
Deep Learning and Isolation Based
Security for Intrusion Detection and

Prevention in Grid Computing

Dissertation

for attaining the doctoral degree

of Natural Sciences

submitted to the Faculty of Computer Science and

Mathematics

of the Johann Wolfgang Goethe University

in Frankfurt am Main, Germany

by

Andrés Gómez Ramírez

born in Marinilla, Colombia

Frankfurt am Main 2018

(D 30)

accepted by the Faculty of Computer Science and Mathematics of the

Johann Wolfgang Goethe University as a dissertation.

Dean: Prof. Dr. Andreas Bernig

Expert assessors: Prof. Dr. Udo Kebschull

Prof. Dott. Ing. Roberto V. Zicari

Date of disputation:

1

Abstract

The use of distributed computational resources for the solution of scientific prob-
lems, which require highly intensive data processing is a fundamental mechanism
for modern scientific collaborations. The Worldwide Large Hadron Collider Com-
puting Grid (WLCG) is one of the most important examples of a distributed
infrastructure for scientific projects and is one of the pioneering examples of grid
computing. The WLCG is the global grid that analyzes data from the Large Hadron
Collider (LHC) at the European Organization for Nuclear Research (CERN), with
170 sites in 40 countries and more than 600,000 processing cores. The grid service
providers grant users access to resources that they can utilize on demand for the
execution of custom software applications used for the analysis of data. The code
that the users can execute is completely flexible, and commonly there are no signif-
icant restrictions. This flexibility and the availability of immense computing power
increases the security challenges of these environments. Attackers are a concern
for grid administrators. These attackers may request the execution of software
with a malicious code that gives them the possibility of compromising the under-
lying institutions’ infrastructure. Grid systems need security countermeasures
to keep the user code running, without allowing access to critical components
but whilst still retaining flexibility. The administrators of grid systems also need
to be continuously monitoring the activities that the applications are carrying
out. An analysis of these activities is necessary to detect possible security issues,
to identify ongoing incidents and to perform autonomous responses. The size
and complexity of grid systems make manual security monitoring and response
expensive and complicated for human analysts. Legacy intrusion detection and
prevention systems (IDPS) such as Snort and OSSEC are traditionally used for
security incident monitoring in the grid, cloud, clusters and standalone systems.
However, IDPS are limited due to the use of hardcoded fixed rules that need to be
updated continuously to cope with different threats.

This thesis introduces an architecture for improving security in grid computing.
The architecture integrates the use of security by isolation, behavior monitoring
and deep learning (DL) for the classification of real-time traces of the running user
payloads also known as grid jobs. The first component of the proposal, the Linux
containers (LCs), are used to provide isolation between grid jobs and to gather
specific traceable information about the behavior of individual jobs. LCs offer a
safe environment for the execution of arbitrary user scripts or binaries, protect-
ing the sensitive components of the grid member organizations. The containers
consist of a software sandboxing technique and form a lightweight alternative to
other technologies such as virtual machines (VMs) that usually implement a full
machine-level emulation and can, therefore, significantly affect the performance.
This performance loss is commonly unacceptable in high-throughput computing
scenarios. Containers enable the collection of monitoring information from the
processes running inside them. The data collected via the LCs monitoring is
employed to feed a DL-based IDPS.

DL methods can acquire knowledge from experience, which eliminates the
need for operators to formally specify all the knowledge that a system requires.

2

These methods can improve IDPS by building models that are utilized to detect
security incidents automatically, having the ability to generalize to new classes of
issues. DL can produce lower false positive rates for intrusion detection, but also
provides a measure of false negatives, which can be improved with new training
data. Convolutional neural networks (CNNs) are utilized for the distinction
between regular and malicious job classes. A set of samples is collected from
regular production grid jobs from the grid infrastructure of “A Large Ion Collider
Experiment” (ALICE) and malicious Linux binaries from a malware research
website. The features extracted from these samples are utilized for the training and
validation of the machine learning (ML) models. The utilization of a generative
approach to enhance the required training data is also proposed. Recurrent neural
networks (RNN) are used as generative models for the simulation of training data
that complements and improves the real collected dataset. This data augmentation
strategy is useful to supplement the lack of training data in ML processes.

The design characteristics, implementation details and testing environment
of a proof-of-concept realization of the researched architecture called Arhuaco
are described. Arhuaco combines the isolation and behavior monitoring ideas
with deep learning, using a hybrid supervised classification approach with natural
language processing for the feature selection and the preprocessing of text-like
input data from the traces of the job’s system calls and network activity. The proof-
of-concept was evaluated in the context of the grid of the ALICE collaboration,
a member of the WLCG. Via empirical evaluations, it is described how recently
proposed DL methods could outperform traditional ML methods in the task of
intrusion detection in grid computing. CNNs applied to the classification of
the grid job behavior are compared to support vector machines (SVMs). SVMs
are one of the most popular algorithms in IDPS research. A long short-term
memory (LSTM) has been tested to validate the idea that RNNs are helpful to
improve and increase the training dataset coverage for intrusion detection in grid
computing. An average runtime increase of 6.11% was observed when testing a set
of regular ALICE grid jobs that was run with Arhuaco using LC isolation, behavior
monitoring and classification with DL. An accuracy of 99.52% was obtained when
validating CNNs in the classification of previously unseen system call traces as
usual or malicious. For the validation of network traces, an accuracy value of
98.75% was achieved. The SVM was trained with simulated data to evaluate the
LSTM method. Once the model was built, the SVM was applied to the classification
of novel unseen network data traces from the original dataset. There was a 0.72%
improvement in the accuracy.

The results demonstrate that LCs utilized for isolation produce a moderate
performance impact that can be reduced with several configuration options. CNNs
applied to the classification of behavior trace data could distinguish between
normal and malicious jobs with close to 100% accuracy. The generative method
via LSTM improved and increased a training dataset for intrusion detection in
grid computing. The proposed approaches solve the problems of analyzing the
activity of grid jobs, identifying malicious activity and keeping traceability of the
user-generated events. Therefore, better and stronger evidence to detect attacks
and to find their source can be collected.

3

Zusammenfassung / German Summary

Das Grid Computing beschreibt ein Paradigma, welches vor allem im wissenschaft-
lichen Umfeld leistungsstarke Werkzeuge hervorgebracht hat, so zum Beispiel
in der Hochenergiephysik, Genomforschung oder im Pharmaziebereich. Viele
tausend Institute mit Computereinrichtungen weltweit schließen sich hierfür
in Kollaborationen ambitionierter Wissenschaftsprojekte zusammen, die alle ei-
ne gemeinsame Anforderung verbindet: Sie erfordern massive Rechenleistung.
Teilnehmer des Grid Computings unterstützen sich dabei gegenseitig durch die Be-
reitstellung verteilter Rechenkapazitäten und der dazugehörigen Infrastruktur an
interessierte Forscher. Hierbei wird die Erlaubnis erteilt, Programmcode auf den
Computern der teilnehmenden Institute auszuführen. Die sich daraus ergebenden
Sicherheitsrisiken stellen eine große Herausforderung dar. So wäre es Angreifern
zum Beispiel möglich, durch die missbräuchliche Ausführung von Schadcode die
zugrundeliegende wissenschaftliche Infrastruktur eines Standortes zu kompro-
mittieren. Die dabei erbeuteten Ressourcen können wiederum dazu verwendet
werden, Schadcode zu verbreiten oder Angriffe gegen andere Organisationen
zu führen. Grid Systeme erfordern daher Sicherheitsvorkehrungen um laufende
Anwendungen voneinander abzuschirmen und den Zugriff auf kritische Kompo-
nenten einzuschränken. Die Administratoren solcher Systeme benötigen zudem
eine Möglichkeit zur Beobachtung der Aktivitäten aller laufenden Anwendungen.
Die Analyse dieses Verhaltens ist notwendig, um mögliche Sicherheitslücken zu
identifizieren, laufende Vorfälle automatisch zu erkennen und Reaktionen darauf
anzustoßen. Die Größe und Komplexität von Grid Systemen gestaltet eine manu-
elle Überwachung und Reaktion auf Sicherheitsvorfälle durch Analytiker jedoch
kompliziert und kostspielig.

Abschirmung und Verhaltensüberwachung in Kombination mit „Intrusion
Detection and Prevention Systems“ (IDPS) zählen daher zu den grundlegenden
Anforderungen um die Sicherheit in einem Grid gewährleisten zu können. Stan-
dardmäßig eingesetzte IDPS basieren auf einer Menge fest codierter Regeln, die zur
Identifikation von Ereignissen führen [1]. Sie kommen üblicherweise in Grids für
die Erkennung bekannter Signaturen vergangener Ereignisse zum Einsatz, können
jedoch keine Aussagen über das Auftreten neuer Bedrohungen treffen. Angreifer
können jedoch bekannte Methoden modifizieren, Binärcode von Schadsoftware
umschreiben oder eigene Schadprogramme entwickeln um die Erkennungsre-
geln zu umgehen. Fortgeschrittene, durch künstliche Intelligenz (KI) unterstützte,
autonom agierende Methoden bieten die Möglichkeit, die Fähigkeiten von IDPS
zu verbessern, um auch auf neue Bedrohungen im Grid reagieren zu können.
Ihre Verwendung in Grid Umgebungen ist bedingt durch deren dynamische Na-
tur, Größe, Komplexität und durch deren Möglichkeiten zur Übermittlung und
Ausführung von beliebigem Programmcode höchst relevant. Das dahingehend
entwickelte Konzept, genannt Arhuaco, wurde als Machbarkeitsstudie realisiert.
Seine Designmerkmale, Implementierungsdetails sowie eine Testumgebung wer-
den im Folgenden vorgestellt. Arhuaco kombiniert dabei die Abgrenzungs- und
Überwachungsgedanken mit „Deep Learning“ (DL). Hierfür nutzt es einen hy-
briden, überwachten Klassifizierungsansatz mit natürlicher Sprachverarbeitung

4

für die Merkmalsauswahl und die Vorverarbeitung von text-ähnlichen Einga-
bedaten aus der zu einem Job gehörigen Verhaltensüberwachung einschließlich
Systemaufrufen und Netzwerkaktivitäten.

Linux Container zur sicheren Abschirmung

Die von Nutzern in der Grid Umgebung ausgeführten Anwendungen sollten in-
nerhalb eines sicheren Sandkasten-Modus laufen, in dem sowohl lokale Grid Res-
sourcen wie auch sensitive Netzwerkbereiche ausreichend geschützt sind. Hierfür
wurden in der Vergangenheit vielfach „Virtuelle Maschinen“ (VM) vorgeschlagen.
VM beeinflussen jedoch die System-Performance in einer Weise, die in vielen Fäl-
len den Einsatz im Bereich des „High Performance Computing“ (HPC) verbietet.
„Linux Container“ (LC) haben sich daraufhin als die bestmögliche Alternative zur
sicheren Ausführung von Programmcode in Grid Systemen herausgebildet. Durch
ihre hervorragende Balance zwischen Sicherheit und Performance [2] wurden
sie auch in dieser Arbeit für die Realisierung von Sicherheit durch Abschirmung
ausgewählt. Darüber hinaus stellen LC eine Abschirmungstechnologie dar, wel-
che sich in geeigneter Weise auch auf Linux-basiertes Grid Computing in der
Hochenergiephysik (HEP) anpassen lässt.

Neben der Programmausführung im Sandkasten-Modus ermöglichen LC auch
eine Netzwerk-Isolation. Hierfür kann ein verschlüsseltes, virtuelles Netzwerk
innerhalb eines anderen physikalischen oder virtuellen Netzwerkes generiert
werden, um die darin laufenden Prozesse vom Zugriff auf sensitive Bereiche abzu-
halten. Diese Funktionalität wird im Grid Computing benötigt, da einige Standorte
ihre Ressourcen mit anderen Projekten oder mit experimenteller Infrastruktur tei-
len. Abbildung 1 zeigt schematisch die Eigenschaften bei Sicherheitsabschirmung.
Im linken Teil laufen Grid Jobs ohne Abschirmung, was es ihnen ermöglicht, an-
dere Jobs oder das zugrundeliegende System und Netzwerk zu beeinflussen. Der
rechte Teil zeigt Grid Jobs, die durch LC voneinander abgegrenzt wurden und
bei denen jeder in einer reduzierten Version des Gesamtsystems läuft und damit
keinen Zugriff auf andere Jobs oder sensitive Ressourcen der Verarbeitungsknoten
hat. Die Kommunikation verläuft über ein virtuelles Netzwerk, ausgegrenzt von
anderen beschränkten Netzwerkbereichen.

Konventionelle Grid Systeme nutzen „Batch Engines“ wie zum Beispiel Con-
dor [3] um Jobs innerhalb eines Computing Clusters zu planen. Die Verwendung
von Containern anstelle standardmäßiger Batch Jobs erfordert jedoch moderne
Orchestrierungs-Werkzeuge, die eine Container Ausführung auch über ein verteil-
tes Cluster hinweg planen. „Docker Swarm“ ist die für diese Arbeit übernommene
Engine zum Betrieb verteilter Container.

Abschirmung genügt jedoch noch nicht um die Sicherheit eines Grids zu schüt-
zen. Ein Job könnte weiterhin Angriffe gegen die Infrastruktur des Institutes oder
gegen Dritte führen. Jobs könnten die Computerressourcen auch für unerlaubte
Aktivitäten wie zum Beispiel die Verbreitung von Schadsoftware, die Teilnahme
an sogenannten „Bot“ Netzwerken oder das Schürfen von Krypto-Währung miss-
brauchen. Eine Lösung für dieses Problem stellt die Verhaltensbeobachtung aller
in einer Grid Infrastruktur laufenden Grid Jobs dar. Im Kontext dieser Arbeit war

5

Bob's grid
job

Alice's grid
job

Pilot
job Bob's grid

job
Alice's grid

job

Pilot
job

Pilot
job

Container Container

Worker node

Eve's grid
job

Pilot
job

Container

Eve's grid
job

Worker node

Virtual network

Abbildung 1: In konventionellen, unsicheren Grid Umgebungen (links) kön-
nen Grid Jobs von Eve auf die Jobs von Bob und Alice zugreifen, um sie für
Infrastruktur-Angriffe zu missbrauchen, ohne dabei eine Spur zu hinterlassen.
Bösartige Grid Jobs können die physikalischen Systeme und Netzwerke direkt
kompromittieren. Abschirmung mittels Linux Containern (rechts) wird einge-
führt; dadurch sind Grid Jobs beschränkt auf eine Sandkasten-Umgebung in der
ihr Verhalten nachverfolgt and analysiert werden kann um Einbruchsversuche
automatisch zu erkennen.

daher die angebotene LC-Funktionalität in Bezug auf Überwachungsmöglichkei-
ten nützlich. Hierbei können unter anderem der Ressourcenverbrauch von CPU,
Speicher und Festplatte, der Netzwerkverkehr oder Systemaufrufe eines spezifi-
schen Containers aufgezeichnet werden. Dies impliziert, dass die Gewinnung von
Daten für jeden Job umsetzbar ist. The Quelle eines Sicherheitsvorfalls lässt sich
so mit höherer Genauigkeit ermitteln oder sogar das Sammeln forensischer Daten
zur weiteren Analyse.

Jede Sandkasten-Technik kostet Leistung. Ein wichtiges Ziel ist daher die op-
timale Balance zwischen Leistung und Sicherheit zu finden. Um Aussagen über
Leistungsveränderungen treffen zu können und um den durch LC bedingten
Overhead zu messen wurden daher zwei Messmetriken definiert. Die erste Me-
trik basiert auf dem in [2] beschriebenen Ausführungs-Durchsatz mittels der
Linpack [4] Benchmark Bibliothek. Linpack ist eine Bibliothek, die ein dichtes
System linearer Gleichungen mit einem auf LU-Zerlegung [5] mit Teilpivotisie-
rung basierenden Algorithmus verwendet, um die Verarbeitungsfähigkeiten von
Rechnersystemen mit hoher Leistung zu ermitteln. Der gemessene Durchsatz ist
dabei generell definiert als die maximale Rate bei der ein System Berechnungen
durchführt. Die zweite Metrik berücksichtigt die Laufzeit, die ein typischer Grid
Job des „A Large Ion Collider Experiment„ (ALICE) für seine vollständige Abar-
beitung benötigt. Hierbei wurde die in den ALICE Bibliotheken bereits verfügbare
Benchmark Anwendung PbPbbench [6] gewählt, um den durch Abschirmungs-
und Überwachungsebenen bedingten Laufzeit-Overhead zu bestimmen. Weitere

6

Härtungsmaßnahmen, die Sicherheit durch Abschirmung noch zusätzlich ver-
bessern, ohne dabei maßgeblichen Einfluss auf die Leistung zu haben, wurden
untersucht.

Deep Learning für die Klassifikation von Grid Jobs

IDPS sind üblicherweise Werkzeuge um das Verhalten laufender Grid Jobs zu
analysieren und darin Angriffsmuster zu finden [1]. Verbreitete kommerzielle IDPS
wie zum Beispiel Bro [7], Snort [8] und OSSEC [9] verwenden statische Regeln
und suchen damit nach bekannten Angriffssignaturen um mögliche Angriffe
zu identifizieren. Sie stoßen jedoch an ihre Grenzen sobald unbekannte oder
leicht abweichende Angriffsmethoden Verwendung finden, daher müssen sie
regelmäßig aktualisiert werden [10]. Dies ist für den Einsatz in hoch-dynamischen
Grid Umgebungen jedoch ungeeignet. Jobs und Container in Grid Umgebungen
starten und enden kontinuierlich, daher ist die Verwendung statischer Regeln zur
Erkennung von Vorfällen durch diese Jobs ineffektiv.

Im Anwendungsfeld der „Intrusion Detection“ wurde „Machine Learning“
(ML) zur Modellierung und Auswertung von Protokollen und Netzwerkdaten
mit anschließender automatisierter Klassifikation von Sicherheitsvorfällen allge-
mein empfohlen [11]. ML-Methoden erlauben IDPS Systemen sich an wechselnde
Einsatzszenarien ohne statische Anwendungen anzupassen. Abbildung 2 zeigt,
wie diese Forschungsarbeit die Auswertung von Grid Job Überwachungsdaten
für die „Intrusion Detection“ unter Echtzeitbedingungen anwendet. Dies bedeu-
tet, dass eine Auswertung von Betriebssystemprozessen (Linux) ausgeführt wird.
Diese Arbeit stellt die Verwendung einer Kombination aus Techniken des DL,
„Convolutional Neural Networks“ (CNN) [12] sowie word2vec [13] im „Intrusion
Detection“ Anwendungsfeld des Grid Computings vor.

Systemaufrufe und Netzwerkverbindungsverläufe dienen als Eingabedaten.
Diese Daten sind in einem menschenlesbaren Format kodiert und müssen daher
zunächst mittels „Natural Language Processing“ (NLP) Methoden in ein geeig-
netes Sprachmodell umgewandelt werden. Kürzlich vorgestellte DL Methoden
für NLP repräsentieren gelernte Wortvektor-Darstellungen mittels neuronaler
Sprachmodelle [14]. Dabei werden Wörter unter Verwendung neuronaler Netze
mit verschiedenen Zwischenschichten in einen Vektorraum geringerer Dimen-
sionalität projiziert [15]. Semantisch nahe beieinander liegende Wörter in den
Trainingsdaten sind auch in Vektorräumen mit geringer Dimensionalität mathe-
matisch nahe beieinander liegend. Der word2vec Algorithmus [13] wurde für
Arhuaco gewählt, um die Eingabemerkmale zu generieren. Es handelt sich da-
bei um ein Vorhersagemodell für das Lernen von Worteinschlüssen. Word2vec
Vektoren entwickeln dabei geeignete Eingaben für CNNs, da sie es erlauben, Ein-
gabedaten als Matrizen zu behandeln, ähnlich eines Feldes von Pixeln in einem
Bild.

7

Grid jobs
monitoring

data

word2vec
embedding
vectors

Classification:
• Normal
• Malicious

Input

Hidden

Output

Bob's grid
Job

Alice's grid
Job

Pilot
Job

Pilot
Job

Container Container

Pilot
Job

Container

Eve's grid
Job

Working Node

Virtual network

Abbildung 2: Arhuaco extrahiert Daten aus der Verhaltensüberwachung von
Grid Jobs. Diese Daten werden anschließend vorverarbeitet und mittels eines DL-
Algorithmus klassifiziert. Abschließend werden die Grid Job Spuren als regulär
oder bösartig gekennzeichnet.

Trainingsdatensatz und generatives Verfahren

ML-basierte IDPS benötigen einen Trainingsdatensatz. Es konnte jedoch kein
verfügbarer Datensatz für die Klassifikation von Grid Jobs gefunden werden,
daher wurden eigene Daten gesammelt. Für die Generierung von Standard-Daten
kamen dabei Jobs aus ALICE Produktiv-Grids zum Einsatz, während Schad-
Informationen unter Verwendung von Linux Schadsoftware-Mustern entstanden.
Die Ergebnisse in Abschnitt 6.4.3 zeigen, wie es dem CNN möglich war, gänzlich
neue Datenmuster mit nahezu optimalen Messmetrikwerten korrekt zu klassifi-
zieren. Diese Tatsache bewies, dass der gesammelte Datenbestand, obwohl nicht
gänzlich vollständig, gut genug dafür geeignet ist, eine Trainings-Quelle für das
Problem innerhalb dieses Kontextes darzustellen - „Intrusion Detection“ in Grid
Computing. Diese Daten können neben der Hochenergiephysik auch bei ande-
ren Arten von Grids Anwendung finden. Die bösartigen Netzwerkdaten hatten
den geringsten Stichprobenanteil der Sammlung. Es kam daher eine generative
Modellierungsmethode zu Einsatz, um diese Daten zunächst zu vervollständigen.

8

Um den Trainingsdatensatz der Netzwerkverläufe zu vervollständigen wurde
für Arhuaco ein generatives Verfahren mit Sprachenmodell auf Zeichenebene ge-
wählt. Das Ziel des genutzten Modells ist es, das nachfolgende Zeichen innerhalb
einer gegebenen Sequenz vorherzusagen. Hierfür wurde ein LSTM gewählt, das
die Wahrscheinlichkeitsverteilung über Sequenzen lernt. Mit der daraus resultie-
renden bedingten Verteilung ist es möglich, Daten in einer Weise zu prozessieren,
bei der das jeweils nachfolgend erhaltene Zeichen einer generierten Zeichenkette
wiederum als Eingabedatum an die LSTM übergeben werden kann [16]. Nach
Abschluss dieses Trainingsprozesses können neue Daten erzeugt werden. Diese
generierten Daten wurde als zusätzliche Trainingsdaten genutzt, um die Genera-
lisierungsfähigkeiten eines „Support Vector Machines„ (SVM) Klassifikators zu
erweitern.

Auswertung

Diese Studie wurde im Rahmen des Grid Systems der ALICE Kooperation als Mit-
glied der „Worldwide Large Hadron Collider Computing Grid“ (WLCG) durchge-
führt. Das WLCG als globales Grid analysiert Daten des „Large Hadron Collider“
(LHC) Experiments des „Conseil Européen pour la Recherche Nucléaire„(CERN).
Es setzt sich aus 170 Standorten in 40 Ländern zusammen und bietet dabei die
Rechenkapazität von mehr als 600.000 Prozessorkernen. Im Rahmen eines Tests
mit einer Menge an ALICE Grid Jobs unter Verwendung von LC Abschirmung,
Verhaltensüberwachung und ML-Klassifikation konnte ein durchschnittlicher
Laufzeitoverhead von 6,11% beobachtet werden. Bei Durchsatz Tests mit dem
Linpack Benchmark zeigte sich eine Leistungsreduktion von 0,4% im Falle der
Nutzung von LC im Vergleich zu nativen Linux-Aufrufen. Die Überwachung
mit Arhuaco fügte 0,5% Mehraufwand hinzu. Verschiedene Studien [2] im HPC
vergleichen die Verwendung von LC und VM bezüglich der Nutzung von An-
wendungen im Sandkastenverfahren. Diese Studien zeigen den signifikanteren
Leistungs-Overhead bei der Nutzung von VM im Vergleich zu LC.

Ein weiterer Vergleich wurde zwischen den vorgeschlagenen CNN und der
SVM-Klassifikationsmethode aufgestellt, einem der bekanntesten Algorithmen auf
dem Gebiet der IDPS [17]. Das bewährte bag-of-words Modell [18] wurde dabei für
die Generierung der Merkmalsvektoren für die SVM Eingabe verwendet. Bei der
Validierung von CNNs hinsichtlich der Klassifikation zuvor unbekannter Verläufe
an Systemaufrufen in die Gruppen regulär oder bösartig zeigte eine Genauigkeit
von 99,52%. Bei der Validierung von Netzwerkverläufen wurde eine Genauigkeit
von 98,75% erreicht. Die Genauigkeit der durch Training mit generierten Daten
erhaltenen SVM nach Anwendung auf zuvor unbekannte Netzwerkdaten-Verläufe
aus dem ursprünglichen Datensatz ergab eine Verbesserung um 0,72%.

Diskussion

Die als Konzeptnachweis mittels Arhuaco implementierten Verfahren zeigten,
dass sich die Sicherheitsanforderungen im Grid Computing erfolgreich umsetzen

9

lassen. Die Methoden der Sicherheit durch Abschirmung ermöglichen eine Sand-
kastenumgebung, in der sich Nutzerjobs ohne Zugriff auf sensitive Ressourcen wie
Serverkonfigurationsdaten oder verbotene Netzwerkbereiche ausführen lassen.
Die Abschirmung erlaubte weiterhin das Sammeln von Überwachungsinformatio-
nen bezüglich des Verhaltens einzelner Jobs.

Die mit word2vec vorverarbeiteten Eingaben generierten CNNs stellten eine
bessere Alternative im Vergleich zu den SVM mit bag-of-words Eigenschaften
dar. Die im Rahmen von Arhuacos Konzeptnachweis gewählten CNNs erhöhten
die Genauigkeit und reduzierten die Falschpositiv-Rate bei der Klassifikation
von Grid Jobs. Dem CNN war es dabei möglich in der Validierungsphase völlig
unbekannte Stichproben zu generalisieren. Dadurch verbesserte es die Erkennung
bösartiger Aktivitäten die aus den User Jobs eines Grids hervorgehen. Weitere
Ergebnisse bieten Nachweise darüber, dass der word2vec Algorithmus die auf
semantischer Kontexterhaltung basierenden Eingabemerkmale in einer genaueren
Art und Weise auszudrücken vermochte. Dieser zur Analyse von Eingaben in
Textform dienende Ansatz der natürlichen Sprachverarbeitung lässt sich dabei
komfortabel von Systemaufrufen und Netzwerkverlaufsdaten auf Informationen
anderer „Intrusion Detection“ Systeme, Überwachungsdaten anderer Quellen
oder auf andere Systemprotokolle ausdehnen.

Diese Studie zeigte, dass die Nutzung eines generativen Modells zur Verbes-
serung der Abdeckung des Trainingsdatensatzes in Grid „Intrusion Detection“
Systemen eine erhöhte Genauigkeit sowie eine reduzierte Falschpositiv-Rate be-
wirkt. Diese Auswertungen ergaben im Vergleich zu den Anfangsergebnissen eine
Erhöhung der Messmetriken, welche sich in den Trainings- und Validierungspha-
sen ergaben. Weiterhin werden die praktischen Vorteile der Nutzung von LSTM
für die Modellierung und Datengenerierung im Umfeld von „Intrusion Detection“
Systemen gezeigt, im vorliegenden Fall für Grid Computing Jobs.

10

Acknowledgements

I would like to thank all who contributed to this thesis.
First of all to my supervisor, Prof. Dr. Udo Kebschull for the opportunity to

work in his research group, the meaningful discussions we have had, and his
support that allowed me to focus on my research. Many thanks to Prof. Dott. Ing.
Roberto V. Zicari for his willingness to review my thesis. I want to give special
thanks to Dr. Camilo Lara who supported me to access the PhD program, advised
me during the doctoral path, and reviewed this thesis and the related papers. I
would also like to thank HGS-Hire for the provided scholarship. Without their
support, this work would not have been possible.

I want to thank my colleagues and friends Cruz Garcia, Antonio Lucio, Fred-
erik Grüll, Heiko Engel, Andrei Oancea, Thomas Janson, Alexander Adler, Jano
Gebelein and Stefan Böttger for their help in many aspects related to my research,
as well as for proof-reading the thesis. Daniel Bilanovic made the additional test
with isolation alternatives. I appreciated his contribution very much. Special
thanks to Jano Gebelein and Heiko Engel who reviewed my dissertation, helped
me with the German abstracts and in general supported me in all aspects of my
doctoral program.

My thanks to the teams of the ALICE HLT, ALICE offline and the CERN
security department, for their advise and support with the finalization of this
research projects, and the review of the papers. Special thanks to Miguel Martinez
Pedreira, Costin Grigoras, Latchezar Betev, Romain Wartel, and Stefan Lueders.

I would like to thank all my friends who were always supporting me. Gracias
a mi familia, especialmente a Martha, Gerardo, Francis y Jeisson, por el cariño y
soporte dado. No hubiera logrado nada en mi vida sin ellos. Muchas gracias a
Melissa, que ha sido mi soporte y alegría, en los momentos felices y en los difíciles.

Contents

Abstract . 1
Zusammenfassung / German Summary 3
Contents . 11
List of Figures . 14
List of Tables . 16
List of Listings . 17

1 Introduction 19
1.1 Motivation . 19
1.2 Overview . 20

1.2.1 Aim of the Thesis . 21
1.2.2 Defended Statements . 22

1.3 Outline . 23
1.4 Publications . 23

2 Basic Principles 25
2.1 E-Science Computing . 25

2.1.1 E-Science in High Energy Physics 26
2.1.2 Grid Computing Beyond HEP 29
2.1.3 ALICE Grid Services Implementation 30
2.1.4 E-Science Grid Generalization 31

2.2 Security by Isolation . 32
2.2.1 Virtual Machines . 33
2.2.2 Linux Containers . 33

2.3 Intrusion Detection and Prevention Systems 35
2.3.1 Basic Components of an IDPS 35

2.4 Machine Learning . 37
2.4.1 Deep Learning . 38
2.4.2 Supervised Training . 39
2.4.3 Unsupervised Training . 40
2.4.4 Discriminative and Generative Models 40
2.4.5 Recurrent Neural Networks 41

2.5 Summary . 41

3 State of the Art 42
3.1 Security of E-Science Grid Computing 42
3.2 Security by Isolation in Grid Computing 44

11

12 CONTENTS

3.3 Intrusion Detection and Prevention 45
3.3.1 Intrusion Detection and Prevention Systems for the Grid . . 47
3.3.2 Feature Selection for Intrusion Detection 50

3.4 ML Based Malware Detection . 52
3.4.1 Intrusion Data Generation . 53

3.5 Summary . 53

4 The Design of Arhuaco 55
4.1 Grid Threat Model . 55

4.1.1 Security Risks Associated to E-Science Infrastructure 56
4.1.2 Security Characteristics . 57
4.1.3 Attacker Motivation . 58

4.2 The Arhuaco Architecture . 60
4.3 Security by Isolation using Linux Containers 64

4.3.1 Linux Kernel Hardening . 70
4.3.2 Orchestration Systems for Linux Containers 71

4.4 Behavior Monitoring via Linux Containers 71
4.5 Machine Learning for Grid Computing Security 75

4.5.1 Grid Job Trace Classification 76
4.5.2 Deep Neural Networks for Grid Job Classification 77
4.5.3 Feature Extraction . 79
4.5.4 CNNs for Grid Job Classification 84
4.5.5 SVM for Grid Job Trace Analysis 86
4.5.6 ANN Optimization . 87
4.5.7 Model Validation Dataset . 89
4.5.8 Recurrent Neural Networks for Training Data Generation . 92

4.6 Summary . 94

5 Prototype Implementation 95
5.1 Arhuaco Modules . 95

5.1.1 Execution Engine . 95
5.1.2 Sensors . 100
5.1.3 Analysis Engine . 101
5.1.4 Storage . 103
5.1.5 The Response Module . 104
5.1.6 Distributed Installation . 104

5.2 Evaluation Environment Setup . 105
5.3 Summary . 105

6 Evaluation and Results 110
6.1 Performance Evaluation Setup . 111
6.2 Machine Learning Evaluation Setup 112
6.3 Isolation and Monitoring Performance Impact 114

6.3.1 Evaluation Measurement Metrics 114
6.3.2 Performance Results . 115
6.3.3 Results of the Alternative Isolation Methods 116

CONTENTS 13

6.3.4 Discussion . 117
6.4 Supervised Classification Results . 119

6.4.1 Grid Search Optimization . 120
6.4.2 Classification Evaluation Metrics 121
6.4.3 Classification Results . 122
6.4.4 Discussion . 127

6.5 Generative Model Results . 128
6.5.1 Discussion . 129

7 Conclusions and Outlook 132
7.1 Outlook . 134

Bibliography 137

A Abbreviations 155

B Curriculum Vitae 157
B.1 Personal Details . 157
B.2 Education . 157
B.3 Publications . 158
B.4 Publications as Collaborator of ALICE 159

List of Figures

1 Proposed isolation architecture . 5
2 Proof-of-concept architecture . 7

2.1 The CERN accelerator complex map 26
2.2 Structure of the ALICE experiment with its detectors 27
2.3 WLCG data flow representation . 28
2.4 Comparison of containers and VMs 34
2.5 Diagram AI-related knowledge . 38

4.1 The typical unsafe grid environment 58
4.2 The architecture of the CERN security operation center 61
4.3 The proposed architecture: Arhuaco 62
4.4 Diagram of uses cases . 63
4.5 Schema of the desired improvement of isolation in worker nodes . 64
4.6 Linux container architecture . 65
4.7 Docker swarm overlay network on top of a normal network 66
4.8 Comparison between several virtualization technologies 68
4.9 CernVM-FS main components . 69
4.10 The flow of information in Arhuaco 78
4.11 A typical convolutional neural network architecture 85
4.12 The utilized convolutional network architecture 86
4.13 ALICE grid job directory . 89
4.14 A sample of a ALICE grid application used in this research 90
4.15 Sample of Linux Bitcoin miner . 90
4.16 Sample of a Linux backdoor . 91
4.17 Sample of a ransomware . 91
4.18 A typical structure of a recurrent neural network 92

5.1 The modules and classes of Arhuaco 96
5.2 The flow of job information in the grid site 97

6.1 A cumulative number of jobs at Frankfurt site 113
6.2 Average runtime of sandboxed jobs 117
6.3 Comparison of the average runtime of sandboxed jobs 118
6.4 Accuracy curves for training and validation of the CNN for system

calls . 123
6.5 Accuracy training and validation of SVM for system calls 124

14

LIST OF FIGURES 15

6.6 Comparison of accuracy curves for the validation data of CNN vs
SVM for system calls . 125

6.7 Comparison of false positive rate curves for the validation data of
CNN vs SVM for system calls . 125

6.8 ccuracy training and validation curves of the CNN applied to net-
work data . 126

6.9 Accuracy training and validation curves of the SVM applied to
network data . 126

6.10 Comparison of the ACC curves for the validation data of CNN vs
SVM for network traces . 127

6.11 Comparison of the FPR curves for the validation data of CNN vs
SVM applied to network trace embedding vectors 127

6.12 Training and validation curves of the classification accuracy of SVM
applied the newly generated information 129

6.13 Validation accuracy curves for the collected network dataset and
the generated one . 130

List of Tables

4.1 The format of the utilized input data that is later preprocessed and
forwarded to the Arhuaco analysis module. 73

5.1 The list of candidate values used in the grid search, which is the
utilized optimization method for finding good hyperparameters. . 103

6.1 The complete set of information describing the analyzed grid jobs
and malware behavior, as collected log-lines. 113

6.2 Training and validation samples obtained after the feature extrac-
tion method. 114

6.3 Results of the performance overhead related to the runtime of the
ALICE-based jobs. 115

6.4 Results of the performance impact measured concerning through-
put of the Linpack-based jobs. 116

6.5 Convolutional neural network parameters selected by a grid search
method. 120

6.6 Results of the classification test of the convolutional neural net-
work, using new input samples extracted from the system calls and
network traces. 122

6.7 Classification test results of the support vector machine, using new
input samples extracted from the system calls and network traces. . 122

6.8 Comparison of the evaluation metrics between CNN vs. SVM for
new testing samples extracted from the system calls and network
traces. 123

6.9 Resulting accuracy of the SVM tested with previously unseen data.
These results compare the training made with the original network
samples vs. the new dataset with generated data. 129

16

List of Listings

4.1 Command to create a Docker image 67
4.2 Docker stats command . 72
4.3 Some sample data captures . 74
5.1 Perl based AliEn interface . 98
5.2 Implemented AliEn Dockerfile . 106
5.3 Sharing a host volume with Docker containers 106
5.4 Commands to create and modify an ACI container 107
5.5 Command to start Singularity . 107
5.6 Application of the Grsecurity and PaX patches 107
5.7 Sample of data capture via sysdig . 107
5.8 A script for network information extraction 107
5.9 Section of the CNN implementation 108
5.10 Arhuaco Python components installation by Puppet 109
6.1 Command to start a performance test 112

17

18 LIST OF LISTINGS

Chapter 1

Introduction

1.1 Motivation

Grid computing has emerged as a powerful tool for scientific projects. It has
been utilized in areas such as high energy physics (HEP), genome research and
pharmaceutical production. Institutions all around the world collaborate on
ambitious scientific or commercial projects that require massive computing power.
The grid concept has similarities with the cloud computing infrastructure. In
the grid and the cloud, users are granted access to resources for the execution
of arbitrary software applications. The flexibility that this generates, combined
with the high availability of processing power, creates security risks such as
the submission of malicious code to compromise the underlying computational
infrastructure or even the scientific instruments. Adversaries interested in taking
advantage of such resources become a concern. Some examples of security issues
are users mining cryptocurrencies, attackers hosting malware or even sensitive
scientific results being stolen.

Grid systems need security methods to protect critical internal components
that could be reachable by malicious adversaries. The continuous monitoring of
the activities that custom applications are carrying out is a requirement for admin-
istrators in order to detect security incidents generated from those applications.
For instance, malicious users could attempt to escalate their authorized privileges
or interact with forbidden systems. The complexity of grid systems renders a
manual security monitoring, and response incrementally expensive as the systems
grow in size. Therefore, performing autonomous detection, as well as reactions
without the need for administrator intervention, is the desired solution.

Isolation of grid jobs in combination with security monitoring powered by
intrusion detection and prevention systems (IDPS) increases the level of grid
security. Traditionally utilized IDPS are based on sets of hard-coded rules to detect
incidents. They are capable of detecting known signatures of past events and make
it possible to reduce the chances of false positives by tuning the rules. A drawback
of these systems is that they cannot identify new threats, even if such threats are
similar to past events. Adversaries can modify existing attack methods, rewrite
malware binaries or create custom exploits to circumvent detection techniques.
Advanced autonomous methods supported by artificial intelligence (AI) are an

19

20 CHAPTER 1. INTRODUCTION

exciting solution to improve the IDPS capabilities to cope with new incidents in the
grid. AI-based IDPS are relevant in environments such as the grid and the cloud,
given the highly dynamic nature, the size and complexity of such environments.

Deep learning (DL), a way of implementing machine learning (ML), has shown
outstanding success in many areas, such as autonomous driving, computer vi-
sion, financial forecasting and speech recognition among others. DL provides
advanced methods to preprocess and model input data automatically. Heteroge-
neous sources of data can be collected from the grid and the running jobs, that
providing information about the current safety status. This data can be utilized
for the training of DL algorithms that learn the desired state of the grid systems,
thus, DL enables the creation of autonomous systems that can monitor and react
to potential attacks in such systems.

1.2 Overview

This research project focuses on solving security issues commonly found in the
grid job execution environments built around site worker nodes (WNs), i.e., the
machines in the institutes’ computing clusters where the jobs are executed. A brief
description of the security issues are listed as follows:

• For common organizations, one of the main security tasks is to keep the
computing resources protected from external attackers. If an attacker can
execute code inside the organizations’ computers, it is already considered
as a security breach. In the grid, the users can run arbitrary code inside the
grid collaborations’ computational infrastructure by design. A malicious
application could take advantage of this design to damage or misuse sensi-
tive components such as the servers, restricted organizations’ networks or
experimental data, hence, isolation between the physical infrastructure and
the user jobs is a critical requirement.

• Different users’ jobs running in the same system without proper isolation
from each other is another issue in grid computing. A malicious job could
tamper and inject code inside other users’ jobs. This situation makes the trace-
ability of incidents difficult since an attacker could blame other participants
for its actions without being noticed by the system administrators.

• An enforced and isolated execution environment is essential to protect the
grid, but it is not enough to completely avoid security incidents. Attackers
may still take advantage of the grid resources to perform, for instance, denial
of service (DoS) attacks, cryptocurrency mining [19] or using the WNs for
compromising third-party organizations.

• IDPS can be used to monitor the behavior of grid jobs. However, the users’
ability to run arbitrary code makes intrusion detection a difficult task since
traditional, rule-based IDPS have been designed for static environments.
Due to the static nature of their set of rules for the detection task, rule-based

1.2. OVERVIEW 21

IDPS cannot be adapted to a dynamic environment and learn to detect novel
intrusions in the grid.

The ALICE grid is the production environment utilized to evaluate the pro-
posed solutions. The Worldwide Large Hadron Collider Computing Grid (WLCG)
is the global grid, including the ALICE grid, that analyzes data from the Large
Hadron Collider (LHC) at the European Organization for Nuclear Research
(CERN). The WLCG is exposed to internal and external attackers, just as are
other grids. The computing power, the organization’s reputation and the accessi-
bility from anywhere on the Internet are reasons that may motivate an adversary
to try to breach one of these systems. An illustrative example of how an adversary
may attempt to vulnerate the WLCG would be as follows: the attacker searches
for public information about potential users of the grid. These users, frequently
physicists, may not have proper training in cybersecurity topics. By sending phish-
ing emails, the attacker could get access to their authentication certificates. The
physics experiment information is typically encoded in ROOT data files [6]. Since
it is common for grid users to interact with these files, a backdoor may be planted
inside them, which grants the attacker access to the physicists’ computers. Once
there, if the grid certificates are stolen, an adversary could submit malicious jobs
to the grid, that could execute or inject code into other users’ jobs while leaving no
proof in a system log. Since authenticated users can freely run arbitrary code or
transfer any data on the grid infrastructure, attackers would have the same access
availability. A more formal and detailed description of the vulnerabilities and
possible attacks in the grid is given in section 4.1.

1.2.1 Aim of the Thesis

An architecture that increases the security enforcement in grid computing is
researched in this thesis. The architecture utilizes an integrated approach that
combines security by isolation, behavior monitoring and DL for the detection and
prevention of intrusions that come from the grid jobs. These methods can solve the
problems of running untrusted software inside the grid infrastructure, analyzing
the activity of grid jobs, identifying malicious activity and keeping traceability of
the user-generated events.

Several sandboxing alternatives, including Linux containers (LCs), virtual
machines and kernel hardening, are explored as a way to provide security by
isolation in the grid. Isolation enforcement in the execution environment, in
such a way that jobs cannot access sensitive server or network resources, is a
requirement for the grid. This isolation solves the security grid problem of having
a trusted environment where users have the freedom to run any software while
the participating institutes’ sensitive systems remain out of reach.

Deep learning methods for the detection and analysis of intrusions and training
data augmentation are studied. Running grid jobs in sandboxed environments
enables the collection of behavior monitoring data to be forwarded for analysis
with DL methods in near real-time. The objective is to detect and prevent intru-
sions coming from malicious grid jobs. In addition, a dataset for IDPS training

22 CHAPTER 1. INTRODUCTION

and data model validation in grid computing is proposed. The dataset made of
inputs extracted from production jobs and Linux malware samples is utilized to
train and optimize the classification algorithms. Generative methods with neural
networks are explored to improve the dataset and enhance the training coverage
and effectiveness. An evaluation with a prototype implementation of the ideas is
carried out in the ALICE collaboration grid, a member of the WLCG.

Monitoring and protecting the grid infrastructure from unauthorized and
malicious code is a focus of the solution. By collecting and processing data
generated by jobs, such as system calls and network connections, the required
input for DL algorithms that enable the automation of data analysis to find security-
related incidents is available. Legacy intrusion detection and prevention systems
provide attack detection with fixed rules based on signatures that have to be
continuously updated by human operators. DL methods grant the ability to detect
generalized attack variants.

1.2.2 Defended Statements

This thesis describes research involving security isolation methods for grid jobs
sandboxing and deep learning to support the detection of intrusions generated
from jobs. The objective is to defend the following statements and provide clear
evidence to demonstrate the effectiveness of the proposed architecture.

1. Effective isolation and monitoring of grid jobs in Linux Containers: LCs
are used to provide isolation for grid jobs and to obtain traceability informa-
tion about individual job activities. System call and network trace monitoring
data are collected. LCs contribute to improving the security of the grid by
separating user-controlled components from sensitive system resources and
keeping traceability of the activities of the jobs in case of intrusion attempts.
As a result, better evidence to find the source of an attack can be collected.

2. Accurate classification of grid jobs for intrusion detection, based on deep
learning: near real-time classification of the grid job’s traces by using deep
neural networks (DNN) is proposed. The data collected via the LCs is used
as the source to extract text-based vector embeddings as input features.
Convolutional neural networks can be applied as a successful method for
the classification of grid jobs into malicious and normal.

3. Improved classification results via generative models: a recurrent neural
network (RNN) is proposed as a generative model for enhancing the training
dataset coverage in grid IDPS. A data generation process can increase the
resulting accuracy of the chosen classification algorithm.

4. Collection of a relevant benchmark dataset for model validation: a bench-
mark dataset for the validation of an intrusion model and malware clas-
sification is necessary for grid computing. A custom dataset enables the
validation of the training and testing steps of machine learning models to
automate security monitoring in the grid.

1.3. OUTLINE 23

1.3 Outline

Chapter 2 introduces the essential background information on security by isolation,
security monitoring, classification using deep learning and generative models for
data augmentation. Chapter 3 presents the state of the art for the relevant topics.
The previous approaches towards ML for security and isolation-based methods
applied to distributed environments such as grid computing are explored.

The design principles and choices for the isolation, security monitoring, and
deep learning methods are described in full detail in the “The Design of Arhuaco”
section in chapter 4. The arguments for choosing such techniques and how they
contribute to improving the security of the grid are stated. The implemented
technologies and the chosen algorithms are also explained in this chapter. Chap-
ter 5 shows how the ideas are implemented in Arhuaco, the proof-of-concept
implementation.

The evaluation metrics and tests carried out for the approaches are shown in
chapter 6. A list of the collected evidence that demonstrates the benefits of using
the proposed methods over other compared alternatives is described in detail.
Finally, chapter 7 makes a series of conclusions about this study and summarizes
the findings, including a judgment on the defended statements. This chapter also
indicates the possible future paths of research that may be pursued.

1.4 Publications

1. A. Gomez Ramirez, C. Lara, U. Kebschull for the ALICE Collaboration. “In-
trusion Prevention and Detection in Grid Computing - The ALICE Case”. Journal
of Physics: Conference Series, 664(6):062017, 2015. [20]

2. A. Gomez Ramirez, M. Martinez Pedreira, C. Grigoras, L. Betev, C. Lara and
U. Kebschull for the ALICE Collaboration. “A Security Monitoring Framework
For Virtualization-Based HEP Infrastructures”. Journal of Physics: Conference
Series, 898(10):102004, 2017. [21]

3. A. Gomez Ramirez, C. Lara, L. Betev, D. Bilanovic, U. Kebschull for the
ALICE Collaboration. “Arhuaco: Deep Learning and Isolation Based Security
for Distributed High-Throughput Computing”. Manuscript submitted to the
Journal of Grid Computing (2018). [22]

4. H. Engel, T. Alt, T. Breitner, A. Gomez Ramirez, T. Kollegger, M. Krzewicki,
J. Lehrbach, D. Rohr, and U. Kebschull. “The ALICE High-level Trigger read-out
upgrade for LHC Run 2”. Journal of Instrumentation, 11(01):C01041, 2016. [23]

5. J. Lehrbach, M. Krzewicki, D. Rohr, H. Engel, A. Gomez Ramirez, V. Linden-
struth, D. Berzano, and ALICE Collaboration. “ALICE HLT Cluster operation
during ALICE Run 2”. Journal of Physics: Conference Series, 898(8):082027,
2017. [24]

24 CHAPTER 1. INTRODUCTION

6. Ananya, A Alarcon Do Passo Suaide, C Alves Garcia Prado, T Alt, L Aphe-
cetche, N Agrawal, A Avasthi, M Bach, R Bala, G Barnafoldi, A Bhasin,
J Belikov, F Bellini, L Betev, T Breitner, P Buncic, F Carena, W Carena, S
Chapeland, V Chibante Barroso, F Cliff, F Costa, L Cunqueiro Mendez, S
Dash, C Delort, E Denes, R Divia, B Doenigus, H Engel, D Eschweiler, U
Fuchs, A Gheata, M Gheata, A Gomez Ramirez et.al. for the Alice collab-
oration. collaboration. “O2 : A novel combined online and offline computing
system for the alice experiment after 2018”. Journal of Physics: Conference
Series, 513(1):012037, 2014. [25]

Chapter 2

Basic Principles

This chapter covers the concepts that form a knowledge base required to under-
stand the scientific contributions of the present thesis. First, an introduction to the
components of e-science grid computing related to the Worldwide LHC Comput-
ing Grid (WLCG) and the ALICE experiment is presented. A generalization to the
case of grid computing is further provided. Then, the security by isolation (SbI)
topic with a focus on Linux containers (LCs) technology is explored. Finally, the
machine learning (ML) and deep learning (DL) principles that we apply for classi-
fication and data generation used for training dataset improvement are described.
We start with the discussion of e-science computing.

2.1 E-Science Computing

Our work is placed in the context of e-science computing security research. E-
science is usually described as the usage of distributed computational resources in
the research of scientific problems that require highly intensive data processing
[26]. It is seen as the collaboration among independent research organizations
and possibly single researchers within the organizational framework of a virtual
organization (VO). The collaboration may include international members and
distributed facilities. Unified data acquisition and distribution of scientific data
is typically used. Data replication throughout a geographic and organizational
distribution is another important characteristic. A dedicated service layer is
provided for researchers that can conduct the simulation, preprocessing and
analysis of scientific data by the submission of predefined task descriptions, which
are executed within the infrastructure without their required presence [27]. These
researchers are technically enabled to supply arbitrary program code and data,
and to use them in line with their research requirements. We restrict our view to
e-science grid computing. In general, the computing grid has been envisioned as
an analogy to the electrical grid, but with computing resources on demand mainly
for scientific purposes.

25

26 CHAPTER 2. BASIC PRINCIPLES

2.1.1 E-Science in High Energy Physics

High energy physics (HEP) has been one of the most successful areas of application
of e-science grid computing. This thesis is carried out in the context of the ALICE
(A Large Ion Collider Experiment) experiment’s computing infrastructure. ALICE
is a member of the Large Hadron Collider (LHC) at the European Organization
for Nuclear Research (CERN). The LHC accelerates protons and lead-ions to
99.9999991% of the speed of light and collides them in four specific sections. A
collision section is surrounded by one of four major experiments: ALICE [28], a
toroidal LHC apparatus (ATLAS) [29], the compact muon spectrometer (CMS)
[30] and the Large Hadron Collider Beauty (LHCb) [31]. A map of the CERN
accelerator complex that includes the four mentioned experiments can be seen in
Figure 2.1.

CMS

ATLAS

LHCbALICE LHC

PS

SPS

PSB

AD

CTF3
LINAC 2

LINAC 3

AWAKE

ISOLDE

West Area

East Area

North Area

n-TOF

TI2
TT10

TT60

TT2

TI8

protons
ions
neutrons

antiprotons
electrons
neutrinos

LHC Large Hadron Collider
SPS Super Proton Synchrotron
PS Proton Synchrotron

AWAKE
n-TOF
AD

CTF3
Advanced Wakefield Experiment

Neutron Time Of Flight
Antiproton Decelerator

CLIC Test Facility 3

Figure 2.1: The CERN accelerator complex map. The LHC is the largest ring with
four main experiments including ALICE [32].

The ALICE collaboration [28] has built a detector to research on to the unique
physics potential of nucleus-nucleus collisions at LHC energies. ALICE aims to
study the physics of strongly interacting matter at the highest energy densities
reached so far in the laboratory. ALICE is a general purpose, heavy-ion detector at
the CERN LHC which focuses on quantum chromodynamics (QCD), the strong
interaction sector of the standard model of quantum physics. It is designed to
address the physics of the quark-gluon plasma at extreme values of energy density
and temperature in nucleus-nucleus collisions. It runs with Pb ions, but the physics
programme also includes collisions with lighter ions, lower energy running and

2.1. E-SCIENCE COMPUTING 27

dedicated proton-nucleus runs. The experiment has 18 sub-detectors, each with its
technology selection and design constraints, driven by the physics requirements
and the experimental conditions expected at LHC. The data acquisition system
of the detector generates raw data sets describing selected particle interactions,
within the detector’s measurement range and within a certain time frame, at an
annual data rate of more than one petabyte per year during LHC operation. These
raw data sets are reconstructed to identify for instance the concerned particles,
their tracks, energy and lifetime. The reconstructed data is then analyzed in
matters of confirmation of existing or formulation of new physics theories and
models. Figure 2.2 shows the structure of the ALICE experiment and the required
detectors and facilities for collecting collision data.

Figure 2.2: Structure of the ALICE experiment with its detectors [32].

The WLCG and the ALICE Grid

The WLCG members allow scientists to analyze massive amounts of physics data
produced in the LHC collisions. One of the members is the ALICE collaboration.
The WLCG was fundamental to support the experimental validation of the ex-
istence of the Higgs boson [33]. It is made of computer centers worldwide that
provide computing and storage resources into a single infrastructure accessible
by every LHC member physicists. Currently, it combines the power of nearly
170 sites in 40 countries, connected with 10-100 Gb links, with more than 600,000
processing cores and 700 PB of storage capacity. It is capable of processing more

28 CHAPTER 2. BASIC PRINCIPLES

than 2 million jobs per day. Figure 2.3 represents the flow of data in the WLCG
throughout worldwide Internet connections.

Figure 2.3: Representation of the real-time WLCG data flow around the world. In
the upper right corner, information about the significant amount of processing
capacity of the LHC grid is shown.

The ALICE grid services [34] are a globally distributed open e-science research
cyberinfrastructure. These services are the main computing facility of the ALICE
experiment. At the time of the current research, the ALICE grid has more than
70 computing centers, provided by collaborating institutes located in over 30
countries, combining up to 50,000 CPU cores and 30 petabytes of data storage
and it provides access to approximately 1,000 active users within the ALICE
collaboration. This collaboration as the operator of the ALICE detector as well as
the ALICE grid services is an example of an e-science virtual organization [35].
The collaborating institutes should provide storage and computational resources
inside their computing centers to the overall grid services. The VO includes both
the computing resource providers and the users. The ALICE grid services are used
for the main tasks of simulation, reconstruction and analysis of the data collected
in the particle detector [36], [37], [38].

The raw data generated by the data acquisition system of the ALICE detector is
directly stored in subsystems in the grid services, replicated and processed within
the grid. The systems usage and executed tasks are classified into scheduled
processing organized centrally for the collaboration and individual user-driven

2.1. E-SCIENCE COMPUTING 29

processing. The ALICE experiment has developed the ALICE production envi-
ronment (AliEn) [39], implementing many components of the grid computing
technologies that are needed to store, process and analyze the collected data.
Through AliEn, the computing centers that provide CPU and storage resources
can be seen and used as a single entity. Any available node executes jobs and file
access is transparent to the users; those nodes might be located in any place in the
worldwide infrastructure.

The grid services implement a globally distributed file system by unifying a
distributed storage infrastructure and a centralized job submission portal. Users
of ALICE are allowed to submit arbitrary jobs and data inside a predefined storage
capacity quota. Users have to declare though to use the infrastructure only in line
with their research within the experiment according to the WLCG security policy
[40]. There is a usage policy [41] that states that all data produced by the detector
or by data processing in the infrastructure, can be accessed by every member of the
collaboration. Access is granted to every user account inside the ALICE grid. The
four large LHC experiments ALICE, ATLAS, CMS, and LHCb focus on different
research aspects of particle physics and are based on different detectors and grid
environments. However, they share the same basic scenarios [36, 42, 43, 44]. Simi-
larly to the ALICE grid, the ATLAS, CMS, and LHCb experiments have grid-based
e-science infrastructures for simulation, reconstruction, and analysis of detector
data and they are based on worldwide collaborations. These collaborations repre-
sent both the grid users and institutes providing computing resources. All of those
infrastructures provide data layers and frameworks for submission of predefined
jobs for scheduled and user-driven data processing.

2.1.2 Grid Computing Beyond HEP

The usage of distributed high-throughput computing (HTC) farms for data pro-
cessing tasks has been very successful in other areas beyond HEP such as weather
forecasting, brain, and astronomy research, to mention a few examples of e-science
projects. For instance, the LIGO collaboration uses a data grid that combines the
aLIGO DCS computers with other clusters around the world to handle the con-
siderable computing load for the gravitational-wave analysis from the LIGO and
Virgo detectors [45]. In [46], a study of biomedical research workflows and pat-
terns concerning a potential utilization of high-performance and grid computing
infrastructures is presented. The use cases include the simulation, preprocessing
and analysis of scientific data, based on distributed computational infrastruc-
ture and unified cross-organizational access to distributed and independent data
sources.

The GEO (global earth observation) grid [47] created a unified data storage
of satellite imagery, geological archives and sensors of different organizations
and collaborations. It provides facilities for distributed simulation and analysis
in geological and ecological research and disaster mitigation [48]. The e-BioGrid
[49] is a dutch e-science infrastructure for life science research. It is based on a
gateway for biomedical data analysis [50] connected to the national e-science grid
infrastructure SURFSara [51]. The gateway provides unified access to computing

30 CHAPTER 2. BASIC PRINCIPLES

facilities and software appliances for biomedical research. The e-science infrastruc-
ture is utilized for simulation and analysis of biological samples, genomics and
nanoscopy, and medical image data. Another instance of an e-science infrastruc-
ture based on a gateway to an independent grid infrastructure is the Charité grid
portal [52], which has a similar usage scenario in medical research.

In the next section, a description of the ALICE grid services is provided, that
helps to get an idea of the general structure of grid computing.

2.1.3 ALICE Grid Services Implementation

ALICE uses a central grid middleware called AliEn. It is written in the Perl pro-
gramming language [53] and it is based on a distributed service communicating
via the simple object access protocol (SOAP) [54]. It uses MySQL [55] databases
and the lightweight directory access protocol (LDAP) [56] for persistent data.
AliEn provides a globally unified grid layer built by a grid data layer based on
a central file catalog as a logical data structure and a distributed set of storage
systems given by the collaborating computing centers. It also includes a job layer
that serves a central task queue with a workload management system. Beyond
the ALICE collaboration as the originator and main user, the ALICE grid service
architecture and its middleware AliEn are adopted by the particle physics ex-
periments CBM [57] and PANDA [58] at FAIR in the GSI Helmholtzzentrum für
Schwerionenforschung GmbH [59], Darmstadt, Germany.

The grid fabric of the grid services, according to the definition in [60], is built
upon core computing systems running in central services located at CERN. A mul-
titude of distributed computing centers is part of it. Each computing center (site)
provides hundreds to thousands of worker nodes (WNs) as computing facilities
and one or several storage systems, called storage elements (SEs). WNs on a site
are aggregated within the site resource management system. They are accessible
to the grid services via one or more batch system interfaces, called computing
elements. These computing elements are connected to the ALICE grid services via
ALICE specific site services, running on a dedicated site based computing system,
called VOBox. The portal service to a site, the AliEn ClusterMonitor, is running
on a site’s VOBox and acts as an access gateway to a computing element and as a
communication proxy for grid jobs on WNs. The Linux operating system powers
all central services within the ALICE grid as well as VOBoxes and WNs on the site
level.

The access to the grid resources for users is granted by using X.509 [61] proxy
certificates derived from the actual user’s certificate and the verification of the
corresponding record in an LDAP directory. Grid users are identified by the
username listed within their LDAP record. All authorization and authorship
of object entities is based on these usernames. Four user interfaces can reach
the ALICE grid services. Two command-line interfaces, a library in the analysis
framework and a graphical web interface. The AliEn Perl shell [62] is a command-
line shell used by both grid users and administrators. It allows users to connect to
central or site-based services. Another command-line interface, the AliEn shell
(aliensh) [63] gives an extensive user functionality. It is the primary interface for

2.1. E-SCIENCE COMPUTING 31

scientific users. The initial authentication and authorization is based on the same
mechanism as within the AliEn Perl shell using the X.509 proxy certificate, while
subsequently a session token is negotiated and used by client interface and service.

The AliEn ROOT interface [63] provides access to the grid from within the
experiment’s physics analysis software framework [64], utilized both by users
and within grid jobs as an interface for grid file access. The Alimonitor [65]
graphical interface grants user access to monitoring and administration controls.
This interface gives access to statistical data.

Several layers can describe the grid structure. Within the grid layer, the ALICE
detector is represented by a dedicated user. This user has prioritized access to
the virtual file system to allow users the upload and registration of the detector’s
physics data. The data is physically distributed over sites according to a tiered
structure [66], based on performance characteristics, capacity and service level
assurances.

The computational layer enables the submission of grid jobs as textual task
specifications to a central task queue. A task queue is accessible via central services
and managed by a central workload management system [67]. The management
system processes and schedules submitted jobs into the queue. It also initiates their
propagation to sites and the execution on WNs. The grid job layer can be described
as a platform as a service (PaaS) as well as a software as a service layer (SaaS), it has
characteristics of both paradigms. The SaaS is set up by a package management
and distribution mechanism that gives automatic on-demand installation of grid
applications on WNs. Jobs are specified by a job description language (JDL) as
a formatted textual specification derived from Condor ClassAds [68]. A job is
submitted to the central task queue either by reference to a JDL file in the file
catalog or directly as a textual JDL input. A submitted JDL entry specifies at least
a logical file name (LFN) as the executable of the job, which is later downloaded
to the WN and executed as an operating system process. Consistently with the
WLCG scenario, the portal connects to an underlying grid infrastructure providing
SEs and WNs accessibility via computing elements. Within the grid data layer,
one central logical grid file catalog with a file-based data management delivers a
unified grid file system for its users. Users can further submit jobs to a centralized
queue, which are consequently propagated to WNs utilizing a pilot job model.

Following we proceed to define a general view of grid computing, based on
the description of the ALICE grid architecture.

2.1.4 E-Science Grid Generalization

Given the described characteristics of the ALICE grid services and its AliEn grid
middleware, as well as different example architectures, a more general architecture
can be defined according to [27]. This general definition provides a reference
terminology for the current study. A distributed grid layer is implemented based
on central components and services, known as central grid services. Computing
centers are resource providers; they will be named sites. A virtual organization or
e-science VO provides and maintains the central grid services. Sites accommodate
storage and computing infrastructure as storage elements and worker nodes.

32 CHAPTER 2. BASIC PRINCIPLES

The services and entities are connected through private or public networks. The
connection between clients and central grid services and between central grid
services and site-based grid services is Internet-based by default.

VO users can submit the grid jobs as text specifications to a task queue, to
be validated and processed. That processing could include transformations of
initial job submission, such as splitting into multiple job requests. The task queue
provides workload management functionality and maintains the scheduling and
matchmaking of grid jobs and WNs. Site WNs are integrated into the grid job
layer by VO services known as grid job agents. These agents use a small part of
WN computational resources to establish a connection to its grid infrastructure
and advertise the available capabilities. Grid job agents receive job requests from
a task queue and run them as operating system processes on the WNs. The grid
job requests sent to grid job agents has to define the executable as well as files and
libraries, preconditions and target locations for their output, that are required. The
grid job agent is designed to execute a grid job on behalf of a grid job submitter
or grid user. The grid site agent is executed on a dedicated site based computing
system, the VOBoxes. The agent also maintains the submission of grid job agent
requests to resource management system of a site.

Grid job requests can specify software library requirements and presume their
availability on a WN during execution. This feature is implemented by using a
predefined scope of available software applications called grid applications. These
grid applications can be available on a site or WN in a static way. They can be
installed as well on a WN on demand before a grid job execution. The on-demand
installation has to be triggered and processed by a grid job agent. The grid’s users
can connect to the grid layer via grid client interfaces. They provide access to
distributed file systems and allow users to submit and manage grid jobs. Grid
users do not have technical restrictions to upload any data, including program
code as data, to the grid file system or to register data provided by external sources.
The users are free to specify the utilization or execution of any grid file system
entries within grid jobs if the access to these entities is authorized. These features
can cause security issues in several situations as discussed in this thesis.

After this introduction to the grid computing topic, the background informa-
tion required to understand our proposed contributions to the grid security area is
explored in this research.

2.2 Security by Isolation

Security by isolation is a technique that enforces hardware or software components
separation in a computing system. The primary aim of this separation concept
is that, when an attacker compromises one of the components, the others should
remain safe [69]. The separation is usually implemented by assigning users
and applications a specific space on the system that keeps away other users
or application. There are several implementation technologies, with several levels
of isolation, for instance, virtual machines (VMs), Linux containers (LCs) or the
Unix multiuser scheme. There are even security-focused operating systems [70]

2.2. SECURITY BY ISOLATION 33

that advertise SbI as one of their core features [71, 72, 73]. We will give some
more details about the most popular approaches, virtual machines, and Linux
containers.

2.2.1 Virtual Machines

A virtual machine is defined as an emulation of a computing system [74]. VMs
add an intermediate layer between a virtualized operating system (guest) and the
actual hardware. This intermediate layer is commonly called a hypervisor. VMs
are typically classified into two main categories. The first is bare metal hypervisors
that run directly on the native hardware. They carry out their basic routines to
manage the hardware resource access. The second are VMs that run on top of a
conventional, non-virtualized operating system called the host operating system,
integrated into the kernel of the host OS or in userspace. This second category
uses the routines provided by the host operating system to access hardware. VMs
are known to provide a strong level of isolation among base hosts and OS running
in the guest. However, they involve an important performance loss for the guest
systems [2].

2.2.2 Linux Containers

The LCs are grouped as a set of processes, that may belong to the same users,
running on top of a shared kernel [75], [76]. These processes are isolated from
other user’s processes in the OS, and they should not affect the host or other
containers. LCs take advantage of namespaces to provide a private view of the
system (network interfaces, PID tree, mount points). Cgroups are applied to have
a limited assignment of resources. Containers can be seen as an extension of the
virtual memory space concept to a wide system scope. They provide a set of
advantages over other virtualization technologies. They are lightweight and fast
on booting. Linux containers have a small memory footprint and are close to
the bare metal performance [77]. Figure 2.4 describes a set of containers working
together, isolated and sharing the same kernel. In the next sections, we describe
some of the main components of the LCs.

Cgroups

Linux cgroups constitute a fundamental piece of Linux containers. Cgroups are
a kernel feature that limits the resource usage of the running processes. It was
merged into the Linux kernel version 2.6.24. Similar to the processes, cgroups are
hierarchical, child cgroups inherit specific attributes from their parent cgroup [75].
The main difference is that many hierarchies of cgroups can exist at the same time
on a system. The Linux process model is a single tree of processes. The cgroup
model is composed of one or several individual and unconnected trees of tasks.
Multiple separate hierarchies of cgroups are necessary because each hierarchy is
attached to one or more subsystems. A subsystem is a single system resource, such
as CPU time or memory. Linux provides ten cgroup subsystems as listed below:

34 CHAPTER 2. BASIC PRINCIPLES

Figure 2.4: The Linux containers have an isolated environment while running
over a shared kernel. In opposition, VMs may have several kernels on top of a
common hypervisor [78].

• blkio: sets limits on input-output access to and from block devices such as
drives (disk, solid state, or USB).

• cpu: utilizes the scheduler to provide cgroup tasks access to the CPU.

• cpuacct: this subsystem generates reports on CPU resources used by the
tasks in a cgroup.

• cpuset: assigns individual CPU cores and memory nodes to tasks in a
cgroup.

• devices: allows or denies users to access the devices by tasks in a cgroup.

• freezer: suspends or resumes tasks.

• memory: this subsystem sets limits on memory usage in a cgroup and
generates reports on memory resources used by these tasks.

• net_cls: assigns an identifier to network packets with a class tag that allows
the Linux traffic controller to detect packets that come from a particular task.

• net_prio: provides a way to dynamically set the priority of network traffic
per network interface.

• ns: is the namespace subsystem, for which furhter details are given in the
next section.

• perf_event: carries out performance analysis based on cgroup membership
of tasks.

2.3. INTRUSION DETECTION AND PREVENTION SYSTEMS 35

User Namespaces

Namespaces are another essential feature of the Linux kernel that makes containers
possible. Namespaces isolate and virtualize system resources of a collection of
processes. Some of such resources can include process IDs, hostnames, user IDs,
network access, interprocess communication, and filesystems. User namespaces
allow the system to map permissions per user and group IDs. The LC users and
groups may have privileges for certain operations inside the container without
having those privileges outside the container. Therefore, the set of capabilities
of a process for operations inside the user namespace may differ from its set of
privilege capabilities in the host system. For instance, one of the goals of user
namespaces is to allow a process to have root privileges for operations inside the
container, while it keeps being a normal unprivileged process on the system that
hosts the container [79].

Each user ID of a process has two values: one inside the container and another
outside. This property is similar to the group ID. Here each user namespace has
a table that maps user IDs on the host system to corresponding user IDs in the
namespace. In this case, for instance, the user ID 1000 on the host system could
be mapped to user ID 0 inside a namespace. Hence a process with a user ID 1000
would be a typical user on the host system while having root privileges inside the
namespace. After a short introduction to isolation technologies, we take a look of
the intrusion detection and prevention system topics.

2.3 Intrusion Detection and Prevention Systems

Computational systems are not perfect in the real world. They have errors and fail
eventually. Given the physical and logical limitations of these systems, computing
errors cannot be avoided. Some of these errors could cause computing machines to
get broken while others could allow adversaries to get access to sensitive resources.
This problem creates a need for continuously monitoring computing systems to
find possible sources of failure before errors occur and to find evidence of security
breaches. Intrusion detection systems (IPS) are tools designed to detect intrusions
by monitoring the current and past events in a computer system or network and
search for security incident evidence. The intrusions they analyze are defined
as attempts to compromise the confidentiality, integrity, and availability, or to
bypass the security mechanisms of a host or network [80]. Modern IDS can also
stop current intrusions by real-time analysis of incidents. These systems are called
intrusion detection and prevention systems (IDPS) since they can prevent further
intrusions that compromise the monitored infrastructure. Instead of passively
monitoring the activity on systems or networks, IDPS can dynamically block
unauthorized activity before it is completed.

2.3.1 Basic Components of an IDPS

A common IDPS has several fundamental components: sensors (or sources), ana-
lyzers, a database and a response engine [80]. The sensor component is responsible

36 CHAPTER 2. BASIC PRINCIPLES

for collecting data about the state of the monitored system. This data can belong
to a multitude of sources such as network connection traces, system log files,
and system call traces, to name a few examples. The sensors can be hardware or
software components. The collected information is forwarded to the analyzers for
the search of intrusion patterns.

An IDPS is commonly categorized into three main groups depending on where
the information is collected from [81]: network, host or application level. A
network-based IDS (NIDS) examines network traffic by placing sensors on several
points of an organization’s network. They monitor the connections and perform lo-
cal analysis, reporting possible attacks to the network administrators. A host-based
IDS (HIDS) collects event information from host nodes. Usually, the collected
data belongs to two categories, operating system API call traces and system logs.
Operating system API calls are more detailed and better protected than the system
logs since they are generated at the kernel. The system logs are more straight-
forward and shorter than API calls, and hence they can be more easily analyzed.
While NIDS may have problems with encrypted connection environments, HIDS
provide a higher degree of visibility at the hosts. HIDS can detect attacks that are
invisible to NIDS due to encryption for example and can monitor events locally
produced by malicious software or other software integrity breaches. However,
HIDS are vulnerable if an attacker targets a host and the sensors are compromised.
This situation makes their information sources untrusted. An application based
IDS (APIDS) analyzes the behavior of applications by reviewing the events stored
in their log files or function call traces. The primary objective of APIDS is to detect
suspicious behavior of insider attackers exceeding their authorization or allowed
valid activities.

The analysis component in an IDPS receives the source data to search for events
of potential security breaches. It gets its inputs from one or more sensors or other
analysis modules. This component should decide whether an intrusion is currently
taking place or has already occurred in the past and provide evidence to validate
the produced alerts. The results of the analysis are sent back to the system as
additional events, typically representing alarms. There are two main strategies
for the analysis of attack occurrence: misuse detection and anomaly detection
[82]. Misuse based detection also known as signature-based detection, usually
identifies abnormal behavior by matching events against predefined patterns of
events which describe known attacks. Since this model looks for patterns known
to cause security problems, it is called a misuse or attack signature detection
model. The patterns of known attacks are called signatures. A misuse detection
model can detect predefined known attacks with high accuracy and with a small
false positive rate. However, a significant disadvantage is that this model is
vulnerable to novel attacks and it requires to be regularly updated with signatures
of such new attacks. Anomaly-based or behavior-based intrusion detection tries to
identify anomaly patterns of activities that deviate from a defined standard profile.
This approach is based on average usage profiles of users, systems or network.
Significant deviations from these profiles are searched to detect security-related
problems. Several methods have been proposed to decide if a system is running
according to normal behavior. Several of the most common anomaly detection

2.4. MACHINE LEARNING 37

methods employ classification or clustering, statistical methods or information
theory [82].

The storage o database component in an IDPS stores data produced by the
sensors and the analysis modules. It enables the persistence of event information
and grants security researchers the possibility to analyze forensic data. The re-
sponse module executes predefined actions in case an intrusion is detected, so
further damage to the protected systems is avoided. A response is then a set of
actions taken after the detection of a security-related incident. There may be as
well several levels of confidence in the presence of an attack and an increased
level of risk and predefined actions for such different levels. There are two main
approaches to intrusion response, passive and active responses. Passive responses
involve notifications and alerts to administrators. They have traditionally been
used since the conception of IDPS, and they are still present in every intrusion
detection product. Active responses are the actions taken to stop the detected se-
curity breaches actively. An active response mechanism may have a wide range of
options. Some examples may include increasing the alarm level, logging particular
events generated for forensic analysis or even kill malicious applications.

2.4 Machine Learning

Finally, the general ideas about the machine and deep learning topics are de-
scribed. Machine learning is a research area of applied mathematics [83], inspired
by human-like intelligence behavior. ML objective is to find methods to replicate
the learning abilities of human beings with machines. One of its widespread ap-
plication is the statistic estimation of highly non-linear functions. ML is frequently
applied in automatic classification of data that belongs to unknown distributions, a
task that traditionally has been carried out by human operators. A core objective of
a learning algorithm is to generalize from the collected experience. Generalization
in this context is the ability to perform accurately process new, unseen examples
or tasks after having experienced with a training dataset. The training examples
come from some unknown probability distribution. The learning algorithms have
to build a general model about the data space that produces accurate predictions
over new data.

In the context of this thesis, the act of assigning a set of data samples or objects
to a set of classes to which the objects belong is called a classification problem.
For example, a classification problem is to determine the correct brand of a set
of cars automatically based on visual features. This task that traditionally would
require human abilities and visual analysis is expected to be the kind of problems
that the aid of machine learning technologies for image analysis would solve.
More generally, a classifier in ML receives as input data ~x, which is a vector of d
elements:

~x = (x1, ..., xd) ∈ Rd, (2.1)

called a feature vector. To classify the input ~x means to evaluate a classification
function

CW : Rd 7→ c1, ..., ck, (2.2)

38 CHAPTER 2. BASIC PRINCIPLES

on ~x. The output of the function is defined as

ck∗ = CW (~x), (2.3)

where k∗ ∈ {1...k}; ck∗ is the class to which ~x corresponds, based on the model W
[84]. ML algorithms use several methods to find the model W , which is highly
constrained by the training dataset. The optimization objective for the model
parameters is normally defined as a loss function L that represents the penalty
given to the calculated error in the classification of the training data. The loss L(W)
based on parameters of W is the average of the loss over the training examples
~x1, . . . , ~xN , where N is the total number of samples, as follows:

L(W) =
1

N

∑
i

L(W,~xi). (2.4)

The training process consists of finding the parameters of W that result in an
acceptably small error, in the best case the smallest one (global minimum).

2.4.1 Deep Learning

Deep learning is a sub-area of machine learning, which is also a component of
the artificial intelligence (AI) area. Figure 2.5 shows the relation between deep
learning, ML, and AI.

Artificial intelligence

Machine learning

Deep learning

Figure 2.5: Diagram of the relation among AI, ML, and DL knowledge areas. AI
is the top general knowledge area, which includes ML and finally, DL is a way of
implementing machine learning.

DL allows researchers to solve increasingly complicated applications with
increasing accuracy [85]. One of the most popular learning models within DL
are the deep feedforward networks. They are also known as feedforward neural

2.4. MACHINE LEARNING 39

networks or multi-layer perceptrons. One of their primary applications is the
approximation of functions f ∗ given some known data points that belong to that
functions. A feedforward network defines a mapping:

~y = f(~x; θ), (2.5)

and it requires finding the value of the parameters θ that enable the best approx-
imation of the desired function. These models are called feedforward because
information flows throughout the evaluated function from the input ~x, the interme-
diate computations used to define f and finally to the output ~y. If the feedforward
neural networks are extended to include feedback connections, then they are
called recurrent neural networks (RNNs). We will have a closer look at RNNs
in section 2.4.5. Feedforward networks form the foundation of many popular
commercial applications. Convolutional neural networks (CNNs) are a specialized
kind of feedforward network. CNNs have been used for object recognition on
pictures and natural language text classification [15].

Feedforward neural networks are called networks because normally they can
be represented by many different functions evaluated in a chain. They can also be
described as a directed acyclic graph of consecutive functions. For instance there
might be three functions f (1), f (2), and f (3) connected in a chain, to form:

f(~x) = f (3)(f (2)(f (1)(~x))). (2.6)

These chained functions are very frequently used structures of neural networks.
Here f (1) is known as the first layer of the network, f (2) is the second layer, and
so on. The overall length of the chain gives the depth of the model [85]. The final
layer is called the output layer. Therefore, this representation adopts the name
of deep learning, given the deep hidden layers in it. During the neural network
training, the objective is achieving a close as possible output value between f(~x)
and f ∗(~x).

The training data provides approximated examples of f ∗(~x) with noise, eval-
uated at different training points. Each example ~xi is accompanied by a label
~y ≈ f ∗(~xi). The training samples dictate what the output layer should present at
each point ~xi. It must generate a value that is close to ~y. The training data do not
directly specify the behavior of the hidden layers. The learning algorithm should
decide how to utilize these layers to produce the desired output. The employed
learning algorithm should decide how to update these layers for implementing an
approximation of f ∗. They are called hidden layers since the training data does
not show the desired output for each of them. There are two main categories of
learning algorithms that are described in the next sections.

2.4.2 Supervised Training

A learning algorithm used for classification is said to be supervised when the
training data is tagged with the desired output for every available sample. It
can be described as a training method with a “teacher” who has background
information on a specific problem. This “teacher” knows the corresponding

40 CHAPTER 2. BASIC PRINCIPLES

output for each entry in the dataset [86]. For artificial neural networks (ANN),
the algorithm parameters (e.g., number of layers, number of neurons per layer
or the network weights) are iteratively adjusted while the network processes
the samples inputs, and the obtained outputs are compared with the expected
ones. The optimization goal here is to minimize the error generated by the actual
algorithm’s output in comparison to the desired output. The final goal is to teach
the network to correctly classify new data samples that the network has not seen
previously. This goal implies that the network will be able to generalize and it will
become useful for practical applications. Some examples of algorithms that can be
trained in a supervised manner are feedforward neural networks, support vector
machines and radial basis networks.

2.4.3 Unsupervised Training

Unsupervised training is said to lack of a “teacher” with information about the
specific application area [83]. Only the training dataset inputs are available, and the
desired outputs are unknown. The classification algorithm has to automatically
assign a tag or class to each data sample based on the similarities that can be
found in the data input features. The algorithm parameters are automatically
modified too, based on predefined researcher criteria and the statistical analysis of
the available information. Some examples of algorithms that can be trained via
unsupervised learning are K-means clustering and self-organizing maps.

2.4.4 Discriminative and Generative Models

There is another distinction between Ml models that we introduce in this section.
Discriminative models are those that generate outputs based on predefined specific
inputs. Supervised classification algorithms are a good example. Models that
can generate both inputs and outputs given some hidden parameters are called
generative models (GMs). GMs are used in machine learning for modeling data
and observations drawn from a probability density function. Many ML models
used for classification employ a discriminative approach, they process input data
and give a probabilistic membership value to a certain class. ML methods based on
generative models try to learn the probability distribution function that generates
the training data (input data space) [85]. Those methods are useful in practical
applications, for instance, to create or simulate training samples.

GMs can also be applied as an intermediate step to form a conditional proba-
bility density function. A conditional distribution can be made from a generative
model using the Bayes rule. Discriminative models do not need to model the
distribution of the observed variables. However, they can not generally express
complex relationships between the observed and target variables. They do not
necessarily perform better than generative models at classification and regression
tasks [83]. Both classes are complementary and commonly seen as different views
of the same procedure.

2.5. SUMMARY 41

2.4.5 Recurrent Neural Networks

Recurrent neural networks [87] are a type of neural network that has frequently
been utilized for processing sequential data such as time series. Similarly to
convolutional networks that are specialized for processing a grid of values X
represented as matrices or tensors, for example, images or videos, RNNs are
specialized for processing a sequence of values that are a function of time:

x(1), . . . , x(T). (2.7)

RNNs can scale to long sequences that would not be practical for networks with-
out sequence-based specialization. Most recurrent networks can also process
sequences of variable length. They have been used as generative methods with
outstanding success in applications. One of those models is especially of interest
for this research. The long short-term memory model (LSTM) [88] uses a gat-
ing mechanism to ensure proper propagation of information through many time
steps. LSTM networks have a specific memory cell and can capture long-term
dependences in sequential data. LSTM are valuable tools for language model-
ing problems [89]. More details about this type of network will be given in the
section 4.5.8.

2.5 Summary

An overview of the fundamental principles that form our scientific contributions
has been made. First, the components of e-science and grid computing were intro-
duced. A particular focus on the Worldwide LHC Computing Grid and the ALICE
collaboration was given. We described the main characteristics of the security
by isolation topic. A detailed exploration of Linux containers technology was
provided. Several essential concepts of machine learning including deep learning
were introduced. We have explained the principles needed in the classification
and generation of input data used for training and dataset improvement. In the
next chapters, we will introduce the previous related work in our contribution
topics. We explain how the basics concepts in this chapter are used to contribute
to the improvement of the security for grid computing.

Chapter 3

State of the Art

A survey of the studies that are related to the proposed contributions is presented
in this chapter. Grid computing security requirements and constraints related
research are explored. The background of the proposed architecture for grid
security improvement is deeply analyzed. The topics of security by isolation,
applied machine learning and generative methods for intrusion detection systems
in the grid are analyzed based on previous approaches.

3.1 Security of E-Science Grid Computing

Grid computing has particular security requirements that make it different from
other computational and distributed systems. Several of these requirements shall
be mentioned, for instance, in [90], the areas of authentication, access control,
integrity, privacy, and non-repudiation are listed as general grid security require-
ments. A grid security policy is defined based on trust domains as logical and
administrative structures governed by a local security policy. A grid environment
is based on multiple trust domains with heterogeneous sets of users, resources
and local security policies. The interactions between domains are required to be
consistent with all affected local security policies. Subjects within a grid environ-
ment have global and local representation. They require a mapping between the
global and each local trust domain. While the authentication of a global subject
and its defined mapping to a local subject is required to be equivalent to the local
authentication of the respective local subject, access control occurs only at the local
level based on local subjects. The mutual authentication of interacting entities in
different trust domains is required. The processes may have delegated subsets of
user permissions to act on their behalf.

In [91], the security issues related to grid environments are defined as grid
user and account management, user behavior accountability and system usage
given the user provided code. In [92], the security topics concerning on-demand
grids with large numbers of unknown users are specified as secure application
deployment, worker node sandboxing, middleware separation, secure service
deployment, and secure workflow execution.

The authors of [93, 94] describe a security analysis concerning on-demand grid

42

3.1. SECURITY OF E-SCIENCE GRID COMPUTING 43

and cluster computing. They identify authentication, authorization, delegation,
confidentiality, secure communications, data availability and auditing as main
security challenges. The authors discuss a scenario with three types of players:
resource providers, solution producers, and users. Solution producers supply
software and data to their users and utilize the infrastructure of the resource
provider for user processing on demand. The use of the third-party code is
pointed out as a particular security issue in grid and cluster computing. The
authors differentiate between internal and external attackers, with emphasis on the
potential masquerading of external attackers, the use of a third-party code, as well
as the possible complicity of insiders and external attackers. Three levels of security
and trust requirements are defined for on-demand grid and cluster computing
environments. Users are always required to trust their solution producer, while
lateral or side-by-side operating users and solution producers require no mutual
trust, sharing infrastructure of the resource provider. On the first trust level, a
resource provider is required to trust the solution producers, concerning the non-
malicious use of their environment. Virtualization is presented as an approach to
solving this problem on the resource-provider-side.

The study published in [1] creates a taxonomy of grid computing security
issues. It establishes three fundamental categories: host level, architecture level,
and credential level. The first category is divide into data protection and job
starvation, the second one into information security, policy mapping and denial of
service. The authors assign different issues relating to the exposure of host systems
to data and program code from unknown or untrusted entities and individuals.
Virtualization and sandboxing mechanisms are presented as examples of potential
approaches to these issues.

A security analysis of an e-science grid infrastructure has been presented in [95],
[96], [97], and [98]. The authors define a generic e-science scenario based on the
ALICE distributed e-science grid and other e-science infrastructures. The security
characteristics and potential attack motives and targets are specified for this given
scenario. They have identified several vulnerabilities of the ALICE grid services,
especially relating to the deficiencies of unrestricted delegation based on X.509
proxy certificates. Alternative approaches to delegations and their capabilities
are proposed in their work. A new delegation framework, the mediated definite
delegation was presented. This framework is based on textual statements for both
task delegations and attestation of data authorship which are required to be signed
using public-key signatures. The framework and its mechanisms are integrated
into the defined e-science grid architecture.

The listed requirements, extracted from the previous studies, have a com-
mon trust problem. Users of the grid must be authenticated and have the right
permissions to access restricted resources, besides, the executed code in the com-
puting farms (sites) should be monitored to detect security incidents. In addition,
the monitoring information should be used for forensic analysis if a problem is
detected. This project aims to be a robust solution for the code execution trust
problem. The goal is to execute the users’ payloads in sandboxed environments
while monitoring the behavior of such payloads.

44 CHAPTER 3. STATE OF THE ART

3.2 Security by Isolation in Grid Computing

Security by isolation (SbI) is a critical requirement for the grid. The multi-user
environment and the external user’s freedom to run arbitrary code make SbI
a priority. Several related proposals have been made for the grid. The Java
virtual machine is employed in [99] as the runtime environment since, the Java’s
sandboxing mechanisms fit with security isolation requirements and enable fine-
grained access, security checks for all Java programs and configurable security
policy. This approach is useful only when a JVM supported language is utilized as
a base for the grid environment. Virtual machine (VM) hypervisors have frequently
been proposed to solve the isolation requirements in grid computing. According
to [100], virtualization tools are prevalent in the context of grid computing, given
their ability to run several operating systems on a single host and to provide a
confined execution environment.

In the context of ALICE, in [101] the authors show how cloud computing
resources can be used within the AliEn framework for performing simulation,
reconstruction, and analysis of physics data. They deployed a virtual software
appliance for the LHC experiments that were developed by the CernVM [102]
project. Virtualization tools are envisioned to execute as many VMs per host as
possible, in order to run as many grid jobs. This fact raises the concern of how
scalable such systems are, considering the performance issues of VMs.

Several researchers have proposed the use of Linux containers (LC) to provide
isolation between grid jobs and the underlying system and networks. Docker has
been the de facto Linux container solution since its release in March 2013 [103].
However, several containerization approaches have been proposed previously;
lightweight operating system virtualization techniques, such as Solaris Zones and
OpenVZ [104] are examples. CoreOS [105], an operating system focused on the
cloud, introduced rkt [106] as its competing solution against Docker, arguing that
Docker does not concentrate on building the best possible container runtime and
does not engage in the security problems as much as is required. LXD [107], from
Ubuntu, is another alternative for running containers; this provides a lightweight
approach for virtualizing a whole operating system. In addition, there is an
ongoing effort, called the open container initiative, that is attempting to bring all
solutions together by working on a container format specification and a runtime
implementation [108].

A noticeable issue to consider is that computing farms used in e-science need a
distributed management solution or orchestration system. Container technology
requires a management tool for executing applications in distributed environments.
Several tools have emerged to provide such a solution. Some of the most popular
are Kubernetes [109], Apache Mesos [110] and Docker swarm [77]. In ALICE,
Mesos has been deployed as a management system, described in [111]. OpenStack
[112], a traditional cloud computing solution, mainly focused on virtual machines,
has also been proposed to manage containers instead of common VMs. In [104], a
summary of the usage of Docker [77] as a container engine for distributed SaaS
environments, such as the cloud and the grid, is presented. The authors state
that Docker allows administrators to run composite applications in the cloud.

3.3. INTRUSION DETECTION AND PREVENTION 45

They claim that their integration components and tool enhancements are the most
comprehensive management suite available.

In [76] a performance comparison of several virtualization technologies, includ-
ing VMs and LCs, is presented. Container-based systems showed a near-native
performance of CPU, memory, disk and network utilization. In high-performance
computing (HPC) and high-throughput computing (HTC), optimizing the avail-
able system performance is a critical requirement. Linux containers help to reduce
the overall performance impact while providing the execution of sandboxed ap-
plications. The study in [113] analyzes LCs and VMs and finds similar results
regarding performance and scalability.

The authors of [114] describe a development of LCs that provide isolation in a
grid site at the ALICE High Level Trigger (HLT), a cluster that has physical access
to the LHC experiment and, therefore, has critical security constraints. The authors
create a set of requirements for distributed container factories. They explore the
usage of Apache Mesos [115] as a container orchestration tool. In [111], the same
authors present the experience of the ALICE experiment in the deployment and
use in production of the Apache Mesos ecosystem for several grid-related tasks,
using hybrid OpenStack over bare-metal resources.

This research is the first to explore on isolation mechanisms provided by Linux
containers in the grid, that can be combined with a security monitoring system
powered by deep learning (DL) algorithms. The information gathered via the LC
system monitoring is used to feed a DL-based intrusion prevention and detection
system. Linux containers provide isolation for grid jobs and, at the same time, can
obtain specific traceability information about individual job activities and their
measured behavior. These characteristics make this project different from those
previously explored in the grid security topic.

3.3 Intrusion Detection and Prevention

Relevant studies related to intrusion detection and prevention systems (IDPS)
are summarized in this section, including the machine learning methods used to
improve them and some of the features commonly utilized as input. How these
topics have been applied to e-science grid computing research will be reviewed.

In [82], an extensive review of intrusion detection systems is presented. Intru-
sion is defined in that review as the attempt to defeat the confidentiality, integrity,
and availability of valuable information. Intrusion detection is the act of monitor-
ing the events occurring in a computer system or network and analyzing them in
the search for signs of intrusions. The cited study presents several open source
technologies as the most used solutions for IDPS, for instance, SNORT [8] and
OSSEC [9]. False positive and false negative are frequently found metrics, utilized
to assess the degree of accuracy of such tools. Relevant features are the set of
audit trails (e.g., system logs or system commands) on a host, network packets or
connection traces, wireless network traffic and application logs.

The survey [17] makes a summary of the contributions of IDPS in the area
of cloud computing. It also describes various types of intrusions affecting the

46 CHAPTER 3. STATE OF THE ART

availability, confidentiality, and the integrity of the information in cloud resources
and services. They are similarly relevant to grid computing. The authors of that
survey claim that the most common attacks present in those environments are:

• Insider attack: authorized users may attempt to misuse acquired privileges.

• Denial of service: an attacker sends a massive amount of network data that
overpasses the hosts’ ability to respond to legitimate users.

• User to root attacks: the adversary steals valid user credentials or certificates
and then escalates privileges via system vulnerabilities.

• Port scanning: an intruder, previous to an attack acquires information about
network services on specific hosts.

• Attacks on virtual machines or hypervisor: this means to exploit vulnerabili-
ties in the virtualization software, which allows an attacker to overcome the
cloud isolation protection and access sensitive resources.

• Backdoor channel attacks: once a system is compromised, an intruder creates
a persistent means to access the affected system in multiple opportunities.

The authors of the mentioned survey also define the hypervisor-based intrusion
detection system. This IDPS runs at the hypervisor layer, allowing users to monitor
and analyze the communications among different VMs, between hypervisors and
VM and within the hypervisor-based virtual network. Therefore, incorporating an
IDPS on the VM allows monitoring the activity of the VM itself. The cloud user
should be held responsible for deploying, managing and monitoring IDPS on VMs.
Placing IDPS on the underlying hypervisor provides the ability to detect intrusion
activity, including communication between VMs on that hypervisor. However, a
significant amount of data collection reduces the performance of IDPS or causes
packet dropping. According to the authors, deploying, managing and monitoring
IDPS should be undertaken by the cloud provider.

Several machine learning (ML) approaches have been studied to improve
IDPS accuracy and to reduce false positives. ML methods have been traditionally
proposed for IDPS to automate the creation of attack signatures and patterns.
Common IDPS rules need to be manually created and updated by experts, based on
the new attack characteristics while they are discovered; ML offers the possibility
of automating this process and adapting to new threats. In [116], a review of the
state of the art of ML techniques applied to intrusion detection and prevention
is shown. The authors claim that the most commonly used techniques in this
area have been the k-nearest neighbor (k-NN), support vector machines (SVM),
artificial neural networks (ANN), self-organizing maps, decision trees, naïve
Bayes networks, genetic algorithms, and fuzzy logic. These methods are used as
single classifier approaches. For hybrid classifiers, i.e., by using several layers of
classifiers, neuro-fuzzy techniques and clustering-based approaches have been
used primarily for parameter tuning and classification. The single classifiers k-NN
and SVMs are very popular; the SVMs can be seen very often in this research

3.3. INTRUSION DETECTION AND PREVENTION 47

area. For hybrid approaches, it is common to implement an integrated framework,
where one method is used for feature selection, while another is employed for
classification. The KDD99 training dataset [117] is presented as the standard for
validation of ML models for IDPS.

In [118], an overview of the use of computational intelligence research on IDPS
is described. According to that review, the misuse detection approach is widely
adopted by the majority of commercial systems, because it is simple and effective,
however, it does have problems to detect new or targeted attacks. Anomaly detec-
tion, on the other hand, extracts patterns from the behavioral habits of users or
the usage history of networks and hosts. In the intrusion detection field, super-
vised learning usually produces classifiers for misuse detection from class-labeled
training datasets. Unsupervised learning is usually focused on anomaly detection
requirements. The authors of the survey present two standard validation bench-
marks, the DARPA-Lincoln datasets [119], and the KDD99 datasets [117] as the
most popular. According to their work, the most commonly used algorithms are
neural networks such as feed-forward neural networks, radial basis function neu-
ral networks, recurrent neural networks, support vector machines, self-organizing
maps, and adaptive resonance theory.

The authors of [17] describe several artificial intelligence related contributions
in IDPS for cloud computing. According to the authors, the objective of employing
ANNs for intrusion detection is to be able to generalize from incomplete data
and to classify as normal or intrusive according to the analyzed data. Common
ANNs used in IDPS are multi-layer feed-forward neural nets and multi-layer
perceptrons, with the backpropagation algorithm. Fuzzy logic is utilized for a
fuzzy description of intrusions; it allows researchers the flexibility to overcome the
uncertain problem of intrusion detection. SVMs are utilized to detect intrusions
based on limited sample data. They are useful where the dimensions of data
will not affect the accuracy. To select network features, or to determine optimal
parameters, genetic algorithms (GAs) are essential tools. GAs can be used in other
techniques for achieving optimization and improving the accuracy of IDPS. Finally,
a combination of these techniques can be utilized as the so-called hybrid methods.

3.3.1 Intrusion Detection and Prevention Systems for the Grid

Several studies describe the research made on intrusion detection systems that
cope with the requirements of grid computing. For instance, in [120], the authors
introduce the concept of having a grid-based IDPS, known as GIDS. They claim to
design the first intrusion detection system specific to the grid environment. Their
system main tasks are: auditing the Globus system and operating system files,
checking the log file for breaches, intrusion discovery by searching for anomalies,
signature matching, secure communication and monitoring all GIDS servers.

The study made in [121] proposes an architecture using homogeneously dis-
tributed intrusion detection servers by employing learning vector quantization
neural networks. In [122], the authors state that the existing grid IDPS architec-
tures lack protection against exploits and the typical computer host and network
attacks. They describe a distributed GIDS architecture that uses the grid comput-

48 CHAPTER 3. STATE OF THE ART

ing resources and covers some predefined intrusions. They re-utilize available
IDPS software via standard inter-IDS communication. The work in [123] describes
a grid-enabled system area networks trace analysis (SANTA-G), an instrument
monitoring framework. This utilizes a relational grid monitoring architecture,
helping to generate instrumented monitoring for grid-wide intrusion detection
systems.

The authors in [124] study how traditional host-based intrusion detection sys-
tems (HIDS) are suitable for the grid environment. They have found that grid
attacks are more complicated to catch via traditional HIDS since they cannot iden-
tify grid users and they have a performance overhead. Therefore, they present a
bottleneck verification approach for building a grid host-based intrusion detection
system (GHIDS). In [125], the authors argue that current network IDPS lack the
necessary flexibility needed by the grid environment and it can not dynamically
adjust themselves to the dynamic grid applications. They propose a multi-agent
approach for intrusion detection applied to the grid (MAIDG). In [126], the im-
plementation of a customizable IDPS by workflows is introduced. According to
the authors of that work, this approach allowed them to overcome the limitations
of IDPS that use “ad hoc” infrastructures without extensibility, adaptability, and
scalability. The research in [127] explains a model of intrusion detection, enti-
tled GIDIA; this is based on immunity and multi-agents methods. The authors
make a theoretical analysis and show results that their system has an improved
self-adaptability and detection rate.

In [128], a streaming database approach as an alternative for traditional log-
files or single host databases in IDPS for the grid, is introduced. This architecture
allowed the authors to process attack data in multiple sites, giving them perfor-
mance benefits in large-scale systems. They show two example attacks in a grid
environment and the resulting streaming detection logic. In [129], the authors
suggest that enforcing security in a distributed system requires more than user
authentication and confidentiality in data transmission, stating that the grid and
cloud computing IDPS should integrate knowledge and behavior analysis to de-
tect intrusions. They introduce a grid and cloud intrusion detection system called
GCCIDS; this, they claim, has an audit system designed to cover attacks that NIDS
and HIDS cannot detect. It also leverages knowledge and conducts an analysis.
The work in [130] introduces fault tolerance for grid IDPS. It adopts gossip algo-
rithms to correlate the information gathered from traditional high-level IDPS such
as Snort. Their IDPS functionality is mainly based on simple pattern matching.
In [131], a correlation mechanism for security alerts is proposed; this reduces
the number of alerts that administrators have to deal with while continuing the
detection of attacks in grid computing networks.

A comprehensive taxonomy of the latest IDPS and alarm techniques to detect
and prevent intrusions in cloud computing systems is made in [132]. The authors
define a set of challenges of IDPS development in distributed systems such as the
cloud computing environment. In contrast to traditional static environments, the
cloud requires the monitoring of virtual machines that are dynamically added
and removed. The cloud has several system security administrators, however,
this creates an adverse effect on intrusion response time. The authors of [132] also

3.3. INTRUSION DETECTION AND PREVENTION 49

state that most of the potential attacks come from insiders. Similar to the case of
grid computing, insider attackers already have the freedom to execute code in
the protected systems. The shared infrastructure and virtualization technology
make these systems more sensitive to security bugs. Any flaw in hypervisors
or containers exposes the platform to an adversary being able to overcome the
access and control measures. Virtual machine traffic on a virtual host platform
creates difficulties on the event visibility since the network interfaces may also be
virtualized. Finally, cloud service providers are not willing to provide the security
log, audit data and security practice details needed to increase the transparency
on security management practices such as auditing, security policies, logging,
vulnerability and incident response, thus, dismissing customer awareness. In
addition, tracking data across different platforms and access policies of different
service providers is a challenging task.

Some studies focus on machine learning theory for improving IDPS in grid
computing, for instance, [121] adopts learning vector quantization neural net-
works (LVQ). The authors describe how LVQ can learn the normal user behavior
via interactions with system resources and then it detects any deviation from
the normal conduct. These ideas are extended in [133], but adding distributed
processing and exploiting the grid resources.

In [134], a grid IDPS based on distributed intelligent agents and soft com-
puting (SCGIDS) is introduced. The authors use a hybrid approach, of a soft
computing-based self-organized map dimension reduction technique, a fuzzy
neural network, and a genetic algorithm. Detection of host and network attacks
with grid specific attacks and customer anomalies are integrated into [135]. For
this goal, a feedforward neural network is implemented. In [129], the authors
test a user behavior-based technique via artificial intelligence by a feed-forward
neural network. In a simulation environment, they set up a test with five intruders
and five legitimate users in order the measure the effectiveness of the network.
Autoimmune systems and multi-agents with a defined hierarchical architecture
are applied in [127]. MINDS (Minnesota intrusion detection system), a tool that
uses data mining to identify both known and unknown network intrusions, is
described in [136]. MINDS was initially designed to be centralized; the authors
developed a distributed model of MINDS via grid technologies, achieving the
distribution of services. In this approach, the researchers are not protecting the
grid but are using its features to increase the capabilities of their developed system.

A real-world scenario on Microsoft Azure is described in [137]. The authors
list a set of challenges they had to face on setting up a machine learning-based
security detection in a continuously evolving cloud environment. They argue
that ML algorithms and models present results that are difficult to analyze when
investigating security incidents in the cloud. They suggest using knowledge-
based rules to help to interpret the results and to reduce the total amount of false
positives which waste the time of the security analysts. Those rules, similar to
the ones used in traditional IDPS, can be located before, during or after the actual
detection process by the ML models.

In [138], the concept of a security operation center (SOC) is defined to over-
come the limitations of simple IDPS. According to the authors, traditional IDPS

50 CHAPTER 3. STATE OF THE ART

are unable to give a global view of the security of a network. Furthermore, a
distributed security operation center (DSOC) [139] is proposed. DSOC can detect
simultaneous attacks on several sites in a network, providing a global view of the
security state. It overcomes the limitation of the SOC and shows better stability in
multi-site networks by detecting distributed denial of service attacks. However,
according to [131], the DSOC does not give reliable results when deployed in
multi-administrative and grid networks.

The WLCG security operations centre (WLGC SOC) working group has re-
cently been stablished [140], defining the security monitoring architecture for the
LHC grid. Security monitoring is an essential topic for sites in the Worldwide LHC
Computing Grid. This group is analyzing the set of tools available for monitoring
the security status of the virtual organizations (VOs) related to CERN. The WLCG
SOC is mainly interested in the type of analytics that big data methods provide;
their goal is the integration of these tools into an SOC. The open source project
Apache Metron [141] is described as an increasingly popular example of one inte-
gration tool that implements the SOC requirements. The use of these platforms
could be critical for security in modern grid and cloud sites across every scientific
discipline. In addition, the WLCG SOC describes threat intelligence sharing plat-
forms as a fundamental component to build trust among the grid community. The
group’s [140] long-term goal is to develop a scalable SOC reference design. They
have started by working on the deployment of MISP [142] (threat intelligence
sharing) and the Bro intrusion detection system [7] in several WLCG sites as SOC
components.

No previous approach to intrusion detection and prevention in grid computing
utilizes deep learning techniques. DL allows researchers to process and extract
insights from the vast and dynamic real-time streams of data produced by a grid’s
payload. There is no study employing generative methods to improve training
datasets in IDPS studies. Recurrent neural networks are used in this research for
augmenting the available training samples.

3.3.2 Feature Selection for Intrusion Detection

Selecting relevant inputs (information sources) for intrusion detection has a signif-
icant impact on the ability to find security incidents. These inputs are the set of
measurements taken from the monitored system that is utilized to determine the
current security status. Based on such features, a validation benchmark dataset
has to be collected. It allows researchers to validate the effectiveness of the devel-
oped detection methods. A training and validation dataset for ML algorithms is
required as well.

Many metrics and datasets have been suggested and studied in the security
community for IDPS research. For instance, a survey on the data mining methods
used in IDPS is made in [143]. The authors show that 42% of their analyzed papers
use the KDD99 cup dataset [117]. This dataset was introduced in the third interna-
tional knowledge discovery and data mining tools competition. The competition
goal was to build a network intrusion detector based on a predictive model for
classification between bad connections, called intrusions or attacks, and good or

3.3. INTRUSION DETECTION AND PREVENTION 51

regular connections. This data comprises a standard set of samples to be audited,
which includes a wide variety of intrusions simulated in a military network envi-
ronment. According to the authors of [143], 20% of the studies analyzed by them
use the DARPA dataset, and 38% of the studies utilize other datasets. They com-
pare the effectiveness of their proposed methods for misuse detection, anomaly
detection or both by employing such datasets. The DARPA dataset benchmark for
intrusion detection [144] is composed of network traffic and audit logs collected
on a simulation network made by the defense advanced research projects agency
in an artificially created network by MIT Lincoln Laboratory.

In [145], a description of a systematic approach to create IDPS datasets is
shown. The authors use this approach to develop their own database [146]. In
that research the authors describe other important databases, like CAIDA [147],
PREDICT [148], The Internet traffic archive [149], LBNL traces [150] and DEFCON
[151].

Grid IDPS Related Data Sets

According to [137], the last relevant dataset for intrusion detection is the KDD99
[117] of network intrusions derived from the DARPA’s one in the MIT Lincoln
Laboratory. For the cloud, there are no standard benchmarks. The same can be
stated for grid computing. The authors of the mentioned study claim that such
benchmarks may not exist given the following issues:

• Emulating a realistic test environment with artificially created attacks is
difficult. The resulting data set would represent only a static scenario. This
characteristic is problematic for a cloud-based or grid system, where virtual-
ized payloads are created and deleted all the time dynamically.

• Real world attacks leave few traces of information in the relevant logs, that
can be used to create a training dataset.

• Benchmark datasets for ML such as MNIST [152] for handwritten character
recognition can represent an essential part of the instance space. In op-
position to this, for IDPS the obtained data for training is assumed to be
incomplete since it is difficult to know certainly all possible forms of security
incidents.

• Transferring log data from one organization to another is less effective than
in other domain problems because security incidents are usually context
specific.

• There is no incentive for a compromised cloud organization to share their
raw logs to the public since it could generate further negative exposition.

As a conclusion of these restrictions, cloud security data scientists normally
should create their baseline datasets. This same argument is valid for the grid. A
review in the literature shows that there are not available benchmark data sets for
ML-based IDPS training in grid computing. However, several studies describe

52 CHAPTER 3. STATE OF THE ART

their custom utilized data and metrics. For instance, [120] audit Globus logs and
operating system files. It also checks application log files. In [121], the researchers
employed data of one or more log files from system users. The work in [124]
uses an operating system kernel module. It explains a method called bottleneck
verification by integer comparison by gathering system calls.

In [135], the feature measurements are extracted from audit data of low-level
IDPS. To identify misuse committed by grid users, GIDS must analyze their
behavior, and that is done with resource usage data like CPU time and memory
consumption. The authors gather audit data from HIDS, also extracting operating
system (OS) data through the grid middleware and the syslog protocol. In the
implementation level, they use OSSEC-HIDS and Snort. The authors of [128] use
log-files, packet header information such as IP, port, and packets per time window.
The study in [130] uses Snort alerts as the input metrics. The intrusion detection
exchange protocol (IDXP) is employed for such a task.

The usage of user-level data is proposed in [127]: user ID, role, type and
quantity of resources being consumed. They also use system-level data: CPU
usage rate, state of main and the secondary memory and attributes of system
files. The identification, type, priority, and status of processes and the states of
CPU when they are running are organized into process-level data. IP address
and port number of source and destination, type of protocol, flags are grouped
into network-level data. The authors of [134] state that many intrusion detection
schemes based on system calls have been developed in recent years. In that paper,
the extracted features are system calls (ID, return value, return status), process data
(ID, IPC ID, IPC permission, exit value, exit status) and file access (mode, path,
file system, file name, argument length). The extracted information is normalized
between 0 and 1 for the input of a SOM. The work in [133] describes a method
using generated log files as host-based intrusion detection.

No standard or recommended dataset for machine learning model evaluation
in grid computing for the training of IDPS was found. Therefore, a testing grid
site was set up, and a series of tools have been used and implemented to collect a
custom set of samples to form a training dataset. This set was collected from the
ALICE production grid and a big group of Linux malware. More details about this
dataset will be given in the following chapters.

3.4 ML Based Malware Detection

This study focuses on the detection of intrusions that come from the grid jobs.
Therefore, a look at the methods used to detect malicious software, such as the
detection of malware, is taken here. Some previous approaches such as [153, 154]
explore machine learning for malware classification, using system calls as main
features for their classifier. In [155], the usage of deep learning for static analysis
of malware samples for classification is introduced. However, similar approaches
to the grid’s specific security requirements were not found. We have found
inspiration in the works of [15] for English sentences classification, which was
utilized in [155] for static binary file classification according to their x86 machine

3.5. SUMMARY 53

code instructions.
The recent efforts on the research of malware detection have been put on

mobile platforms such as Android. An ML-based method that utilizes 200 features
extracted from both static analysis and dynamic analysis of Android apps for
malware detection is proposed in [156]. The authors of that research employ a
deep belief network (DBN) for the first unsupervised pre-training step. Then
in a back-propagation step, the pre-trained neural networks are fine-tuned with
labeled values in a supervised method. A cloud-based Android malware analysis
service is described in [157]. The authors have created an artificial neural network
based malware detection module. It analyzes the application permissions to
detect unknown malware. The study in [158] states that the usage of deep neural
networks for malware detection has shown promising results, however, deep
neural networks are vulnerable to adversarial samples. They propose an adversary
resistant method by blocking an attacker’s ability to build relevant adversarial
samples by randomly nullifying features within samples.

3.4.1 Intrusion Data Generation

Finally, the topic of automatic training data generation is explored. The main
motivation is that collecting realistic and relevant benchmark dataset for IDPS is a
difficult task. A set of reasons for it have been listed in section 3.3.2. This problem
means that the available data may be insufficient in some cases. However, there
are deep learning methods that could provide a solution to the lack of good quality
data. A particular class of DL algorithms allows researchers to create simulated
training data based on the probability distribution of the actual available data.
This new data can be used as extra training data to extend the generalization
capabilities of a classification system [155].

Recent developments in generative adversarial networks (GANs) suggest they
are an exciting approach for increasing attack datasets. [159] and [160] show that
generative adversarial networks can produce adversarial malware examples that
can deceive an IDPS. In [137], the authors suggest that these same techniques can
be used to synthesize attack data for improving evaluation of ML models. There
are however two described drawbacks: the initial dataset must be sufficiently large,
and researchers have found that GANs are particularly challenging to train. The
first requirement is more accessible to overcome in the case of malware analysis.
It is more problematic for generating examples of insider attacks for intrusion
detection. However, no work going beyond this speculation was found, actually
utilizing neural networks to improve the training set for an IDPS ML-based system.
There are no previous studies that propose the usage of generative methods to
synthesize attack data for improving evaluation of ML models.

3.5 Summary

In this chapter, the related work that is relevant to comprehend the context of the
proposed contributions was explored. An analysis of the security requirements

54 CHAPTER 3. STATE OF THE ART

of the grid environment has been made. The distributed, multi-federated nature
of this kind of system creates special requirements that need custom security
solutions. Even though traditional intrusion detection and prevention systems
have been applied to grid computing, the previous analyzed studies do not comply
with all the security requirements.

Trusting arbitrary third-party software is one of those issues. Users can run
code and upload any data. This situation needs a sandboxing mechanism to protect
the participant computer centers. Another challenge is the forensic and monitoring
traceability of the jobs. Traceability means in this scenario, the activities that a job
performs that allow the administrators to detect undesired behavior but also the
forensic data collected when a malicious process is observed. Virtual machines
have frequently been suggested to overcome the code trust problem. VMs provide
a reliable processes separation by machine level emulation. However, Linux
containers provide a set of features, mainly related to application performance and
resource usage, that make them more suitable to be used in the grid to provide a
trusted execution environment as sandboxing tool.

Regarding the issue of job traceability and security monitoring, several machine
learning based methods have been proposed to improve the accuracy of grid IDPS.
The advantage of using ML methods instead of the standard rule-based IDPS is
that ML can be dynamically and automatically adapted to novel threats. Support
vector machines and artificial neural networks are two very commonly used
algorithms for ML-based intrusion detection. According to the state of the art
review, the most used metrics on IDPS research are the feature space in the KDD99
dataset and the OS system calls. In the case of the grid, some features such as
network trace data have frequently been employed.

Chapter 4

The Design of Arhuaco

The grid systems have dynamical environments where user-controlled applica-
tions cannot be seen and analyzed statically. The application execution life cycle
depends on the users, and therefore the behavior is unpredictable. Users can run
arbitrary processes inside the collaborating computing infrastructure. Executing
user processes in a sandboxed space is a requirement to keep the systems safe.
Monitoring the jobs behavior is required to detect malicious activities. In this
chapter, proposed architecture to improve the grid security is described. The
usage of security by isolation (SbI) for process sandboxing and enabling security
monitoring properties via Linux containers is introduced. Deep learning (DL) is
employed to analyze the collected real-time monitoring data from running grid
jobs. An approach of hybrid supervised classification is defined, using word2vec
[13] for feature selection and preprocessing of text like input data extracted from
the system call and network traces from the jobs. The model proposed for clas-
sification of jobs is the convolutional neural network (CNN). The utilization of a
generative method to enhance the training data is also provided. Recurrent neural
networks (RNNs) are suggested for the generation and simulation of unseen train-
ing data that complements a collected dataset. A benchmark dataset for intrusion
and malware detection in the grid was created.

Arhuaco, the proof-of-concept implementation of the described ideas, is in-
troduced. Arhuaco is designed with a focus on the security of e-science grid
computing, but it can be useful to a broader range of application such as microser-
vices in cloud computing. The discussion starts with the definition of the threat
model for e-science computing grid.

4.1 Grid Threat Model

A threat model is used to specify a set of security requirements and their scope.
The goal of threat modeling is the optimization of system security efforts by
identifying objectives and vulnerabilities of a specific system. Hence, a set of
countermeasures to prevent or mitigate the effects of threats can be defined [161].
A threat is a potential situation arising from a malicious agent that inflicts harm or
loss to a defined system asset. Threats are often combined, and the exploitation of

55

56 CHAPTER 4. THE DESIGN OF ARHUACO

one of them might increase the probability or impact of others [27]. The assets and
security risks associated with an e-science virtual organization (VO) are described
in the following section. The list of assets defined in a Worldwide LHC Computing
Grid (WLCG) risk assessment document [162] is used as a starting point.

4.1.1 Security Risks Associated to E-Science Infrastructure

Risk management helps a project or organization to evaluate the threats that
could affect them and to prioritize efforts to manage these risks. An asset is
a valuable object, quality or resource of an organization, in this case of a grid
collaboration [27]. Assets define what the organization should protect, the security
policies, procedures, and the required controls. Any measure should be evaluated
according to the level of protection it provides for the assets. The following is the
list of assets that are important for grid systems such as the WLCG [162].

• Collaborating participants trust: the trust between the VO participants,
collaborating infrastructures, external partners and funding agencies that
should be encouraged and maintained.

• Reputation: the opinion of the general public, funding agencies and partici-
pants about the VO collaboration safety.

• Intellectual property: copyright material and the results of scientific work
developed on the VO resources.

• Data protection: the sensitive data collected, stored and processed by the
VO resource, for instance, personal information of the users.

• Digital identities: credentials and attributes that allow the VO to authenti-
cate and authorize the users and services.

• System resources: the physical or virtual components that enable services
to perform calculations, for instance, the worker nodes (WNs).

• Storage resources: the physical or virtual components that are utilized by
services to store experimental data.

• Network resources: network components that allow the VO participants to
cooperate and users to access VO resources.

• Services: the computing or software systems, that give access to information
or control tangible assets. Some examples are the services necessary to the
usage, support, operation and monitoring of the infrastructure.

• Data integrity: the scientific data stored on VO resources that should be
protected against on-purpose modification or corruption.

In the following section, a set of general security characteristics to be considered
when modeling grid safety requirements and the solutions for such conditions is
defined.

4.1. GRID THREAT MODEL 57

4.1.2 Security Characteristics

Participant entities of the grid have to communicate via an insecure public en-
vironment. The Internet as a public network infrastructure or other shared and
uncontrolled networks determine the connection of distributed systems and ser-
vices within a grid. The control and administration of site infrastructure and
the scheduling decisions are made at the site level, and a site is free to share its
facilities with other parties and collaborations. Sites are resource providers that
control their infrastructure given their physical and administrative access. The
provision and sharing of resources depend on site decisions as a provider, and it
is only regulated with the use of service level agreements. Disruption with other
consumers must be taken into consideration. A grid supplies users with access to
sites and WNs with a software as a service (SaaS) or platform as a service (PaaS)
layer. Users are allowed to submit and execute arbitrary program code and data.
The payload sent to WNs is assumed to be free to connect to arbitrary locations via
private, shared or public networks, such as the Internet, for instance, to download
data or program code during the execution sequence. Users are assumed to be
enforced only by a policy to utilize the infrastructure for the approved and valid
research.

A user can utilize the grid client interfaces to connect to the grid layer from any
personal computing device, even though the integrity and security of such devices
cannot be assured. A VO does not have control over grid client environments.
The control of the users over their computing systems is granted. Given that
VOs are based on an international collaboration of different organizations and
institutions, the relations between entities must be respected. A grid represents a
conjunction or intersection of independent organizations or institutions as legal
entities in different countries or states. Therefore, legal concerns, like liability or
due diligence, apply not only within the grid as such but also mutually between
each of the interacting entities.

Frequently, jobs running in the WNs have more access rights than is required,
sometimes they are restricted only by a local user account [63]. If all the jobs
are executed with the same local account, an attacker can tamper with another
users’ jobs. Usually, the processes that spawn from the execution of a job have
access to sensitive server data, for instance, to the list of users in /etc/passwd,
that can give the adversary vital information to extend an attack and make it
persistent for further accesses. Figure 4.1 shows a diagram of a conventional grid
execution environment with no isolation among several users. Sometimes all the
grid users are mapped to local machine user accounts. This mapping would allow
an adversary to compromise the system and attribute the intrusion to other users.
Even the pilot job, the process that executes other user jobs, is exposed in this
scenario. This kind of setup does not permit to comply with the traceability and
secure isolation requirements of the grid.

A threat model should consider not only the requirements of a system but also
the attackers that may be interested in that system and their motivations.

58 CHAPTER 4. THE DESIGN OF ARHUACO

Bob's grid
job

Alice's grid
job

Pilot
job

Worker node

Eve's grid
Job

Figure 4.1: In typical and unsafe grid environments, Eve’s (an adversary) grid
jobs can access Bob’s and Alice’s jobs to make them attack the infrastructure
without leaving any trace. Malicious grid jobs may directly compromise the
physical systems and networks.

4.1.3 Attacker Motivation

An adversary is defined as the individual that executes non-authorized actions to
increase his assigned authorization and privileges, with the objective of abusing
system resources or information [163, 164]. In the grid, an adversary might have
goals such as the following:

• Steal critical information like private encryption keys, users’ certificates or
access cryptographic tokens.

• Compromise users’ machines to distribute rogue software, viruses or steal
private user information.

• Carry out a denial of service (DoS) attacks with other organizations as targets
or even the current running computing center.

• Abuse the grid resources for criminal or not allowed activities, for instance,
to deploy botnets or mine crypto-coins.

• Induce damage to an organization’s reputation by using resources to attack
other entities or merely exposing the weakness of its protection measures.

In general, the potential motives of attackers to compromise targets related
to the grid should consider the relationships among multiple entities, the shared

4.1. GRID THREAT MODEL 59

infrastructure and the interconnections with other parties. This consideration
has, for instance, an impact on the distinction of insider and outsider attackers,
due to the overlap of system layers in the grid. Next, an approach for discerning
the possible view of adversaries, attack motives and targets in grid computing is
given:

• An attacker may target the primary purpose of a VO. The threat might be
intended as an interference with the daily operations. This motivation has
the VO as the principal objective. Some examples are attempts to delete,
alter or produce false data or obtain read access, with the goal of damaging,
influencing services or manipulating a data taking process.

• An attack that alters a VO but does not directly points at the primary purpose
of it can be defined as an attack with a secondary target. It can be the attempt
to hinder VO members from doing their tasks or potential utilization of
the system as an interface or intermediary entity to access infrastructure or
operations of sites or other VOs via a WN.

• Any other motivation, for instance, demanding for ransom, vandalism or
exploitation of the grid infrastructure for any different objective is an attack
with the system as a target. Some examples of this case are the incorporation
of WNs as tools for attacks on any third parties via the Internet. Another
may be just the desire for destruction.

Finally, to achieve the mentioned potential objectives, an adversary may per-
form several actions. Generally, an adversary may exploit the vulnerabilities in the
security design, implementation or in the social interactions of the organization
that is targeting. Following some of the methods an attacker may carry out are
mentioned:

• Steal valid user certificates to access the grid and then execute malicious
code inside the grid infrastructure.

• Exploit unknown or known but unfixed vulnerabilities in the software or
hardware of the grid services.

• Listen to users’ network traffic to gather sensitive clear text information.

• Perform a man-in-the-middle attack.

• Tamper with other user jobs.

• Escalate the authorized privileges to gain further access to sensitive and
forbidden components.

• Access sensitive server configuration data as a source of information for
advanced threats.

The defined threat model gives a set of guidelines to design and build a solution
fulfilling the grid security requirements. In the following section, the design
decisions and contributions that the architecture grants are described.

60 CHAPTER 4. THE DESIGN OF ARHUACO

4.2 The Arhuaco Architecture

Given the described conditions that define the grid security constraints, there is a
fundamental property that needs to be introduced. Measuring the impact of secu-
rity incidents on grid infrastructures like the WLCG involves finding the degree of
compromise that an attack has generated. The level of traceability implemented on
the affected services and resources is critical for this to be successful. Traceability
is defined as the ability to correlate the identifiable entities in a security-related
episode, chronologically. It enables the security teams to identify the cause, the
timeline, and the consequences of a safety event. Most occurrences whose origin
could not be determined are probably occurring again in the future. Traceability is
key to incident response, and a sufficient level of traceability is essential to protect
systems such as the WLCG against cyber-attacks. An example of a traceability
measure are the system logs, where relevant events with the specific timestamp
are registered. Another fundamental property required in the context of grid
computing is security isolation. The isolation refers to the separation of untrusted
user software from sensitive system resources and other users’ applications.

According to the defined threat model, an architecture for the isolation and
security monitoring of the grid job payload activities is proposed and designed
in this project. This architecture covers the sandboxing of untrusted third-party
code and data, the safety monitoring and the traceability of users’ jobs. It includes
the analysis and classification of the monitoring data by deep learning. Arhuaco,
the proof-of-concept implementation of the ideas proposed in this thesis, was
created as a host-based intrusion detection and prevention system (IDPS) for grid
computing. In this section, the high-level decisions for the proposed architecture
are described.

To give an initial context of how Arhuaco could be integrated with the WLCG
security context, the WLCG security operation center (SOC) is described. Inspired
by the CERN SOC architecture [140], the WLCG is in the process of defining a
common distributed SOC for the participating institutes in the LHC grid oper-
ations. Figure 4.2 shows the current schema of the CERN SOC. It extends the
concept of IDPS by the inclusion of a big data infrastructure and the collection
of information from multiple and heterogeneous sources. The collected data is
stored and analyzed by libraries such as Spark [165], that provide distributed
big data analytics. The SOC gathers and shares threat information throughout a
malware information sharing platform (MISP). This platform allows researchers
to exchange information between organizations related to the threats they have to
face and investigate. The CERN SOC itself can share its analyses. This architecture
is integrated with a security information and event management system (SIEM),
which is a module that manages information (such as alerts) that comes out of the
SOC and presents it to the final user, e.g., the system administrator.

The sources of data of the described SOC are inputs that give information
about the state of the system. Some examples are IDPS, system logs, weblogs,
network connections. The sources of information are those that give a context
about the sources of data such as DNS and DHCP servers, that give identification
information of different nodes in the network. A variety of options can manage the

4.2. THE ARHUACO ARCHITECTURE 61

Sources of data

Sources of
information

Malware
information

sharing platform
(MISP)

Spark

Flume Flume

Kafka

SIEM

Storage

Figure 4.2: The architecture of the CERN security operation center. Based on
[140].

storage of detected events, historical information, and forensic data in centralized
and persistent repositories for further analysis. Some examples are HDFS [166]
long-term storage, Elasticsearch [167] and Kibana [168].

Arhuaco can be integrated into the described SOC architecture. It can be uti-
lized as an additional source of information, i.e., an IDPS. Another option is that
it can be a security module for big data processing and analysis. Alternatively, it
can be seen as a response engine, performing preconfigured activities on detected
security incidents. Initially, the proposed approach has been designed to be de-
ployed locally in the WNs as a standalone endpoint detection and prevention tool.
Figure 4.3 illustrates the intended Arhuaco distributed deployment architecture in
a grid site.

The proposed architecture is divided into several components with special-
ized functionality. The execution component provides an interface with container
scheduling engines such as Docker. The grid jobs are executed inside Linux con-
tainers on the WNs. The necessary communication between jobs with external
networks is made via virtual networks. The executed containers are monitored, ex-
tracting real-time data for analysis. The data is transformed via a feature extraction
mechanism inspired by natural language processing (NLP). The obtained prepro-
cessed input feature vectors are forwarded to the classification and generative
components that form the analysis module. The response engine executes actions
on suspicious events. These actions can be configured with a set of predefined
alternatives, such as sending alerts to administrators, stopping offending jobs, or
collecting information for off-line forensic analysis.

Figure 4.4 shows a diagram of the architectured use cases. The users that will

62 CHAPTER 4. THE DESIGN OF ARHUACO

Pilot
job

Container

Worker node

Pilot
job

Eve's grid
job

Worker node

Grid job

Arhuaco

Source
interface 1
(Sysdig)

Source
interface 2
(Bro)

Monitoring

Classification Generation

Response
 engine

 Feature
extraction

Worker node

Container

VoBOX

Execution
engine
interface

Distributed
container
engine

Pilot
job

Container

Grid job

Administrator
workstation

Figure 4.3: A schema of the proposed architecture implemented in Arhuaco: it
collects information from the sandboxed grid jobs running in a grid site. The
collection and analysis of the data can be done locally in the worker nodes or in
a centralized node, such as the VoBox. The system administrator can check the
safety state of the system, receive alerts and, configure parameters and response
options.

mostly interact with the system are system administrators and security profession-
als. Administrators will be able to provide configuration parameters, be informed
about the current system security health and receive alerts when suspicious inci-
dents happen. Security researchers will be able to review, update and improve the
machine learning models. They will also analyze the collected information from
the grid jobs to deduce if the system is missing relevant events. The worker nodes
are the source of information about the jobs activities and the target for predefined
responses. Grid users indirectly interact with the system when they submit jobs to
be scheduled for execution in a monitored farm.

In the Arhuaco architecture, the proposed feature extraction mechanism is the
word2vec algorithm [13]. These features are the input for the analysis component.
The analysis component is composed of a CNN as the classifier and an RNN for
language modeling and training data simulation.

Two main approaches are available to collect data from grid jobs for the task
of classification. The first option is to extract static information from the files that
are part of the job such as scripts and binaries. Many IDPS and antivirus systems
look for attack signatures statically via file information, such as binary headers
or executable sections. This functionality is often ineffective since the content of
the files can be encrypted, obfuscated, encoded by polymorphic code methods

4.2. THE ARHUACO ARCHITECTURE 63

Receive configuration options

Administrator

Monitor security incidents

Send grid job behavior data

Worker node

Execute automated responses

<<include>>

<<include>>

Train and update ML models

Security researcher

Collect data for models

<<include>>

Run sandboxed payload

Grid user

<<include>>

Figure 4.4: Diagram of the Arhuaco use cases: it shows the interaction of possible
actors with the proposed architecture.

or a combination of these techniques. Hence, the processes coming from these
binaries might only be thoroughly analyzed when they are running, the relevant
sections of the executable are available, and their behavior can be understood.
The second approach is collecting information from the jobs on execution, which
means, measuring specific metrics while they perform their intended activities.
This option is called dynamic analysis. Applying dynamic analysis enables the
administrators to be alerted about incidents as soon as they are detected in near
real-time. It increases the ability of the security crew to defend their systems
in an agile manner, something fundamental in a distributed and sophisticated
environment with a hundred thousand nodes to be controlled. Dynamic job
payload analysis was chosen for the detection of malicious activities in the grid.
Arhuaco monitors the processes that are spawned from the job execution, collects
relevant information and searches for intrusion patterns in the received data.

In the next sections, a detailed description of the components of the proposed
architecture for improved security in grid computing is given. This description is
started with the isolation approach.

64 CHAPTER 4. THE DESIGN OF ARHUACO

4.3 Security by Isolation using Linux Containers

The first component of the proposed architecture enables grid jobs to be executed
in a sandboxed execution environment by a SbI approach. Linux containers (LCs)
are selected in this thesis as SbI provider in the grid environment. They permit
equilibrated security vs. performance balance. LCs are suitable to be utilized
in high-performance computing (HPC) and high-throughput computing (HTC)
scenarios. Besides, a technology easily adaptable in the Linux powered grid
computing for high energy physics (HEP) environment is convenient.

Figure 4.5 is a schema of the desired isolation characteristics in the proposed
architecture. The advantage of LCs to provide secure isolation for grid jobs is
utilized. This isolation protects the system from the jobs running over it, but also
the other user’s jobs that are simultaneously being executed in the same hosts are
sandboxed. The architecture provides a safeguard for the pilot job as well.

Bob's grid
job

Alice's grid
job

Pilot
job Bob's grid

job
Alice's grid

job

Pilot
job

Pilot
job

Container Container

Worker node

Eve's grid
job

Pilot
job

Container

Eve's grid
job

Worker node

Virtual network

Figure 4.5: In the left, the previously described insecure scenario with adversary
Eve having the freedom to compromise the components of the system. In the
right, isolation via Linux containers is introduced. In this new scenario, grid jobs
are constrained to a sandboxed environment where their behavior can be traced
and analyzed to detect intrusion attempts automatically.

An LC is a Linux kernel feature that grants developers the ability to group a set
of processes running independently from other processes in the same operating
system (OS) while having a unique vision of the entire system [76]. This group
of processes coexists isolated from the rest of the machine and by design cannot
affect the physical host or other containers. LCs utilize namespaces to have a
private view of the shared system. Subsystems such as network interfaces, PID
tree or mount points appear to be unique for a container. The security level that
this isolation can provide depends on the Linux kernel and the container engine
security. Exploitable vulnerabilities allowing a malicious process to overcome the
security controls are still a possibility which also affect other technologies such as
virtual machines (VMs).

Linux resources can be shared and limited between groups of processes via

4.3. SECURITY BY ISOLATION USING LINUX CONTAINERS 65

the usage of cgroups. Containers have emerged as an extension to the virtual
memory space concept. Not only the processes appear to have a full space of
memory for them, but also they see other subsystems such as the file system and
the network interfaces in isolation. LCs have a set of characteristics that provides
several significant advantages over other virtualization technologies such as VMs
[77]:

• LCs are lightweight in memory consumption. There is no need to load a full
hypervisor or machine emulator to execute an entire OS.

• Containers are fast on booting; there is no need for executing full system
boot steps. Containers run on top of the already working kernel.

• They have a small memory footprint since no other kernel has to be loaded,
only the memory of the group of isolated processes is necessary.

• The processing performance using LCs is close to the bare-metal perfor-
mance since no instruction, nor machine emulation is needed. The container
instructions are executed as userland processes on top of the current kernel.

In Figure 4.6, a set of containers running together, isolated and sharing the
same kernel are shown. The opposite case can be found in the VMs that have
several kernels on top of a single hypervisor. LCs have seen a considerable increase
in their usage in microservice and cloud computing providers because of their
performance-related advantages [169].

Memory
manager

cgroups

System
RAM

CPU

System Call Interface (SCI)

StorageHardware

Linux kernel

systemd
PID1

Render
Nodes &

 DRM

GPU

Process
scheduler

Graphics
RAM

Display
controller

KMS

systemd logind journald

Virtual File
System

Network

networkd
user

session

systemd-nspawn

Network
interface

Container Container Container/
/boot
/dev
/etc
/kernfs
/home
/media
/opt
/proc
/run
/srv
/sys
/usr
/var

e
x
c
lu

s
iv

e

/
/boot
/dev
/etc
/kernfs
/home
/media
/mnt
/opt
/proc
/root
/run
/srv
/sys
/usr
/var

D-Bus
daemon

IPC

MariaDB

/
/boot
/dev
/etc
/kernfs
/home
/media
/opt
/proc
/run
/srv
/sys
/usr
/var

/
/boot
/dev
/etc
/kernfs
/home
/media
/opt
/proc
/run
/srv
/sys
/usr
/var

PulseAudio
daemon

s
o
u

n
d

Apache

PHP

Squid

Cherokee

Perl

rrdTool

Lighttpd

Python

Nagios

DrizzleMySQL

Figure 4.6: The traditional architecture of Linux containers: a group of processes
runs confined, with a different self-view of the system, while they share the same
kernel. [78].

66 CHAPTER 4. THE DESIGN OF ARHUACO

Some container engines, for instance, Docker [77], provide not only in-host
process isolation but they implement additional network isolation. This network
isolation makes it possible to create virtual networks on top of a physical or another
virtual networks. Docker also contributes with a readily applicable encryption
setup for these environments. This network isolation is useful to restrict processes
running inside computer farms from accessing sensitive assets in the current
network or others. This feature is crucial for protecting grid computing sites,
which may share resources and physical infrastructure with other projects or
experiments. A real-world example of the need for network isolation is in the
ALICE High Level Trigger (HLT) cluster [24] which currently hosts an ALICE grid
site. The cluster’s resources are shared with third party grid jobs that may have
access to the sensitive LHC experiment network [170]. Virtual network isolation is
utilized in this case to avoid threats over such sensitive network.

Docker enables developers to assemble several types of virtual networks easily.
One of them, the overlay network, provides out-of-the-box traffic encryption
and network isolation. Figure 4.7 offers a visualization of the Docker overlay
network. Docker Engine version 1.12 (the utilized version) introduced several
features including encryption and service load balancing. Besides, other container
engine solutions and kernel hardening methods have been investigated to explore
further isolation improvements.

Worker node

Container

Worker node

Pilot
job

Container

Grid job
Container

Pilot
job

Container

Grid job

Physical network

eth0
192.168.1.1

Overlay network

veth veth

Docker_gwbridge

veth veth

Docker_gwbridge

eth0
192.168.1.2

eth0
10.0.0.2

eth1
172.18.1.2

eth1
172.18.1.1

eth0
10.0.0.1

Figure 4.7: A sample of the Docker swarm overlay network on top of a physical
network.

The Docker engine handles the native virtual extensible LAN (VXLAN) fea-
tures from the Linux kernel to create overlay networks. VXLAN is documented
by the IETF in RFC 7348 [171]. VXLAN is a network virtualization technology
created to address the scalability problems associated with large cloud computing

4.3. SECURITY BY ISOLATION USING LINUX CONTAINERS 67

deployments, and it fits naturally in the grid environment. This network type
is entirely operated at kernel space. It has been a part of the Linux kernel since
version 3.7.

The Docker binary distributions are called images. These images are OS struc-
tures that can be run over a different host OS, although normally with a compati-
ble running kernel. They are built from a source file called a Dockerfile. The
compilation of such files is made by the docker build command as shown in
Listing 4.1.

#!/bin/bash

docker build --tag tests:alien .

Listing 4.1: Command line utilized to create a Docker image from a Dockerfile.

Docker utilizes file system layers that are stacked on top of each other to
generate container images. When a container is started, a writable container layer
is added on top of the other layers. Any changes the container makes to the
filesystem are stored in these layers. All changes made to a running container such
as creating new files, modifying existing files and deleting files, are written to this
writable container layer. The files that the container does not change do not get
copied to this writable layer. A storage driver handles how these layers interact
with each other. Several drivers are available. The AUFS [172] storage driver has
been the default for managing images and layers in Linux. On kernel version 4.0 or
higher, OverlayFS [173] is also available. It has potential performance advantages
over the AUFS driver. These Docker features create a layer of isolation for grid
jobs, the read and write access requests to the file system are not handled by the
physical WNs. Therefore, sensitive server files are protected from malicious code.

Beyond Docker, there are several alternative container engines. For instance rkt
[106], developed by CoreOS [105], is claimed to be security minded. Its main aim
is to be utilized in cloud computing environments. The core execution unit of rkt
is the pod, a collection of one or more applications executing in a shared context.
rkt allows users to set up different configurations to pod-level or more granular
application level. In rkt, each pod executes directly in the classic Unix process
model hence being different from Docker which has a central daemon. rkt created
an open standard container format, the App Container (appc) spec. However, it
can also execute other container images, like those created with Docker. Among
the security features that are worth to mention are the following:

• The ability to use KVM for VM-based isolation when extra isolation is
needed.

• Integration with SELinux.

• Seccomp filtering enforcement on containers inside so-called pods. rkt lever-
ages systemd seccomp features to enforce isolation by blocking unsafe system
calls and hence, privilege escalation.

68 CHAPTER 4. THE DESIGN OF ARHUACO

• Containers are signed and verified by default.

• It is possible to control granular trust permissions.

• It allows users to leverage the Trusted Platform Module (TPM) for container
security. It ensures that only trusted containers are executed.

Singularity is an interesting option [174]. It was developed to be mainly applied
inside HPC and HTC environments. Singularity containers can be used to package
entire scientific workflows, software and libraries, and even data. The Singularity
software can import Docker images; there is no need for a Docker installation
or superuser credentials. It can be installed inside another container image and
shared among collaborators, so there is no need to install missing dependencies. A
Singularity’s important problem is that it can not set up different OS images on top
of the current host OS. For example, it can not execute CentOS guest images on
top of an Ubuntu host. However, Singularity can bootstrap from a Docker image.
Similarly to Docker, it also has a recipe file containing every command needed to
set up and create a container. Figure 4.8 represents a comparison between several
virtualization technologies, including VMs, Docker and Singularity.

Figure 4.8: Comparison of several virtualization technologies: the Singularity
authors claim to have better performance than virtual machines and Docker.
However, its focus is not on providing secure isolation [174].

Docker was selected for the initial Arhuaco’s proof-of-concept implementation.
It is the first container engine supported in the proposed architecture given its
broad adoption, it is a pioneer in offering usable containerization technologies,
and it is currently the most mature container engine [169]. The network isolation
features with out-the-box encryption make it an ideal choice for the needs of this
research. Besides, as shown in section 4.3.2, Docker already integrates distributed

4.3. SECURITY BY ISOLATION USING LINUX CONTAINERS 69

container scheduling, which is necessary to execute payloads in environments
such as Linux clusters. The listed alternative LC engines can still be integrated into
the proposed architecture. Arhuaco could support other container technologies
beyond Docker as the ones described above. These alternatives were explored in
a master thesis that complements this project, supervised by the author of this
research, as described in [175].

Access to the CERN high energy physics libraries is needed to run ALICE jobs.
The CernVM File System (CernVM-FS) [176] was used in this research project for
that purpose. The CernVM-FS is a scalable framework the distribution application
libraries in HEP collaborations. It enables administrators to deploy software in
a distributed computing infrastructure used to run data processing applications.
It allows the WLCG sites to access physics libraries without the need to install
dependencies nor worrying about specific versions. CernVM-FS belongs to a suite
of CERN-made solutions to facilitate the deployment of virtual infrastructures
among their scientist communities. CernVM-FS may replace package managers
and shared software areas in cluster file systems to distribute the software utilized
to process experiment data. CernVM-FS was deployed in a testing grid site to run
jobs to evaluate Arhuaco’s features and performance. It enabled the access to HEP
libraries for the ALICE payloads. Figure 4.9 represents the different components
of CernVM-FS.

CVMFS

Fuse modules

SCVMFS

Quota/LRU Trace capturing

Catalog Cache Prefetcher

SQLite libcurl libcrypto

SHA1 MD5 zlib

Components

Building blocks

Figure 4.9: A diagram of the main components of the CernVM-FS.

CernVM-FS was implemented as a POSIX like a read-only file system in
userspace. There, files and directories are hosted on standard web servers and
mounted in the namespace “/cvmfs”. In this case, all the libraries can be found in
the mounted location “/cvmfs/alice.cern.ch/”. CernVM-FS uses content address-

70 CHAPTER 4. THE DESIGN OF ARHUACO

able storage and Merkle trees to maintain file data and meta-data. It transfers data
and meta-data on demand and verifies data integrity by cryptographic hashes.
A custom Puppet module does the installation of this tool on the site for access
to HEP libraries. In the next section, a technology that can complement LCs is
reviewed, the hardening of a Linux kernel.

4.3.1 Linux Kernel Hardening

The kernel of an operating system is the most privileged and sensitive process
running on a modern computer. It might have only fewer privileges than the
hardware itself, the firmware and the hardware management engines [177]. In
this thesis, a level of trust in the Linux kernel and the underline components such
as the CPU itself is assumed. However, critical vulnerabilities do take place even
in hardware components such as the meltdown and spectre bugs [178, 179], which
make any kernel and userland security measures less effective.

The OS kernel manages hardware resources, interprocess communication, pro-
cesses scheduling, among other tasks. It should also control the level of privilege
of the processes running on top of it. To accomplish this, it needs to have the
highest possible privilege in the system. Every user application or data relies on
the kernel to remain safe. An attacker that compromises the kernel has almost
full access and control over the affected system. This complete control makes the
kernel an attractive target for attackers. Hence, it should be protected with strong
safety measures.

The security of the Linux kernel determines the safety of LCs. An exploited
vulnerability in the kernel would allow an attacker to bypass any security measure
provided by a container. However, it is possible to set up software measures that
make it much harder to exploit vulnerabilities in the kernel effectively. Those
measures involve a certain performance overhead. The best known and most
adopted Linux kernel security enhancement methods are the ones provided by
the Grsecurity & PaX patches [180]. Grsecurity and PaX [180] are open source
software patches for the Linux kernel. Grsecurity creates several defensive and
hardening protections. It prevents the kernel to execute code that resides in a
memory region owned by a user process, provides greater separation of memory
stacks belonging to different processes, grants boundary checking when copying
data from a userland process to the kernel, among other features. The patches in
PaX add memory safety features. Executable memory is made read-only to avoid
buffer overflow exploitable bugs. Address-space layout randomization (ASLR) is
implemented to prevent an attacker from being able to find specific addresses in
the kernel memory that could be used as the pivot for exploiting memory bugs.
These patches also increment the event details in the system logs. Memory access
violations, execution filtered system calls, and other events are logged. These
improved logs could be used as input for the intrusion detection and prevention
system to detect anomalies in running processes. Several tests to measure the
impact of these kernel patches to the performance of grid jobs are described. A
conclusion is made about the usefulness of such measures.

Linux kernel hardening can be integrated into the Arhuaco architecture to im-

4.4. BEHAVIOR MONITORING VIA LINUX CONTAINERS 71

prove the security of running containers even further. This possibility is explored
in the master thesis in [175]. In the following sections, how LC containers are
executed in a multiple WN cluster is shown.

4.3.2 Orchestration Systems for Linux Containers

Typical grid systems use batch engines such as Condor [3] for scheduling job scripts
and binaries in distributed computing clusters. Executing containers instead
of standard batch jobs requires modern orchestration tools that concede users
the ability to schedule virtualized payloads. Several popular alternatives exist,
including Google Kubernetes, Apache Mesos, and Docker Swarm. They are
open source applications that provide deployment, scaling, and management of
containerized applications.

Google Kubernetes [109] has been developed by Google. kubernetes is claimed
to be the result of years of experience running production workloads. It was
designed to run billions of containers per week. It provides horizontal scaling,
automated rollouts and rollbacks, storage orchestration, self-healing, service dis-
covery, load balancing, secret and configuration management and batch execution.

Apache Mesos [115] was built with a similar design than the Linux kernel. The
Mesos kernel is set up on every machine in a cluster and provides applications
such as Hadoop, Spark, Kafka and Elasticsearch with an application programming
interface (API) for the resource management and job scheduling in data centers.
Mesos employes Linux cgroups to provide isolation for CPU, memory, I/O and
file system isolation, so it presents itself as an alternative LC engine for Docker
but with a distributed orchestration of containers.

Docker Swarm [77] is one of the functionalities of the Docker engine for dis-
tributed deployments. It offers cluster management integrated with the engine
via the command line interface (CLI). It can be seen as a Docker native cluster-
ing system. Docker swarm has been selected as the first supported container
management system for the Arhuaco architecture. It extends the LC concept by
providing a full distribution of entire OS to be executed on top of a host operating
system. For instance, it is possible to run a containerized version of Ubuntu on top
of Debian. Since Docker Swarm is integrated with Docker, the container engine
selected for this research, it was the sensible collection. It allows the researchers to
rapidly prototype and to do experiments in the testing setup.

After exploring the isolation components of the proposed architecture, a de-
scription of how containers provide monitoring information that can be utilized
to determine the behavior of an application is given.

4.4 Behavior Monitoring via Linux Containers

The ability to encapsulate a set of processes with their view of the entire system
brings the possibility to capture specific per-process metrics for their isolated
behavior analysis. For instance, resource consumption data such as CPU, memory
and disk, network connection data, and system calls for a specific container can be

72 CHAPTER 4. THE DESIGN OF ARHUACO

obtained and, therefore, for each running grid job. Then, it is possible to detect
with increased precision the source of a security incident or even collect forensics
data for further analysis. Traceability is needed to carry out an investigation
of security incidents and determine their initial source. It fulfills technical and
administrative requirements of the collaborations sites. Isolation and traceability
are related. Enforcing one of them improves the another [27].

A usual supposition for normal grid operations is that a small portion of
identities and credentials is always compromised. The WLCG security traceability
and logging policy remarks the importance of the isolation and security monitoring
for grid systems in the document in [181]. According to that document, the aim
towards incident detection in the grid is to be able to answer the basic questions
who, what, where, and when related to a security breach. For this to be achieved,
data related to the behavior of applications running inside the WNs has to be
collected.

The Docker engine provides functionalities for container monitoring. Getting
basic statistics about locally running containers via the command line interface is
simple. An example of the kind of data that can be collected by using the Docker
stats in the command line interface is shown in Listing 4.2. In that listing, two
of the implemented Docker containers are monitored, and their system usage
information is extracted.

$ docker stats alien1 alien2

CONTAINER CPU % MEM USAGE / LIMIT MEM % NET I/O
alien1 0.07% 796 KB / 64 MB 1.21% 788 B / 648B
alien2 0.07% 2.746 MB / 64 MB 4.29% 1.266 KB / 648B

BLOCK I/O
3.568 MB / 512 KB
12.4 MB / 0 B

Listing 4.2: A sample output of the Docker stats command.

In this thesis, specialized features are used to collect metrics that give informa-
tion about the security status of the grid. This information is not offered directly
by the Docker stats command. The specific security monitoring data we initially
are gathering for this study is:

• The Linux system calls that are invoked by the processes spawned in the grid
jobs, with the full parameter information. The tool sysdig [182] is used for
this task. It employs the isolation properties of LCs to monitor the processes
inside a specific container.

• Network connection information. A set of features from the connections that
the jobs make from the site working nodes are extracted. The Bro network
security monitor [7] is the tool utilized for this task.

In the next chapter 5, more details about the utilized tools are provided. The
Linux system call set is the primary interface between a userland application and
the Linux kernel. System calls are generally invoked via wrapper functions in

4.4. BEHAVIOR MONITORING VIA LINUX CONTAINERS 73

Input data type Features

System call Type, name, parameters

Network connection summary
Source IP,

destination IP, original DNS request,
source port, destination port

Table 4.1: The format of the utilized input data that is later preprocessed and
forwarded to the Arhuaco analysis module.

Glibc [183] or other libraries. The list of those calls made by a process is a rich
source of information about its behavior. A standard application cannot make any
relevant activity in an OS without calling the OS API, for instance, to access file
systems, to allocate memory or to connect to some network. The set of calls and
the corresponding parameters enable the extraction of hints about the activities a
process is carrying out. System calls are a popular input for intrusion detection
systems because a sequence of them can give information about possible security
incidents.

Concerning the network input features, Bro allows the users to collect sum-
marized information about the connections made via specific network interfaces
including virtual ones. Since virtual interfaces can be created via the Docker
overlay network, data can be directly collected from specific processes that belong
to particular jobs. Therefore, the behavior of connections made from each job can
be analyzed. Even though network information may be extracted directly from the
system calls, higher level information provided via Bro is much more readable
and useful to analyze.

In Table 4.1 the components of the input data that the proposed security ar-
chitecture utilizes are described. For the system calls, the log lines that sysdig
provides are taken, with the type of system calls (e.g., file, network, IPC), the
name (e.g., open, read, write) and the specific parameters for each system call.
For the network data, a summary of each connection made by the job is collected,
including the source and destination IP addresses, source and destination ports
and the full DNS request that originated the connection. In the next sections, the
transformation of such data into numeric vectors suitable to be used for machine
learning algorithms will be explained.

In Listing 4.3, some examples of the data used as input are presented. The
utilized features for the deep learning algorithms are extracted from that kind
of data. The IP addresses are hidden for privacy reasons. Both the system call
and network data logs have variable length strings. The listed data have been
already cleaned from characters that do not contribute to increasing the available
information, for instance, the parenthesis, coma, and others. I.e., deleting such
characters does change the information that can be extracted from the data.

The described input data is transformed into numeric vectors that form suitable
inputs for the classification methods in the analysis component of the architecture.
In the next section, these methods are described in details.

74 CHAPTER 4. THE DESIGN OF ARHUACO

Malware log line samples:

* IP.src IP.dst irc.qeast.net 1 C_INTERNET 1 A

* IP.src IP.dst x.secureshellz.net 1 C_INTERNET 1 A

* IP.src IP.dst irc.server 1 C_INTERNET 1 A

* IP.src IP.dst haxmedown.cz.cc 1 C_INTERNET 1 A

* IP.src IP.dst forum.hy575.tk 1 C_INTERNET 1 A

* file open fd 6 f /etc/passwd name /etc/passwd
flags 4097 O RDONLY O CLOEXEC mode 0

* file lseek fd 6 f /etc/passwd offset 2081 whence 0 SEEK SET

* file read res 38 data gdm session worker pam/gdm password

* file write res 54 data Traceroute v1.4a5 exploit by sorbo
sorbox yahoo.com .

* file write res 21 data .telnetd

Common grid job log line samples:

* IP.src IP.dst alice-disk-se.gridka.de 1 C_INTERNET 1 A

* IP.src IP.dst p05798818e80213.cern.ch 1 C_INTERNET 1 A

* IP.src IP.dst eosalice.cern.ch 1 C_INTERNET 1 A

* IP.src IP.dst alice-authen.cern.ch 1 C_INTERNET 1 A

* IP.src IP.dst aliendb4.cern.ch 1 C_INTERNET 1 A

* file stat res 2 ENOENT path /cvmfs/alice.cern.ch/x86 64 2.6 gnu
4.8.3/Modules/modulefiles/vAN 20140629/default

* net connect res 2 ENOENT tuple 0
ffff8801b64b7bc0 /var/run/nscd/socket

* file write fd 10 f /var/lib/aliprod/.alien/tmp/alien job
752099366/OCDBrec.root size 8388608

Listing 4.3: A sample of the type of data from which the inputs are extracted.

4.5. MACHINE LEARNING FOR GRID COMPUTING SECURITY 75

4.5 Machine Learning for Grid Computing Security

Machine learning (ML) methods are proposed in this thesis for the classification
and modeling of data collected from grid jobs. The goal is to learn, based on
accumulated experience, to detect malicious activities in the jobs’ behavior. The
analysis module in Arhuaco includes the implementation of these methods. ML
has been created as a tool to automatically assimilate knowledge from raw data as
an alternative to expert systems where experience has to be hard-coded by humans.
The same principle applies to intrusion detection and prevention systems (IDPS),
where commonly the attack detection information is encoded in a set of rules that
need to be updated continuously by operators to deal with new threats.

Deep learning (DL) is a technique to implement ML methods via the usage of
several layers of functions that analyze and assimilate raw collected data with the
goal of getting insights on that data. DL models, mainly represented by artificial
neural networks (ANN), have seen increasing success in applications such as
autonomous driving, computer vision and financial forecasting. This success
can be explained by the availability of more computation power which allows
researchers to have bigger models. Other reasons are the availability of huge
datasets with examples to train the models and the discovery of techniques to
train deeper models with better accuracy.

The usage of ML algorithms for intrusion detection and prevention systems
has been described in the literature (As seen in chapter 3) as a step for improving
the accuracy and generalization ability of such systems. Traditional industrial
IDPS such as Snort [8] and OSSEC [9] employ fixed rules that are hard-coded
based on previous known incidents. These rule-based IDPS search for known
attack signatures to find possible attacks. They exhibit a low false positive rate
(FPR), i.e., a reduced number of false alarms. However, they have problems to
detect unknown or slightly different intrusion vectors, hence the rule set needs
constant updates [10]. These traditional methods are time-consuming and prone
to errors, and machine learning is presented as an automation solution to this
problem.

The analysis and extraction of pieces of information representing an object
are necessary to feed ML algorithms, for instance, visual representations for the
classification of objects in an image. These pieces are called features of the object.
In this case, relevant features are needed from the behavior data generated by grid
jobs running in a distributed computing infrastructure. As described before, in
this research the proposed features use data extracted from the system calls and
network traces of the jobs. The reasons for this selection and the feature processing
will be explained in a subsequent section.

DL architectures such as convolutional neural networks (CNN), deep belief
networks and recurrent neural networks (RNN) have been utilized in computer
vision, speech recognition, and emulation, natural language processing, to name
a few areas of interesting applications. They have even produced some results
comparable or even superior to human experts [184]. This thesis explores for
the first time the usage of DL to improving intrusion detection and prevention
in grid systems. DL is employed here not only for the classification task but

76 CHAPTER 4. THE DESIGN OF ARHUACO

additionally to model the probability distribution of the input data. This mod-
eling allows to simulate new training data to enhance the current dataset and,
therefore, to improve the resulting overall accuracy in the classification. In the
next sections, a detailed explanation of the classification algorithms used in the
proposed architecture is given.

4.5.1 Grid Job Trace Classification

In section 2.4, a definition of classification in ML was provided. Here, the ap-
plication of that definition to the analysis of grid job data with artificial neural
networks is described. First, the input data must be preprocessed and transformed
into vectors of numbers so that they can be used as input for the ANNs. The
transformed input data is a vector ~x with k elements:

~x = (x1, ..., xk) ∈ Rk. (4.1)

This representation is called a feature vector. The vector is obtained, after a feature
extraction step, from the jobs’ system calls and network traces. The utilized pre-
processing and transformation methods are introduced in 4.5.3. The classification
in this context for an input ~x consists of the evaluation of a function that maps a
set of vectors to a set of membership classes o groups, such as:

CW (~x) : Rk 7→ y1, ..., yH . (4.2)

This mapping provides as a result an output:

yh = CW (~x), (4.3)

where h ∈ {1, 2, ..., H}; yh is the class to which ~x belongs, based on the model W
and its parameters. The current classification problem is defined as a two classes
decision problem:

C(~x) = W Tφ(~x) +~b, (4.4)

where~b is a vector of bias parameters and φ(~x) is a feature-space transformation.
The training dataset, used to optimized the parameters W , has N samples:

~x1, . . . , ~xN , (4.5)

with target values yh ∈ {normal,malicious}.
Selecting the classification model that gives accurate results for a specific

problem is a challenging task. In this context, a classifier that can assign the
correct category among normal and malicious depending on the input data with
the lowest error rate is needed. The usage of ANNs for this task is proposed.
ANNs were selected because they have shown big success in automated and
complex classification tasks, becoming increasingly relevant with applications of
deep neural networks in the last years. They are the most prominent methods
in DL [85]. DL is utilized here with three goals: the automated extraction of
features from trace data, the classification of normal and malicious jobs and the
enhancement of the data with generative methods. It can automate intrusion
detection and prevention tasks in very dynamic and data-intensive environments
such as the grid. A comparison to a traditional machine learning input extraction
and classifier in the task of intrusion detection is further provided.

4.5. MACHINE LEARNING FOR GRID COMPUTING SECURITY 77

4.5.2 Deep Neural Networks for Grid Job Classification

The scope of the analysis component of the architecture is to improve the detection
of attack attempts in the grid infrastructure that come from grid jobs. This problem
is addressed for the dynamic discovery of malicious software, i.e., the detection of
malware. Dynamic in this context means that running processes that are spawned
from one or more jobs and might try to attack the grid are inspected.

As seen in section 2.1.1, the massive amount of jobs that may run simultane-
ously in systems such as the WLCG. A big data analysis approach is required to
be able to detect intrusions in that flow of data generated by the jobs submitted
to the grid. A training dataset with normal and malicious software samples has
been collected to accomplish that approach. Instead of creating custom programs
to cover a comprehensive set of malicious and normal traces, DL advantages are
used to analyze data from already existing examples. This way, a wider variety of
training data from the real world is included. Common production ALICE grid
jobs were the source for the average data. Linux malware samples were run in
a controlled environment to collect malicious data. There are several websites
from which it is possible to obtain malware samples. They make them available
for the research community. Some of those sites are virushare [185] or via a paid
subscription with virustotal [186].

As described in the state of the art chapter 3, machine learning has been sug-
gested in intrusion detection as a tool to model and analyze log files and network
traces for the autonomous detection and classification of security incidents. Here,
the dynamic analysis of grid jobs powered by deep learning, for near real-time
intrusion detection, is examined. Figure 4.10 shows a representation of the idea.
The usage of convolutional neural networks as the classification model is proposed.
CNNs are is utilized in this research since they have shown a strong ability to
model time series data and grid-like data topologies and have been very success-
ful in practical applications such as image classification. CNNs were recently
proposed for text classification [15] with promising results. Hence, their ability to
classify log traces extracted from grid jobs is investigated. In the next sections, the
basic steps to train and test a generic neural network are described, and later the
specific details for CNNs are explored.

Neural Network Training

The results that an ANN can achieve depend heavily on the training dataset and
the learning algorithm. A training dataset (X, Y) is made of input instances ~xi ∈ X
and the corresponding outputs ~yj ∈ Y , which are the labels necessary for the
supervised classification. The weights of the ANN are optimized so CW (~x) = ~y∗,
i.e., the class assigned to any input vector is as accurate as possible. A very popular
and effective method for the optimization of weights W and bias vector~b, given
the training set (X, Y) is the back-propagation algorithm [187].

Back-propagation in ANNs is a method to calculate the error contribution of
each neuron after a batch of training data is processed. It is commonly used with
the gradient descent optimization (GD) algorithm [188] to adapt the weight of

78 CHAPTER 4. THE DESIGN OF ARHUACO

Grid jobs
monitoring

data

word2vec
embedding
vectors

Classification:
• Normal
• Malicious

Input

Hidden

Output

Bob's grid
Job

Alice's grid
Job

Pilot
Job

Pilot
Job

Container Container

Pilot
Job

Container

Eve's grid
Job

Working Node

Virtual network

Figure 4.10: Arhuaco extracts behavior monitoring measurements from the
confined grid jobs. The data is preprocessed and classified with deep learning
algorithms. Finally, grid job traces are tagged as normal or malicious.

neurons by calculating the gradient of the loss function. It is also known as the
backward-propagation of errors, given that the error is calculated at the output
and distributed back through the network layers. The back-propagation algorithm
consists of a step where the error between the predicted ~y∗ and the expected ~y is
propagated from the output to each neuron. Then, the errors between the actual
and expected activations of a neuron are calculated and stored. The backwards-
propagation step can be defined as a function gW (Y, Y∗).

For each iteration of CW , β is defined as the matrix of all neuron activation
values and ∆ as the errors in the activation of all neurons. The current β and ∆ and
a learning rate ` ∈ (0, 1] are taken, so W and~b can be incrementally optimized by
calculating the gradient descent. This procedure is also known as batch training,
since for each iteration, GD updates the weights according to the collective errors
of all instances in X . The algorithm 1 is the pseudo-code details of the gradient
descent.

An alternative for GD is the stochastic gradient descent (SGD), which is em-
ployed in this thesis. SGD is a stochastic approximation of the GD optimization. Its

4.5. MACHINE LEARNING FOR GRID COMPUTING SECURITY 79

Algorithm 1 The back-propagation algorithm for ANNs training with GD
batch-training.

1: procedure TRAINING_WITH_GD(W,X,Y, iteration_max)
2: W ← µ(− 1

‖`(0)‖
, 1
‖`(0)‖

) # Random initialization
3: iteration← 0
4: while iteration < iteration_max do
5: β, Y∗ ← CW (X) # Forward propagation
6: ∆← gW (Y, Y∗) # Backward propagation
7: W ← GD`(β,∆) # Weight update
8: iteration+ +

9: return W

goal is to minimize an objective function that is written as a sum of differentiable
functions. By using the SGD in the back-propagation algorithm, the weights are
updated according to the resulting errors of each sample. GD converges to opti-
mum values generally better than SGD; however, SGD initially converges faster
[187]. A crucial advantage of SGD is that it enables adding more training steps
of an ANN even after the first training phase is over. New individual samples
can be used to update the network weights. The algorithm 2 shows the SGC
pseudo-code.

Algorithm 2 The back-propagation algorithm for ANNs. The stochastic-
training with SGD is applied sample-by-sample to update the weights.

1: procedure TRAINING_WITH_SGD(W,X,Y, iteration_max)
2: W ← µ(− 1

‖`(0)‖
, 1
‖`(0)‖

) # Random initialization
3: iteration← 0
4: while iteration < iteration_max do
5: for xi in ‖X‖ do
6: β, y∗ ← CW (xi) # Forward propagation
7: ∆← gW (~y, ~y∗) # backward propagation
8: W ← GD`(β,∆) # Weight update
9: iteration+ +

10: return W

SGC is the optimizer used for the proposed ANN. It has become a very fre-
quently utilized algorithm for ANNs since it enables faster training that can be
further upgraded if more data is available. Before giving details about the selected
CNN, the process of extracting the features and the input vector creation are
described.

4.5.3 Feature Extraction

System calls and network traces give meaningful information about the activities
that a process is performing. A different behavior should be expected from

80 CHAPTER 4. THE DESIGN OF ARHUACO

regular jobs in comparison to the operation of malicious applications aiming
to take advantage of the grid infrastructure. Regular jobs tend to execute specific
operations over big pieces of data and to connect to specific Internet services
to gather such data. Something that diverges from the normal behavior can be
marked as suspicious. Scientists with access to the computing centers that form
the grid usually have the freedom to develop arbitrary scripts or binaries. A fixed
set of security rules cannot cover all the possible operations they might want
to perform. Automated processing via deep learning offers a more convenient
approach. It brings the ability to analyze and learn from raw samples without the
need for an expert to code these rules. Hence, DL provides adaptation to a dynamic
environment in an automated way. It can also extract the most relevant features
from the data without human intervention. Given the described advantages, the
usage of DL algorithms is proposed, not only for classification but also for raw
input data transformation into feature vectors suitable for ANNs algorithms.

A technique to extract the most relevant features from the collected input
data should be selected. The raw input data is encoded in a human-readable
format. It is generated on-line for real-time analysis and stored as log files so
that human operators may read and analyze them. Many host-based intrusion
detection systems (HIDS) analyze the system logs to detect attack patterns. Those
log files are usually humanly readable, too. Therefore, natural language processing
(NLP) techniques become suitable to build a convenient language model [14] that
is useful in this research. NLP can easily extend the scope of inputs that can be
added to the analysis in the system, just by adding new system logs. The problem
can be defined as the classification task with text data as input and two classes as
output.

Recent DL proposals for NLP implement learning word vector representations
by neural language models [14]. In those vectors, words are projected from a 1-of-
T encoding, where T is the number of different words available or the vocabulary
size, in a lower dimensional vector space using neural network hidden layers
[15]. Semantically nearby words in the training corpus are mathematically close
in the lower dimensional vector space. The word2vec algorithm [13] was chosen
for Arhuaco to transform the raw input data into relevant feature vectors. It is a
predictive model for learning word embeddings. Word2vec vectors create suitable
inputs for convolutional neural networks, the proposed classifier, because they
enable treating input values as data matrices, similar to the array of pixels in an
image. The “tokens” term is utilized instead of “words” since the dataset can also
contain numbers, paths, IP addresses, among other types of information.

Before applying word2vec, other preprocessing steps are needed. The charac-
ters and tokens in the raw input data that do not increase the amount of available
information should be removed, e.g., the parenthesis characters. As described in
section 4.4, each input logline is composed of system call code and all the parame-
ters for the system calls and connection information such as DNS, IP addresses
and ports for the network data.

Since the goal is to classify grid jobs as regular or malicious, an important
decision is to define the level of granularity of the input features. Should every
system call or network connection a process makes from start to end be taken as

4.5. MACHINE LEARNING FOR GRID COMPUTING SECURITY 81

the object to classify? Should single trace lines be classified as unique objects?
Should a middle ground be choosen? The first option would not allow the system
to analyze data in real-time, because it would have to wait until the program ends
to be able to examine all the data. The second option is not useful, because a
single system call or network connection is likely not informative enough about
the overall job behavior. Therefore, a balanced solution is required, that enables
real-time detection while still having enough data to find a trend.

The solution is that the object of classification is defined as l consecutive log
lines, a parameter that can be optimized depending on the input data characteris-
tics, e.g., a different number of lines may be selected for system calls and network
traces. The input log lines have a variable size. Hence, only the first m tokens per
line are taken, adding a padding token when a line is shorter. Then, l consecutive
lines are taken, which gives us a final sequence of n = m× l tokens in total. From
these tokens, the input feature vectors are extracted.

To compare the proposed method for classification, with word2vec based
input vectors and the CNN, the traditional bag-of-words (BoW) model for feature
extraction is utilized as input for a support vector machine (SVM).

The Bag-of-Words Model

The BoW model is a representation used in NLP and information retrieval. The
raw input data is represented as the bag of its words (tokens in this case). It omits
grammar and word order but keeps quantities. In its simplest form, BoW takes
all the different words in a set of texts (e.g., documents or phrases) and creates
a dictionary. Then it counts the numbers of occurrences of each word on each
text and creates a vector with as many components as the dictionary length. Each
component is formed with each different word and its corresponding number of
occurrences.

Formally, the objective with BoW is to calculate a score between a token t and
a set of phrases in a document d, based on a feature of t in d. A straightforward
method is to make the feature equal to the number of occurrences of the token t in d.
This number is known as term, token or word frequency and is represented by tft,d.
For a document d, the set of features extracted by tf may be viewed as a quantitative
digest of that document. The BoW is obtained from that representation. Here the
exact ordering of the words or tokens in a document is ignored, but the number of
occurrences of each term is fundamental. Only the information about the number
of occurrences of each word or token is retained. It is also common to use the
document frequency dft, defined as the number of documents in a data corpus
(e.g., a training dataset) that contain a token t. N is defined as the total number
of documents in a dataset, then the inverse document frequency of a token t is
defined as:

idft = log
N

dft
. (4.6)

The term frequency and inverse document frequency are taken to create a
composite weight for each term in each document. The tf-idf weighting scheme

82 CHAPTER 4. THE DESIGN OF ARHUACO

assigns to each token t a weight in a document d:

tf-idft,d = tft,d × idft. (4.7)

Then, each document or set of phrases can be represented by a vector with one
feature corresponding to each token or word in the vocabulary, i.e., the set of all
different tokens in all the documents, together with a weight for each component
that is given by equation (4.7). For instance, vocabulary tokens that do not occur
in a document have zero weight. This tf-idft,d schema is the most common BoW
representation found in the machine learning library implementations [18] and
hence it is the one used here. The BoW model only accounts for the number of ap-
pearances of each token in a document. It does not store semantic information nor
order relations of tokens. In the next section, the word2vec method is introduced
as a more robust representation model for text-like data.

Word2vec for Feature Selection of Grid Job Data

Word2vec [13, 189] is a set of models utilized to create word embeddings. These
models are made from two-layer neural networks trained to reconstruct linguistic
contexts of words. It has as input a large corpus of text and produces a vector
space. Each unique word in the corpus corresponds to a vector in such space.
Word vectors are located in the vector space in a way that makes words that
share familiar contexts in the corpus to be located proximately to one another in
the space. It has been applied with success in other security areas for extracting
features from text-like data [190]. For system calls and network traces the order in
which they are made is essential. A specific sequence of system calls, for example,
gives different information depending on the order of the calls. Even more, the
order of the parameters is critical. So in this project, word2vec is considered to be
an appropriate method for the transformation of the input data in word vectors.

The main components of the word2vec model are described, starting with the
skip-gram method where a corpus of tokens w and contexts s are defined. The
conditional probabilities P (s|w) is considered given a corpus T . Then, the goal is
to find the parameters θ of P (s|w; θ), so the corpus probability is maximized as
follows:

arg max
θ

∏
w∈T

 ∏
w∈S(w)

P (s|w; θ)

 (4.8)

where S(w) is the set of contexts for each token w. Another simpler way to express
this problem is:

arg max
θ

∏
(w,s)∈d

P (s|w; θ), (4.9)

d is defined as a document, and it is composed of token and context pairs from
the full set of tokens T . The skip-gram model parameters are found via a neural
network language model. The conditional probability P (s|w; θ) model can be then
defined with the softmax [191] normalized exponential function as:

P (s|w; θ) =
evs·vw∑
s′∈S e

vs′ ·vw
(4.10)

4.5. MACHINE LEARNING FOR GRID COMPUTING SECURITY 83

Here vs, vw ∈ Rd are vector representations for s and w respectively, and S is the
set of all available contexts. The parameters θ are vsi , vwi

for w ∈ V the vocabulary,
s ∈ C the available contexts, i ∈ 1, · · · , D the list of all documents. The parameters
are assigned such that the product is maximized (see equation (4.9)). An important
premise here is that maximizing that objective should result in good embeddings,
in such a way that similar words will have similar or “close” numerical vectors.

In [189], a negative sampling method is proposed as a more efficient way of
deriving word embeddings. It employs a different objective function than the
skip-gram model. A pair (w, s) of token and context are taken from the training
data. Then P (d = 1|w, s) is defined as the probability that (w, s) exists in the
corpus data. Here, P (d = 0|w, s) = 1− P (d = 1|w, s) is the probability that (w, s)
is not extracted from the corpus data. Again, θ are the parameters that control the
distribution P (d = 1|w, s; θ). The new goal is to find the parameters that maximize
the probabilities that all of the observations are extracted from the training data,
as follows:

arg max
θ

∑
(w,s)∈d

logP (d = 1|w, s; θ) (4.11)

Furthermore, if the softmax function is utilized in the probability function P (d =
1|s, w; θ) then:

P (d = 1|w, s; θ) =
1

1 + e−vs·vw
, (4.12)

which now enables the definition of a different objective:

arg max
θ

∑
(w,s)∈d

log
1

1 + e−vs·vw
(4.13)

A problem with this formulation is the probability that all the vectors could
have the same component values. A solution is to disable some (w, s) combinations.
This solution is achieved by generating the set d′ of random (w, s) pairs that are
expected to be incorrect. They should not belong to the training corpus. With this
addition the optimization function becomes:

argmax
θ

∑
(w,s)∈d

log
1

1 + e−vs·vw
+

∑
(w,s)∈d′

log(
1

1 + evs·vw
) (4.14)

If we let σ(x) = 1
1+e−x then:

arg max
θ

∑
(w,s)∈d

log σ(vs · vw) +
∑

(w,s)∈d′
log σ(−vs · vw) (4.15)

After describing the word2vec model, it is shown how that model is utilized to
extract meaningful features from the grid job data. In the defined problem, the
word vectors (vw)i ∈ Rk are k-dimensional token embedding vectors, where k is
the embedding dimension, corresponding to the i-th token in the input sequence.
n was defined as the total number of tokens that form the “document” d, such
as n = m × l, the number of lines multiplied by the number of tokens per line

84 CHAPTER 4. THE DESIGN OF ARHUACO

extracted from the system call and network trace logs. A set of token vectors is
created by:

(vw)1:n = (vw)1 ⊕ (vw)2 ⊕ . . .⊕ (vw)n (4.16)

In the equation (4.16), ⊕ is the concatenation operator, and (vw)i:i+j is the concate-
nation of token vectors (vw)i, (vw)i+1, ..., (vw)i+j that belong to the input sequence
or “document” d. These vw embedding vectors are the result of applying the
word2vec method on the grid job training corpus. Finally, (vw)1:n is the input for
the proposed CNN classifier, introduced in the next section.

The word2vec models are commonly initialized and trained with substantial
natural language corpus with millions of words. For instance, some robust English
books are utilized. The word2vec training corpus is composed of the system call
and network trace dataset that is used for optimizing the classification model of
the convolutional neural network. This model creates word-to-vector embeddings
suitable for the context of this problem, where not only words are involved but
also many different tokens such as numbers and IP addresses.

4.5.4 CNNs for Grid Job Classification

Convolutional neural networks were first proposed in [192]. They are based on
traditional artificial neural networks. The difference is that a convolution operation
is performed in one of the CNN layers replacing an ANN matrix operation. CNNs
are useful for time series, sequential and grid-like data topologies. They have been
very successful in practical applications such as image classification [193]. CNNs
were recently proposed for text classification [15] with promising results. Since the
input data has a sequential structure, where the order is important, the usage of
CNN to classify real-time grid job behavior information is proposed in this thesis.
As shown previously, the objective function of the classification problem is to find
the parameters that provide a solution to:

C(~x) = W Tφ(~x) + b, (4.17)

CNNs deliver a solution for equation (4.17) by processing the input ~x through-
out a series of convolutional filters and simple non-linear functions [12]. A CNN
has a hierarchical architecture. Starting from the input data ~x, each following layer
output ~xj is computed as:

~xj = φWj~xj−1 (4.18)

In equation (4.18), Wj is a linear operator and φ is a non-linear function. CNNs
normally have a stack of convolutional filters Wj and φ is commonly a rectifier
max(x, 0) or Sigmoid 1/(1 + exp(−x)). For Wj the layers are filter maps and each
layer can be written as a sum of convolutions of the previous layer:

~xj(a, hj) = φ
(∑

h

(~xj−1(., h) ∗Wj,hj(., h))(a)
)
, (4.19)

4.5. MACHINE LEARNING FOR GRID COMPUTING SECURITY 85

Figure 4.11: A typical convolutional neural network architecture for image
classification [194].

where ∗ is the discrete convolution operator, a is the age of measurement and h is
the number of filters. A discrete convolution operation in deep learning can be
defined as:

s(t) = (x ∗ g)(t) =
∞∑

a=−∞

x(a)g(t− a), (4.20)

here x is an input measurement on time or index t, and g is a weighting function
(also known as the kernel) that depends on the age of measurement a. The
optimization problem defined by a convolutional neural network is highly non-
convex. Therefore, the parameters or weightsWj are learned by stochastic gradient
descent, using the back-propagation algorithm to compute the required weights
updates. Figure 4.11 shows a typical CNN architecture utilized for object detection
in an image.

In this thesis, the interest is focused on the ability of CNN to classify text data
[15]. Figure 4.12 shows an example of a CNN using sliding filters to analyze
system calls log lines, where the convolution is applied in the first layer. The
subsequent layers in a CNN are normally composed of classical fully connected
neurons such as deep neural networks. Sigmoid and rectified linear units (ReLUs)
are common activation functions φ(x) used by CNN.

The classification of the input data, after it has been transformed into embed-
ding word vectors via the word2vec model starts with a convolution operation
involving a filter G ∈ Rhk. A window of h tokens with k embedding dimensions,
is taken from the input object, in this case l log lines, to produce a new feature. If
we represent a token as vw then a feature zi is generated from a window of tokens
vwi:i+h−1 by:

zi = f(G · vwi:i+h−1 + b) (4.21)

Here b ∈ R is a bias term and f is a non-linear function. This filter is applied to
each possible window of tokens in the input sequence made of a total of n tokens:

{vw1:h, vw2:h+1, ..., vwn−h+1:n}, (4.22)

to produce a new feature vector:

z = [z1, z2, ..., zn−h+1], (4.23)

86 CHAPTER 4. THE DESIGN OF ARHUACO

word embedding
vectors

Convolutional layer
multiple filters

Dense connected layer
with dropout and softmax
single output

Input

Output
class

Word2vec

Trace log

Figure 4.12: A representation of the utilized convolutional network architecture:
trace data from system calls and network connection summaries are transformed
in embedding vectors with word2vec. The vectors are the input for several convo-
lutional filters that extract relevant information. A conventional fully connected
neural network layer is then employed to calculate the label of the trace.

with z ∈ Rn−h+1. A max-over-time pooling operation is then calculated over the
feature vector, taking the maximum value z∗ = max z as the only feature resulting
from this filter. The most important feature, one with the highest value, is kept for
each feature map.

The process is repeated with multiple filters of different window sizes, to
obtain several features. These features are the result of applying the convolutional
calculation in the first layer of the CNN. They are forwarded to a fully connected
ReLu layer whose output goes to the last dense layer with Sigmoid activation.
Finally, the outputs are the probability distribution over the classification labels,
“normal” and “malicious” in the problem setup.

4.5.5 SVM for Grid Job Trace Analysis

The state of the art section about intrusion detection and prevention systems has
shown that the support vector machines are one of the most used classifiers in the
IDPS area [116]. For feature extraction, the BoW model is traditionally utilized for
natural language data or similar [18]. Therefore, SVMs with BoW are applied as
the baseline comparison for the proposed classification method with deep neural
networks.

The training steps for an SVM classifier are similar to the described for ANNs.
The objective function is different though. The SVM training phase builds a model

4.5. MACHINE LEARNING FOR GRID COMPUTING SECURITY 87

that assigns new samples to one out of two categories via a non-probabilistic
binary linear classifier. This process makes SVMs suitable for solving the current
intrusion detection problem. SVMs employ hyperplane decision classifiers in
a similar way to neural networks. However, the optimization objective is to
maximize the margin, defined as the distance between the decision boundary and
the training data that are closest to that hyperplane [18]. The classification model
parameters W are made of M vectors in Rk where W = {~wi}Mi=1. The objective is
to optimize the parameters of W and b such as:

Cn(W Tφ(~x) + b) ≥ 1, n = 1, . . . , N. (4.24)

The optimization problem can be expressed in a more straightforward way as:

arg min
W,b

1

2
||W ||2. (4.25)

For BoW, a vocabulary is created with the list of all possible tokens in the
training dataset. Then this vocabulary reduced by using only the most frequently
appearing tokens. A vector is created with its dimensionality equal to the vocab-
ulary size. Each component of this vector is the number of times a given token
appears in the classification object. As introduced in section 4.5.3, tf-idft,d is a
commonly utilized frequency-based calculation for extracting features from a
document d. In this project d is built from the set of l trace lines extracted from the
system calls and network connection logs.

4.5.6 ANN Optimization

The utilized procedures to train CNNs and SVMs, and how to extract the input
features have been described. Another important topic that needs discussion is
the structure of the employed networks and their hyper-parameters. The hyper-
parameters are values that determine the architecture of an ML model. Values
such as the number of layers, the number of neurons per layer or the learning rate
are known as hyper-parameters and are related to the specific type of network or
training algorithm used. These parameters are relevant in the final performance of
an ANN, and they are different according to the context of the specific problem or
function to be approximated, and the training data.

The grid search is a straightforward optimization technique for setting op-
timized hyper-parameters. It is an exhaustive search throughout a manually
specified subset of possible best values. Various performance metrics guide this
search, typically measured by cross-validation on the training set or evaluation
over a validation subset. Since the parameter space of a machine learning algo-
rithm may include real-valued or infinite value spaces for certain parameters,
manually setting bounds and discretization may be necessary before applying a
grid search. The grid search algorithm finds the settings that achieved the highest
score in the validation procedure. It suffers from the curse of dimensionality,
but it can be made in parallel given that hyper-parameter settings are evaluated
independently of each other. Other more advanced optimization methods such

88 CHAPTER 4. THE DESIGN OF ARHUACO

evolutionary algorithms are not used in this thesis but are interesting to explore in
the future.

A set of discrete hyper-parameter values has to be defined. With this set, the
training process is done with the same subset of the training data. Then, the
combination of parameters that provides the best cross-validation accuracy result
is selected. The relevant hyper-parameters are defined for the CNN as follows:

• Learning rate: this parameter determines the size of the steps taken to
update the network weights in every iteration of the learning process. Values
close to 1 may lead to a fast convergence but suboptimal values, while values
close to 0 could lead to optimal values but at prohibitive speed.

• Momentum: it accelerates SGD in the direction that maximizes the weights
optimization and moderates possible oscillations.

• Decay: the learning rate does not have to be constant. Reducing it in each
iteration is a typical network tuning technique that helps to reach an optimal
convergence. Decay is the amount the learning rate is reduced in each step.

• Nesterov: this is a modification to the momentum that only takes true or
false values. It grants a dynamic adjustment of the momentum so an optimal
value can be found.

• Regularizer parameter: regularizers bring the ability to penalize certain
layers in a network to avoid over-fitting and improve generalization.

• Embedding dimension: this is the number of components of the embedding
vector that represent the corpus tokens. A bigger value of this parameter
allows to represent more complex mappings.

• Filter sizes and the total number of filters: these parameters define the
number of processing steps in the convolutional layer.

• Hidden neurons: the number of neurons in the hidden layer that influences
the complexity and robustness of the neural model.

• Dropout rate: dropout is utilized to prevent over-fitting by randomly setting
several inputs to zero at each iteration during training.

• m, l, n: they were described in section 4.5.3. They define the configuration
of the object for classification, the set of tokens seem like a snapshot of a
set of grid jobs actions regarding system calls and network connections
information.

DL methods need to be fed with data to learn from the experience that data
can provide. In the next section, the utilized dataset that is used for the CNN and
SVM training is described.

4.5. MACHINE LEARNING FOR GRID COMPUTING SECURITY 89

4.5.7 Model Validation Dataset

No standard database for the training of IDPS in grid computing was found. A
custom one was created for this thesis. The training and validation of the proposed
classification and generative algorithms are fed with a dataset composed of regular
and malicious system call and network connection logs. To have more realistic
samples and to simplify the training process, already existing applications are
used to produce the training data.

Regular grid jobs were gathered from the ALICE grid production environment,
using the testing grid site, located at the University of Frankfurt am Main. Fig-
ures 4.13 and 4.13 show a production job, which can be found in the Monalisa
website http://alimonitor.cern.ch. That website is the monitoring inter-
face for the ALICE grid. This kind of jobs mainly simulate, reconstruct and analyze
the data collected in the particle detectors. They have been manually analyzed
and confirmed to be clean of malicious code.

Figure 4.13: A sample of a folder containing all the required files for the execution
of a typical ALICE job.

A set of 10,000 Linux malware samples were downloaded from a security
research website [185]. This set gives the ability to cover a more significant range
of malicious activities that would be very time consuming and error prone to do
manually. The Virustotal service [186], a Google-owned tool that grants security
researchers the possibility to extract useful information about potentially harmful
files was utilized. Such a service was used to have approximated information
about the activities that the downloaded samples could perform. For instance, it
was possible to find several crypto-coin mining malware binaries there. Samples

http://alimonitor.cern.ch

90 CHAPTER 4. THE DESIGN OF ARHUACO

Figure 4.14: A sample of an ALICE grid application used in this research.

of the kind of utilized malware are shown in Figures 4.15, 4.16 and 4.17.

Figure 4.15: A sample of a Malware binary identified as a Linux BitCoin Miner
according to VirusTotal.

A total of 325 normal and 10,000 malicious payloads were executed inside
Linux containers, and the isolation and monitoring features were used to collect

4.5. MACHINE LEARNING FOR GRID COMPUTING SECURITY 91

Figure 4.16: A Malware sample identified as a Linux-based backdoor by VirusTo-
tal.

Figure 4.17: A sample of a Malware binary identified as a Ransomware.

every system call and network connection made. Although the number of normal
payloads is small compared to the malicious ones, the first generate bigger traces
that produce many more data input samples than the later, as shown in section 6.2.

92 CHAPTER 4. THE DESIGN OF ARHUACO

A tool called sysdig [182] for collecting system calls and the Bro network security
monitor [7] for network connection data were utilized. A grid job can be composed
of several processes, and each process can have several threads. The collected
system calls and network traces were grouped on a thread level. Hence, the
individual behavior of threads can be followed, and the correct source of a possible
attack can be determined.

A testing environment with limited Internet access was deployed for the mal-
ware samples, using Inetsim [195] for network connection emulation. The lim-
ited connection has two explanations: it is dangerous to execute tens of thousands
of malware samples without restrictions, and since the samples are already known,
most of their server should not be accessible. The Cuckoo sandbox [196] have
also been employed to isolate and monitor these runs. The collected data was
then transformed with word2vec to embedding vectors suitable to be processed
by the classification algorithms. In section 6.2, more details about the created
training dataset are given, with the specific numbers of samples for validation and
testing. Following the generative methods that were used to improve the dataset
are explored.

4.5.8 Recurrent Neural Networks for Training Data Generation

In section 2.4.5 the recurrent neural networks have been described to show out-
standing success for processing sequential data. They are different from other
ANNs because their neurons have one or several feedback loops [86]. The feedback
loops are recurrent cycles over time or along sequence indexes. The optimization
objective, similar to other ANNs, is to minimize the difference between the output
and target samples by tuning the weights of the network.

Input layer

Hidden layer

Output layer

x1 ...x2 xN

h1 ...h2 hM

o1 ...o2 oL

WHO

WIO WHH

Figure 4.18: A typical structure of a recurrent neural network: it shares several
characteristics with the common feedforward neural network. However, RNNs
add a feedback loop in the hidden layers.

A simple RNN is composed of three layers: the input, the recurrent hidden

4.5. MACHINE LEARNING FOR GRID COMPUTING SECURITY 93

layer, and the output. These layers can be visualized in Figure 4.18. The input
layer has N input units. The network receives as input a sequence of vectors
~xt = (x1, x2, ..., xN) that depend on an index t. This index can also be the time
of the mesurement of ~x. The input neurons are connected to the hidden units in
the hidden layer. These connections are represented by a weight matrix Wf . The
hidden layer has M hidden units ~ht = (h1, h2, ..., hM), that are connected to each
other with feedback connections. The hidden layer defines the state memory of
the system as:

~ht = fh(~ot), (4.26)

in this equation, ~ot is calculated as follows:

~ot = Wf~xt +Wh
~ht−1 +~bh, (4.27)

where fh(·) is the activation function for the hidden layer, and ~bh is the bias
vector of the hidden neurons. The hidden units are connected to the output
layer with a matrix Wh of weighted connections. The output layer has L units
~ot = (o1, o2, ..., oL). An RNN uses a simple nonlinear activation function in every
unit, and it is capable of modeling rich dynamics. It is assumed that the input
vectors are sequential, so the steps described are repeated n times for t = (1, ..., n).

Long short-term memory (LSTM) networks are a recently proposed version
of recurrent neural networks useful for long interrelated sequences of data [88].
LSTM was chosen in this research for the generation of textual-like data. This
model was employed for the improvement of the training data in the classification
of grid jobs. LSTM networks have a specific memory cell and can capture long-
term dependences in sequential data. They can be defined with the following set
of equations:

~ft = σg(Wf~xt + Uf~ht−1 +~bf),

~it = σg(Wi~xt + Ui~ht−1 +~bi),

~ot = σg(Wo~xt + Uo~ht−1 +~bo),

~ct = ~ft ◦ ~ct−1 +~it ◦ σc(Wc~xt + Uc~ht−1 +~bc),

~ht = ot ◦ σh(ct).

(4.28)

Similarly to the common RNN, ~xt is the input vector at a given iteration t, ~ht is
an output vector of the hidden layer and ct is a cell state. In this case, W and U

are parameter matrices and ~b are bias vectors. ~ft is a forget gate vector,~it is the
input gate vector and ~ot is the output gate vector. The operator ◦ is the entrywise
product of matrices.

LSTM can be utilized to learn the probability distribution of some input data,
and then be used to generate similar data extracted from the learned distribution.
That functionality is leveraged to produce data that complements the training
dataset. In the proposed architecture, this approach permits to obtain better results
in the training of the classification algorithms.

A character level language model powered by LSTM has been utilized as a gen-
erative method in Arhuaco. The objective of this model is to predict the next char-
acter in a sequence based on the training data. A training corpus (char1, ..., charT)

94 CHAPTER 4. THE DESIGN OF ARHUACO

is defined, where chari is a single character and T is the total number of characters
in the training dataset, hence all the characters that form the collected job’s system
calls and network traces.

In the proposed model, the LSTM is utilized to calculate the sequence of output
vectors (~o1, ..., ~oT) by a sequence of distributions P (chart+1|char ≤ t) = σ(~ot).
This fact means the probability of the next character is modeled in a sequence
given all the previous characters. In the end, new sequences of characters can
be simulated to create new classification objects (the sequence of a system call or
network connection tokens) which enhance the coverage of the training process.
Here σ is the softmax distribution defined by:

P (σ(ot) = j) =
exp(ojt)∑
k exp(okt)

, (4.29)

where j and k are the dimensions of the output vector ~ot.
The objective function is to maximize the total log probability of the train-

ing sequence
∑T−1

t=0 logP (chart+1|char ≤ t). From the conditional distribution
P (chart+1|char ≤ t) it is possible to sample and get the next character in a gener-
ated string, and provide it again as the next input to the LSTM [16] for a predefined
number of steps or iterations. After the training process has finished, new data can
be generated that can be used as extra training data to extend the generalization
capabilities of the classification system.

4.6 Summary

In this chapter, an architecture to increase the level of security in grid comput-
ing has been described. Linux containers for grid job isolation, integrated with
behavior monitoring, were introduced. A threat model was defined to support
the design choices for a solution to improve the accuracy of intrusion detection
and prevention in the grid. Arhuaco is the proof-of-concept implementation of
the proposed architecture to enhance grid security. It manages the execution of
payloads in grid sites via Docker Swarm. It can be naturally integrated into the
security operation center model proposed for WLCG.

Deep learning methods are utilized to analyze real-time monitoring data of
running grid payloads. The job’s system call and network traces are utilized as
the source of information. The selected deep learning methods form a hybrid
supervised classifier. The word2vec model is utilized for feature selection. Con-
volutional neural networks are utilized for tagging of jobs between the regular
and malicious classes. A novel dataset for the training of ML-based IDPS in grid
computing was collected. It is composed of regular jobs and Linux malware
samples. A recurrent neural network for simulation and generation of unseen
training data that complements the collected dataset has been created. It permits
to generate simulated system call and network traces. An SVM classifier with
the bag-of-words inputs is utilized as the baseline method to compare the CNN
effectiveness.

Chapter 5

Prototype Implementation

The proof-of-concept implementation of an architecture for grid security improve-
ment is described in this chapter. An explanation about the testing environment
for performing evaluations on the implementation is also given.

5.1 Arhuaco Modules

The architecture proposed in this research was implemented in several modules.
They were developed using the Python language, with its version 3.4 [197]. The
primary reason for the selection of such language was the wide availability of open
source data science libraries and the bindings with other programming languages.
This implementation provides interfaces to grid middlewares, container engines
and data collection tools developed in other languages. Further, the Arhuaco
building blocks are described in detail. As shown in section 2.3, the modules are
inspired by the general architecture of intrusion detection and prevention systems,
but they also include a job execution interface.

Figure 5.1 shows the class diagram used for the implementation of Arhuaco.
It explores the relationships between the modules. The input data comes from
the source tools sysdig and Bro, that collect data from the jobs running over
the Docker Swarm cluster setup. The collected information is forwarded to the
analysis module on each WN or the VoBox for detection of anomalies in the jobs
activity. In the training phase, the convolutional neural network interacts with
the recurrent neural network (RNN) to enhance the dataset coverage. In online
mode, the analysis module sends data to the storage or communicates with the
response module in case of a potential intrusion. Finally, the response module
executes predefined actions such as alerting the administrators by e-mail or killing
suspicious jobs.

5.1.1 Execution Engine

Submission and execution of jobs in a distributed environment such as a grid site
cluster is the goal of the execution module. Arhuaco provides an initial proof-of-
concept implementation with an interface for Docker which receives jobs from a

95

96 CHAPTER 5. PROTOTYPE IMPLEMENTATION

Analysis
Service

CnnW2v

NetworkSensor SyscallSensor

Message Process

ArhuacoDaemon

Execution

Word2vec

SvmBow Rnn

TrainCnn TrainSvm

TrainRnn

ArhuacoAnalysis

ArhuacoSensors

ArhuacoResponse

lect data for models

Response

Training

Sensors

Figure 5.1: The modules and classes in Arhuaco are distributed in independent
components that can be reusable.

central grid service and schedules them in a cluster. Docker Swarm was chosen
as the first supported distributed container engine for the execution of jobs. Its
simplicity and fast deployment in testing environments were the main criteria for
the selection.

The proof-of-concept implementation of the proposed architecture was inte-
grated into a testing site of the ALICE grid. An interface between a Docker Swarm
installation in the test site and the AliEn [39] middleware was developed. This
interface enabled Arhuaco to receive job execution requests from the ALICE cen-
tral services. The interface made it possible to process the requests and to run the
payloads inside Linux containers in one of the worker nodes (WNs). Figure 5.2
shows the flow of information starting from the grid central services, throughout
the execution engine, up to the actual job execution. The jobs’ operation can be
started as described in section 2.1.3 via the AliEn grid user interfaces or by the
central service scheduling predefined jobs. The information collected about the
payloads behavior was monitored and processed by the machine learning algo-
rithms. Finally, the administrator can verify the security state of the jobs executed

5.1. ARHUACO MODULES 97

in the site, and be informed with an alert if a security incident is detected.

Grid jobs
monitoring

data

word2vec
embedding
vectors

Classification:
• Normal
• Malicious

Container Container

Container

Eve's grid
Job

Working Node

Container

VoBOX

Execution
engine
interface

Distributed
container
engine

Administrator

Central services

Figure 5.2: A representation of the flow of jobs and the collected information,
from the ALICE central services to the Arhuaco modules where the job behavior
is classified.

The Arhuaco-AliEn interface was created with a Perl [53] script. Perl is the
language utilized for AliEn development and its API. In Listing 5.1, there are some
of the most relevant code sections of such created interface.

Isolation Implementation

One component of the execution module is the security by isolation (SbI) con-
finement of the jobs. One important aspect to consider the execution of grid jobs
on a site is how many of them should be scheduled inside. There are several
alternatives:

• Running several jobs from different users inside the same container would
make it lose the traceability and isolation properties since that would be
a similar scenario to one without any isolation. Malicious jobs could still
tamper with another user’s jobs to hide the source of an attack.

98 CHAPTER 5. PROTOTYPE IMPLEMENTATION

subroutine to define the specific batch system commands
sub initialize() {

my $self = shift;

$self->{PATH} = $self->{CONFIG}->{LOG_DIR};
$self->{X509}=AliEn::X509->new();

$self->debug(1,"In DOCKER.pm initialize");

https://docs.docker.com/engine/reference/commandline/service_create/
$self->{SUBMIT_CMD} = "docker service create";

https://docs.docker.com/engine/reference/commandline/service_rm/
$self->{KILL_CMD} = "docker service rm";

https://docs.docker.com/engine/reference/commandline/service_ls/
$self->{STATUS_CMD} = "docker service ls";

$self->{GET_QUEUE_STATUS}="$self->{STATUS_CMD}";
if ($self->{CONFIG}->{CE_STATUSARG}) {

$self->{GET_QUEUE_STATUS}.=" @{$self->{CONFIG}->{CE_STATUSARG_LIST}}"
}

$self->debug(1,"DOCKER intialize finished");
return 1;

}

my $docker_submit = " --restart-condition none --restart-max-attempts 0 ".
" --name alien-$containerID ".
" --mount
type=bind,source='/var/lib/aliprod/.alien/tmp/agent.startup.$jobAgentID'".
",target='/var/lib/aliprod/.alien/tmp/agent.startup.$jobAgentID' ".
" --mount type=bind,source='/cvmfs/alice.cern.ch'".
",target='/cvmfs/alice.cern.ch'".
" --workdir '/var/lib/aliprod/.alien/tmp' ".
" --env ALIEN_CM_AS_LDAP_PROXY=$cm ".
" --env ALIEN_JOBAGENT_ID=$$.$self->{COUNTER} ".
" --env ALIEN_ALICE_CM_AS_LDAP_PROXY=$cm ".
" --network ufnet ".
" test:alien $command ";

Listing 5.1: Source of the Perl based AliEn interface with Docker Swarm.

• Executing several jobs from the same user may be another possibility. How-
ever, it makes it harder to know what each of the different processes is doing
on each WN. The traceability of individual jobs would be more difficult
under this scenario.

• A single job per container is the best option to increase traceability and
isolation properties. Therefore, this is the selected option. Grid payloads are
wrapped inside Linux containers in such a way that one job per container
is executed. It is the natural microservice model for LCs, where a single
application runs in a unique container.

The sites in the ALICE grid have a head node or VoBox where several services
are hosted (See section 2.1.3). These AliEn-middleware-based services grant access
to a central file catalog and a distributed set of storage systems provided by the
collaborating computing centers. The site services permit the connection to the job
layer that serves a central task queue with a workload management system. One of
those services in the VoBox, the job agent, pulls newly available jobs from the task

5.1. ARHUACO MODULES 99

queue. When there are new jobs, a pilot job is created and executed in one of the
available working nodes. This pilot job further runs the actual grid job payloads.
This model is initially supported for the proof-of-concept implementation for the
ALICE grid. However, instead of directly executing the pilot job inside a WN, it
is first wrapped in a CentOS 6 [198] Docker container image. The corresponding
grid job is launched inside the container. As decided, in this research only one job
is executed per container which means that every pilot job executes only one grid
job.

The Docker engine limits privilege capabilities of a container before its execu-
tion. Therefore, processes inside of containers have reduced privileges. A daemon
called dockerd takes care of the administration. It listens for commands over
the network or via the regular command line interface provided by the Docker
binaries on the local machine. The daemon has root privileges on the host machine.

A custom container image was developed for Arhuaco, according to the ALICE
collaboration software guidelines [198]. A Dockerfile specification was created,
which inherits from a standard CentOS 6 base. This Linux distribution is the one
that is usually utilized in the ALICE-related computing systems. The Dockerfile
has commands to install all HEP dependencies required to execute ALICE jobs.
It also creates all the configuration files, working directories, and copies all the
external dependencies to the compiled binary image. In Listing 5.2 the Dockerfile
is shown.

When software is executed inside an isolated environment, a question is how to
give that software access to the libraries it needs to carry out its tasks. The Docker
engine has a mechanism to share directories between the host machine and guest
containers. This mechanism is useful, for example, to grant containers with read-
only access to folders with data or libraries. This property was leveraged, so the
utilized containers could access HEP libraries via CERN-VM-fs (See section 4.3).
Listing 5.3 shows the command to start an LC with the directory /cvmfs/ on the
host mapped to the same directory in the guest.

The network communication inside the grid sites is another issue to consider.
Even if jobs are executed isolated from the underline host system, they still may
have access to sensitive network segments. They could compromise critical compo-
nents in the organization where the code is executed. Even external organizations
that are reachable via the Internet could be affected. As described in section 2.2,
network virtualization is used via native virtual extensible LAN (VXLAN) which
are Linux kernel features to create overlay networks. Docker supports this feature.
The Arhuaco implementation of this network architecture is shown in Figure 4.7.

Other Tested Container Engines and Security Measures

In the master thesis in [175], other container engines and a kernel hardening
measure were tested that could improve Arhuaco for future developments. Here,
some significant details of that related study are described.

The first tested alternative container engine was rkt [106]. A tool called
acbuild gives users the ability to create and manipulate container images. One of
the options is to specify a Docker container that rkt can import to its native image

100 CHAPTER 5. PROTOTYPE IMPLEMENTATION

format. The application container image (ACI) and the open container initiative
(OCI) are the currently supported image formats. The ACI format was used in
the described study. The rkt-image was created from the AliEn Docker image
implemented in this research with the command docker2aci. This command
receives a Docker image path as the input parameter and transforms such an
image to an ACI, as illustrated in Listing 5.4.

Similarly to Docker, rkt enables the users to configure privilege capabilities
to a pod before it is started. Instances of such privilege protections are blocking
the access to TCP/IP ports below 1,000, avoiding that a process can change its
capabilities and call chroot functions, among others. A detailed list of the default
capabilities can be seen in [199]. Other required capabilities can be set or revoked
by adjusting the parameters or by setting different values at the configuration files
capabilities-retain-set and the capabilities-remove-set.

Singularity [174] is the other LC engine that was evaluated. Just like Docker,
Singularity delivers tools to create, modify, run and manage container images. An
LC can be created via the compilation of a script, similar to the Dockerfile. Another
option is to import and transform Docker images to the Singularity-specific format.
It can be integrated into existing HPC batch systems such as SLURM [200], SGE
[201] or Condor. Singularity allows developers, just as Docker and rkt, to have
shared directories with the host. Listing 5.5 shows an example command to start a
container with five concurrent instances.

Docker’s container safety can additionally be enforced with SELinux, AppAr-
mor, or other Linux policy tools. In [175], the related research, an isolation test
with Grsecurity patches was carried out. The setup was done in the same grid
test site utilized for this study. The implementation of these measures involved
placing the Linux kernel source code and the Grsecurity patch files in the same
directory for compilation purposes. Grsecurity and PaX were applied following
the command instructions in Listing 5.6. After the kernel compilation ends, the
resulting Debian packages are written inside the parent directory. They can be
installed through the usual Linux distribution package manager.

The purpose of the explored isolation measures was to make a comparison with
Docker, the selected container engine of this research. A performance overhead
evaluation is prepared as described in the evaluation chapter 6. The results
allowed the compararison of the performance impact and the convenience of
the different lightweight isolation options. In the next section, the architecture
components that enable gathering information about the behavior of running
sandboxed applications is described.

5.1.2 Sensors

The sensors module of Arhuaco collects security monitoring data from different
sources related to the state of the grid jobs that are running in the WNs. Two
separate information sources are considered, the payload system call trace and the
network activity summary. The sensors module forwards the information to the
analysis module that searches for intrusion patterns.

As said in section 4.4, the tool sysdig [182] was applied for collecting system

5.1. ARHUACO MODULES 101

calls form the jobs inside the LCs. Sysdig is an open source system monitoring
and debugging tool that captures kernel events via call hooks. It has a command
line interface to configure a set of filters that give great flexibility regarding what
kind of information is observed in the system. This tool is locally installed in each
of the WNs. It is a more powerful and robust alternative to the traditional strace
command in the Linux OS distributions. Listing 5.7 shows the actual CLI command
used to capture the containers system calls. In the training phase, Arhuaco collects
testing grid job information and store it in log files. This functionality allows
users to gather custom datasets and carry out forensic analysis to improve the ML
models. In online mode, i.e., when Arhuaco is detecting intrusions in production,
the system call flow is captured from the sysdig standard output. More optimal
ways of doing this task will be explored in the future.

The Bro network security monitor [7] is another open source tool, useful for
network traffic analysis. The same developers of tcpdump [202] created it. Its goal
is to give visibility of the real-time flow of events happening in a system network.
It also brings the ability to analyze offline information. It has traditional network
intrusion detection features. However, only its analysis characteristics have been
utilized to collect monitoring data. For testing and research purposes all the traffic
produced by the grid jobs is captured with tcpdump. Then the Bro offline features
are used to extract the relevant input data. A sample script used to retrieve this
relevant information is written in Listing 5.8.

In Arhuaco’s online mode, Bro captures the relevant real-time traffic from the
containers. It can be installed on a single machine with access to the virtual overlay
network the grid jobs are using to communicate. Thanks to Docker, it is possible to
monitor the virtual overlay network deployed on top of the physical network that
allows the communication among the running containers, and with the Internet or
other authorized networks.

5.1.3 Analysis Engine

The analysis module is the implementation of the proposed deep learning algo-
rithms: the convolutional neural network (CNN) for classification, the support
vector machine (SVM) for baseline comparison, word2vec and bag-of-words (BoW)
for feature extraction and the recurrent neural networks for data modeling. This
module receives input data from the sensors. It searches throughout the collected
information to expose suspicious security incidents.

Arhuaco’s analysis module has two workflows. The first is the training phase.
In this phase, the RNN is applied to enhance the input dataset that improves the
resulting accuracy of the ML models such as the CNN or the compared SVM. The
stochastic gradient descent learning algorithm is utilized to optimize the weights
of the models. The word2vec model is built based on the tokens available in the
training corpus. The second workflow is the online detection phase, where the
word2vec and the CNN classifier use the learned parameters to detect malicious
activities coming from the grid jobs in real-time. In the next sections, a description
of the implementation details of the deep learning (DL) algorithms is given.

102 CHAPTER 5. PROTOTYPE IMPLEMENTATION

Deep Learning Methods Implementation

The CNN, SVM and long short-term memory (LSTM) networks have been im-
plemented via the Python library Keras version 2.0 [203] with Theano [204] and
TensorFlow [205] as backends, both are supported. Keras is a free and open source
library that simplifies the development of DL algorithms and enables parallel
training and testing of models supported by the backend libraries. Keras is conve-
nient for high-throughput computing (HTC) applications since it can be used in
shared resource environments in parallel with other software. It is sharply focused
on GPU usage to increase the parallel processing performance. A small section
of the CNN implementation code is shown in Listing 5.9; there, the Keras API is
used to create the utilized network structure. Several filters are applied in the first
convolutional layer (Conv1D). The token vectors are the input for this first layer.
The MaxPooling1D function is employed to extract the resulting features for the
following layers.

The extraction of features via the word2vec algorithm was done with another
open source Python library, called Gensim [206]. Gensim gives a convenient API
for the retrieval of embedding vectors as well as many functions for the processing
of natural language information. It enables big data processing methods to deal
with information that does not fit in RAM. These methods are necessary for the big
size of the training corpus. The bag-of-words model was built upon the sklearn
[207] library.

Hyper-Parameters Optimization

The implemented algorithms require their hyper-parameters to be tuned, so the
obtained result in the classification is optimized. An empiric grid search was
utilized for this tuning task (See section 4.5.6). Some examples of parameters that
need to be optimized are momentum and decay. They are configured to ensure
the models to converge. Another example is the dropout, a method to randomly
block specific input features in each step of the training to prevent over-fitting. The
Keras implementation was combined with sklearn [207] that provides a convenient
interface for the grid search, to apply a systematic search of those parameters.
Keras has bindings to call models from the sklearn code. Through this, the models
can be evaluated under different values of the parameters until the ones that
produce the best measurements of accuracy are found. Table 5.1 lists the set of
candidate parameters that are explored for the CNN via the grid search, they were
empirically preselected. The goal of the grid search is to examine the obtained
training results for different models that have the listed parameters until all the
possible combinations are evaluated.

The support vector machine was configured with standard default values
provided by the Keras deep learning library. The Hinge loss function and the
Adadelta optimizer [208] were utilized. The loss is the distance between the
expected output (samples label) and the actual calculated output. The Hinge loss
is defined as:

`(f(~x), ~y) = max(0, 1− ~y · f(~x)), (5.1)

5.1. ARHUACO MODULES 103

Parameter Candidate values

Learning rate 0.001, 0.01, 0.1
Momentum 0.0, 0.2, 0.4, 0.6, 0.8, 0.9
Decay 0.0, 1e-5, 1e-6, 1e-7
Nesterov True, False
Regularizer parameter 0.1, 0.01, 0.001
Embedding dimension 5, 10, 20, 30
Filter sizes (1, 2, 3, 4), (3, 4, 5), (5, 6)
Total number filters 5, 10, 20, 30
Hidden neurons 5, 10, 20, 30
Dropout rate 0.0, 0.5, 0.1, 0.01
m 4, 5, 7, 10
l 1, 4, 5, 6, 10

Table 5.1: The list of candidate values used in the grid search, which is the utilized
optimization method for finding good hyperparameters.

with f(~x) as the desired output and ~y as the actual obtained output. In the context
of this problem, the SVM output ~y is defined as ~y = ±1, with −1 representing the
“normal” label and 1 representing the “malicious” label. The parameters m, l and
n, introduced in section 4.5.6 are fundamental for extracting relevant input feature
vectors. They are the same for both the CNN and SVM since they represent the
same input features extracted independently of the used classification algorithm.
These parameters were selected to keep a good balance between the classification
accuracy of normal and malicious classes and the ability to detect intrusions in
real-time.

The default parameters are also assigned to the LSTM network that are given
by the Keras library. The root mean square (RMS) propagation optimizer was
chosen. A learning rate of 0.01 and a categorical cross-entropy loss function were
applied. After describing the implementation of the DL algorithms, the storage
and response modules of the architecture are introduced.

5.1.4 Storage

At the proof-of-concept stage, Arhuaco stores the information about jobs behavior
and security incidents in plain text log files. A portion of the data gathered via the
sensors are kept in storage in such logs mainly for training purposes as shown in
section 6.2. Other parts of the data are stored for an offline forensic analysis, which
makes it easier for executing quick tests and a more straightforward interpretation
of the available information.

104 CHAPTER 5. PROTOTYPE IMPLEMENTATION

5.1.5 The Response Module

The response module carries out predefined actions following the detection of a
suspicious security-related incident coming from the grid jobs running on the site
WNs. It corresponds to the prevention concept of the IDPS based architecture. It
must avoid further damage to the grid system and support in the traceability of
any attack. Initially, the preconfigured actions are composed of two tasks:

• Sending alert messages (via e-mail) in case that a security incident has been
detected. Here, one crucial need is to minimize the amount of spam that
is sent to the system administrators, hence reducing the number of false
positives is critical.

• Depending on the selected user configuration, Arhuaco can kill those jobs
that represent a confidently high level of threat.

5.1.6 Distributed Installation

The installation of all the Arhuaco components has been automated via DevOps
scripts for Linux-based servers. It includes the modules, the interfaces with other
systems and the evaluation setup. The configuration management tool Puppet
[209] was used for this task. Puppet is based on a subset of the Ruby program-
ming language. Several custom modules have been developed to automate the
installation of all the component needed for Arhuaco and other pieces of the eval-
uation environment such as a distributed files system for accessing the required
libraries (described in the next section) and for the unification of analysis results.
Listing 5.10 shows a section of the Puppet code employed for the Arhuaco Python
module installation.

Distributed Filesystem

The ALICE grid jobs need read access to a shared directory, where high energy
physics libraries can be found in the Arhuaco testing setup. Hence, the CernVM
File System (CernVM-FS) [176] was installed on the worker nodes. CernVM-FS
enables library access by mounting a local read-only directory. This directory is
shared as a volume inside the AliEn containers to grant access to the required
libraries.

An important point is that the jobs running in the WNs generate output files
derived from the analysis they make of the scientific data. These files should be
transferred to the AliEn central services. The transfer can happen directly via an
Internet connection or the VoBox if the nodes are offline. In any case, a way to
transfer files from the WNs to the VoBox is required. A network file system (NFS)
solution [210] was configured, which allows processes to have a shared directory
where they can store their files. Furthermore, this shared location was protected
with AppArmor; this granted that if a job managed to escape from the container
isolation, the AppArmor rules kept such malicious process away from forbidden
directories.

5.2. EVALUATION ENVIRONMENT SETUP 105

5.2 Evaluation Environment Setup

A testing environment was built to make a set of evaluations on the proposed
approaches and provide evidence to support the advertised improvements for
grid security. An ALICE grid site was deployed in a Linux cluster at the Goethe
University in Frankfurt am Main, Germany. The goal of this setup was to collect
real grid job data and to measure the performance and accuracy of the Arhuaco
methods.

The testing grid site has five working nodes and a head node or VoBox. The
nodes possess the Linux distribution Ubuntu 14.04. All nodes consist of a Supermi-
cro X8DAH mainboard with two Intel Xeon E5520 processors. Each WN processor
has in total 8 physical cores realized as 16 virtual cores using hyper threading,
dynamically clocked to up to 2.27 GHz. The machines have 12 GB of RAM and a
Western Digital WD5002ABYS-0 HDD with a capacity of 500 GB, 7200 RPM and
16 MB cache. The swap area was set up as a file on the root file system, not as a
separate partition. The network interface is an Intel 82576 Gigabit network card,
capable of transferring 1 Gbps over Ethernet.

Regarding the software, AliEn [39], the ALICE grid middleware was configured
and installed in the cluster located in Frankfurt. The required infrastructure to be
a member of the ALICE grid was available, and the test site was allowed to join
the grid. The administrators have supported the project with access to production
jobs, advisory on the infrastructure setup and general scientific feedback. In the
following sections, the characteristics of the implemented test are shown.

5.3 Summary

The implementation details of the proposed architecture, the isolation, and secu-
rity monitoring approach for distributed grid computing were presented in this
chapter. A proof-of-concept setup for the ALICE grid has been described. Auto-
matically installable modules for the testing environment were developed. Puppet
modules install all the components and the testing setup. In that environment,
the performance and accuracy characteristics of the approach to improving grid
computing security can be evaluated.

Arhuaco is implemented with the Python language using Keras as the deep
learning library and Theano and TensorFlow as the backends for automated paral-
lelism management. The system architecture is similar to the intrusion detection
and prevention systems. The building blocks and components were listed. An in-
terface with the AliEn middleware was created with Perl. Currently, the supported
container orchestration engine is Docker Swarm. However, further research with
optional container engines such as rkt and singularity is also described.

106 CHAPTER 5. PROTOTYPE IMPLEMENTATION

Execute ALICE jobs inside Linux containers
This script creates all the needed AliEn environtment.

FROM centos:centos6
MAINTAINER Andres Gomez andres.gomez@cern.ch

LABEL container.label=worker-node

Add cern repos
RUN curl http://linuxsoft.cern.ch/wlcg/wlcg-sl6.repo -o /etc/yum.repos.d/wlcg-sl6.repo && \

curl http://linuxsoft.cern.ch/wlcg/RPM-GPG-KEY-wlcg -o /tmp/RPM-GPG-KEY-wlcg && \
rpm --import /tmp/RPM-GPG-KEY-wlcg && \
/usr/bin/yum --enablerepo=*-testing clean all && \
rm /tmp/RPM-GPG-KEY-wlcg && \
rm -rf /var/cache/yum

Install prerequisites.
RUN yum update -y && \

groupadd -g 355 aliprod && \
useradd -g 355 -d /var/lib/aliprod -m aliprod && \
yum install -y HEP_OSlibs_SL6 && \
yum install -y which && \
yum install -y gcc-gfortran && \
yum install -y redhat-lsb-core-4.0-7.el6.centos.x86_64 && \
sed -i '$ a\export PATH="/cvmfs/alice.cern.ch/bin:$PATH"' /var/lib/aliprod/.bashrc && \
sed -i '$ a\export LANG=C' /var/lib/aliprod/.bashrc

Create the read only configuration files for
AliEn services and Jobs.
COPY opt/.alien /var/lib/aliprod/.alien

Create writable directories for the AliEn jobs
RUN mkdir /var/lib/aliprod/.alien/cache && \

mkdir /var/lib/aliprod/.alien/logs && \
mkdir /var/lib/aliprod/.alien/tmp

Make aliprod the owner of these directories and files
RUN chown -R aliprod:aliprod /var/lib/aliprod/.alien

ENV HOME="/var/lib/aliprod"
ENV PATH="/cvmfs/alice.cern.ch/bin:$PATH"
ENV LANG=C

USER aliprod
WORKDIR /var/lib/aliprod/.alien/tmp

Listing 5.2: Source of the implemented AliEn Dockerfile. The image that re-
sults from compiling this source file is utilized to execute and monitor jobs with
Arhuaco.

#!/bin/bash

docker run --mount type=bind,source=/home/alien/logs \
,target=/home/alien/logs --name alien tests:alien \
/var/lib/aliprod/.alien/tmp/PbPbbench/runtest.sh

Listing 5.3: Example of a command to share a host volume with Docker containers.

5.3. SUMMARY 107

#!/bin/bash

docker export tests:alien > dockerimg.tar
docker2aci ./dockerimg.tar
mkdir workdir
tar zxf dockerimg.aci
mv rootfs manifest workdir
vim workdir /rootfs/var/lib/aliprod/.alien/tmp/PbPbbench/runtest.sh
tar -pczf rkt1.aci workdit/manifest workdir/rootfs/

Listing 5.4: Samples of commands utilized to create and modify an ACI container
from a Docker image.

#!/bin/bash

singularity run -w -B /home/alien/singularity:/runtimes -B \
/cvmfs/alice.cern.ch singularity_1.img 5 2

Listing 5.5: A sample of a command to execute a container based on Singularity
image.

#!/bin/bash

cd linux-4.9.23/
patch - p1 < ../grsecurity-3.1-4.9.23-201704181901.patch
make menuconfig
fakeroot make deb-pkg

Listing 5.6: A sample of the commands utilized to apply and compile the Grsecu-
rity and PaX patches to the kernel [175].

#!/bin/bash

sysdig -p'%container.id %evt.category %evt.type %evt.args' \
evt.category!= sleep and evt.category!=wait and evt.category!=IPC \
and evt.category!=ipc and evt.category!=scheduler \
and container.name contains alien

Listing 5.7: Source of one of the scripts utilized for system call data capture via
sysdig.

#!/bin/bash

if ["$1" == "dns"]; then
normal
cat $(find /home/data/normal/ -name "dns.log" \
| sed ':a;N;$!ba;s/\n/ /g') \
| /opt/bro/bin/bro-cut query duration \
qclass qclass_name qtype qtype_name \
| grep -v "ubuntu\|192\.\|\-\s" > /home/data/network_normal.log
malicious
cat /home/data/malicious/network-sandbox/dns.log \
| /opt/bro/bin/bro-cut query duration qclass \
qclass_name qtype qtype_name
\ | grep -v "ubuntu\|192\.\|\-\s" > /home/data/network_malicious.log

fi

Listing 5.8: Source of one of the scripts utilized for network information extraction
using Bro.

108 CHAPTER 5. PROTOTYPE IMPLEMENTATION

Build the model
Graph subnet with one input and one output,
convolutional layers concateneted in parallel
graph_in = Input(shape=(sequence_length,embedding_dim))
convs = []
for fsz in filter_sizes:

Conv1D: keras convolutional layer
Embedding: it allows to use word vectors as inputs
conv = Conv1D(activity_regularizer=l2(

regularizer_param),
padding="valid",
strides=1,
kernel_regularizer=l2(

regularizer_param),
filters=num_filters,
activation="relu",
kernel_size=fsz)(graph_in)

pool = MaxPooling1D(pool_size=pool_size)(conv)
flatten = Flatten()(pool)
convs.append(flatten)

out = None
if len(filter_sizes) > 1:

out = Concatenate()(convs)
else:

out = convs[0]
graph = Model(outputs=out, inputs=graph_in)
self.model = Sequential()
self.model.add(Embedding(len(self.vocabulary)+1,

embedding_dim,
input_length=sequence_length,
weights=self.embedding_weights))

Listing 5.9: A sample of a relevant section of the CNN implementation with
Python. In this part of the code, the relevant input structure of the neural network
is created.

5.3. SUMMARY 109

class profile::arhuaco inherits profile::params {

Install arhuaco library
package { "docker-py":

ensure => present,
provider => pip,

}
~>
package { "prometheus_client":

ensure => present,
provider => pip,

}
~>
file {'/var/log/arhuaco':

ensure => 'directory',
owner => 'root',
group => 'root',
mode => '0644',

}
~>
exec { 'arhuaco-library':

command => "cd /tmp && wget
http://iri03.iri.uni-frankfurt.de/arhuaco-0.5.tar.gz && tar -xvzf
arhuaco-0.5.tar.gz && cd arhuaco-0.5 && python setup.py install &&
touch /var/log/arhuaco/.install.done",
path => "/bin:/usr/bin:/usr/local/sbin:/usr/local/bin",
unless => 'test -f /var/log/arhuaco/.install.done',
provider => 'shell',
} ~> file { '/etc/init/arhuaco.conf':
path => '/etc/init/arhuaco.conf',
ensure => present,
owner => root,
group => root,
mode => 0755,
notify => Service['arhuaco'],
content => template("profile/arhuaco.conf.erb"),

}
~>
service { "arhuaco":

ensure => stopped,
enable => true,
pattern => "arhuaco",
hasstatus => false,
provider => 'upstart',

}
~>
file {'/home/data':

ensure => 'directory',
owner => 'root',
group => 'root',
mode => '0644',

}
}

Listing 5.10: A section of the Puppet code utilized for the installation of the
Arhuaco Python components.

Chapter 6

Evaluation and Results

An empiric evaluation of the approach and the Arhuaco’s proof-of-concept imple-
mentation is presented in this chapter. Quantitative information about the benefits
of the research proposals was gathered. The performance impact caused by sand-
boxed jobs with security by isolation (SbI) measures and security monitoring
features was tested. The classification accuracy and data generation effectiveness
of the deep learning algorithms implemented in Arhuaco are compared to validate
their contribution. The goal of this chapter is to evaluate the following research
questions:

• Linux containers (LCs) are proposed for the isolation of grid jobs and to
get specific traceability information about individual job activity. Does the
isolation raise the overall security of the grid environment? How do LCs
affect the performance of the grid sandboxed applications? Is the measured
overhead acceptable if contrasted with the obtained level of security?

• Classification of grid job traces based on deep learning (DL) methods is
proposed. Convolutional neural networks (CNN) were the selected DL
classifiers. Word2vec model is utilized to extract the input features from the
monitoring data collected via LCs. It is stated that this approach produces
augmented results over the support vector machines (SVM) with the bag-of-
words features, two of the most popular methods used in machine learning
(ML) related studies of grid-based IDS. How can the most optimal network
structures be built to have the best training results? What are the optimal
hyper-parameters for the selected networks? Is the CNN classifier effective
enough to distinguish among normal and malicious grid jobs? Does the
CNN provide higher classification accuracy and lower false positives rates
than the compared SVM?

• A long short-term memory (LSTM) network was created as a generative
model for improving the training dataset coverage and enhance the results
of the network connection logs classification. Does this data generation
improve the obtained training results?

• A dataset for the training of deep learning based grid intrusion detection
was collected. It is composed of inputs and labels extracted from production

110

6.1. PERFORMANCE EVALUATION SETUP 111

ALICE grid jobs and Linux malware binaries. Is the collected dataset an
appropriate benchmark to validate ML-based models for grid intrusion
detection?

In the following sections, verifiable answers to these questions are delivered.
A set of evaluations carried out in the testing setup at the Frankfurt grid site is
presented.

6.1 Performance Evaluation Setup

As described in the previous chapters, this project aims to increase the safety of
grid jobs by isolation and to monitor their behavior. However, just as virtual
machines, Linux containers may cause a performance overhead in the execution
of the scientific payloads. This overhead takes place because isolation measures
commonly affect the execution of the OS processes at different levels. For instance,
VMs frequently analyze and interpret machine-level binary code instructions
while containers intercept and validate system calls and kernel functions. These
isolation features cause the execution of additional portions of code or more context
switching which produces an overall increased process runtime if compared with
the non-isolation mode. A setup to empirically measure the performance impact
of the isolation and monitoring enhancements was created. The results of such
measurements grant useful information to determine if the extra security is worth
to consider or that the impact is prohibitive.

A standard ALICE application, PbPbbench [211] version v5-05-Rev-21, ex-
tracted from the CernVM-FS volume, was utilized in the evaluations to measure
the runtime overhead caused over regular grid jobs; it was selected in order to have
a “realistic” example of the type of applications running in the grid. The library is
located in the same mounted directory as the other HEP libraries, exposed in a
path on the WNs: “/cvmfs/alice.cern.ch/”. The benchmark application executes
a Monte Carlo simulation of particle collisions. The simulation environment and
boundary conditions are stored in an OCDB directory located in the PbPbbench
folder. This simulation calculates the generation of particles that are formed dur-
ing a collision, their energy deposition, and path throughout the detector [6]. This
application was employed since it has all the typical characteristics of the WLCG
grid jobs. An example of the kind of script utilized to start the PbPbbench evalua-
tion inside Docker containers is shown in Listing 6.1. In addition, the Linpack [4]
benchmark library was utilized to measure the execution throughput shortcoming
of isolated jobs. It leverages a dense system of linear equations for testing the
processing abilities of high-performance computing systems.

Docker has been tested as the main container engine and isolation provider,
but the results of tests made with other isolation mechanisms are also described:
rkt, singularity and kernel hardening with Grsecurity patches. A combination of
them was also analyzed.

112 CHAPTER 6. EVALUATION AND RESULTS

#!/bin/bash

Set up the dockerfile
DIR=`pwd`

docker build -t alien_perf $DIR

run the test
mkdir -p results
for ((j = 0; j < $1; j++)); do

for ((i = 0; i < 16; i++)); do
log="results/docker-$j-$i.log"
docker run --cpuset-cpus="$i" --rm \
--name docker-perf-${i} \
-h docker-perf-${i} \
-v /cvmfs/alice.cern.ch:/cvmfs/alice.cern.ch \
alien_perf /bin/sh ./runtest.sh &>> $log &

done
wait

done

Listing 6.1: One of the scrips utilized to start a performance test inside Docker
with a PbPbbench-based payload.

6.2 Machine Learning Evaluation Setup

A dataset of regular and malicious system call and network connection logs was
built for this project. The goal was to have a baseline benchmark for the training
and validation of the proposed classification and generative algorithms. Instead
of creating a custom set of job samples, a more convenient approach is to utilize
already available binaries.

In this project, 325 production ALICE grid jobs were selected from the total
of jobs executed in the Frankfurt’s site with a success termination state (Without
errors that make them stop in the middle of their tasks). Figure 6.1 shows the
cumulative number of jobs executed in the grid site called “UF” during this
research. Some jobs were not considered because they were repeated or they
belong to the predefined analyses created in the ALICE central services instead of
being created by the grid users. The runtime of many of the selected payloads can
reach several hours. The chosen jobs were monitored and the information collected
to build the “normal” tagged portion of the training dataset. The rest was used for
development and testing purposes, but they contributed to the production ALICE
data processing. The selected ALICE jobs were run inside Docker containers, and
the isolation and monitoring features were used to collect every system call and
network connection. This data was gathered with the current Arhuaco source
module tools, sysdig [182] for system calls and Bro [7] for network connection
summary traces.

A set of 10,000 Linux malware samples downloaded from a security research
website [185] was used for this study. This set enables the creation of the malicious
part of the training dataset. The samples were executed and monitored in a
protected environment. They had no contact with the UF grid site. An open source
tool called Inetsim [195] for network connection emulation it is possible to run
the malicious binaries just like they were connected to the Internet. This tool is

6.2. MACHINE LEARNING EVALUATION SETUP 113

Figure 6.1: A cumulative number of jobs run without an error state on
the grid site in the period 2015-2017.

Dataset Normal Malware

System call 12 GB - 127’100,000 lines 8.2 GB - 127’054,763 lines
Network 868 KB - 20,733 lines 108 KB - 2,937 lines

Table 6.1: The complete set of information describing the analyzed grid jobs and
malware behavior, as collected log-lines.

beneficial to collect more information than in an off-line environment, taking away
the risk of affecting other organization networks. The Cuckoo sandbox [196] was
applied for isolation and monitoring of the malware runs. This tool written in
Python gives a set of library functions that simplify the sandboxing and analysis
of malicious applications; it simplifies the management of virtual machines, where
the samples were kept for increased safety.

The collected raw input dataset is summarized in Table 6.1. The training
dataset is constituted by the log lines that sysdig and Bro captured from the
ALICE jobs and Linux malware in the Frankfurt test environment. As can be seen
in the listed raw dataset, more data was collected from the grid jobs than from the
malware, although fewer grid samples were selected. This can be explained by
the fact that grid jobs can run for hours while the malware binaries do not run
normally more than few minutes. In addition, the network data is unbalanced
between the normal and the malware dataset, the number of network connection
traces utilized in the training phase had to be restricted according to the reduced
available malware network data.

Table 6.2 lists the tagged samples resulting from the feature extraction step with
word2vec when processing the input corpus. The number of samples depends

114 CHAPTER 6. EVALUATION AND RESULTS

Dataset Training Validation

System calls traces 10’000,000 100,000
Network traces 20,000 2,000

Table 6.2: Training and validation samples obtained after the feature extraction
method.

on the selected number of lines l and the numberof tokens m chosen to build the
input object, i.e., a set of lines from the network and system calls logs. This dataset
has been split as follows: 80% of the data was used for training, 10% for validation
and a remaining 10% of entirely unseen data was available to test the final ability
of the deep learning algorithms to generalize.

Some lines in the training dataset may be found in both categories, “normal”
and “malicious”. For instance, there might be system calls sequences that are inside
both types of sets. An example of this kind of sequences is the one composed
by multiple “signal rt sigaction” that have been frequently found in the runs.
These repeated sequences are filtered to further improve the learning ability of
the classifiers. Since that data is available in both classes, they do not increase
the available information. Hence, their removal is a way to improve the training
phase and mainly to reduce false positives.

6.3 Isolation and Monitoring Performance Impact

The performance test scope was confined to the measurement of the throughput
and average execution time of grid jobs under several configurations. This evalua-
tion made it possible to determine the impact of the SbI methods and to answer the
research questions related to the performance impact in the presence of increased
security measures.

6.3.1 Evaluation Measurement Metrics

Two measurement metrics were defined to enable the performance comparison.
The average runtime that an ALICE grid job takes to finish its execution, is the
first metric, expressed in seconds. The benchmark application PbPbbench [211],
from the ALICE software analysis framework was chosen to simulate the normal
execution of a HEP job. The execution throughput, as described in [2] with the
Linpack [4] benchmark library, is the next considered metric. Linpack is a library
that employs a dense system of linear equations with an algorithm implementing
LU (lower–upper) factorization [5] with partial pivoting for testing the processing
abilities of high-performance computing (HPC) systems. The measurement of the
evaluation metrics considers three scenarios for each metric:

• Native: jobs running over physical working nodes (WN) with a Linux distri-
bution, under common grid configurations. This condition is the baseline,

6.3. ISOLATION AND MONITORING PERFORMANCE IMPACT 115

Setup ALICE job average runtime (Seconds) Standard deviation

Native 110.77 10.03
Docker 114.22 (3.12%) 12.58
Arhuaco 117.54 (6.11%) 11.83

Table 6.3: Results of the performance overhead related to the runtime of the
ALICE-based jobs.

normal scenario without any isolation.

• Docker: jobs running inside Docker containers over the same Linux OS
machines.

• Arhuaco: In addition to the Docker containers, system call and network trace
interception and processing by Arhuaco on the same described machines
was made.

In the performance evaluation, only values related to local processing metrics
were measured: throughput and runtime. The performance impact of Arhuaco
over the network data transmission was not measured. Arhuaco collects network
traces from jobs locally and passively, both by the system calls and by the Bro
network security monitor. Therefore, the execution overhead of monitoring and
isolation of jobs is the focus and not the data transmission rates.

6.3.2 Performance Results

Physical machines with an Ubuntu 14.04 OS were utilized for the performance test.
The setup of the machines is described in section 5.2. A set of jobs based on the
ALICE’s PbPbbench scripts [211] were executed for the first type of performance
test. A total of 1600 jobs were executed. The runtime, from the start to the end,
was collected for each job. The total average runtime and standard deviation
were calculated in the three described scenarios. Each PbPbbench-based job
implemented a simulation, reconstruction, and analysis of the same ALICE HEP
data, which results in the same expected deterministic processing. Table 6.3 shows
the obtained results. The measurement unit is expressed in seconds. The second
column lists the average runtime and the percentage of overhead regarding each
scenario. The third column lists the standard deviation. The native label means
that the evaluation was implemented over the machines without isolation. The
second group of tests involved the usage of Docker over the same machines for
the isolation of the job. Finally, a Docker plus Arhuaco monitoring group of tests
were made.

Benchmark jobs based on the Linpack library were tested for each of the three
desired scenarios, in the second type of performance test. The throughput achieved
by these jobs was measured, and the overhead was calculated. The measurement
unit is floating operations per second. Table 6.4 lists the results. The average

116 CHAPTER 6. EVALUATION AND RESULTS

Setup Linpack average (GFLOPS) Standard deviation

Native 3.78443 0.00771472
Docker 3.77343 (-0.29%) 0.0101847
Arhuaco 3.76172 (-0.6%) 0.00485492

Table 6.4: Results of the performance impact measured concerning throughput of
the Linpack-based jobs.

throughput for each scenario is in the second column. The percentage of overhead
regarding the native scenario is also shown in the same column. The standard
deviation is in the third column. 2 jobs per CPU core were executed, with 16 jobs
in parallel and 100 repetitions for a total of 1600 runs. All the used jobs had the
same constant inputs and parameters, so the expected execution was deterministic.
Both the Linpack test and the ALICE job tests used the CentOS 6 container image
described in section 5.1.1. However, for the ALICE job case the base operating
system utilized was CentOS 6 as well. The reason for the difference is that the
CERN libraries showed a different performance for Ubuntu 14.04 and CentOS 6,
which was not the case for the throughput test. A discussion about the results is
presented in section 6.3.4.

6.3.3 Results of the Alternative Isolation Methods

Some of the results of the master thesis [175] supervised by the author, related to
several alternative isolation mechanisms in addition to Docker are mentioned here.
That research utilizes the same experimental setup with the ALICE PbPbbench
based jobs, the Ubuntu 14.04 machines, and the CentOS 6 container image. The
average runtime of an incremental number of parallel jobs was measured. The
number of jobs goes from 1 to 10. Four scenarios were tested: The first with a
native Ubuntu OS, the second was the execution of jobs inside Docker, the third
utilized rkt and the fourth used singularity. All the scenarios utilized a regular
stock Linux kernel version 4.9. In Figure 6.2 the results are listed. For each x
axis value, the increased number of parallel is shown. The y axis lists the average
runtime calculated from those parallel jobs, in each of the four scenarios. From the
figure, a runtime increment trend can be observed, when the number of parallel
jobs gets higher. The Docker scenario showed the lowest runtime overhead in
most of the measurements, making it the best option when kernel hardening is
not utilized.

In another experiment, kernel hardening was added to the isolation scenarios.
A Linux kernel version 4.9 was utilized. As described in section 6.1, the Grsecurity
patches were added to the kernel and then were compiled. The same setup and
the same kind of ALICE jobs were used as in the above-described experiment.
Figure 6.3 shows the measured average runtime of an increased number of parallel
jobs, for 1 to 10. The graphic illustrates the impact of job sandboxing in addition
to security enforcement of the Linux kernel with anti-vulnerability exploiting

6.3. ISOLATION AND MONITORING PERFORMANCE IMPACT 117

1 2 3 4 5 6 7 8 9 10
Number of simultaneous Jobs

4200

4400

4600

4800

5000

5200

5400

5600

5800
Av

er
ag

e
ru

nt
im

e
[s

]
Stock Kernel

Linux
Docker
Rkt
Singularity

Figure 6.2: A comparison of the average runtime of sandboxed ALICE
jobs within several Linux container engines [175].

measures. In this case, we have three scenarios instead of four, because it was not
possible to make Docker work with the hardened kernel. For this experiment, rkt
showed the best results regarding runtime in most of the measurements.

6.3.4 Discussion

The first research question was defined as: do the isolation measures raise the
overall security level of the grid environment? Containerization has been proven
as a mature and robust technology for application isolation in high-performance
computing [2]. LCs have been tested in other areas such as microservices [169]
with significant success. Hence, as far as there are no Kernel or container engine
vulnerabilities, Linux containers contribute to increasing the grid security by mak-
ing it harder for an attacker to compromise the computational infrastructure or
sensitive network sections. Although bugs are always a possibility in any compu-
tational system, including virtual machines, the security hardening provided by
isolation technologies have been utilized in many computing domains, including
desktop operating systems [73].

Now, how does the implemented SbI affect the performance of the sandboxed
applications? The results in Table 6.4, related to the throughput test with Linpack
jobs, show a reduction of 0.29% of the average number of executed floating point
operations in the Docker scenario and 0.6% in the Arhuaco scenario. Linpack jobs

118 CHAPTER 6. EVALUATION AND RESULTS

1 2 3 4 5 6 7 8 9 10
Number of simultaneous Jobs

4250

4500

4750

5000

5250

5500

5750

6000
Av

er
ag

e
ru

nt
im

e
[s

]
Hardened Kernel

Linux
Rkt
Singularity

Figure 6.3: A comparison of the average runtime of sandboxed jobs
within several Linux container engines on top of a security-enhanced
Linux kernel [175].

are mostly composed of floating point operations. Therefore, these jobs do not
need a frequent context switching since most of the instructions are arithmetic, so
no extensive involvement from the kernel API is expected. The same behavior may
be found in many e-science applications, in opposition to, for example, a database
solution. This scenario should be even more common for high-throughput com-
puting, i.e., where high-throughput applications are the primary jobs running in
an infrastructure. The other type of performance test with the PbPbbench based
applications shows an increase in the average runtime in seconds or equivalently a
reduction in the processing speed. Table 6.3 lists an average runtime increment of
3.1163% in the Docker scenario and 6.1125% in the Arhuaco scenario. According to
these results, when the tested ALICE jobs are isolated with Docker, the execution
becomes in average around 3% slower. When isolation and behavior monitoring
is provided, the job execution is around 6% slower.

The following research question is, how critical is the measured impact created
by the isolation methods given the security provided? The described reductions
in the throughput caused by isolation measures are acceptable in grid computing,
given the critical requirement of keeping the computing infrastructure safe against
malicious jobs. The impact overhead is higher when evaluating the average
execution time of PbPbbench jobs. These results can be considered as a very
affordable compromise if compared with the consequences of a successful attack

6.4. SUPERVISED CLASSIFICATION RESULTS 119

in the grid. LCs are increasingly utilized in grid computing collaborations and as
the results have shown, adding extra monitoring and analysis by Arhuaco creates
an impact that is not severe. Another point to consider is that there are studies
such as [2] that compare the usage of LCs against virtual machines (VMs) for
scientific applications sandboxing. The studies demonstrate a more significant
overhead in the performance VMs generate compared to LCs. Several measures
have been implemented in the proof-of-concept to reduce the isolation overhead
further. Arhuaco was developed with several configurable options:

• The first possibility is to analyze only a reduced set of random grid jobs. The
full set of available production jobs are not considered. This option would
be better for preserving performance, but it has the least robust security.

• The second option is to analyze only network summary data in the first place.
Then, on any suspicious behavior detected, Arhuaco activates the system
call collection.

• The third possibility is the safest mode in which all the data is gathered and
analyzed. This last configuration is the default mode that brings the most
enhanced safety level.

Regarding the other isolation methods studied in [175], the results can be seen
in Figures 6.2 and 6.3. With the regular (stock) Linux kernel, the best average
runtimes of sandboxed jobs were obtained with Docker (the green squares). This
fact shows that Docker is an appropriate selection as a good performance isolation
solution. The evaluations with the hardened kernel showed the best average
runtimes with rkt (again the green squares). These results suggest that the us-
age of rkt and kernel hardening are a promising direction to explore in future
developments of Arhuaco. Therefore, for increased security requirements, this
looks like a convenient possibility for extra protection against kernel vulnerability
exploitation. In some of the tests, the runtime of the jobs without isolation was
worse than the jobs with container isolation. An explanation for this fact was not
found in the related study.

6.4 Supervised Classification Results

The evaluations made to the classification metrics of the machine learning al-
gorithms for grid job are explained in this section. Results of the improvement
obtained when using convolutional neural networks instead of support vector ma-
chines is given. The goal here was to show how recently proposed deep learning
methods as CNN with word2vec features outperform traditional machine learning
methods such as SVMs with the bag-of-words inputs for the task of intrusion
detection in grid computing.

120 CHAPTER 6. EVALUATION AND RESULTS

Parameters System calls Network connections

Learning rate 0.001 0.01
Momentum 0.8 0.9
Decay 1e-5 1e-5
Nesterov False True
Regularizer parameter 0.001 0.001
Embedding dimension 10 10
Filter sizes (1, 2, 3, 4) (2, 3)
Total number filters 30 10
Hidden neurons 30 20
Dropout rate 0.0 0.0
m 7 5
l 6 1
n 42 5

Table 6.5: Convolutional neural network parameters selected by a grid search
method.

6.4.1 Grid Search Optimization

First, the tuning of the structure of the utilized CNN was explored. The ques-
tion, defined in the research objectives, is how an optimized network structure
can be built to have improved training and evaluation results? As described in
section 4.5.6, deep neural network hyper-parameters are the values that determine
the architecture of a network and hence the decision of which parameters to use
affects the final result. Grid search, a method where several preselected parame-
ters and network structures are tried, generally in parallel, was employed in this
study. Therefore, the grid search is the used method to find an optimized network
structure.

The past answer takes to the next question: which are the best parameters for
the selected network based on the grid search? Doing an exhaustive search with
all the possible parameters would be computationally prohibitive. The grid search
made it possible to find the best set of hyper-parameters for a reduced subset of
the search space. The full list of finally optimized hyperparameters is shown in
Table 6.5 with the optimal values. Since the system call and the network traces are
two different input context, the resulting parameters differ in some cases.

For the CNN, momentum and parameter decay were used to ensure the model
convergence, and dropout to prevent overfitting. However, it was found that the
dropout parameter was not needed, with an obtained optimal value of 0.0 for
it. The Hinge loss function, the Adadelta optimizer and a set of standard hyper-
parameters provided by the Keras library for the support vector machine were
chosen. The parameters m, l and n that define the input format for both types of
models were described in section 4.5.3. They were also found in the grid search.
We proceed to the next section with the description of the relevant evaluation

6.4. SUPERVISED CLASSIFICATION RESULTS 121

measurement metrics.

6.4.2 Classification Evaluation Metrics

In machine learning, popular performance metrics are those that measure the
number of input samples with a correctly calculated output. Accuracy (ACC),
sensitivity or true positive rate (TPR), specificity (SPC) and false positive rate
(FPR) are common statistical measures of the performance of binary classifiers.
That is the type of classifiers utilized here, so those metrics are relevant to this
project. In the context of this study, sensitivity indicates how precise a classifier
is to predict the “positive” category (it is also known as true positive rate) and
specificity describes how the negative class is predicted (it is also known as true
negative rate).

Accuracy measures the algorithm’s ability to predict the correct output cate-
gories or classes. Therefore, the overall performance of the trained classifier is
often evaluated by this metric. Accuracy measures the number of instances that
were correctly classified - which are both the true positives (TP) and true negatives
(TN) - divided by the entire size of a training subset - which is the sum of true
positives (TP), true negatives (TN), false positives (FP), and false negatives (FN)-.
The TPR, SPC and ACC values are calculated as follows:

Sensitivity(TPR) =
TP

TP + FN
, (6.1)

Specificity(SPC) =
TN

TN + FP
, (6.2)

Accuracy(ACC) =
TP + TN

TP + TN + FP + FN
, (6.3)

False positive rate is defined as the number of instances of the “negative”
category classified in the “positiveöne, divided by the number of all instances
that are classified into first category. FPR is calculated by the equation (6.4). The
TPR, SPC, ACC and FPR values are defined in the range [0, 1]. They can also be
interpreted as percentage values in the range [0%, 100%]. For TPR, SPC and ACC,
the best possible value is 1, while for FPR the best value is 0.

FalsePositiveRate(FPR) =
FP

FP + TN
, (6.4)

Another favorite evaluation metric in ML is the k-fold cross-validation [212].
It consists on splitting the training dataset into k subsets, from which k − 1 of
those sets are used for training and 1 of them for validation. This procedure
is repeated k times, choosing a different subset in every step. In the end, the
average accuracy of the k validations are calculated. However, this method is not
commonly applied in deep learning, given the significant size of the involved
datasets and the cost of optimizing ordinarily huge models. Hence, this metric was
provided. Besides, enough data was available to run multiple epochs with different
samples on each one of them, which makes the cross-validation unnecessary.

122 CHAPTER 6. EVALUATION AND RESULTS

Testing dataset TPR SPC FPR ACC

System call 0.9972 0.9932 0.0068 0.9952
Network traces 0.9765 0.9997 0.0006 0.9875

Table 6.6: Results of the classification test of the convolutional neural network,
using new input samples extracted from the system calls and network traces.

Testing dataset TPR SPC FPR ACC

System call 0.9965 0.9313 0.0687 0.9639
Network traces 0.9507 0.6219 0.3781 0.7871

Table 6.7: Classification test results of the support vector machine, using new
input samples extracted from the system calls and network traces.

Additionally, Keras enabled to make a validation step on each epoch, which
enabled the verification that the networks exhibited similar behavior with different
data and it can generalize.

6.4.3 Classification Results

The dataset described in section 6.2 was utilized for the optimization of the CNN
and SVM network weights via stochastic gradient descent and Adadelta training
algorithms respectively. Ten epochs were run for each training process with
100,000 feature inputs extracted from the system calls and 10,000 from the network
samples in each epoch. Once the training phase ended, an evaluation of the CNN
classifier with entirely new testing data was made. The obtained measurement
metrics of that test are shown Table 6.6. The test data was composed of 10,000 new
samples extracted from system calls and 1,000 extracted from network traces. Both
sets were randomly selected from the full available data and are different from the
training sets.

The same procedure was followed for the SVM with the same data subsets
for training, validation, and testing. The testing results were collected after the
training process; they are listed in Table 6.7.

A comparison of the results of both CNN and SVM algorithms is given in
Table 6.8. The table shows in the second and third columns the accuracy metric
values. In the fourth and fifth columns, the false positive rate values are listed.
As shown in the second and fourth columns inside the parenthesis, the CNN
exhibited a higher ACC value (3.24%) and a lower FPR (−90.10%) than the SVM
for the system call data. The same trend was observed with the network trace
data (25.46% and −99.84%). When we take a look of Tables 6.6 and 6.7, we
can see that the TPR and SPC values are also higher in the CNN than in the
SVM. These measurements indicate the increased effectivenesses of using the
proposed convolutional neural networks with word2vec features for classification

6.4. SUPERVISED CLASSIFICATION RESULTS 123

Testing dataset CNN ACC SVM ACC CNN FPR SVM FPR

System call 0.9952 (3.24%) 0.9639 0.0068 (−90.10%) 0.0687
Network traces 0.9875 (25.46%) 0.7871 0.0006 (−99.84%) 0.3781

Table 6.8: Comparison of the evaluation metrics between CNN vs. SVM for new
testing samples extracted from the system calls and network traces.

of grid jobs. The results promote the system as a more powerful approach for
the detection of intrusions in the grid environment. Better measurement metric
values were obtained than with the compared support vector machine and the
bag-of-words features, which is one of the most popular methods in ML-based
intrusion detection systems.

Further information to support these results is presented. The training and
validation curves that both alternative classifiers have produced are shown. The
resulting curves composed by values from the convolutional neural network
accuracy measurements in 10 epochs with training and validation input features
of system calls can be seen in Figure 6.4. From the graphic we can remark that
the CNN validation curve is close to the training curve, approaching 100%, which
suggest that proper training was conducted.

0 1 2 3 4 5 6 7 8 9
Epoch

0.980

0.982

0.984

0.986

0.988

0.990

0.992

0.994

0.996

Ac
cu

ra
cy

System call classification with CNN

Training
Validation

Figure 6.4: A plot of the curves traced from the CNN training and validation
Accuracy, in the classification of input features from the system calls.

Figure 6.5 describes the accuracy behavior of the compared SVM concerning
the embedding vectors of system calls for training and validation. A trend of

124 CHAPTER 6. EVALUATION AND RESULTS

over-fitting can be seen in the learning validation curve compared to the training
curve. This behavior can be deduced from the fact that the validation curve is
higher than the training curve in the first epochs, but it decreases in the following
epochs. The SVM model is far smaller than the CNN which may explain the
observed over-fitting.

0 1 2 3 4 5 6 7 8 9
Epoch

0.935

0.940

0.945

0.950

0.955

0.960

0.965

0.970

Ac
cu

ra
cy

System call classification with SVM

Training
Validation

Figure 6.5: A plot of the Accuracy obtained in the several epochs of training and
validation of the SVM, applied to input features extracted from the system calls.

To show a comparison among the proposed and baseline method with ACC and
FPR measurement metrics, the graphics in Figure 6.6 and Figure 6.7 are provided.
They show the curves of learning with feature vectors extracted from the system
call data. The CNN exhibited a higher accuracy and decreased false positive rate
than the SVM during every epoch of the training phase. The minimum ACC value
for the CNN was 0.99 in the first epoch while the maximum ACC value for the
SVM was 0.97 in the second epoch. These results indicate a better general behavior
of the proposed technique.

Similar results were found for the network connection data. The measured met-
rics of the network trace classification with CNN and SVM methods are shown in
Figure 6.8 and Figure 6.9. The convolutional neural network exhibited results with
the training and validation data that are close to the system call case, approaching
99%. The SVM suffered over-fitting here too, and the accuracy did not even reach
80%.

The comparison curves for the two classifiers trained on the network sum-
maries is also given. The accuracy in validation curve displays a better result
for the CNN (Figure 6.10). An identical conclusion can be observed for the false
positive rate measurement for validation data in Figure 6.11 where also CNN beats

6.4. SUPERVISED CLASSIFICATION RESULTS 125

0 1 2 3 4 5 6 7 8 9
Epoch

0.955

0.960

0.965

0.970

0.975

0.980

0.985

0.990

0.995
Ac

cu
ra

cy

CNN vs SVM system call validation accuracy

CNN validation
SVM validation

Figure 6.6: A plot comparing the curves of the accuracy of CNN vs SVM, with
validation data, applied to system call embedding vectors.

0 1 2 3 4 5 6 7 8 9
Epoch

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Fa
lse

 p
os

iti
ve

 ra
te

CNN vs SVM system call validation false positive rate
CNN validation
SVM validation

Figure 6.7: A comparison of the traces of false positive rate, of CNN vs. SVM,
with validation data of system call embedding vectors.

the SVM.

126 CHAPTER 6. EVALUATION AND RESULTS

0 1 2 3 4 5 6 7 8 9
Epoch

0.86

0.88

0.90

0.92

0.94

0.96

0.98
Ac

cu
ra

cy

Network trace classification with CNN

Training
Validation

Figure 6.8: Plotting of the accuracy on training and validation during several
epochs, of a CNN using network data.

0 1 2 3 4 5 6 7 8 9
Epoch

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Ac
cu

ra
cy

Network trace classification with SVM

Training
Validation

Figure 6.9: A plot of the accuracy obtained in training and validation, for an SVM
using network data.

6.4. SUPERVISED CLASSIFICATION RESULTS 127

0 1 2 3 4 5 6 7 8 9
Epoch

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

CNN vs SVM network trace validation accuracy

CNN validation
SVM validation

Figure 6.10: A comparison of the ACC plots, with validation data applied to
CNN vs. SVM, using network trace embedding vectors.

0 1 2 3 4 5 6 7 8 9
Epoch

0.0

0.1

0.2

0.3

0.4

Fa
lse

 p
os

iti
ve

 ra
te

CNN vs SVM network validation false positive rate
CNN validation
SVM validation

Figure 6.11: A plot comparing the FPR curves produced by the CNN vs. SVM,
with validation data from the network trace embedding vectors.

6.4.4 Discussion

Based on the collected facts the next research questions can be answered: Is
the CNN classifier useful to distinguish among normal and malicious grid jobs?

128 CHAPTER 6. EVALUATION AND RESULTS

Does the CNN provide higher classification accuracy and lower false positives
rates than the compared SVM? The results enable to answer positively to both
questions. The CNN chosen for the Arhuaco’s proof-of-concept increased the
accuracy and reduced the false positive rate in classification of grid jobs and
was able to generalize to entirely unseen samples in the validation phase. The
classification accuracy with both system calls and network traces was close to
100%. Hence, it improves the detection of undesired activity inside the e-science
grid that comes from within the jobs. When compared to a traditionally employed
method, convolutional neural networks demonstrated a better classification ability,
as proven for one of the most popular classifiers, the support vector machines
with the bag-of-words as input vectors.

Information was also offered about how the proposed word2vec model for the
creation of embedding vectors was able to express the input features accurately
based on semantic context preservation. It was a more appropriate preprocessing
method for the input data than the bag-of-words model. Another topic to remark
is that the natural language processing approach for analyzing input as text-like
data can be conveniently extended from system calls and network trace to inputs
from other intrusion detection systems, sources of monitoring data or system
logs. The Arhuaco’s approach could also be adapted beyond high-throughput
computing, to monitor cloud services running in containers over orchestration
engines such as Kubernetes and Mesos, to mention some examples.

6.5 Generative Model Results

The results of the SVM classification of network connection information had the
lowest accuracy among all carried out tests (see Table 6.8). If we observe the
accuracy results of the CNN with network data, it approaches 100% right from the
first epoch. The reason is the small availability of data with regards to the big size
of the model.

The lack of malicious network data presented an opportunity to explore ways
to improve the results by artificially augmenting the training dataset. A generative
model was utilized via a long short-term memory network. The LSTM was
trained with the character corpus of available network traces and then modified
to generate 20% of new network trace log lines autonomously. The new data
was added to the previously non-generated data to create a new training dataset.
Then, the SVM was trained again to measure the further resulting accuracy. The
data utilized for validation was the same as the first non-augmented evaluation.
Figure 6.12 shows the newly obtained curves of the SVM accuracy in training and
validation with the additionally generated data. If we take a look of Figure 6.9, that
shows the training and validation accuracy of the SVM for the original network
data, we can see how the accuracy increases with the generated data from the first
epochs.

Figure 6.13 explores the comparison of the results obtained with the same SVM,
evaluated with the non-generated dataset compared to the new enhanced data.
Higher accuracy can be seen from the first epochs. Table 6.8 describes the same

6.5. GENERATIVE MODEL RESULTS 129

0 1 2 3 4 5 6 7 8 9
Epoch

0.72

0.73

0.74

0.75

0.76

0.77

0.78

0.79

0.80
Ac

cu
ra

cy

Network trace classification with SVM: generated data

Training
Validation

Figure 6.12: A plot showing the curves of the training and validation of classifica-
tion accuracy, using an SVM with newly generated network samples.

Testing dataset TPR SPC FPR ACC

Network traces normal 0.9507 0.6219 0.3781 0.7871
Network traces generated 0.9712 (2.16%) 0.6206 0.3839 0.7928 (0.72%)

Table 6.9: Resulting accuracy of the SVM tested with previously unseen data.
These results compare the training made with the original network samples vs.
the new dataset with generated data.

comparison but testing new samples that were not used in the training process.
The table shows an increment of 0.72% of the ACC with the generated data in
comparison with the original testing data. The TPR was also higher with a 2.16%
change rate. Finally, the SPC had instead a reduced, but close value (−0.20%) and
the FPR had an increased amount (1.53%).

6.5.1 Discussion

The aim in this section is to answer the LSTM related research question: Does the
data generation approach by LSTM improve the obtained training and validation
results? As seen in Table 6.9, the obtained ACC of the SVM trained with the
addition of generated data, applied to novel unseen network data traces from
the original dataset was 0.7928. From this result, the conclusion is that a 0.72%
improvement rate was observed if compared to the original value of ACC that

130 CHAPTER 6. EVALUATION AND RESULTS

0 1 2 3 4 5 6 7 8 9
Epoch

0.50

0.55

0.60

0.65

0.70

0.75

0.80
Ac

cu
ra

cy

SVM accuracy comparison: normal data vs generated data

SVM validation non generated
SVM validation generated

Figure 6.13: A plot comparing the obtained validation accuracy for the collected
network dataset vs. the same dataset with additional generated samples.

was 0.7871. The FPR had an increment of 1.53%, which brings the possibility
for improvement in future developments. The training and validation accuracy
curves in Figure 6.9 and Figure 6.12 allow us to see how the generated dataset
makes the SVM to raise the measurements from the first epochs. Higher ACC
values are observed in the following epochs. These measures validate the practical
benefits of using the LSTM model for modeling and generating data in the context
of intrusion detection systems, in this case for grid computing jobs.

Here the last research question we can be answered: Is the collected dataset,
formed by regular ALICE grid jobs and Linux malware samples an appropriate
source of training of IDS for grid systems? As summarized in Table 6.8, the
proposed CNN was able to classify correctly new data samples, with very optimal
measurement metric values. This fact demonstrates that the collected dataset,
although not entirely complete, is sufficient to afford a good source of training
for the context problem, intrusion detection in grid computing, which could be
applied to other kinds of grids.

This chapter contributed with results to support the convenience of using
the proposed approaches. It was shown how the isolation methods with Linux
containers generate moderated performance impact, that can be decreased with
several configuration options. Other hardening measures were explored, that
could further enforce the isolation security without causing a significant perfor-
mance pitfall.

The performance tests adopted standard HEP benchmark and throughput
applications. These jobs simulate, process and analyze data like real ALICE grid

6.5. GENERATIVE MODEL RESULTS 131

jobs. They help to verify the performance of the proposed isolation measures
and the potential impact on other kinds of payloads. The accuracy tests utilize a
collected dataset. This dataset is composed of standard ALICE grid job data and
Linux malware information from a security research website. This real-world data
makes the evaluation simpler and more comprehensive than manually creating
custom binaries.

Convolutional neural networks applied to the classification of grid job security
behavior had a close to 100% accuracy measurement in training, validation and
testing. CNNs offered a higher accuracy, sensitivity, specificity and a lower false
positive rate than the compared support vector machines. The proposed word2vec
input preprocessing algorithm was shown as an expressive way to represent
system log like data, with better results than the alternative bag-of-words. The
generative method, the long short-term memory network was tested. The idea
that LSTM networks improve and increase simulated information for a training
dataset in intrusion detection for grid computing was validated.

Chapter 7

Conclusions and Outlook

Four statements were formulated in the introduction of this thesis (see section 1.2)
about intrusion detection, intrusion prevention, and isolation based security for
grid computing. The results in chapter 6 provide facts to support these state-
ments. The conclusions drawn about them will be discussed in more detail in the
following sections. Below, the statements are listed:

1. The selected sandboxing technique for grid computing, Linux containers
(LCs), enable the isolation of user jobs and provides the traceability of indi-
vidual job activities. The usage of LCs and behavior monitoring does not
critically affect the jobs performance.

2. Convolutional neural networks (CNNs) are effective for malware detection in
the grid and provide higher classification accuracy and lower false positives
rates than support vector machines (SVMs).

3. Long short-term memory (LSTM) networks utilized as generative models
are effective for improving the training dataset coverage in grid intrusion
detection and prevention systems (IDPS).

4. A benchmark dataset of intrusion and malware classification is relevant
in grid computing for model validation and to get more accurate training
results.

A software-based proof-of-concept of the proposed ideas, called Arhuaco, was
implemented. An empirical set of tests were done to validate the mentioned
statements. The tests were performed in a testing ALICE grid site, part of the
Worldwide LHC Computing Grid (WLCG).

The selected security by isolation (SbI) method enables the execution of user
payloads inside restricted environments. LCs provide a convenient solution to
having an increased security level on the grid computational infrastructure, since
they create an isolated version of the full system for each grid job. LCs produce a
reduced performance overhead compared to virtual machines (VMs) [2], a popular
virtualization approach.

Several tests were carried out to measure the impact that the sandboxing mech-
anism induces in the execution of grid jobs. The effect that the grid job behavior

132

133

monitoring produces was also evaluated. A test with typical ALICE-based grid
jobs was carried out. The goal was to measure the increase in the total average
execution time of the payloads. A maximum average runtime impact of 6.1125%
was observed when utilizing isolation and behavior monitoring. However, the
decrement was not considerable given the level of security improvement provided.
The measured reduction in throughput of Linpack-base applications given the
additional layers of isolation and extra monitoring was less than 0.6%. The mea-
surements showed that the jobs which had few input-output (IO) interactions had
almost no throughput decrement with the usage of containers. The ALICE-based
grid jobs had more IO iterations than the Linpack-based jobs, for instance, the
former read and write gigabytes of physics experiment data to the disks while the
later mostly execute floating point operations with few disk access.

Several configuration measures have been implemented in the proof-of-concept
to reduce the harm caused by the overhead when it is not acceptable. The real-
ization of the proposals provides several configuration options to minimize this
impact, most importantly in the case of system calls collected for security monitor-
ing purposes.

According to the results shown in Figure 6.2, the use of Docker containers with
a stock Linux kernel generated lower performance overheads than with the other
Linux container based isolation alternatives, Singularity and rkt. These results
give credence to the selection of Docker as the first supported container engine
in the architecture. The results in the Figure 6.3, as discussed in section 6.3.4,
suggest that the use of rkt and kernel hardening features with Grsecurity are
a promising direction to explore in future developments. Thus, for increased
security requirements, this looks like a convenient possibility for extra protection
against kernel vulnerability exploitation.

CNNs have been proposed in this thesis as an effective method to classify
grid jobs and detect malware within them. With word2vec for embedding vector
extraction, the CNNs demonstrated a 3.24% higher classification accuracy for
system calls and 25.46% for the network trace data than SVMs with the bag-of-
words as input vectors, as shown in Table 6.8. SVM is one of the most popular
classifiers for ML-based IDPS [17]. The chosen CNN increased the accuracy, whilst
reducing the false positive rate, on the classification of the tested grid jobs, and was
able to generalize entirely unseen samples in the validation phase. This approach
enhances the detection of malicious activity that originates from within the jobs
inside the e-science grid. These results revealed that the word2vec model was able
to express the input features accurately based on the semantic context preservation.
The utilized natural language processing approach for analyzing logs input as text
data can be conveniently extended from system calls and network traces to inputs
from IDPS, sources of monitoring data or system logs. The architecture could also
be adapted, beyond high throughput computing (HTC), to monitor microservices
running in containers over orchestration engines such as Kubernetes [109] and
Mesos [115].

Benchmark datasets are fundamental to validate machine learning models.
No available standard, or even non-standard dataset, was found for intrusion
detection model validation in grid computing. Hence, a custom set was built via

134 CHAPTER 7. CONCLUSIONS AND OUTLOOK

the collection of job traces, both normal and malicious. With this dataset, the CNN
and SVM algorithms were able to be trained and to classify correctly wholly new
data samples. This data has been a good source of training for the context problem,
intrusion detection in grid computing, however, it may also be useful to other
e-science grids.

This research project demonstrated that a generative model utilized for im-
proving the training dataset coverage in IDPS brings increased accuracy results.
The collected network data from malware samples was limited in comparison
with the availability of system call data. An LSTM network was trained with
the available network data and utilized to generate utterly new training samples.
The accuracy obtained by the SVM trained via adding the generated data, when
applied to novel unseen network data traces from the original dataset was 79.28%,
i.e., 0.72% more than with the initial training samples. These results revealed an
improvement in the measurement metrics found in the training and validation
steps, if compared with the original results. Therefore, these results certified the
practical benefits of using LSTM for modeling and generating data in the context
of intrusion detection systems, in this case for grid computing jobs.

The proposed architecture and implementation contribute to advance the
status of the security in grid computing. This proposal solves the problems created
by the arbitrary software execution, the need for bad behavior monitoring and
the possibility of attacks generated from the jobs. This architecture allows grid
administrators to classify the activity of the jobs, to detect incidents, to keep
traceability of the user-generated events, and to configure predefined actions on
detected security situations. In addition, more specific and concrete evidence to
detect attacks and find their source is collected.

7.1 Outlook

The continuous development of distributed and decentralized systems for scien-
tific projects and industrial applications is increasingly seen every day in society.
The security requirements will increase, in parallel with the threats and their
sophistication. Attackers using artificial intelligence as a tool for breaching third-
party systems will be a growing trend scenario in the near future. Autonomous
systems will be required to protect computational systems, for which human ad-
ministrators could not cope with their size and complexity. From grid computing
to blockchain based technologies, solutions similar to Arhuaco will be required to
grant a desired level of security.

Several points of this thesis require further development. False positives are
always a concern for grid administrators since they consume precious time that
could be expended on more critical tasks. Reducing the rates of false positives to
a value close to zero is an objective for any IDPS, therefore, more work towards
achieving this goal will be continued. Research into better methods to inform
about the detected security incidents will also be carried out. More interfaces for
other container orchestration engines may be created.

The training process in the presence of adversarial samples will be explored.

7.1. OUTLOOK 135

The research field known as adversarial machine learning is dedicated for im-
proving ML techniques in adversarial settings, where an attacker could introduce
manipulated inputs with the aim of exploiting vulnerabilities of learning algo-
rithms and further compromise the system security. For instance, these adversary
samples may affect the training process making the IDPS miss security incidents.
Hence, approaches to mitigate such exposure in Arhuaco are required. Another
exciting area to review is the usage of generative adversarial networks (GANs)
for modeling and create intrusion detection samples that allow researchers to
complement training data as an alternative method for RNNs.

Techniques to protect the privacy of the data sets and the ML models such
differential privacy and homomorphic encryption will also be studied. In addition,
the employment of the distributed nature of the grid to improve the decentralized
detection of intrusions will be investigated. This topic can be useful, for instance,
to autonomously inform other grid site IDPS about security incidents that could
spread in the network. A further enhancing of the isolation in the containers
by using kernel hardening, such as Grsecurity, is ongoing. Furthermore, the
integration with other container solutions and grid engines beyond ALICE is
currently being tested. Finally, optimizations that can be introduced into Arhuaco
for reducing the overhead caused by the isolation measures will be examined; this
approach seems feasible, given the performance results for the Linpack benchmark.

136 CHAPTER 7. CONCLUSIONS AND OUTLOOK

Bibliography

[1] Anish Damodaran, Anirban Chakrabarti, and Shubhashis Sengupta. Grid
Computing Security: A Taxonomy. IEEE Security & Privacy, 6:44–51, 2008.

[2] Wes Felter, Re Ferreira, Ram Rajamony, Juan Rubio, Wes Felter, Alexan-
dre Ferreira, Ram Rajamony, and Juan Rubio. An Updated Performance
Comparison of Virtual Machines and Linux Containers, 2014.

[3] Douglas Thain, Todd Tannenbaum, and Miron Livny. Condor and the grid.
In Grid Computing: Making the Global Infrastructure a Reality. John Wiley &
Sons Inc., December 2002.

[4] Piotr Luszczek, Jack J. Dongarra, David Koester, Rolf Rabenseifner, Bob
Lucas, Jeremy Kepner, John Mccalpin, David Bailey, and Daisuke Takahashi.
Introduction to the HPC Challenge Benchmark Suite. Technical report, 2005.

[5] Ernie Chan, Robert van de Geijn, and Andrew Chapman. Managing the
complexity of lookahead for lu factorization with pivoting. In Proceedings of
the Twenty-second Annual ACM Symposium on Parallelism in Algorithms and
Architectures, SPAA ’10, pages 200–208, New York, NY, USA, 2010. ACM.

[6] ALICE Offline Project. The ALICE Offline Bible, 2017. http:
//aliweb.cern.ch/secure/Offline/sites/aliweb.cern.ch.
Offline/files/uploads/OfflineBible.pdf.

[7] Vern Paxson. Bro: A System for Detecting Network Intruders in Real-time.
In Proceedings of the 7th Conference on USENIX Security Symposium - Volume 7,
SSYM’98, pages 3–3, Berkeley, CA, USA, 1998. USENIX Association.

[8] Martin Roesch. SNORT - lightweight intrusion detection for networks. In
Proceedings of the 13th USENIX Conference on System Administration, LISA ’99,
pages 229–238, Berkeley, CA, USA, 1999. USENIX Association.

[9] Andrew Hay, Daniel Cid, and Rory Bray. OSSEC Host-Based Intrusion Detec-
tion Guide. Syngress Publishing, 2008.

[10] Ar Lazarevic, Aysel Ozgur, Levent Ertoz, Jaideep Srivastava, and Vipin
Kumar. A comparative study of anomaly detection schemes in network
intrusion detection. In In Proceedings of the Third SIAM International Conference
on Data Mining, 2003.

137

http://aliweb.cern.ch/secure/Offline/sites/aliweb.cern.ch.Offline/files/uploads/OfflineBible.pdf
http://aliweb.cern.ch/secure/Offline/sites/aliweb.cern.ch.Offline/files/uploads/OfflineBible.pdf
http://aliweb.cern.ch/secure/Offline/sites/aliweb.cern.ch.Offline/files/uploads/OfflineBible.pdf

138 BIBLIOGRAPHY

[11] Richard Zuech, Taghi M Khoshgoftaar, and Randall Wald. Intrusion de-
tection and Big Heterogeneous Data: a Survey. Journal of Big Data, 2(1),
December 2015.

[12] Jayanth Koushik. Understanding Convolutional Neural Networks. CoRR,
abs/1605.09081, 2016.

[13] Yoav Goldberg and Omer Levy. Word2Vec Explained: deriving mikolov et
al.’s negative-sampling word-embedding method, 2014. cite arxiv:1402.3722.

[14] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Janvin.
A Neural Probabilistic Language Model. J. Mach. Learn. Res., 3:1137–1155,
March 2003.

[15] Yoon Kim. Convolutional Neural Networks for Sentence Classification. In
Proceedings of the 2014 Conference on Empirical Methods in Natural Language Pro-
cessing, EMNLP 2014, October 25-29, 2014, Doha, Qatar, A meeting of SIGDAT,
a Special Interest Group of the ACL, pages 1746–1751, 2014.

[16] Ilya Sutskever, James Martens, and Geoffrey E. Hinton. Generating text with
recurrent neural networks. In Proceedings of the 28th International Conference
on Machine Learning (ICML-11), pages 1017–1024, 2011.

[17] Chirag Modi, Dhiren Patel, Bhavesh Borisaniya, Hiren Patel, Avi Patel, and
Muttukrishnan Rajarajan. A survey of intrusion detection techniques in
Cloud. Journal of Network and Computer Applications, 36(1):42–57, January
2013.

[18] Sebastian Raschka. Python Machine Learning. Packt Publishing, 2015.

[19] J. Bonneau, A. Miller, J. Clark, A. Narayanan, J. A. Kroll, and E. W. Felten.
Sok: Research perspectives and challenges for bitcoin and cryptocurrencies.
In 2015 IEEE Symposium on Security and Privacy, pages 104–121, May 2015.

[20] A. Gomez Ramirez, C. Lara, Udo Kebschull, and ALICE Collaboration.
Intrusion Prevention and Detection in Grid Computing - The ALICE Case.
Journal of Physics: Conference Series, 664(6):062017, 2015.

[21] A. Gomez Ramirez, M. Martinez Pedreira, C. Grigoras, L. Betev, C. Lara,
U. Kebschull, and ALICE Collaboration. A Security Monitoring Framework
For Virtualization Based HEP Infrastructures. Journal of Physics: Conference
Series, 898(10):102004, 2017.

[22] A. Gomez Ramirez, C. Lara, L. Betev, D. Bilanovic, U. Kebschull, and the
ALICE Collaboration. Arhuaco: Deep Learning and Isolation Based Security
for Distributed High-Throughput Computing. Journal of Physics: Conference
Series, 898(10):102004, 2017.

[23] H. Engel, T. Alt, T. Breitner, A. Gomez Ramirez, T. Kollegger, M. Krzewicki,
J. Lehrbach, D. Rohr, and U. Kebschull. The ALICE high-level trigger read-
out upgrade for LHC Run 2. Journal of Instrumentation, 11(01):C01041, 2016.

BIBLIOGRAPHY 139

[24] J. Lehrbach, M. Krzewicki, D. Rohr, H. Engel, A. Gomez Ramirez, V. Linden-
struth, D. Berzano, and ALICE Collaboration. ALICE HLT Cluster operation
during ALICE Run 2. Journal of Physics: Conference Series, 898(8):082027,
2017.

[25] Ananya et al. and the Alice collaboration. O 2 : A novel combined online
and offline computing system for the ALICE Experiment after 2018. Journal
of Physics: Conference Series, 513(1):012037, 2014.

[26] National e-Science Centre. National e-Science Centre definition of e-Science,
2017. http://www.nesc.ac.uk/nesc/define.html.

[27] Steffen Schreiner. A Security Architecture for e-Science Grid Computing. PhD
thesis, Technische Universität, Darmstadt, 2015.

[28] The ALICE Collaboration. The ALICE experiment at the CERN LHC. Journal
of Instrumentation, 3(08):S08002, 2008.

[29] G. Aad et al. The ATLAS Experiment at the CERN Large Hadron Collider.
JINST, 3:S08003, 2008.

[30] M. Bontenackels. The CMS muon spectrometer. Nucl. Phys. Proc. Suppl.,
156:124–128, 2006.

[31] The LHCb Collaboration. The LHCb Detector at the LHC. Journal of Instru-
mentation, 3(08):S08005, 2008.

[32] Christiane Lefèvre. The CERN accelerator complex. Complexe des accéléra-
teurs du CERN. Dec 2008.

[33] G. Brumfiel. High-energy physics: Down the petabyte highway. Nature,
i7330:282–283, 2015.

[34] ALICE Grid. ALICE Grid Monitoring with MonALISA, 2017. http://
pcalimonitor.cern.ch/.

[35] Ian Foster, Carl Kesselman, and Steven Tuecke. The Anatomy of the Grid:
Enabling Scalable Virtual Organizations. The International Journal of High
Performance Computing Applications, 15(3):200–222, 2001.

[36] P Cortese, Federico Carminati, Christian Wolfgang Fabjan, Lodovico Riccati,
and Hans de Groot. ALICE computing: Technical Design Report. Technical
Design Report ALICE. CERN, Geneva, 2005. Submitted on 15 Jun 2005.

[37] I. Bird, K. Bos, N. Brook, D. Duellmann, C. Eck, I. Fisk, D. Foster, B. Gibbard,
C. Grandi, F. Grey, et al. LHC computing Grid. Technical design report.
2005.

[38] S Jézéquel and G Stewart. ATLAS Distributed Computing Operations:
Experience and improvements after 2 full years of data-taking. Journal of
Physics: Conference Series, 396(3):032058, 2012.

http://www.nesc.ac.uk/nesc/define.html
http://pcalimonitor.cern.ch/
http://pcalimonitor.cern.ch/

140 BIBLIOGRAPHY

[39] S Bagnasco, L Betev, P Buncic, F Carminati, C Cirstoiu, C Grigoras,
A Hayrapetyan, A Harutyunyan, A J Peters, and P Saiz. AliEn: ALICE
environment on the GRID. Journal of Physics: Conference Series, 119(6):062012,
July 2008.

[40] Joint Security Policy Group. Grid Acceptable Use Policy, 2017. http:
//cern.ch/proj-lcg-security.

[41] ALICE Offline Group. Computing rules, 2017. http://aliweb.cern.
ch/Offline/General-Information/ComputingRules.html.

[42] G. Duckeck, D. Barberis, R. Hawkings, R. Jones, N. McCubbin, G. Poulard,
D. Quarrie, T. Wenaus, and E. Obreshkov. ATLAS computing: Technical
design report. 2005.

[43] G L Bayatyan, Michel Della Negra, Foà, A Hervé, and Achille Petrilli. CMS
computing: Technical Design Report. Technical Design Report CMS. CERN,
Geneva, 2005. Submitted on 31 May 2005.

[44] The LHCb Collaboration. LHCb computing: Technical Design Report. Technical
Design Report LHCb. CERN, Geneva, 2005. Submitted on 11 May 2005.

[45] LIGO Scientific Collaboration. Subsystem: Data and Computing Systems,
2017. https://www.advancedligo.mit.edu/dcs.html.

[46] Tahsin Kurc, Shannon Hastings, Vijay Kumar, Stephen Langella, Ashish
Sharma, Tony Pan, Scott Oster, David Ervin, Justin Permar, Sivaramakr-
ishnan Narayanan, Yolanda Gil, Ewa Deelman, Mary Hall, and Joel Saltz.
HPC and Grid Computing for Integrative Biomedical Research. The Interna-
tional Journal of High Performance Computing Applications, 23(3):252–264, 2009.
PMID: 20107625.

[47] Geo Grid. Global Earth Observation Grid, 2017. http://www.geogrid.
org/en/index.html.

[48] Satoshi Sekiguchi et al. Design Principles and IT Overviews of the GEO
Grid. IEEE Systems Journal, 2(3):374–389, 2008.

[49] e-BioGrid. http://www.e-biogrid.nl, 2017. http://www.e-biogrid.nl.

[50] Shayan Shahand, Mark Santcroos, Antoine H. C. van Kampen, and
Sílvia Delgado Olabarriaga. A grid-enabled gateway for biomedical data
analysis. Journal of Grid Computing, 10(4):725–742, Dec 2012.

[51] SURFsara. http://www.surfsara.nl, 2017.

[52] Jie Wu, René Siewert, Andreas Hoheisel, Jürgen Falkner, Oliver Strauß,
Dinko Berberovic, and Dagmar Krefting. The charité grid portal: User-
friendly and secure access to grid-based resources and services. Journal of
Grid Computing, 10(4), Dec 2012.

http://cern.ch/proj-lcg-security
http://cern.ch/proj-lcg-security
http://aliweb.cern.ch/Offline/General-Information/ComputingRules.html
http://aliweb.cern.ch/Offline/General-Information/ComputingRules.html
https://www.advancedligo.mit.edu/dcs.html
http://www.geogrid.org/en/index.html
http://www.geogrid.org/en/index.html
http://www.e-biogrid.nl

BIBLIOGRAPHY 141

[53] Larry Wall. Programming Perl. O’Reilly & Associates, Inc., Sebastopol, CA,
USA, 3rd edition, 2000.

[54] D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn, H. Nielsen,
S. Thatte, and D. Winer. Simple Object Access Protocol (SOAP) 1.1.
http://www.w3.org/TR/soap, 2000.

[55] Michael Widenius and Davis Axmark. Mysql Reference Manual. O’Reilly &
Associates, Inc., Sebastopol, CA, USA, 1st edition, 2002.

[56] Brian Arkills. LDAP Directories Explained: An Introduction and Analysis.
Addison-Wesley Professional, 2003.

[57] Ilya Selyuzhenkov and Alberica Toia, editors. CBM Progress Report 2016.
GSI, Darmstadt, 2017. Literaturangaben.

[58] PANDA collaboration and Klaus Peters. Technical Design Report for the
Panda Forward Spectrometer Calorimeter. 2017.

[59] Hans H. Gutbrod. International Facility for Antiproton and Ion Research
(FAIR) at GSI, Darmstadt. Nuclear Physics A, 752(Supplement C):457 – 469,
2005. Proceedings of the 22nd International Nuclear Physics Conference
(Part 2).

[60] Ian Foster and Carl Kesselman, editors. The Grid: Blueprint for a New Com-
puting Infrastructure. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 1999.

[61] S. Chokhani, W. Ford, R. Sabett, C. Merrill, and S. Wu. Internet X.509 Public
Key Infrastructure Certificate Policy and Certification Practices Framework,
2003.

[62] ALICE Offline Project. AliEn User Howto, 2017. http://alien2.
cern.ch/index.php?option=com_content&view=article&id=
55&Itemid=95.

[63] A. J. Peters. AliEn Grid User Reference Guide, 2017. http:
//project-arda-dev.web.cern.ch/project-arda-dev/alice/
apiservice/.

[64] Abhineet Agarwal. Improving performance of AliRoot using C++11. Aug
2014.

[65] Harvey B. Newman, Iosif C. Legrand, Philippe Galvez, Ramiro Voicu, and
Catalin Cirstoiu. Monalisa: A distributed monitoring service architecture.
arXiv preprint cs/0306096, 2003.

[66] E. Auge et al. M. Aderholz, K. Amako. Models of networked analysis at
regional centres for lhc experiments (monarc). phase 2 report. Technical
report, 2000.

http://alien2.cern.ch/index.php?option=com_content&view=article&id=55& Itemid=95
http://alien2.cern.ch/index.php?option=com_content&view=article&id=55& Itemid=95
http://alien2.cern.ch/index.php?option=com_content&view=article&id=55& Itemid=95
http://project-arda-dev.web.cern.ch/project-arda-dev/alice/apiservice/
http://project-arda-dev.web.cern.ch/project-arda-dev/alice/apiservice/
http://project-arda-dev.web.cern.ch/project-arda-dev/alice/apiservice/

142 BIBLIOGRAPHY

[67] Pablo Saiz, Predrag Buncic, and Andreas J. Peters. AliEn Resource Brokers.
CoRR, cs.DC/0306068, 2003.

[68] Nicholas Coleman, Rajesh Raman, Miron Livny, and Marvin Solomon. Dis-
tributed policy management and comprehension with classified advertise-
ments. Technical Report UW-CS-TR-1481, University of Wisconsin - Madison
Computer Sciences Department, April 2003.

[69] Steve Mansfield-Devine. Security through isolation. Computer Fraud &
Security, 2010(5):8–11, 2010.

[70] Secure-OS. https://secure-os.org/, 2017. https://secure-os.
org/.

[71] Tails. https://tails.boum.org/, 2017.

[72] Qubes. https://www.qubes-os.org/, 2017.

[73] Subgraph-OS. https://subgraph.com/sgos/, 2017.

[74] Stefan Boettger. Virtual Machine Scheduling in Dedicated Computing Clus-
ters, Jan 2014. Presented 14 Nov 2013.

[75] Redhat. What’s a Linux container?, 2017. https://www.redhat.com/
en/topics/containers/whats-a-linux-container.

[76] Miguel G. Xavier, Marcelo V. Neves, Fabio D. Rossi, Tiago C. Ferreto, Timo-
teo Lange, and Cesar A. F. De Rose. Performance Evaluation of Container-
Based Virtualization for High Performance Computing Environments. In
Proceedings of the 2013 21st Euromicro International Conference on Parallel, Dis-
tributed, and Network-Based Processing, PDP ’13, pages 233–240, Washington,
DC, USA, 2013. IEEE Computer Society.

[77] Dirk Merkel. Docker: Lightweight Linux Containers for Consistent Devel-
opment and Deployment. Linux J., 2014(239), March 2014.

[78] from Wikimedia Commons Shmuel Csaba Otto Traian [CC BY-
SA 3.0 (https://creativecommons.org/licenses/by-sa/3.0) or
GFDL (http://www.gnu.org/copyleft/fdl.html)]. Linux kernel uni-
fied hierarchy cgroups and systemd, 2018.

[79] Linux Weekly Edition. User namespaces progress, 2017. https://lwn.
net/Articles/528078/.

[80] P. García-Teodoro, J. Díaz-Verdejo, G. Maciá-Fernández, and E. Vázquez.
Anomaly-based Network Intrusion Detection: Techniques, Systems and
Challenges. Comput. Secur., 28(1-2):18–28, February 2009.

[81] Dimitrios Damopoulos. Anomaly-Based Intrusion Detection and Prevention
Systems for Mobile Devices: Design and Development. PhD thesis, Laboratory
of Information and Communication Systems Security ,University of the
Aegean, 2013.

https://secure-os.org/
https://secure-os.org/
https://secure-os.org/
https://tails.boum.org/
https://www.qubes-os.org/
https://subgraph.com/sgos/
https://www.redhat.com/en/topics/containers/whats-a-linux-container
https://www.redhat.com/en/topics/containers/whats-a-linux-container
https://lwn.net/Articles/528078/
https://lwn.net/Articles/528078/

BIBLIOGRAPHY 143

[82] Hung-Jen Liao, Chun-Hung Richard Lin, Ying-Chih Lin, and Kuang-Yuan
Tung. Intrusion detection system: A comprehensive review. Journal of
Network and Computer Applications, 36(1):16–24, January 2013.

[83] Christopher M. Bishop. Pattern recognition and machine learning. Information
science and statistics. Springer, New York, 2006.

[84] Raphaël Bost, Raluca Ada Popa, Stephen Tu, and Shafi Goldwasser. Machine
Learning Classification over Encrypted Data.

[85] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT
Press, 2016. http://www.deeplearningbook.org.

[86] S.S. Haykin. Neural Networks and Learning Machines. Number Bd. 10 in
Neural networks and learning machines. Prentice Hall, 2009.

[87] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Parallel distributed
processing: Explorations in the microstructure of cognition, vol. 1. chapter
Learning Internal Representations by Error Propagation, pages 318–362. MIT
Press, Cambridge, MA, USA, 1986.

[88] Sepp Hochreiter and Jürgen Schmidhuber. Long Short-Term Memory. Neural
Comput., 9(8):1735–1780, November 1997.

[89] Rafal Jozefowicz, Oriol Vinyals, Mike Schuster, Noam Shazeer, and Yonghui
Wu. Exploring the limits of language modeling, 2016.

[90] Ian Foster, Carl Kesselman, Gene Tsudik, and Steven Tuecke. A Security Ar-
chitecture for Computational Grids. In Proceedings of the 5th ACM Conference
on Computer and Communications Security, CCS ’98, pages 83–92, New York,
NY, USA, 1998. ACM.

[91] Ali Raza Butt, Sumalatha Adabala, Nirav H. Kapadia, Renato J. Figueiredo,
and José A. B. Fortes. Grid-computing Portals and Security Issues. J. Parallel
Distrib. Comput., 63(10):1006–1014, October 2003.

[92] M. Smith, M. Schmidt, N. Fallenbeck, T. Dörnemann, C. Schridde, and
B. Freisleben. Secure on-demand grid computing. Future Generation Computer
Systems, 25(3):315 – 325, 2009.

[93] Matthew Smith, Michael Engel, Thomas Friese, Bernd Freisleben, Gregory A.
Koenig, and William Yurcik. Security Issues in On-Demand Grid and Cluster
Computing. In CCGRID, page 24. IEEE Computer Society, 2006.

[94] Matthew Smith, Thomas Friese, Michael Engel, and Bernd Freisleben. Coun-
tering Security Threats in Service-oriented On-demand Grid Computing
Using Sandboxing and Trusted Computing Techniques. J. Parallel Distrib.
Comput., 66(9):1189–1204, September 2006.

http://www.deeplearningbook.org

144 BIBLIOGRAPHY

[95] Steffen Schreiner, Latchezar Betev, Costin Grigoras, and Maarten Litmaath.
A Mediated Definite Delegation Model allowing for Certified Grid Job
Submission. CoRR, abs/1112.2444, 2011.

[96] Worldwide LHC Computing Grid Collaboration. WLCG Grid job
and Worker Node security assessment, 2012. https://twiki.cern.
ch/twiki/pub/LCG/AAIOnTheWorkerNodes/WLCG_WN_Security-
06.pdf.

[97] Steffen Schreiner, Costin Grigorasb, Alina Grigorasb, Latchezar Betevb, and
Johannes Buchmannac. A security architecture for the ALICE Grid Services.
In The International Symposium on Grids and Clouds (ISGC), volume 2012.
Citeseer, 2012.

[98] Steffen Schreiner, Costin Grigoras, Maarten Litmaath, Latchezar Betev, and
Johannes Buchmann. Mediated definite delegation - Certified Grid jobs in
ALICE and beyond. Journal of Physics: Conference Series, 396(3):032096, 2012.

[99] Shuo Yang, Ali Raza Butt, Xing Fang, Y. Charlie Hu, and Samuel P. Midkiff.
A Fair, Secure and Trustworthy Peer-to-Peer Based Cycle-Sharing System. J.
Grid Comput., 4(3):265–286, 2006.

[100] Benjamin Quétier, Vincent Neri, and Franck Cappello. Scalability compari-
son of four host virtualization tools. Journal of Grid Computing, 5(1):83–98,
Mar 2007.

[101] A Harutyunyan, P Buncic, T Freeman, and K Keahey. Dynamic virtual AliEn
Grid sites on Nimbus with CernVM. Journal of Physics: Conference Series,
219(7):072036, 2010.

[102] A Harutyunyan, P Buncic, T Freeman, and K Keahey. Dynamic virtual AliEn
Grid sites on Nimbus with CernVM. Journal of Physics: Conference Series,
219(7):072036, April 2010.

[103] Nane Kratzke. Lightweight Virtualization Cluster - Howto overcome Cloud
Vendor Lock-in. Journal of Computer and Communication (JCC), 2(12), October
2014.

[104] René Peinl, Florian Holzschuher, and Florian Pfitzer. Docker cluster man-
agement for the cloud - survey results and own solution. Journal of Grid
Computing, 14(2):265–282, Jun 2016.

[105] Sreenivas Makam. Mastering CoreOS. Packt Publishing, 2016.

[106] Dirk Merkel. Docker: Lightweight Linux Containers for Consistent Devel-
opment and Deployment. Linux J., 2014(239), March 2014.

[107] J. Ma, H. Kim, and Y. Kim. The Virtualization and Performance Comparison
with LXC-LXD in ARM64bit Server. In 2016 6th International Conference on
IT Convergence and Security (ICITCS), volume 00, pages 1–4, Sept. 2016.

https://twiki.cern.ch/twiki/pub/LCG/AAIOnTheWorkerNodes/WLCG_WN_Security-06.pdf
https://twiki.cern.ch/twiki/pub/LCG/AAIOnTheWorkerNodes/WLCG_WN_Security-06.pdf
https://twiki.cern.ch/twiki/pub/LCG/AAIOnTheWorkerNodes/WLCG_WN_Security-06.pdf

BIBLIOGRAPHY 145

[108] Open Container Initiative. Creating open standards around container for-
mats and runtimes, 2017. https://github.com/opencontainers.

[109] David K. Rensin. Kubernetes - Scheduling the Future at Cloud Scale. 1005
Gravenstein Highway North Sebastopol, CA 95472, 2015.

[110] Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, An-
thony D. Joseph, Randy H. Katz, Scott Shenker, and Ion Stoica. Mesos:
A Platform for Fine-Grained Resource Sharing in the Data Center. In NSDI,
volume 11, pages 22–22, 2011.

[111] D Berzano, G Eulisse, C Grigoras, and K Napoli. Experiences with the ALICE
Mesos infrastructure. Journal of Physics: Conference Series, 898(8):082043, 2017.

[112] Tiago Rosado and Jorge Bernardino. An Overview of Openstack Archi-
tecture. In Proceedings of the 18th International Database Engineering &
Applications Symposium, IDEAS ’14, pages 366–367, New York, NY, USA,
2014. ACM.

[113] Abraham Silberschatz, Peter B. Galvin, and Greg Gagne. Operating system
concepts. Wiley, Hoboken, NJ, ninth edition edition, 2013.

[114] D Berzano, J Blomer, P Buncic, I Charalampidis, G Ganis, and R Meusel.
Lightweight scheduling of elastic analysis containers in a competitive cloud
environment: a docked analysis facility for ALICE. Journal of Physics: Confer-
ence Series, 664(2):022005, 2015.

[115] Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, An-
thony D. Joseph, Randy Katz, Scott Shenker, and Ion Stoica. Mesos: A
Platform for Fine-grained Resource Sharing in the Data Center. In Proceedings
of the 8th USENIX Conference on Networked Systems Design and Implementation,
NSDI’11, pages 295–308, Berkeley, CA, USA, 2011. USENIX Association.

[116] Chih-Fong Tsai, Yu-Feng Hsu, Chia-Ying Lin, and Wei-Yang Lin. Intrusion
detection by machine learning: A review. Expert Systems with Applications,
36(10):11994–12000, December 2009.

[117] Saharon Rosset and Aron Inger. KDD-cup 99: Knowledge discovery in a
charitable organization’s donor database. SIGKDD Explor. Newsl., 1(2):85–90,
January 2000.

[118] Shelly Xiaonan Wu and Wolfgang Banzhaf. The use of computational in-
telligence in intrusion detection systems: A review. Applied Soft Computing,
10(1):1–35, January 2010.

[119] John McHugh. Testing Intrusion Detection Systems: A Critique of the 1998
and 1999 DARPA Intrusion Detection System Evaluations As Performed by
Lincoln Laboratory. ACM Trans. Inf. Syst. Secur., 3(4):262–294, November
2000.

https://github.com/opencontainers

146 BIBLIOGRAPHY

[120] Ong Tian Choon and A. Samsudin. Grid-based intrusion detection system.
In 9th Asia-Pacific Conference on Communications (IEEE Cat. No.03EX732),
volume 3, pages 1028–1032 Vol.3, Sept 2003.

[121] M. Tolba, M. Abdel-Wahab, I. Taha, and A. Al-Shishtawy. GIDA: Toward
enabling grid intrusion detection systems. In Proc. of the Second International
Intelligent Computing and Information Systems Conference, 2005.

[122] A. Schulter, J. A. Reis, F. Koch, and C. B. Westphall. A Grid-based Intrusion
Detection System. In International Conference on Networking, International
Conference on Systems and International Conference on Mobile Communications
and Learning Technologies (ICNICONSMCL’06), pages 187–187, April 2006.

[123] Stuart Kenny and Brian Coghlan. Towards a grid-wide intrusion detection
system. In Advances in Grid Computing-EGC 2005, pages 275–284. Springer,
2005.

[124] Guofu Feng, Xiaoshe Dong, Weizhe Liu, Ying Chu, and Junyang Li. GHIDS:
Defending computational grids against misusing of shared resources. In
Services Computing, 2006. APSCC’06. IEEE Asia-Pacific Conference on, pages
526–533. IEEE, 2006.

[125] Pei-You Zhu, Ji Gao, Bo-Ou Jiang, and Hui Song. A new flexible multi-agent
approach to intrusion detection for Grid. In Machine Learning and Cybernetics,
2006 International Conference on, pages 7–12. IEEE, 2006.

[126] A. Bosin, N. Dessì, and B. Pes. A Service Based Approach to a New Gener-
ation of Intrusion Detection Systems. In 2008 Sixth European Conference on
Web Services, pages 215–224, Nov 2008.

[127] Ni Jiancheng, Li Zhishu, Sun Jirong, and Xing Jianchuan. Self-adaptive
intrusion detection system for computational grid. In Theoretical Aspects
of Software Engineering, 2007. TASE’07. First Joint IEEE/IFIP Symposium on,
pages 97–106. IEEE, 2007.

[128] M. Smith, F. Schwarzer, M. Harbach, T. Noll, and B. Freisleben. A Streaming
Intrusion Detection System for Grid Computing Environments. In 2009 11th
IEEE International Conference on High Performance Computing and Communica-
tions, pages 44–51, June 2009.

[129] Alexandre Schulter, Kleber Vieira, Carla Westphall, and Carlos Westphall.
Intrusion Detection for Grid and Cloud Computing. IT Professional, 12:38–43,
2009.

[130] I. Ungureanu, C. Leordeanu, and V. Cristea. Grid-Aware Intrusion Detection
System Using Gossip Algorithms. In 2010 12th International Symposium on
Symbolic and Numeric Algorithms for Scientific Computing, pages 286–292. IEEE,
September 2010.

BIBLIOGRAPHY 147

[131] Raheel Hassan Syed, Jasmina Pazardzievska, and Julien Bourgeois. Fast
attack detection using correlation and summarizing of security alerts in
grid computing networks. The Journal of Supercomputing, 62(2):804–827, Nov
2012.

[132] Ahmed Patel, Mona Taghavi, Kaveh Bakhtiyari, and Joaquim Ce-
lestino Júnior. An intrusion detection and prevention system in cloud
computing: A systematic review. Journal of Network and Computer Applica-
tions, 36(1):25–41, January 2013.

[133] M. Tolba, M. Abdel-Wahab, I. Taha, and A. Al-Shishtawy. Distributed Intru-
sion Detection System for Computational Grids. In International Conference
On Intelligent Computing And Information Systems, volume 2, page 2005, 2005.

[134] Guiling Zhang and Jizhou Sun. Grid intrusion detection based on soft com-
puting by modeling real-user’s normal behaviors. In Granular Computing,
2006 IEEE International Conference on, pages 558–561. IEEE, 2006.

[135] Alexandre Schulter, Kleber Vieira, C. Westphall, and S. Abderrahim. Intru-
sion detection for computational grids. In New Technologies, Mobility and
Security, 2008. NTMS’08., pages 1–5. IEEE, 2008.

[136] Seonho Kim, Jinoh Kim, and Jon B. Weissman. A security-enabled grid sys-
tem for minds distributed data mining. Journal of Grid Computing, 12(3):521–
542, Sep 2014.

[137] Ram Shankar Siva Kumar, Andrew Wicker, and Matt Swann. Practical
Machine Learning for Cloud Intrusion Detection: Challenges and the Way
Forward. In Proceedings of the 10th ACM Workshop on Artificial Intelligence and
Security, AISec ’17, pages 81–90, New York, NY, USA, 2017. ACM.

[138] Renaud Bidou, Julien Bourgeois, and Francois Spies. Towards a Global Security
Architecture for Intrusion Detection and Reaction Management, pages 111–123.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2004.

[139] Abdoul Karim Ganame, Julien Bourgeois, Renaud Bidou, and Francois Spies.
A global security architecture for intrusion detection on computer networks.
Computers & Security, 27(1):30–47, 2008.

[140] David Crooks and Liviu Vâlsan. Wlcg security operations centres working
group. In International Symposium on Grids & Clouds 2017 (ISGC 2017),
December 2017. Authors ... for the WLCG SOC Working Group.

[141] Apache Software Foundation. Apache Metron: real-time big data security,
2017. http://metron.apache.org/about/.

[142] Cynthia Wagner, Alexandre Dulaunoy, Gérard Wagener, and Andras Iklody.
MISP: The Design and Implementation of a Collaborative Threat Intelligence
Sharing Platform. In Proceedings of the 2016 ACM on Workshop on Information

http://metron.apache.org/about/

148 BIBLIOGRAPHY

Sharing and Collaborative Security, WISCS ’16, pages 49–56, New York, NY,
USA, 2016. ACM.

[143] Chandrashekhar Azad and Vijay Kumar Jha. Data Mining in Intrusion De-
tection: A Comparative Study of Methods, Types and Data Sets. International
Journal of Information Technology and Computer Science, 5(8):75–90, July 2013.

[144] Richard Lippmann, Joshua W. Haines, David J. Fried, Jonathan Korba, and
Kumar Das. The 1999 darpa off-line intrusion detection evaluation. Comput.
Netw., 34(4):579–595, October 2000.

[145] Ali Shiravi, Hadi Shiravi, Mahbod Tavallaee, and Ali A. Ghorbani. To-
ward developing a systematic approach to generate benchmark datasets for
intrusion detection. Computers & Security, 31(3):357–374, May 2012.

[146] Canadian Institute for Cybersecurity. Intrusion detection evaluation dataset
(ISCXIDS2012), 2017. http://www.unb.ca/cic/datasets/ids.html.

[147] The cooperative association for internet data analysis. CAIDA, 2017. http:
//www.caida.org/.

[148] RTI International. PREDICT: Protected repository for the defense of infras-
tructure against cyber threats, 2017. http://www.predict.org/.

[149] Lawrence Berkeley National Laboratory. The internet traffic archive, 2017.
http://ita.ee.lbl.gov/index.html.

[150] Lawrence Berkeley National Laboratory and ICSI. LBNL/ICSI enterprise
tracing project, 2017. www.icir.org/enterprise-tracing/.

[151] The Shmoo Group. LBNL/ICSI enterprise tracing project, 2017. http:
//cctf.shmoo.com/.

[152] Yann LeCun and Corinna Cortes. MNIST handwritten digit database. 2010.

[153] Konrad Rieck, Thorsten Holz, Carsten Willems, Patrick Düssel, and Pavel
Laskov. Learning and classification of malware behavior. In International
Conference on Detection of Intrusions and Malware, and Vulnerability Assessment,
pages 108–125. Springer, 2008.

[154] Konrad Rieck, Philipp Trinius, Carsten Willems, and Thorsten Holz. Au-
tomatic analysis of malware behavior using machine learning. Journal of
Computer Security, 19(4):639–668, 2011.

[155] Daniel Gibert Llauradó. Convolutional neural networks for malware classification.
PhD thesis, Universitat Politecnica de Catalunya, 2016.

[156] Zhenlong Yuan, Yongqiang Lu, Zhaoguo Wang, and Yibo Xue. Droid-Sec:
Deep Learning in Android Malware Detection. SIGCOMM Comput. Commun.
Rev., 44(4):371–372, August 2014.

http://www.unb.ca/cic/datasets/ids.html
http://www.caida.org/
http://www.caida.org/
http://www.predict.org/
http://ita.ee.lbl.gov/index.html
www.icir.org/enterprise-tracing/
http://cctf.shmoo.com/
http://cctf.shmoo.com/

BIBLIOGRAPHY 149

[157] Hanlin Zhang, Yevgeniy Cole, Linqiang Ge, Sixiao Wei, Wei Yu, Chao Lu,
Genshe Chen, Dan Shen, Erik Blasch, and Khanh D. Pham. ScanMe Mobile:
A Cloud-based Android Malware Analysis Service. SIGAPP Appl. Comput.
Rev., 16(1):36–49, April 2016.

[158] Qinglong Wang, Wenbo Guo, Kaixuan Zhang, Alexander G. Ororbia, II,
Xinyu Xing, Xue Liu, and C. Lee Giles. Adversary Resistant Deep Neural
Networks with an Application to Malware Detection. In Proceedings of the
23rd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD ’17, pages 1145–1153, New York, NY, USA, 2017. ACM.

[159] Kathrin Grosse, Nicolas Papernot, Praveen Manoharan, Michael Backes,
and Patrick D. McDaniel. Adversarial Perturbations Against Deep Neural
Networks for Malware Classification. CoRR, abs/1606.04435, 2016.

[160] Weiwei Hu and Ying Tan. Generating Adversarial Malware Examples for
Black-Box Attacks Based on GAN. CoRR, abs/1702.05983, 2017.

[161] Linzhang Wang, Eric Wong, and Dianxiang Xu. A Threat Model Driven Ap-
proach for Security Testing. In Proceedings of the Third International Workshop
on Software Engineering for Secure Systems, SESS ’07, pages 10–, Washington,
DC, USA, 2007. IEEE Computer Society.

[162] Dave Kelsey, Maarten Litmaath, Steffen Schreiner, Von Welch, Romain
Wartel, John White, Christoph Witzig, and the members of the WLCG Secu-
rity Technology Evolution Group. WLCG Computer Security Risks Analy-
sis, 2017. http://rwartel.web.cern.ch/rwartel/security_teg/
WLCG%20Risk%20Assessment.pdf.

[163] Chirag Modi, Dhiren Patel, Bhavesh Borisaniya, Hiren Patel, Avi Patel,
and Muttukrishnan Rajarajan. Review: A Survey of Intrusion Detection
Techniques in Cloud. J. Netw. Comput. Appl., 36(1):42–57, January 2013.

[164] Bruce Schneier. Applied Cryptography (2Nd Ed.): Protocols, Algorithms, and
Source Code in C. John Wiley & Sons, Inc., New York, NY, USA, 1995.

[165] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker,
and Ion Stoica. Spark: Cluster Computing with Working Sets. In Proceedings
of the 2Nd USENIX Conference on Hot Topics in Cloud Computing, HotCloud’10,
pages 10–10, Berkeley, CA, USA, 2010. USENIX Association.

[166] Apache Hadoop. Transparent Encryption in HDFS, 2018.
https://hadoop.apache.org/docs/stable/hadoop-project-
dist/hadoop-hdfs/TransparentEncryption.html.

[167] Clinton Gormley and Zachary Tong. Elasticsearch: The Definitive Guide.
O’Reilly Media, Inc., 1st edition, 2015.

[168] Vishal Sharma. Getting Started with Kibana, pages 29–44. Apress, Berkeley,
CA, 2016.

http://rwartel.web.cern.ch/rwartel/security_teg/WLCG%20Risk%20Assessment.pdf
http://rwartel.web.cern.ch/rwartel/security_teg/WLCG%20Risk%20Assessment.pdf
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/TransparentEncryption.html
https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/TransparentEncryption.html

150 BIBLIOGRAPHY

[169] Nicola Dragoni, Saverio Giallorenzo, Alberto Lluch Lafuente, Manuel Maz-
zara, Fabrizio Montesi, Ruslan Mustafin, and Larisa Safina. Microservices:
Yesterday, Today, and Tomorrow, pages 195–216. Springer International Pub-
lishing, Cham, 2017.

[170] Dario Berzano. A ground-up approach to High-Throughput Cloud Com-
puting in High-Energy Physics.

[171] Mallik Mahalingam, Dinesh Dutt, Kenneth Duda, Puneet Agarwal, Larry
Kreeger, T. Sridhar, Mike Bursell, and Chris Wright. Virtual eXtensible Local
Area Network (VXLAN): A Framework for Overlaying Virtualized Layer 2
Networks over Layer 3 Networks. RFC 7348, August 2014.

[172] Gentoo. Aufs (Another Union File System), 2018. https://wiki.gentoo.
org/wiki/Aufs.

[173] Docker. The OverlayFS storage driver, 2018. https://docs.docker.
com/storage/storagedriver/overlayfs-driver/.

[174] Emily Le and David Paz. Performance Analysis of Applications Using
Singularity Container on SDSC Comet. In Proceedings of the Practice and
Experience in Advanced Research Computing 2017 on Sustainability, Success and
Impact, PEARC17, pages 66:1–66:4, New York, NY, USA, 2017. ACM.

[175] Daniel Bilanovic. Analysis of security isolation technologies for HEP-
Computing. Master’s thesis, Johann Wolfgang Goethe-Universität, 2018.
http://publikationen.ub.uni-frankfurt.de/frontdoor/
index/index/docId/47931.

[176] María Arsuaga-Ríos, Seppo S Heikkilä, Dirk Duellmann, René Meusel, Jakob
Blomer, and Ben Couturier. Using S3 cloud storage with ROOT and CvmFS.
Journal of Physics: Conference Series, 664(2):022001, 2015.

[177] Intel. Getting Started with Intel Active Management Technology (AMT),
2018. https://software.intel.com/en-us/articles/getting-
started-with-intel-active-management-technology-amt.

[178] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, S. Mangard, P. Kocher,
D. Genkin, Y. Yarom, and M. Hamburg. Meltdown. ArXiv e-prints, January
2018.

[179] P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp, S. Man-
gard, T. Prescher, M. Schwarz, and Y. Yarom. Spectre Attacks: Exploiting
Speculative Execution. ArXiv e-prints, January 2018.

[180] Grsecurity. Grsecurity patches for the Linux kernel, 2018. https://
grsecurity.net/.

[181] Joint Security Policy Group. Grid Security Traceability and Logging Policy,
2018. https://edms.cern.ch/ui/file/428037/3/Traceability-
Logging-v2.0.pdf.

https://wiki.gentoo.org/wiki/Aufs
https://wiki.gentoo.org/wiki/Aufs
https://docs.docker.com/storage/storagedriver/overlayfs-driver/
https://docs.docker.com/storage/storagedriver/overlayfs-driver/
http://publikationen.ub.uni-frankfurt.de/frontdoor/index/index/docId/47931
http://publikationen.ub.uni-frankfurt.de/frontdoor/index/index/docId/47931
https://software.intel.com/en-us/articles/getting-started-with-intel-active-management-technology-amt
https://software.intel.com/en-us/articles/getting-started-with-intel-active-management-technology-amt
https://grsecurity.net/
https://grsecurity.net/
https://edms.cern.ch/ui/file/428037/3/Traceability-Logging-v2.0.pdf
https://edms.cern.ch/ui/file/428037/3/Traceability-Logging-v2.0.pdf

BIBLIOGRAPHY 151

[182] Sysdig. http://www.sysdig.org, 2017.

[183] Jeff Garzik. Glibc: a comprehensive reference to GNU/Linux libC. 2000. Edited
by Laurie Petrycki and others.

[184] Jurgen Schmidhuber. Multi-column Deep Neural Networks for Image Clas-
sification. In Proceedings of the 2012 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), CVPR ’12, pages 3642–3649, Washington, DC,
USA, 2012. IEEE Computer Society.

[185] VirusShare. http://virusshare.com/, 2017. http://virusshare.
com/.

[186] Virustotal. https://www.virustotal.com/, 2017. https://www.
virustotal.com/.

[187] Yisroel Mirsky, Tomer Doitshman, Yuval Elovici, and Asaf Shabtai. Kitsune:
An Ensemble of Autoencoders for Online Network Intrusion Detection. The
Network and Distributed System Security Symposium (NDSS), January 2018.

[188] Suvrit Sra, Sebastian Nowozin, and Stephen J. Wright. Optimization for
Machine Learning. The MIT Press, 2011.

[189] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean.
Distributed Representations of Words and Phrases and their Compositional-
ity. CoRR, abs/1310.4546, 2013.

[190] Zhen Li, Deqing Zou, Shouhuai Xu, Xinyu Ou, Hai Jin, Sujuan Wang, Zhijun
Deng, and Yuyi Zhong. Vuldeepecker: A deep learning-based system for
vulnerability detection. CoRR, abs/1801.01681, 2018.

[191] Steven Gold and Anand Rangarajan. Softmax to softassign: Neural net-
work algorithms for combinatorial optimization. Journal of Artificial Neural
Networks, 2:2–4, 1995.

[192] Marc’Aurelio Ranzato, Y-Lan Boureau, and Yann LeCun. Sparse Feature
Learning for Deep Belief Networks. In Advances in Neural Information Pro-
cessing Systems 20, Proceedings of the Twenty-First Annual Conference on Neural
Information Processing Systems, Vancouver, British Columbia, Canada, December
3-6, 2007, pages 1185–1192, 2007.

[193] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. ImageNet Classi-
fication with Deep Convolutional Neural Networks. In F. Pereira, C. J. C.
Burges, L. Bottou, and K. Q. Weinberger, editors, Advances in Neural In-
formation Processing Systems 25, pages 1097–1105. Curran Associates, Inc.,
2012.

[194] By Aphex34 [CC BY-SA 4.0 (https://creativecommons.org/licenses/by-
sa/4.0)] from Wikimedia Commons. Typical CNN, 2018.

http://www.sysdig.org
http://virusshare.com/
http://virusshare.com/
http://virusshare.com/
https://www.virustotal.com/
https://www.virustotal.com/
https://www.virustotal.com/

152 BIBLIOGRAPHY

[195] Inetsim. http://www.inetsim.org/, 2017.

[196] Digit Oktavianto and Iqbal Muhardianto. Cuckoo Malware Analysis. Packt
Publishing, 2013.

[197] Python Core Team (2018). Python: A dynamic, open source programming
language, Python Software Foundation, 2018. https://www.python.
org/.

[198] Dario Berzano. CentOS 6 Cloud Image, 2018. https://dberzano.
github.io/cloud/centos/.

[199] CoreOS. rkt container capabilities. [Online, accessed November 12th 2017].

[200] Morris A. Jette, Andy B. Yoo, and Mark Grondona. Slurm: Simple linux
utility for resource management. In In Lecture Notes in Computer Science:
Proceedings of Job Scheduling Strategies for Parallel Processing (JSSPP) 2003,
pages 44–60. Springer-Verlag, 2002.

[201] Alastair P. Droop. qsubsec: a lightweight template system for defining sun
grid engine workflows. Bioinformatics, 32(8):1267–1268, 2016.

[202] Felix Fuentes and Dulal C. Kar. Ethereal vs. Tcpdump: A Comparative
Study on Packet Sniffing Tools for Educational Purpose. J. Comput. Sci. Coll.,
20(4):169–176, April 2005.

[203] François Chollet et al. Keras. https://github.com/fchollet/keras,
2015.

[204] Theano Development Team. Theano: A Python framework for fast com-
putation of mathematical expressions. arXiv e-prints, abs/1605.02688, May
2016.

[205] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,
Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael
Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore,
Derek G. Murray, Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden,
Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: A system for
large-scale machine learning. In 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 16), pages 265–283, 2016.

[206] Radim Řehůřek and Petr Sojka. Software Framework for Topic Modelling
with Large Corpora. In Proceedings of the LREC 2010 Workshop on New
Challenges for NLP Frameworks, pages 45–50, Valletta, Malta, May 2010. ELRA.
http://is.muni.cz/publication/884893/en.

[207] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn:
Machine learning in Python. Journal of Machine Learning Research, 12:2825–
2830, 2011.

http://www.inetsim.org/
https://www.python.org/
https://www.python.org/
https://dberzano.github.io/cloud/centos/
https://dberzano.github.io/cloud/centos/
https://github.com/fchollet/keras
http://is.muni.cz/publication/884893/en

BIBLIOGRAPHY 153

[208] Matthew D. Zeiler. ADADELTA: An Adaptive Learning Rate Method. CoRR,
abs/1212.5701, 2012.

[209] Thomas Uphill. Mastering Puppet - Second Edition. Packt Publishing, 2nd
edition, 2016.

[210] Thomas Haynes and David Noveck. Network File System (NFS) Version 4
Protocol. RFC 7530, March 2015.

[211] ALICE Collaboration. AliRoot Test PbPbbench, 2018.

[212] J. D. Rodriguez, A. Perez, and J. A. Lozano. Sensitivity analysis of k-fold
cross validation in prediction error estimation. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 32(3):569–575, March 2010.

154 BIBLIOGRAPHY

Appendix A

Abbreviations

ACC Accuracy
API Application programming interface
AI Artificial intelligence
ALICE A large Ion Collider Experiment
AliEn ALICE production environment
APIDS Application based IDS
ANN Artificial neural networks
ATLAS A Toroidal LHC Apparatus
ASLR Address-space layout randomization
BoW Bag-of-words
CERN European Organization for Nuclear Research
CernVM-
FS

CernVM File System

CMS Compact Muon Spectrometer
CNN Convolutional neural network
CLI Command line interface
DBN Deep belief networks
DNN Deep neural network
DSOC Distributed security operation center
DL Deep learning
DoS Denial of service
DDoS Distributed denial of service
FPR False positive rate
FP False positives
FN False negatives
GAN Generative adversarial network
GN Genetic algorithms
GM Generative model
GSI Helmholtzzentrum für Schwerionenforschung
HEP High energy physics
HIDS Host-based IDS
HLT High level trigger
HPC High performance computing

155

156 APPENDIX A. ABBREVIATIONS

HTC High throughput computing
IO Input-output
IDPS Intrusion detection and prevention system
IDS Intrusion detection system
IDXP Intrusion detection exchange protocol
JDL Job description language
K-NN K-nearest neighbor
LDAP Lightweight directory access protocol
LC Linux container
LFN Logical file name
LHC Large Hadron Collider
LHCb Large Hadron Collider Beauty
LSTM Long short-term memory
ML Machine learning
NLP Natural language processing
NIDS Network-based IDS
OS Operating system
PaaS Platform as a service
QCD Quantum chromodynamics
RNN Recurrent neural networks
RMS Root mean square propagation
SaaS Software as a service layer
SbI Security by isolation
SE Storage element
SIEM Security information and event management system
SOAP Simple object access protocol
SOC Security operation center
SPC Specificity
SVM Support vector machine
TPM Trusted platform module
TPR True positive rate
TN True negatives
TP True positives
VO Virtual organization
VM Virtual machine
WLCG Worldwide LHC Computing Grid
WN Worker node

Appendix B

Curriculum Vitae

B.1 Personal Details

Name Andrés Gómez Ramírez
Date of Birth September 24, 1985
Place of Birth Marinilla, Colombia
Address IRI group, Goethe-Universität Frankfurt am Main

Hauspostfach 23
Senckenberganlage 31
60325, Frankfurt am Main

E-mail andres.gomez@iri.uni-frankfurt.de
Citizenship Colombian

B.2 Education

2003-2011 Universidad de Antioquia, Bachelor on Computer Sciences.
Supervisor: Prof. Dr. Claudia Isaza Narvaez.

2013-2018 Goethe University Frankfurt am Main, Ph. D. on
Computer Sciences.
Supervisor: Prof. Dr. Udo Kebschull

157

158 APPENDIX B. CURRICULUM VITAE

B.3 Publications

1. A. Gomez Ramirez, C. Lara, U. Kebschull for the ALICE Collaboration. “In-
trusion Prevention and Detection in Grid Computing - The ALICE Case”. Journal
of Physics: Conference Series, 664(6):062017, 2015. [20]

2. A. Gomez Ramirez, M. Martinez Pedreira, C. Grigoras, L. Betev, C. Lara and
U. Kebschull for the ALICE Collaboration. “A Security Monitoring Framework
For Virtualization Based HEP Infrastructures”. Journal of Physics: Conference
Series, 898(10):102004, 2017. [21]

3. A. Gomez Ramirez, C. Lara, L. Betev, D. Bilanovic, U. Kebschull for the
ALICE Collaboration. “Arhuaco: Deep Learning and Isolation Based Security for
Distributed High-Throughput Computing”. Manuscript submitted to J. Grid
Computing (2018). [22]

4. H. Engel, T. Alt, T. Breitner, A. Gomez Ramirez, T. Kollegger, M. Krzewicki,
J. Lehrbach, D. Rohr, and U. Kebschull. “The ALICE High-level Trigger read-out
upgrade for LHC Run 2”. Journal of Instrumentation, 11(01):C01041, 2016. [23]

5. J. Lehrbach, M. Krzewicki, D. Rohr, H. Engel, A. Gomez Ramirez, V. Linden-
struth, D. Berzano, and ALICE Collaboration. “ALICE HLT Cluster operation
during ALICE Run 2”. Journal of Physics: Conference Series, 898(8):082027,
2017. [24]

6. Ananya, A Alarcon Do Passo Suaide, C Alves Garcia Prado, T Alt, L Aphe-
cetche, N Agrawal, A Avasthi, M Bach, R Bala, G Barnafoldi, A Bhasin,
J Belikov, F Bellini, L Betev, T Breitner, P Buncic, F Carena, W Carena, S
Chapeland, V Chibante Barroso, F Cliff, F Costa, L Cunqueiro Mendez, S
Dash, C Delort, E Denes, R Divia, B Doenigus, H Engel, D Eschweiler, U
Fuchs, A Gheata, M Gheata, A. Gomez Ramirez et al. for the Alice collab-
oration. collaboration. “O2 : A novel combined online and offline computing
system for the alice experiment after 2018”. Journal of Physics: Conference
Series, 513(1):012037, 2014. [25]

7. A. Gomez Ramirez, C. Lara, U. Kebschull. “Machine Learning Based Moni-
toring of HEP Computing Infrastructures”. GSI Scientific Report 2016, doi:10.
15120/ GR-2017-1, page 364, Darmstadt, Germany, 2017.

8. A. Gomez Ramirez, C. Lara, U. Kebschull. “Machine learning based monitoring
of HEP computing infrastructures”. CBM Progress Report 2016 - Computing,
page 163, Darmstadt, Germany, 2017.

9. A. Gomez Ramirez for the ALICE collaboration. “Deep Learning and Isolation
Based Security for Grid Computing”. DPG Conference, HK 52.67, Bochum,
Germany, March 2018.

10. A. Gomez Ramirez, C. Lara, U. Kebschull. “Intrusion prevention and detection
in Grid computing”. ALICE Tier-1/2 Workshop. Torino, Italy, 2015.

B.4. PUBLICATIONS AS COLLABORATOR OF ALICE 159

11. A. Gomez Ramirez, C. Lara, U. Kebschull. “Alice computing monitoring: O2,
security and debugging”. FSP ALICE Meeting 2017 – Buchenau, Eiterfeld.

12. A. Gomez Ramirez, C. Lara, U. Kebschull. “HLT Cluster Monitoring”. ALICE
Germany Meeting, 2016.

13. A. Gomez Ramirez, C. Lara, U. Kebschull. “Improving Grid Security for HEP
– an AliEn implementation”. FSP ALICE meeting 2015.

14. A. Gomez Ramirez, C. Lara, U. Kebschull. “Computer Security in the ALICE
experiment: detecting and reacting to cyber-attacks”. FSP ALICE meeting. 2014.

15. A. Gomez Ramirez, C. Lara, U. Kebschull. “Improving Grid Security for HEP”.
26th CBM Collaboration Meeting 2015.

B.4 Publications as Collaborator of ALICE

The full list of publications is available in the URL:
http://inspirehep.net/author/profile/A.Gomez.ramirez.2

http://inspirehep.net/author/profile/A.Gomez.ramirez.2

	Abstract
	Zusammenfassung / German Summary
	Contents
	List of Figures
	List of Tables
	List of Listings
	Introduction
	Motivation
	Overview
	Aim of the Thesis
	Defended Statements

	Outline
	Publications

	Basic Principles
	E-Science Computing
	E-Science in High Energy Physics
	Grid Computing Beyond HEP
	ALICE Grid Services Implementation
	E-Science Grid Generalization

	Security by Isolation
	Virtual Machines
	Linux Containers

	Intrusion Detection and Prevention Systems
	Basic Components of an IDPS

	Machine Learning
	Deep Learning
	Supervised Training
	Unsupervised Training
	Discriminative and Generative Models
	Recurrent Neural Networks

	Summary

	State of the Art
	Security of E-Science Grid Computing
	Security by Isolation in Grid Computing
	Intrusion Detection and Prevention
	Intrusion Detection and Prevention Systems for the Grid
	Feature Selection for Intrusion Detection

	ML Based Malware Detection
	Intrusion Data Generation

	Summary

	The Design of Arhuaco
	Grid Threat Model
	Security Risks Associated to E-Science Infrastructure
	Security Characteristics
	Attacker Motivation

	The Arhuaco Architecture
	Security by Isolation using Linux Containers
	Linux Kernel Hardening
	Orchestration Systems for Linux Containers

	Behavior Monitoring via Linux Containers
	Machine Learning for Grid Computing Security
	Grid Job Trace Classification
	Deep Neural Networks for Grid Job Classification
	Feature Extraction
	CNNs for Grid Job Classification
	SVM for Grid Job Trace Analysis
	ANN Optimization
	Model Validation Dataset
	Recurrent Neural Networks for Training Data Generation

	Summary

	Prototype Implementation
	Arhuaco Modules
	Execution Engine
	Sensors
	Analysis Engine
	Storage
	The Response Module
	Distributed Installation

	Evaluation Environment Setup
	Summary

	Evaluation and Results
	Performance Evaluation Setup
	Machine Learning Evaluation Setup
	Isolation and Monitoring Performance Impact
	Evaluation Measurement Metrics
	Performance Results
	Results of the Alternative Isolation Methods
	Discussion

	Supervised Classification Results
	Grid Search Optimization
	Classification Evaluation Metrics
	Classification Results
	Discussion

	Generative Model Results
	Discussion

	Conclusions and Outlook
	Outlook

	Bibliography
	Abbreviations
	Curriculum Vitae
	Personal Details
	Education
	Publications
	Publications as Collaborator of ALICE

