM charge transfer state. At the same time, though, one
does not observe an increase in free carrier formation. This can be explained by the fact
that the additional charge separated states in the donor domain also act as local traps,
impeding more efficient long-range charge separation.

The last project of this thesis deals with the statistical description and the dynamics
on longer time scales, i.e. on a mesoscopic scale. Since both short-time and long-time
dynamics are important in the overall understanding of functional nanomaterials, a KMC
studies of such materials have been carried out. These studies prepare the ground for an
in-depth analysis of a second-generation donor-acceptor system devised by the Strasbourg
group, whose charge separation dynamics occurs on a time scale of tens to hundreds of
picoseconds. To this end, a Fortran90 code employing the First Reaction Method algorithm
to solve the master equation was developed. Additionally, as non-standard feature, exciton
delocalization effects were incorporated into the KMC code. Several representative mor-
phologies were tested, either corresponding to idealized structures like bilayer architectures
or else to structures generated from energy minimisation of the Ising Hamiltonian, which
yields either maximally phase aggregated or phase separated morphologies. The idealised
morphologies and the Ising model based phase separated morphologies show that it is pos-
sible to obtain electronic dynamics which nearly resemble the behaviour of an idealised
electron gas for low charge carrier densities. From these simulations one can therefore
deduce design principles which specifically relate to carrier mobility. The statistical de-
scription has also been applied to a coarse grained structure of the second-generation DA
system developed by the Strasbourg group, as mentioned above. From KMC simulations
for different charge carrier densities, one can infer that electron mobility increases steadily
with increasing particle density. This behaviour can be explained by the unique structure
of the system, in the absence of any structural disorder. Due to the large transfer inte-
grals along the π stacking direction of the acceptor molecules, a one-dimensional electron
transport pathway throughout the entire domain is created. With an increasing number of
charges present in the system, the charge closest to the detection electrode will be pushed
even more towards this direction. In future work, this mechanism will be verified within a
more complete description.
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To conclude, this thesis has addressed both ultrashort time scales and long time scales,
using efficient and accurate multiconfigurational quantum dynamics methods as well as
Kinetic Monte Carlo techniques. From both viewpoints, design criteria and insight into the
charge generation and free carrier transport can be gained. To correctly include statistical
effects on all time and length scales, a quantum-classical multi-scale approach is necessary
which is not yet available to date. The present study prepares the ground in this direction,
for representative systems that were studied in close collaboration with experiment.
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Appendix





ML-MCTDH Partitioning Scheme for chapter 8

As it has been mentioned in chapter 8, the ML-MCTDH method as implemented in the
Heidelberg MCTDH package was used to study the ultrafast exciton dissociation in a
liquid crystalline donor-acceptor system. The model Hamiltonian featured a total of 156
electronic states and 48 degrees of freedom. As a partitioning of the wave function, a
seven layer approach has been chosen, with a varying number of single particle functions
(SPF) for each node. With respect to the primitve grid, an harmonic oscillator discrete
variable representation (DVR) for all vibrational modes has been used. In particular, the
high frequency bond length alternation modes have been described by 32 grid points, the
intermolecular mode by 64 grid points and the low frequency torsional degree of freedom
by 128 grid points. The following table shows typical numbers of the SPFs used for the
dynamical evolution of the system.

Table 13.1: Typical partitioning scheme for the ML-MCTDH calculations employing 156
electronic states and 48 degrees of freedom.

Layer 1 2 3 4 5 6
SPF [24,156] [21,7] [12,12,19] [6,8] [4,4,4] [4,2,3]

Graphically, a partitioning of the wave function can be represented as follows.

  

Figure 13.1: Graphical representation of the ML-MCTDH wave function partitioning of
chapter 8. The sketch is shown for a four layer realization of the ML-MCTDH partitioning.

ML-MCTDH Partitioning Scheme for chapter 9

The wave function partitioning for the ML-MCTDH calculations performed in chapter 9
are different to the one presented for chapter 8. While for the wave function partitioning
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in the previous chapter a site specific partitioning has been used, i.e. modes located
on the same site have been assigned to the same layer, this was not the case for the
present simulation set up. As it has been outlined in chapter 9, a normal mode ansatz
and effective mode decomposition has been used to describe the ultrafast dynamics upon
photoexcitation. Therefore, the wave function has been partitioned as to obtain layers
with at most three degrees of freedom. The DVR has been represented by an harmonic
oscillator representation employing 32 grid points for all phonon modes, irrespective of the
normal mode or effective mode ansatz. This partitioning led to a seven layer representation
for the normal mode ansatz of the wave function, for which a representative number of
SPFs looks as follows.

Table 13.2: Typical partitioning scheme for the ML-MCTDH calculations employing
seven electronic states and 117 degrees of freedom of the normal mode ansatz.

Layer 1 2 3 4 5 6
SPF [27,15] [23,23,23] [12,9,9] [7,7,7] [7,7] [5,5,5]

For the effective mode decomposition, the partitionig scheme depends strongly on the
number of effective mode layers used for the dynamics. The number of phonon modes is
calculated by 7xN, with N being the number of effective mode layers.

Table 13.3: Typical partitioning scheme for the ML-MCTDH calculations employing
seven electronic states and 21 degrees of freedom of the effective mode ansatz with three
layers.

Layer 1 2 3 4
SPF [12,30] [19,19,12] [9,15,15] [5,15,9]

Table 13.4: Typical partitioning scheme for the ML-MCTDH calculations employing
seven electronic states and 28 degrees of freedom of the effective mode ansatz with four
layers.

Layer 1 2 3 4 5
SPF [18,30] [19,19] [27,19] [9,25,25] [7,21,21]

176



Table 13.5: Typical partitioning scheme for the ML-MCTDH calculations employing
seven electronic states and 35 degrees of freedom of the effective mode ansatz with five
layers.

Layer 1 2 3 4 5
SPF [18,30] [16,10] [25,25,13] [15,15,15] [12,12]

One can see that between the different effective mode simulation set ups with an in-
creasing number of phonon modes, the number of SPFs per node is very different and a
generalization of an efficient partitioning scheme can not be given.

ML-MCTDH Partitioning Scheme for chapter 10

The wave function partitioning of the dynamics presented in chapter 10 feature the most
phonon modes and number of electronic states studied in this thesis. While all simulations
employed a total of 112 degrees of freedom, the number of electronic degrees of freedom
varied between 27 and 182. This had also influence on number of SPFs needed for the de-
scription of phonon modes, since different distributions of active modes would be obtained.
In general, a partitioning of the wave function into six layers has been done. The primitive
grid has been represented by an harmonic oscillator DVR employing 32 grid points for all
phonon modes.

Table 13.6: Typical partitioning scheme for the ML-MCTDH calculations employing 27
electronic states and 112 degrees of freedom.

Layer 1 2 3 4 5 6
SPF [39,39,27] [35,35] [29,29] [19,19] [12,12,7] [4,4,7]

Table 13.7: Typical partitioning scheme for the ML-MCTDH calculations employing 50
electronic states and 112 degrees of freedom.

Layer 1 2 3 4 5 6
SPF [45,45,50] [39,35] [31,31] [32,32] [7,12,10] [4,7,7]
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Table 13.8: Typical partitioning scheme for the ML-MCTDH calculations employing 182
electronic states and 112 degrees of freedom.

Layer 1 2 3 4 5 6
SPF [32,32,182] [29,29] [24,24] [15,15] [7,7,7] [4,4,4]

One can see that the simulation employing 182 electronic states uses the least amount
of SPFS to describe the different wave function layers, see table 13.8. The reason is that
due to the huge number of states, only up to 200 femtoseconds have been propagated,
resulting in less SPFs needed to describe the evolution of the system appropriately.
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S. Haacke, Physical Chemistry Chemical Physics 2016, 18.

[165] C. C. Moser, J. M. Keske, K. Warncke, R. S. Farid, P. L. Dutton, Nature 1992,
355.

[166] R. Mauer, M. Kastler, F. Laquai, Advanced Functional Materials 2010, 20.

[167] O. G. Reid, R. D. Pensack, Y. Song, G. D. Scholes, G. Rumbles, Chemistry of
Materials 2014, 26.

[168] A. De Sio, F. Troiani, M. Maiuri, J. Réhault, E. Sommer, J. Lim, S. F. Huelga, M. B.
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