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Abstract. According to a proposal by ’t Hooft, information loss introduced by constraints
in certain classical dissipative systems may lead to quantization. This scheme can be realized
within the Bateman model of two coupled oscillators, one damped and one accelerated. In this
paper we analyze the links of this approach to effective Hamiltonians where the environmental
degrees of freedom do not appear explicitly but their effect leads to the same friction force
appearing in the Bateman model. In particular, it is shown that by imposing constraints,
the Bateman Hamiltonian can be transformed into an effective one expressed in expanding
coordinates. This one can be transformed via a canonical transformation into Caldirola and
Kanai’s effective Hamiltonian that can be linked to the conventional system-plus-reservoir
approach, for example, in a form used by Caldeira and Leggett.

1. Introduction

In the attempt to find a deterministic description of quantum systems, ’t Hooft[1]-[4] proposed
the idea that deterministic degrees of freedom could operate at very high energy scales (e.g.
Planck scale) and ordinary quantum mechanics (QM) would appear as a result of an information
loss process. This would imply the existence of “beables”, i.e. ontological (commuting) operators
which, after information loss, would give rise to the usual quantum (non-commuting) observables.

It has been shown in Ref.[5] that in a model by Bateman [6] describing a damped harmonic
oscillator, where the environment absorbing the energy is simply represented by one additional
environmental degree of freedom, the corresponding Hamiltonian can be brought into a form that
belongs to the same class as the one considered by ’t Hooft. Then, by means of an appropriate
constraint[5], the Hamiltonian for the quantum harmonic oscillator is obtained.

In this paper, we analyze the connections of Bateman’s model with other models for the
description of dissipative systems, thus providing the basis for alternative realizations of ’t
Hooft’s scheme.

In Section 2 a short review of ’t Hooft’s method is outlined. In Section 3 the dissipative
Bateman model is presented and its transformation into a form fitting ’t Hooft’s requirements
is given. In Section 4, by removing the environmental degree of freedom via some constraint
(that is not uniquely defined), the Bateman model is transformed into an effective model for the
dissipative system alone.

http://creativecommons.org/licenses/by/3.0
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In this effective model, position and momentum variables are not identical to the physical
position and momentum (and not even related to them via a canonical transformation); but
the model provides the correct equations of motion for the physical variables (in this case, a
damped harmonic oscillator with linear velocity dependent friction force) and the Hamiltonian
function is a constant of motion.

As the canonical position variable of this effective model is different from the physical position
variable (it is expanding exponentially with respect to the physical position variable), the
transformation from the beables to the observables, at least in the case of the position variable,
is not yet completed.

However, this can be achieved by an addition canonical transformation of the expanding
system into one proposed by Caldirola [7] and Kanai [8] where the position variable is identical
to the physical one. The canonical effective model of Caldirola and Kanai can also be derived
from the conventional system-plus-reservoir approach (see, e.g., Caldeira and Leggett [9, 10, 11]).
This has been shown by Yu and Sun [12, 13]. In this sense, the transition from the beables, at
least in the case of the observable position variable, can be achieved.

2. ’t Hooft’s model

In his model ’t Hooft considered a class of systems which evolve deterministically even after
quantization. This happens for a dynamics of the form [2, 5]

q̇i = fi(q) = {qi,HtH} (1)

where { , } denotes the Poisson brackets and HtH the Hamiltonian of the system, given by

HtH =
∑

i

pifi(q) (2)

giving indeed q̇i =
∂
∂pi

HtH = fi(q).
Once quantized, for such a system there exists a complete set of operators, the qi, commuting

at all times, which are indeed the beables. However the above Hamiltonian is not bounded
from below. To fix this a constraint must be imposed. The lower bound is emerging during a
coarse-graining of the beables to arrive at the observable degrees of freedom.

For this purpose, one can split the Hamiltonian according to

HtH = H1 −H2 (3)

with

H1 =
1

4̺
(̺+HtH)

2 and H2 =
1

4̺
(̺−HtH)

2 (4)

and ̺ = ̺(qi)= positive, H1 and H2: positively (semi) definite, with {H1,H2} = {̺,HtH} = 0.
The dynamics of the deterministic system can, mathematically, be formulated in terms of

unitary evolution operators acting on a Hilbert space of states |Ψ〉 and be expressed formally

by a Schrödinger-like equation.
A lower bound for the (operatorial) Hamiltonian can be obtained by the constraint condition

onto the Hilbert space
H2|Ψ〉 = 0 , (5)

projecting out the states responsible for the negative part of the spectrum.
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3. Bateman’s model

It has been shown in Ref.[5] that a different model [6] connecting an apparently (formally)
conservative system with a (physically) dissipative system involves a Hamiltonian that is, at
first sight, different from ’t Hooft’s but can be shown to belong to the same class representing
an explicit realization of ’t Hooft’s mechanism.

For this purpose, the two equations of motion

ẍ + γẋ + ω2x = 0 (damped harmonic oscillator) (6)

ÿ − γẏ + ω2y = 0 (accelerated harmonic oscillator) (7)

are considered that can be derived from the Hamiltonian

HB =
1

m
pxpy +

γ

2
(ypy − xpx) + m

(

ω2 − γ2

4

)

xy (8)

with

px = m

(

ẏ − γ

2
y

)

, py = m

(

ẋ +
γ

2
x

)

(9)

that is a constant of motion and was proposed by Bateman [6].
The system’s degree of freedom x dissipates energy due to the friction force −mγẋ whereas,

in the equation of motion for the environmental degree of motion y, the accelerating force +mγẋ

replaces the friction force. Therefore, it seems reasonable that the energy dissipated by the x-
system is gained by the y-system and, therefore, HB is a constant of motion. However, if y would
really be a physical position variable, it would be accelerated infinitely by the force +mγẋ and
for t → ∞ the energy would diverge whereas the one of the x-system would vanish.

Therefore, the variable y cannot be considered a position variable like x because HB would
not be a constant of motion in this case. So, the interpretation of y as a second “position
variable” (and the corresponding momentum), must be considered carefully in order to avoid
unphysical results (for further details, see also [14, 15]).

To show that HB belongs to the same class as HtH, new variables are introduced [5]

x1 =
1√
2
(x+ y) , x2 =

1√
2
(x− y) (10)

p1 = m

(

ẋ1 +
γ

2
x2

)

, p2 = −m

(

ẋ2 +
γ

2
x1

)

(11)

and further
x1 = r coshu, x2 = r sinhu → r2 = x21 − x22 = 2xy . (12)

Consequently, the Bateman Hamiltonian HB can be rewritten in ’t Hooft’s form as

HB =
2
∑

i=1

pifi(q) (13)

with

f1(q) = 2Ω , f2(q) = −2Γ where Ω =

√

ω2 − γ2

4
, Γ =

γ

2
and p1 = C , p2 = J2 (14)

where

C =
1

4Ωm

[(

p21 − p22

)

+m2Ω2(x21 − x22)
]

(15)

=
1

4Ωm

[(

p2r −
1

r2
p2u

)

+m2Ω2r2
]

= const. of motion ,
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J2 =
m

2

[

(ẋ1x2 − ẋ2x1) + Γr2
]

=
1

2
pu . (16)

Following the scheme outlined in Section 2, HB can be split into two positive Hamiltonians
according to

HB = HI −HII (17)

with

HI =
1

2ΩC (2ΩC − ΓJ2)
2 , HII =

Γ2

2ΩC J 2
2 . (18)

Implementing the constraint
J2|Ψ〉 = 0 , (19)

thus defining the physical states, the Bateman Hamiltonian leads to

HB|Ψ〉 = HI|Ψ〉 = ΩC|Ψ〉 =
(

1

2m
p2r +

m

2
Ω2r2

)

|Ψ〉 , (20)

i.e., a Hamiltonian of a harmonic oscillator with frequency Ω =
√

ω2 − γ2

4
and the corresponding

equation of motion
r̈ +Ω2r = 0 . (21)

This equation of motion is formally identical to the one of a damped harmonic oscillator
expressed in a coordinate system expanding exponentially as discussed in the next section.

4. Damped harmonic oscillator in an expanding coordinate system

It is possible to formulate the damped harmonic oscillator in a form that looks like an undamped

oscillator, only with a reduced frequency Ω =
√

ω2 − γ2

4
. In this case, the canonical Hamiltonian1

[14, 16]

Ĥexp =
1

2m
P̂ 2 +

m

2
Ω2Q̂2 (22)

is a constant of motion providing the equation of motion

¨̂
Q + Ω2 Q̂ = 0 (23)

for the canonical variables

Q̂ = x e
γ

2
t , P̂ = m

˙̂
Q = m

(

ẋ+
γ

2
x

)

e
γ

2
t . (24)

Expressed in terms of the physical variables x and p = mẋ, the Hamiltonian (22) obtains the
form

Ĥexp =̂
m

2

[

ẋ2 + γẋx + ω2x2
]

eγt = const. , (25)

and the equation of motion for the physical position variable x has the form

ẍ + γẋ + ω2x = 0 (26)

which is identical to the equation of motion for the x-variable of the Bateman system.

1 In the following, a hat denotes a canonical quantity, i.e., a quantity that obeys the rules of the canonical
Hamiltonian formalism. In the dissipative case, these quantities are usually not identical to their physical
counterparts like position and momentum and connected with these via non-canonical transformations (see below).
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It should be noted that the connection between the expanding variables Q̂ and P̂ and the
physical variables x and p is given by a non− canonical transformation.

As Eq.(26) and Eq.(6) are identical and both corresponding Hamiltonians, ĤB as given in

(8) and Ĥexp as given in (25), are constants of motion, the assumption that both Hamiltonians

are identical seems to be legitimate. In other words, due to d
dt
ĤB = d

dt
Ĥexp, up to a constant

factor, it can be assumed that
ĤB =̂ Ĥexp . (27)

To show this connection explicitly, both Hamiltonians must be expressed in terms of the same
physical variables x and ẋ. The Bateman Hamiltonian can be written as

ĤB =

[

1

m
pxpy + m

(

ω2 − γ2

4

)

xy

]

+

{

γ

2
(ypy − xp̂x)

}

= [ĤΩ] + {D̂} . (28)

Comparison with Ĥexp, using py = m
(

ẋ + γ
2
x
)

yields

Ĥexp =̂
m

2
eγt
[

ẋ2 + γẋx + ω2x2
]

= ĤB =̂ pxẋ + m
γ

2
yẋ + mω2xy . (29)

The lhs of (29) depends only on x and ẋ whereas, on the rhs, y and px still appear. Therefore,
y and px must be expressed in terms of x and ẋ.

For this purpose, the ansatz [15]

px = eγt(a ẋ + b x) and y = eγt(c ẋ + d x) (30)

is applied.
Comparison of ĤB and Ĥexp provides d = 1

2
, but since there are only three equations for four

parameters, there is still one parameter free of choice. Therefore, the remaining three parameters
a, b and c are related via the two equations

a =
m

2
(1 − γc) , b = m

(

γ

4
− ω2 c

)

. (31)

For the particular choice c = 0, leading to a = m
2
and b = mγ

4
, one obtains for px and y

p̂x =
m

2

(

ẋ+
γ

2
x

)

eγt =
1

2
P̂ e

γ

2
t and ŷ =

1

2
x eγt =

1

2
Q̂ e

γ

2
t . (32)

Inserting this into ĤB yields

ĤB =
1

m
px py + m

(

ω2 − γ2

4

)

x y = ĤΩ (33)

D̂ =
γ

2
(y py − x px) = 0 . (34)

Expressing D̂ in terms of x, y, ẋ and ẏ leads to

D̂ =
m

2
γ(ẋy − xẏ) +

m

2
γ2xy , i.e., D̂ = γJ2 . (35)

Therefore, the constraint c = 0 leading to D̂ = 0 is equivalent to the constraint J2 = 0.
Consequently, Ĥexp is equivalent to ĤI of the split Bateman Hamiltonian,

Ĥexp =
1

2m
P̂ 2 +

m

2
Ω2Q̂2 = ĤI =

1

2m
p2r +

m

2
Ω2r2 (36)
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provided the following relations are fulfilled:

r = x e
γ

2
t = Q̂ , pr = m

(

ẋ+
γ

2
x

)

e
γ

2
t = P̂ . (37)

That means the dissipative system can be described within the canonical formalism but the
price is a non−canonical transformation between the physical variables (x, p) and the canonical

ones (Q̂ = r, P̂ = pr).
There is still the problem that the system obtained from the Bateman Hamiltonian

(corresponding to the level of beables) via elimination of environmental information leading
to the expanding canonical system and therefore to something on the level of the observables,
depends on a position variable that is not identical to the physical (observable) position.
However, this can be fixed by an additional canonical transformation on the canonical level,
as will be shown in the next section.

5. Connection between different canonical descriptions of dissipative systems

In an attempt to describe dissipative systems with a linear velocity dependent friction force,
like the one in Eq. (6), Caldirola [7] and Kanai [8] proposed the explicitly time-dependent
Lagrangian

L̂CK =

[

m

2
ẋ2 − V (x)

]

eγt (38)

with the canonical momentum

p̂ =
∂

∂ẋ
L̂CK = mẋ eγt = p eγt (39)

where p = mẋ is the physical momentum and the canonical position variable x̂ is identical to
the physical one, x̂ = x. Due to the relation between the two momenta, the transition between
the physical variables (x, p) and the canonical ones (x̂ = x, p̂ = p eγt is a non − canonical

transformation (the Jacobian determinant is different from 1).
With the canonical momentum (39), the Hamiltonian corresponding to the Lagrangian (38)

can be expressed as

ĤCK =
1

2m
e−γt p̂2 +

m

2
ω2x2eγt . (40)

The Hamiltonian ĤCK is explicitly time-dependent, not a constant of motion and not
equivalent to the energy of the dissipative system but related to it via

ĤCK = ĤCK(t) = E eγt . (41)

Expressing the canonical equations of motion obtained from the Hamiltonian (40) in terms of
the physical position variable x, one obtains again the damped harmonic oscillator with linear
friction, as in Eq. (6).

It can be shown straightforwardly that the dissipative canonical system of Caldirola and
Kanai and the one in expanding coordinates are connected via a canonical transformation (that
does not change the physical properties). In particular, the canonical variables x̂ = x and
p̂ = p eγt of the Caldirola–Kanai system are related to the ones of the expanding system via

Q̂ = x̂ e
γ

2
t , P̂ = p̂ e−

γ

2
t +m

γ

2
x̂ e

γ

2
t . (42)

The explicitly time-dependent generating function F̂2(x̂, P̂ , t) connecting the corresponding
Hamiltonians via

Ĥexp = ĤCK +
∂

∂t
F̂2 (43)
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is given by

F̂2(x̂, P̂ , t) = x̂P̂ e
γ

2
t − m

γ

4
x̂2 e

γ

2
t , (44)

turning the time-dependent Hamiltonian ĤCK into the constant of motion Ĥexp.
Furthermore, it has been shown by Yu and Sun [12, 13] that, starting from the conventional

system-plus-reservoir approach where the dissipative system of interest plus the energy-absorbing
environment together are regarded as a closed (conservative) Hamiltonian system, it is possible
to arrive at the same Hamiltonian (40) as Caldirola and Kanai. For this purpose, they started
with the approach of Caldeira and Leggett [9, 10, 11] where the system of interest is coupled to
a bath of harmonic oscillators via

ĤCL = HS +HR +HSR . (45)

That is, the Hamiltonian ĤCL of Caldeira and Leggett is the sum of the Hamiltonians describing
the system alone (HS), the environment (reservoir) alone (HR) and the interaction between them
(HSR) via

HS =
1

2m
p2 +

m

2
ω2x2 , HR =

N
∑

i=1

(

p2i
2mi

+
m

2
ω2
i q

2
i

)

, HSR = −x
∑

i

ciqi . (46)

After taking the limit of N to infinity, eliminating the environmental degrees of freedom,
assuming an Ohmic spectral density, etc. (for details, see, e.g., [17]), one finally obtains Eq. (6)
as equation of motion for the physical position variable of the system of interest and, as effective
Hamiltonian, one that is identical to that of Caldirola and Kanai,

ĤCL,eff =
1

2m
eγt p2 +

m

2
ω2x2eγt =̂ ĤCK . (47)

Therefore, the connection from Bateman’s canonical level (corresponding to the beables) to

a formal canonical level (as in Ĥexp) can be achieved and on this level further to a formal

canonical description with the usual physical position variable (as in ĤCK). Even further,

via the relation between the Hamiltonian ĤCK and the system-plus-reservoir approach also the
connection to the conventional physical canonical level can be established. All these relations
are depicted in Figure 1.

6. Conclusions

In this work the Bateman model, describing a system in contact with an energy-absorbing
environment and providing an example of ’t Hooft’s model for deterministic QM, has been
considered and its relations with other dissipative quantum models have been studied.

Applying some constraint (not uniquely defined) to the Bateman Hamiltonian, the remaining
environmental degree of freedom can be eliminated and an effective description can be obtained
in terms of one set of canonical position and momentum variables of the dissipative system
alone (without any environmental degree of freedom). Such a canonical description involves a
canonical position variable that is related to the physical position variable via an exponentially-
time-dependent factor. This factor can be removed via the canonical transformation (42)-(44),
leading to the approach by Caldirola and Kanai where the position variable is identical to the
physical one, thus completing the transformation from the beables to the observables, at least
for the position variable.

It is also possible to show a connection between the Caldirola–Kanai model and the
conventional system-plus-reservoir approach (where the system with its physical position and
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Figure 1. Relations between different descriptions of dissipative systems on the canonical level.

momentum variables is coupled to a large set of environmental degrees of freedom), according
to Caldeira and Leggett. However, this model has some shortcomings as, for the corresponding
density operator, it leads to a dissipative Hamiltonian that does not possess the Kossakowski–
Lindblad form [17] and can therefore have negative values for the density matrix. A connection
between ’t Hooft’s idea and a master equation with a dissipative Kossakowski–Lindblad term is
mentioned in [18].

The problem to find the transition from the beables to a system that is entirely expressed
in terms of physical position and momentum variables can be resolved by a non − canonical

transformation between the variables of the Caldirola–Kanai (or expanding-coordinate) model,
corresponding to a non-unitary transformation in the quantum mechanical case. This will be
discussed elsewhere.
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