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Zusammenfassung

Die Physik beschäftigt sich seit jeher mit der Frage nach dem Aufbau und der
Struktur der Materie. Die Antworten änderten sich im Laufe der Zeit, der
gegenwärtige Stand der Erkenntnis ist im sogenannten Standardmodell
zusammengefasst. Dort werden die Elementarteilchen in Leptonen und Quarks
unterteilt, die Wechselwirkungen zwischen ihnen beschreibt man durch vier
fundamentale Kräfte: die Gravitation, die elektromagnetischen Kraft, die schwache
und die starke Kernkraft.

Gemäß dem Standardmodell sind Nukleonen, also Protonen und Neutronen, aus
Quarks aufgebaut. Das Proton ist beispielsweise ein gebundener Zustand aus zwei up
und einem down Quark. Die Nukelonen bilden ihrerseits die Atomkerne, welche die
Systematik der Elemente bestimmen.

Quarks treten in sechs verschiedenen Arten (flavours) auf: up, down, strange, charm,
bottom und top. Freie Quarks konnten bislang nicht nachgewiesen werden, sie werden
nur als Quark−Antiquark Paar (Meson) oder als Kombination aus drei Quarks
(Baryon) beobachtet. Mesonen und Baryonen werden unter dem Begriff Hadronen
zusammengefaßt.

Die starke Kernkraft beruht letztlich auf der Wechselwirkung zwischen Quarks, diese
wird durch die Quantenchromodynamik (QCD) beschrieben. Ähnlich der Glashow−
Salam−Weinberg Theorie (GSW), die die elektromagnetische und die schwache
Kernkraft beschreibt, ist die Quantenchromodynamik durch Austauschteilchen
charakterisiert. Im Fall der GSW wurden die Photonen bzw. W± oder Z−Teilchen als
Austauschteilchen identifiziert, in der QCD fungieren Gluonen als Austauschteilchen.
Photonen vermitteln die elektromagnetische Kraft zwischen allen Teilchen, die
elektrische Ladung tragen. Analog wirkt die Kraft, die durch den Austausch von
Gluonen beschrieben wird, zwischen Teilchen, die eine Farbladung tragen. Anders als
das neutrale Photon trägt das Gluon selbst Farbe und wechselwirkt daher mit anderen
Teilchen, die Farbe tragen. Dieser Umstand zeigt bereits, dass in der QCD ganz
andere Phänomene zu erwarten sind als in der GSW.

Die Tatsache, dass Quarks nur in gebundenen Zuständen vorliegen, erschwert die
direkte Beobachtung der Wechselwirkung zwischen ihnen. Ein indirekter Weg, um
die Wirkungweise diese Kraft zu untersuchen, liegt in der Erzeugung hoher
Kernmateriedichten und hoher Kerntemperaturen. Die Idee besteht darin, das
Phasendiagramm von Kernmaterie experimentell zu bestimmen (Abbildung 1.3) und
dann auf die zugrundeliegende Kraft zu schließen. Unter anderem führen die Kräfte,
die zwischen den Einzelteilchen des Mediums herrschen, zu charakteristischen
Phasenübergängen. Im Fall der Kernmaterie hofft man insbesondere, den Übergang
von gebundenen Zuständen in eine Quark−Gluon−Plasma Phase (QGP), in der sich
Quarks und Gluonen frei bewegen, zu beobachten.

Zwei prominente Beispiele demonstrieren, warum die Eigenschaften dieses
Materiezustandes − und ob er überhaupt existiert − auch für andere Teilgebiete der
Physik von großem Interesse sind. Zum einen geht man davon aus, dass in der
Frühphase des Universums, 10−12 s nach dem Urknall, die Energiedichte so hoch war,
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dass die Materie in einem Plasmazustand vorlag. In diesem Bild führt die Expansion
des Raumes zu einer Abkühlung des Plasmas und schließlich zum Ausfrieren in
Hadronen. Zum anderen zeigen viele Modellstudien, dass im Innern von
Neutronensternen mit extremen Dichten zu rechnen ist. Unter Umständen werden
Energiedichten erreicht, die hoch genung sind, um einen Phasenübergang in ein
Quark Gluon Plasma zu erzwingen. Die Beschreibung dieser astronomischen Objekte
setzt somit auch die Kenntnis der Kräfte zwischen den Quarks voraus.

Der einzige Weg, dichte Kernmaterie im Labor zu erzeugen, stellen
Schwerionenreaktionen dar. Wenn zwei ultrarelativistische schwere Kerne zentral
kollidieren, entsteht für kurze Zeit eine Region hoher Energiedichte (Abbildung 1.1).
QCD−Gitter−Rechnungen deuten darauf hin, dass die Dichte, die man in
Schwerionreaktion gegenwärtig erreicht, hoch genung ist, um einen Übergang der
Kernmaterie in eine Plasma−Phase zu erzwingen. Aufgrund des hohen Drucks
expandiert die verdichtete, heiße Kernmaterie in longitudinaler (entlang des Strahls)
und transversaler (senkrecht zum Strahl) Richtung und die Dichte nimmt ab.
Vorausgesetzt am Anfang der Reaktion wurde ein Quark−Gluon−Plasma erzeugt,
dann friert diese Phase in Hadronen aus (chemisches Ausfrieren), wenn Dichte und
Temperatur einen kritischen Wert unterschreiten. Die erzeugten Hadronen
wechselwirken zunächst noch elastisch miteinander, d.h. die Impulse der Teilchen
ändern sich, die Identität der Teilchen bleibt jedoch erhalten. Schließlich enden auch
diese Wechselwirkungen (thermisches Ausfrieren), und die Teilchen verlassen die
Reaktionszone (Abbildung 1.4).  

Der Ablauf einer solchen Schwerionenreaktion dauert einige 10−23s und ihre
räumliche Ausdehnung liegt in der Größenordnung von 10−15m, damit ist die Reaktion
selbst nicht beobachtbar. Nur der Endzustand, also die Identitäten und Impluse der
emittierten Teilchen, kann bestimmt werden. Um den Ablauf der Reaktion zu
rekonstruieren, ist man daher auf Modellrechnungen angewiesen. Aufgrund dieser
Modellrechnungen wurden einige Observablen vorgeschlagen, die einen
Phasenübergang kennzeichnen. Neben anderen Signaturen führt ein Phasenübergang
wahrscheinlich zu einer verlängerten Emissionsdauer. Dieser Effekt kann
möglicherweise durch die Analyse von Zwei−Teilchen−Korrelationen sichtbar
gemacht werden. Ganz allgemein stellt die Untersuchung von Teilchenkorrelationen
die einzige Möglichkeit dar, die raum−zeitlichen Strukturen während des thermischen
Ausfrierens experimentell zu bestimmen.

Korrelationen zwischen Teilchen, die von einer hinreichend kleinen Quelle emittiert
werden, haben verschiedene Ursachen. Betrachtet man beispielsweise die
Häufigkeitsverteilung der Impulsdifferenz zwischen zwei elektrisch gleich geladenen
Teilchen, so stellt man fest, dass Paare mit geringer Impulsdifferenz weniger häufig
vorkommen, als man anhand der Ein−Teilchen Impulsverteilung vorhersagen würde.
Dieser Effekt ist auf die Abstoßung zwischen zwei elektrisch gleich geladenen
Teilchen zurückzuführen, die mit kleiner Impulsdifferenz emittiert wurden. 

Eine weniger offensichtliche Korrelation wird durch den Quantencharakter
identischer Teilchen verursacht. Zwei identische Bosonen, die im Phasenraum nahe
beieinander liegen, können gemäß den Prinzipien der Quantentheorie nicht
unterschieden werden. Die Wellenfunktion, die diesen Zwei−Teilchen−Zustand
beschreibt, muß beim Vertauschen der Teilchen erhalten bleiben.

Diese Forderung führt zu einem Interferenzterm in der Zwei−Teilchen
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Intensitätsverteilung. Diese Verteilung ist proportional zur Wahrscheinlichkeit, ein
Teilchenpaar mit der Impulsdifferenz q zu messen. Berechnet man die
Impulsdifferenzverteilung von Pionenpaaren und berücksichtig nur quanten−
statistische Effekte, so findet man, dass Paare mit geringem Impulsunterschied bis zu
zweimal häufiger vorkommen, als man aufgrund einfacher statistischer Überlegungen
erwarten würde. Um diesen Effekt experimentell sichtbar zu machen, konstruiert man
die Korrelationsfunktion, die die gemessene Impulsdifferenzverteilung in Relation zu
einer Untergrundverteilung setzt. Experimentell gewinnt man diese
Referenzverteilung, indem Paare aus Spuren aus verschiedenen Ereignissen gebildet
werden. Die Referenzverteilung entspricht damit der Verteilung, die man messen
würde, wenn die Teilchen nicht der Quantenstatistik unterlägen. Die
Korrelationsfunktion wird im allgemeinen durch eine Gauß−Funktion angenähert.
Das Inverse der Standardabweichung dieser Funktion wird nach den Pionieren der
Intensitätsinterferometrie R. Hanbury Brown und R. Twiss als HBT−Radius
bezeichnet.

Teilchen interferieren nur dann, wenn sie im Phasenraum nahe beieinander liegen, das
heißt sowohl die Impulsdifferenz als auch der räumliche Abstand muß hinreichend
klein sein. Diese Bedingung kann genutzt werden, um von der gemessenen
Korrelationsfunktion, die nur auf den Impulskomponenten basiert, auf die räumliche
Verteilung der Teilchenproduktion zu schließen. Eine detaillierte Betrachtung erlaubt
sogar, aufgrund der gemessenen Korrelationsfunktion quantitative Aussagen über die
räumlichen Aspekte der Teilchenquelle zu machen. Beispielsweise können im
Rahmen eines Modells die Stärke der transversalen Expansion oder die
Emissionsdauer in Relation zu den HBT−Radien gesetzt werden. In Kapitel 2 sind die
Grundlagen der Teilcheninterferometrie ausführlicher dargestellt.

Der eigentliche Gegenstand dieser Arbeit ist experimentelle Analyse der Zwei−
Teilchen−Korrelationen in einer Schwerionenreaktion. Dazu wird zunächst in Kapitel
3 das STAR Experiment am RHIC vorgestellt, in dem die Daten aufgezeichnet
wurden, die Grundlage dieser Analyse sind.

Am RHIC−Beschleuniger am BNL in den USA werden AuAu Kollisionen bis zu

einer Schwerpunktsenergie von S
NN
=200 GeV erzeugt. Figur 3.1 zeigt den

Beschleuniger−Ring und die vier Experimente Brahms, Phenix, Phobos und STAR.
Der hier analysierte Datensatz wurde bei der Datennahme im Jahr 2000
aufgezeichnet. Zu dieser Zeit wurde am RHIC eine Schwerpunktsenergie von

S
NN
=130 GeV  erreicht. 

Bei einer zentralen AuAu Kollision werden mehrere Tausend Teilchen produziert.
Der STAR Detektor ist dafür konzipiert, hadronische Teilchen kleiner Rapidität (d.h.
großer Winkel zur Strahlachse) zu messen, innerhalb der Akzeptanz werden etwa
80% der produzierten geladenen Teilchen nachgewiesen. Der schematische Aufbau
des STAR Detektorsystems ist in Figur 3.2 dargestellt. Der zentrale Detektor ist eine
TPC (Zeit−Projektions−Kammer). Dieser Detektor basiert darauf, dass geladene
Teilchen beim Durchgang durch ein Messgas eine Spur von Ionen hinterlassen. Ein
starkes elektrisches Feld driftet die Elektronen, die bei den Ionisationsprozessen
freigesetzt wurden, zu einer Ausleseebene. Der Punkt, an dem die Elektronen auf der
Ausleseebene ein Signal erzeugen, entspricht der Projektion des Ionisationpunktes auf
die Ausleseebene. Die dritte Komponente, die den Raumpunkt der Ionisation festlegt,
ist durch die Driftzeit bei bekannter Driftgeschwindigkeit gegeben. So erscheint eine
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Teilchenspur als eine Kette von Ionisationspunkten im Detektorgas. Ein
magnetisches Feld parallel zur Strahlachse führt zu einer Ablenkung der geladenen
Teilchen. Die Krümmung der Spur ist dabei umgekehrt proportional zum
transversalen Impuls. Abbildung 3.6 zeigt ein typisches Ereignis mit etwa 105

Ionisationspunkten und den entsprechenden Teilchenspuren.

Der spezifische Energieverlust eines Teilchens beim Durchgang durch das Messgas
hängt von seinem Impuls und seiner Masse ab. Die Stärke des auf der Ausleseebene
induzierten Signals erlaubt den spezifischen Energieverlust zu bestimmen. Da der
Impuls durch die Krümmung der Spur bekannt ist, kann so die Masse und damit die
Identität des Teilchens bestimmt werden (siehe Abbildung 3.7).

In Kapitel 4 wird der Datensatz beschrieben, der als Grundlage für diese Analyse
dient. Während der Datennahme werden die digitalisierten Daten der TPC auf ein
Speichermedium geschrieben. Der erste Schritt bei der Rekonstruktion der Ereignisse
besteht darin, die Ionisationspunkte zu lokalisieren. Dies leistet der Clusterfinder−
Algorithmus, der in Kapitel 4.1.1 beschrieben ist. Die Spurpunkte werden dann durch
den Tracking−Algorithmus zu Teilchenspuren verbunden. Die erreichte Effizienz,
Akzeptanz und Impulsauflösung der Rekonstruktion sind in Kapitel 4.1.2
zusammengefaßt.

Die Zwei−Teilchen−Korrelationen werden nur für zentrale Kollisionen betrachtet, das
sind Ereignisse mit kleinem Stoßparameter. Die Multipliztät der gemessenen Spuren
ist in erster Näherung ein Maß für die Zentralität des Ereignisses. Für diese Analyse
werden nur die 12% zentralsten Ereignisse zugelassen. Die Selektion der Ereignisse
ist in Kapitel 4.2 beschrieben.

Die Auswahl der Spuren, die in der Analyse verwendet werden, ist in Kapitel 4.3
beschrieben. Es werden nur Spuren zugelassen, deren Impulse in einem Bereich
hinreichend hoher Akzeptanz und Effizienz liegen. Außerdem werden die Spuren
ausgewählt, die mit hoher Wahrscheinlichkeit von Pionen stammen.

Eine weitere Auswahl wird auf der Paarebene getroffen. Die Korrelationsfunktion
wird in einzelnen Intervallen transversalen Paarimpulses kt und Paarrapidität Yππ

gebildet. Damit kann die Abhängigkeit der HBT−Radien von diesen Größen
dargestellt werden. 

Zwei weitere Auswahlkriterien sollen die Qualität der Spurpaare garantieren. Zum
einen werden solche Paare verworfen, die im Detektor zu nahe beieinander liegen.
Für die HBT−Analyse sind Paare mit geringem Impulsunterschied entscheidend, ein
geringer Impulsunterschied heißt notwendigerweise, dass die Spuren räumlich nicht
sehr weit getrennt sind. Wenn die Spuren aber zu nahe liegen, können sie vom
Detektor und von der Rekonstruktionskette nicht mehr aufgelöst werden. Damit
verliert man einen Teil der Paare in der Signalverteilung, nicht aber in der
Untergrundverteilung, da in diesem Fall die endliche Zwei−Spur−Auflösung keine
Rolle spielt. Um die Korrelationsfunktion nicht durch einen Detektoreffekt zu
verfälschen, entfernt man die Paare, die im Detektor nahe beieinander liegen, sowohl
in der Signal− als auch in der Untergrundverteilung. Ein weiteres Problem stellen
"gebrochene" Spuren dar. In einigen Fällen wird eine Teilchenspur von der
Rekonstruktionskette nicht als Ganzes erkannt, vielmehr werden zwei Spurstücke im
Dektor gefunden. Da diese Spurstücke vom selben Teilchen stammen, haben sie eine
sehr geringe Impulsdifferenz. Diese Paare können anhand ihrer Topologie im Detekor
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erkannt werden. Wie im Fall der begrenzten Zwei−Spur−Auflösung werden sie
sowohl für die Signal− als auch für die Untergrundverteilung nicht zugelassen.

In Kapitel 5 werden schließlich die Ergebnisse der Korrelationsanalyse dargestellt.
Die Korrelationsfunktion wird in verschiedenen Parametrisierungen betrachtet. In der
einfachsten Form betrachtet man nur den Betrag des Impulsdifferenzvektors. Dieser
Ansatz bedeutet aber, dass der entsprechende HBT−Radius alle Raum−Zeit
Komponenten mischt und damit nur wenig Aussagekraft bezüglich der Quellfunktion
besitzt. Eine differenzierte Analyse in drei unabhängigen Komponenten ermöglichen
die Pratt−Bertsch (PB) und die Yano−Koonin−Podgoretskii (YKP) Parametrisierung.
Die beiden Parametrisierungen unterscheiden sich in der Zerlegung des
Impulsdifferenzvektors in drei unabhängige Komponenten. Im ersten Fall bezeichnet
man die Komponenten als qout, qlong und qside, im zweiten Fall als qpara, qperp und q0

(Kapitel 2.7 und 2.8). Die entsprechenden Korrelationsfunktionen sind in Gleichung
2.31 bzw. 2.34 gegeben. Die jeweiligen HBT−Radien Rout, Rlong und Rside bzw. Rpara,
Rperp und R0 können in Relation zu den Parametern der Quellfunktion (Gleichung
2.43) gesetzt werden. Die beiden Parametrisierungen liefern im Prinzip die gleiche
Information und die beiden Sätze von HBT−Radien können in Beziehung zueinander
gesetzt werden (Gleichung 2.41). Beispielsweise entspricht der HBT−Radius R0 in der
YKP−Parametrisierung in erster Näherung der Emissionsdauer, während in der PB−
Parametrisierung diese Größe Verhältnis von Rout zu Rside abhängt. Zusätzlich zu den
Radien enthält die YKP−Parametrisierung einen Parameter β, der erlaubt, die
longitudinale Geschwindigkeit des betrachteten Quellelementes zu bestimmen.

Die Abbildungen 5.7 bis 5.10 zeigen die HBT−Radien beider Parametrisierungen in
Abhänigigkeit vom transversalen Paarimpuls kt und von der Paarrapidität Yππ. Die
Größe der gemessenen Radien bewegt sich zwischen 3 und 7 fm. Nur der Radius R0

verschwindet in den meisten kt−Yππ Intervallen. Die anderen Radien nehmen mit
steigendem kt ab und sind unabhängig von Yππ . Abbildung 5.11 demonstriert, dass
die beiden Parametrisierungen −dort wo sie vergleichbar sind− konsistente Ergebnisse
liefern.

Eine Diskussion der Ergebnisse schließt sich in Kapitel 6 an. Die Abhänigigkeit des
Parameters β von Yππ zeigt eine starke longitudinale Expansion an. Ein ähnliches
Verhalten wurde bei niedrigeren Schwerpunktsenergien beobachtet, wo man
allerdings eine schwächere longitudinale Expansion erwarten würde. 

Die Lebensdauer der Quelle, also die Zeit vom anfänglichen Überlapp der Kerne bis
zum thermischen Ausfrieren, bestimmt die kt−Abhänigigkeit des Parameters Rlong.
Dieser Zusammenhang wurde von Mahklin und Sinyukow formuliert, eine
Anpassung der entsprechenden Funktion an die gemessene kt Abhänigigkeit von Rlong

ergibt eine Lebensdauer von etwa 8 fm/c bei einer Ausfriertemperatur von etwa 126
MeV. Entsprechende Messungen bei niedrigeren Kollisionsenergien lieferten ähnliche
Resultate.

Die kt−Abhängigkeit des Parameters Rside ist mit der Stärke der transversalen
Expansion gemäß Gleichung 6.3 verknüpft. Da die Relation nicht eindeutig ist, muß
entweder eine feste Ausfriertemperatur angenommen werden oder es werden
gleichzeitig Einteilchenspektren betrachtet, um die Mehrdeutigkeit zu eliminieren.
Eine vorläufige Abschätzung ergibt eine mittlere transversale Expansions−
geschwindigkteit von v

⊥
≈0.6 und einen gemetrischen Radius von R

G
≈7.4 fm .
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Auch diese Ergebnisse sind vergleichbar mit entsprechenden Resultaten bei
niedrigeren Kollisionsenergien.

Ein weiterer Parameter der Quellfunktion ist die Emissionsdauer. Die Pionen werden
nicht zu einem festen Zeitpunkt emittiert, man geht vielmehr davon aus, dass die
Zeitpunkte der letzten elastischen Wechselwirkung in der Quelle gaußförmig verteilt
sind. Den Mittelwert dieser Verteilung bezeichnet man als Lebensdauer der Quelle,
die Breite als Emissionsdauer. Entsprechend Gleichung 6.4 bzw. 6.5 ist die
Emissionsdauer mit dem Radius R0 bzw. dem Verhältnis Rout zu Rside verbunden. Wie
in Abbildung 5.8 ersichtlich verschwindet der Parameter R0 , außer im kleinsten kt

Intervall. Dies entspricht in der PB−Parametrisierung der Tatsache, dass das
Verhältnis Rout zu Rside bei hohen kt kleiner als eins ist. Diese Resultate sind nicht
vereinbar mit herkömmlichen Modellen. Insbesondere weil eine verlängerte
Emissionsdauer als Signatur für die Bildung eines Quark−Gluon−Plasmas
vorgeschlagen wurde, wird dieses Ergebnis derzeit intensiv diskutiert.

Die Ergebnisse dieser Analyse sind sowohl mit bereits publizierten Daten der STAR
Kollaboration als auch mit Resultaten von anderen RHIC Experimenten verträglich
(siehe Abbildung 6.8).

In Abbildung 6.9 ist die Abhängigkeit der HBT−Radien von kt bei verschiedenen
Schwerpunktsenergien dargestellt. Im Gegensatz zu vielen anderen Observablen
ändern sich die HBT Radien nur geringfügig. Da man erwartet, dass die Reaktion bei
hohen Energien vollkommen anders abläuft, würde man auch davon ausgehen, dass
sich die Ausfrierbedingungen ändern. Dass dies nicht in den Zwei−Teilchen−
Korrelationen sichtbar wird, deutet darauf hin, dass die Näherungen die notwendig
sind, um die gemessenen Radien mit Modellparametern zu verbinden, nicht gültig
sind.

Die Systematik der HBT Parameter als Funktion der Schwerpunktsenergie enthält
damit keinen direkten Hinweis, dass die kritische Energiedichte überschritten wurde,
ab der die Kernmaterie in einer Plasmaphase vorliegt. Andererseits werden weder die
verschwindende Emissionsdauer noch die Tatsache, dass die anderen HBT−Parameter
sich nur wenig mit der Schwerpunktsenergie ändern, als Argument dafür gewertet,
dass die kritische Energiedichte nicht überschritten wurde. Die Frage, ob ein Quark−
Gluon−Plasma im Labor erzeugt und analysiert werden kann, bleibt damit offen. Das
thermische Ausfrieren einer Pionenquelle scheint hingegen anders zu verlaufen, als
bisher angenommen wurde.

Systematische Studien der Korrelationsfunktion in AA Kollisionen am RHIC in
Kombination mit Fortschritten im theoretischen Verständnis der
Teilcheninterferometrie in Schwerionenreaktion werden in Zukunft hoffentlich
erlauben, die gemessenen Radien in ein konsistentes Bild einzuordnen. 

In zukünftigen Experimenten am LHC werden noch weit höhere Dichten erreicht als
bisher, damit sollten sich auch die Ausfrierbedingungen stark verändern. Es wird sich
dann zeigen, ob die Teilcheninterferometrie das geeignete Instrument ist, um die
Quellfunktion einer Schwerionenreaktion zu messen.
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1.Introduction 

1.1 The standard model

Since the beginnings of science, the structure of matter itself has been the subject of
physical questions: what is it made of, is there a smallest entity, which cannot further
be dismanteld ? The answers have changed with time, first atoms were identified as
the fundamental components, then it was realised that they themselves were made up
out of protons and neutrons forming a nucleus surrounded by a cloud of electrons. 

It was not until the 1970s when the picture was established, that we now call our
standard model, with quarks and leptons being the fundamental constituents and with
four forces acting between them: the strong, the weak, the electromagnetic and the
gravitational force [Hoo96]. 

All particles obey the gravitational force, but in comparison it is by far the weakest
and thus only visible when the others vanish. Nevertheless gravitation plays a unique
role in physics, it is described by the general theory of relativity [Mis73].

The electromagnetic force acts between all objects carrying electric charge: e.g.
quarks and electrons. The fundamental relations that describe electromagnetic
phenomena are given by the famous Maxwell equations [Jac62][Fey88].

The weak force is closely related to the electromagnetic force, but it acts on all
leptons and quarks. It was discovered that both forces are indeed different aspects of a
single electroweak interaction. This unification is called Glashow−Salam−Weinberg
theory (GSW). Its predictions led to the observation of the W± and Z0 particles at
CERN (Conseil Européen pour la Recherche Nucléaire) in 1983 [Arn83]. Its success
in describing and predicting experimental measurements strongly supported the idea
that all theories of fundamental interactions should have the same mathematical
structure: they should be renormalizable gauge theories.

Therefore the theory of the strong force was formulated as the renormalizable gauge
theory of Quantum Chromo Dynamics (QCD) [Gre89]. The strong force acts only on
constituents carrying color charge, like quarks. Within a nucleon it is the dominant
force and its features determine mainly the characteristics of nuclear matter. And vice
versa it is the study of nuclear matter that can reveal how this interaction works.

In general, the character of a force is reflected in the qualities of its interaction
particle, e.g. the electromagnetic force interacts via the neutral and massless photon
whereas the weak force is mediated by the W± and Z0 particles. The strong force is
transmitted via gluons, which themselves carry color charge and thus interact
strongly. This feature is one reason why QCD is more complicated than GSW. In fact
after a long time of intense study, QCD has shown to be very complex in both its
experimental and its theoretical aspects.
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Nevertheless QCD is currently the most promising approach to the understanding of
the strong force. Neighboring fields like astrophysics will be affected by any progress
in understanding and verifying QCD: questions to the evolution of the early universe
or to the composition of a neutron star cannot be answered without detailed
knowledge of the equation of state of matter; which itself is closely linked to the
interaction between the fundamental constituents of matter.

1.2 The strong force in nuclear matter

All common nuclei are built from protons and neutrons which themselves are
composed of quarks. So far no isolated quarks have been observed; they are always
confined in color neutral entities called hadrons. Either a quark and an antiquark form
a meson like the pion, or three quarks form a baryon like the proton. The strong force
binding those quarks is such, that even in the middle of a nucleus, in the immediate
vicinity of many color charged objects, the protons and neutrons do not loose their
identity. The fact, that the density stays constant from light nuclei like oxygen to very
heavy like lead, indicates, that quarks confined in a nucleon form a very stable and
hard object.

To probe the complex structure of nuclei one bombards them with pointlike entities,
e.g. electrons, to observe single fundamental interactions. Another approach is to
study the conditions of nuclear matter in nucleus−nucleus collisions. The main steps
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a.) c.)b.)

Figure 1.1

Main stages of a nucleus−nucleus collision:

a.) Two colliding lorentz contracted relativistic nuclei.

b.) The highest energy density is reached when they overlap completely.

c.) A multitude of particles is created which finally hit the detectors.



of such an event are sketched in figure 1.1. The final state of such a collision is the
result of a multitude of particle interactions. The number of participating entities and
interactions between them is large enough to allow the use of the terminology of
thermodynamics. Size and kinetic energy of the accelerated nuclei determine the
initial conditions of the hot and dense state of matter which is created when they
collide.

Low beam energies S
NN
≈0.100 GeV lead only to a temperature of 10−20 MeV

and a slight compression of the nuclear matter. With ultra relativisic beams, i.e.
S

NN
>10 GeV , the initial density is several times larger than the normal nuclear

density and temperatures are well above 100 MeV [Cse94].

The energy density reached in collisions of ultra relativistic heavy ions might even be
high enough to force a transition from regular confined matter into a plasma phase:
the Quark Gluon Plasma (QGP). Within this phase, quarks no longer belong to a
single hadron, they will rather be deconfined and interact with surrounding quarks
and gluons. This transition has been already predicted in the 1970s [Shu80] and it is
supported by current theoretical QCD studies [Kar01]. 

The number of degrees of freedom in a QGP (~37) is much higher than in a hadron
gas phase (~3), therefore a typical behaviour of thermodynamical variables should
indicate a possible phase transition (see figure 1.2). Details of the nature of the
transition, e.g. of which order it is, and the characteristics of the new phase, e.g.
whether the chiral symmetry is restored, are still discussed [Bla99]. 

Most of the interactions occuring during the expansion of the highly compressed
hadronic matter, created in an heavy ion collision, are associated with relatively small
momentum transfers. This kind of process cannot be calculated analytically or using
pertubative methods. The most promising approach is lattice QCD [Cre86] where the
continuous space−time is approximated by a discrete lattice. Even though these
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Figure 1.2 

If the temperature T of nuclear matter exceeds a certain critical value T
C

lattice calculations predict a steep rise in the energy density ε : a typical phase
transition [Kar01].



calculations are still restricted by numerical constraints, they yield quantitative results
like the critical temperature, where the phase transition occurs. Recent lattice QCD
calculations [Kar01] confirm that a transition should be observed at energy densities
reached with today’s accelerator facilities.

Thermodynamical variables, like energy density or pressure of hot and dense matter
created in an heavy ion collision, are not directly accessible. Most of the observables
stem from later stages of the collision when the matter has already cooled down
during its expansion into the surrounding vacuum. With the help of
phenomenological models it is possible to associate the detected particles with a
thermodynamical state and to extrapolate from there to earlier stages of the reaction.
The thermodynamical conditions established with the different initial conditions at
various experiments are shown in figure 1.3.

Because such a phase transition should be a rather dramatic event it will probably
leave measurable traces. Consequently many signatures have been proposed and were
experimentally verified [Bas99]. It turned out however that no single observable is
sensitive enough to provide evidence for a new state of matter. Only the complete
picture of a heavy ion collision based on various measurements from different
experiments allows a convincing conclusion. After serveral years of intense studies at
the CERN SPS facility strong evidence has been collected to announce that most
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Figure 1.3

The thermodynamical conditions of nuclear matter created in experiments at
various accelerator facilities (SIS, AGS, SPS, RHIC) [Bra01]. High initial energy
density leads to a plasma phase which hadronizes during the chemical freeze out.
The hadron gas expands further until the particles leave the reaction volume and
stop interacting with each other. This stage is called thermal freeze out.



likely a new state of matter was observed at a collision energy of S
NN
=17 GeV

[Hei00].

The kinetic energy of the colliding nuclei and therefore also the initial energy density
reached at SPS is much lower than at the Relativistic Heavy Ion Collider (RHIC) at

Brookhaven where a maxium of S
NN
=200 GeV is achieved. The hope with this

new facility, dedicated to study heavy ion collisions, is not only to observe the
transition, but to study the characteristics of the QGP phase. Eventually only probing
nuclear matter at various energy densities will yield the phase diagram which is
necessary to formulate the equation of state of nuclear matter.

1.3 Particle interferometry

A QGP phase does not survive in vacuum: it will rather expand and freeze out into
hadrons, this stage of the reaction is labeled chemical freeze out or hadronization.
Due to the initial pressure the resulting hadron gas expands further and density and
temperature drop until the particles stop interacting: this final step is called thermal
freeze out.
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Most of the emitted particles are pions, the lightest hadrons. Exploiting a quantum
mechanical interference effect it is possible to obtain information about the space
time conditions at thermal freeze out, e.g. the size of the particle source or the
emission duration. Embedded into a hydrodynamical framework these measurements
allow even the observation of collective effects during the expansion, e.g. radial flow.
The measured freeze out parameters serve consequently as important constraints for
model calculations. This particle interferometric technique is the only known way to
obtain direct information about the space time structure of the freeze out process. 

The method of particle interferometry applied in heavy ion physics is called HBT
after the pioneering work of Robert Hanbury Brown and Richard Twiss. They
applied this method first in astrophysics to measure sizes of stars [Han54], only later
it was recognized that a similar effect in particle physics can be used to determine
sizes of interaction volumes in heavy ion collisions.

Particle interferometry is not only a valuable tool in the quest for the Quark Gluon
Plasma; the underlying principles are quite intriguing themselves: the observation of
coherent states. They are found in different chapters of physics from lasers to
superconductors. Exploring the exotic features of these "quantum mechanical many
particle states" contributes to the basic understanding of quantum theory [Wei00].

1.4 Notation

In this paragraph we introduce conventions and the most frequently used variables in
this thesis. We use natural units ħ=c=1 . The coordinate system refers to the STAR
system, with the origin in the center of the detector and the z−axis paralell to the
beam, the x− and y−axis orthogonal to each other and to the beam (see figure 3.3).
Bold face denote 3−vectors.

Four momentum : energy and momentum of a particle

Transverse momentum : momentum transverse to the beam 

Rapidity: a measure for the longitudinal velocity
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Transverse pair momentum : pair momentum transverse to the beam

Pairrapidity : longitudinal pair velocity

1.5 Content and structure of this thesis

In this work we present the results from pion interferometry with AuAu collisions at
S

NN
=130 GeV . The data were recorded with the STAR detector at the RHIC

accelerator in 2000. 

The idea of particle interferometry and the HBT formalism is introduced in chapter 2.
In chapter 3 we describe the STAR experimental setup and in chapter 4 follows a
description of the data used for this analysis. In chapter 5 we present the results of
pion interferometry and finally we conclude with a discussion in chapter 6 and an
outlook in chapter 7. 
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2. HBT

Interference effects are well known physical observations. In general, interference
occurs whenever waves superimpose, thus it is observed with seismic waves, light
waves or sound waves. According to the wave−particle dualism, massive particles
also possess wave character and therefore interference effects occur with particles like
pions or protons.

The concept of interferometry is to use interference phenomena in order to obtain
information about the origin of the "waves", in particular it is applied to measure sizes
of objects which are not easily accessible. Michelson interferometry is used in
astronomy to measure sizes of stars lightyears away from the observer. In the other
extreme, particle interferometry permits the only direct spatial measurement of heavy
ion reactions with typical sizes of several 10−15 m.

2.1. Historical overview

In the 1950s Robert Hanbury Brown and Richard Twiss (HBT) developed a method
to overcome technical limitations of Michelson amplitude interferometry [Han54].
Instead of products of sums of amplitudes Ψ :

they measured average products of intensities:

To demonstrate the technique they showed that photons in an apparently uncorrelated
thermal beam tend to be detected in close−by pairs [Han58]. The increased or
decreased probablity to measure pairs of particles can be considered as analogue to
the "interference patterns" in amplitude interference.

Later it turned out that the discovery of these "second order correlations" was not
only a simple technical improvement, but a big step forward towards a new
qualitative understanding of the quantum nature of light [Wei00].

In the 1960s G. Goldhaber, S. Goldhaber, W.Y. Lee and A. Pais observed in
pp−annihilation experiments that the angular distribution of like charged pion pairs

was different from that of unlike charged pairs [Gol59][Gol60]. In particular they
observed an enhancement of pion pairs with small relative momenta. Later this
"GGLP−effect" was explained with Bose−Einstein correlations of pions and the
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analogy to HBT measurements was established.

Since its discovery the HBT effect has been observed in many different systems, i.e.
in ee, pp or AA collisions in a wide range of collision energies [Boa90][Hei99]. The
theoretical understanding of the underlying principles has made substantial progress
(important papers are collected in [Wei97]) and analogies to neigbourhing fields, e.g.
laser physics in Quantum Optics, have been discovered.

Very early it was recognized that the HBT effect could be used to study the space−
time structure of the pion source established in a heavy ion collision [Kop72, Shu73].
In recent years a comprehensive theoretical framework has been completed in order
to interpret particle correlations at experiments with ultra relativistic heavy ion
beams, e.g. STAR at RHIC [Gyu79][Pra86][Wie99][Wei00a].

2.2 The two particle correlation function

The measured Lorentz invariant two−particle distribution

contains any two particle momentum correlation of the production mechanism in a
heavy ion reaction. Here P p

1
, p

2 indicates the probability to measure two particles

with momenta p
1 and p

2 . This distribution is mainly shaped by the single particle
distribution. Hence the correlation function

is defined. The reference distribution P p
1

P p
2 is the probability to measure two

particles with momenta p
1  and p

2  derived only from single particle spectrum 

The reference distribution mimics the two particle distribution except for any two
particle correlation. Although it could be calculated in principle from the single
particle spectrum P p , in experimental analyses usually the "mixed event method"
is applied to model the background. That means, pairs defining the background
distribution are constructed with particles from two different events. Since usually
many events are recorded, the number of "mixed pairs" exceeds by far the number of
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"real pairs", i.e. all possible combinations of two particles from the same event. If the
number of mixed pairs is chosen to be 10−15 times larger than the number of real
pairs the statistical error of the correlation function is given mainly by the statistics of
the real pairs distribution. 

2.3 Sources of particle correlations

Particle correlations in heavy ion collisions occur for various reasons. HBT is based
on momentum correlations between identical particles due to their quantum character.
The multiparticle states which describe the source at thermal freeze out obey quantum
statistical rules. If the particles are bosons, e.g. pions, Bose Einstein statistics applies.
Therefore pion HBT is often referred to as Bose Einstein correlations. In case of
fermions, Fermi Dirac statistics is appropriate. The quantum statistical rules lead to
pattern in the phase space distribution of the emitted particles. Measuring the
momentum component of this phase space distribution allows to draw conclusions
about its space component; this is the basic concept of HBT.

It is important to extract the correlations due to quantum statistics only. Possible other
correlations superimposing the HBT effect must be considered. In case of an
alteration of the correlation function, a correction has to be applied. The main sources
for other correlations are [Hei99a]

� Energy momentum conservation constrains the momentum distribution if only a
few particles are produced. In relativistic heavy ion collisions, when hundreds of
particles are emitted, this becomes negligible. For the same reason conservation
laws with respect to quantum numbers, like charge or isospin, are not taken into
account.

� Correlations due to the decay products of resonances are very strong. But since
resonances rarely decay into two like sign pions they are not taken into account in
this analysis.

� Final state interactions due to the strong force between two pions are negligible;
especially in the region of small relative momenta which is interesting for HBT.

� Long−range coulomb interactions between two emitted pions have a significant
effect on the two particle distribution. Therefore we have to introduce a correction
for this distortion. In principle these coulomb interactions are also suited to derive
source sizes. This is possible with e.g. unlike sign pions where no quantum
statistical effects are observed.
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2.4 Bose Einstein correlations

The principle of HBT measurements is demonstrated in the following example
[Won94]:

Assume two identical particles with momenta p
1 and p

2 are produced at points x

and y within a source volume described by a density ρ x . After their emission they
are recorded with detectors at r

1 and r
2 .

First we derive the single particle spectrum. We assume the probability amplitude to
produce a pion with momentum p

1 at x is described by A p
1
,x and the

propagation of the particle to the detector at r
1 by e

i p
1

x� r
1 . The probability for

a pion of momentum p
1 produced in the source volume ρ x  to arrive at r

1 is then

Now we determine the two particle distribution. The indistinguishability of identical
particles leads to the requirement that observables of multiparticle states must be
independent of the order of the particles. The probability amplitude for bosons must
be symmetric with respect to the interchange of particles. Pions obey Bose Einstein
statistics, therefore the probability amplitude to produce two pions at x and y with
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Figure 2.1

Assume two identical particles are produced within a small enough source at x
and y. According to Heisenbergs uncertainty principle it is impossible to decide,
whether their paths are described by the dashed or the full lines.
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momenta p
1 and p

2 and to detect them at r
1 and r

2 is given by 

The meaning of equation 2.7 is illustrated in figure 2.1, the probability amplitude
must allow for the particles to follow either the dashed or the full line.

With equation 2.7 the probability to detect two pions can be deduced :

If we introduce the effective density

and its fourier transform with the four momentum difference q

we find

Equation 2.11 enables us to relate the correlation function to the density

Equation 2.12 is the basic relation of Bose−Einstein interferometry: the measured
momentum correlation function C

2
q provides information about the space−time

structure of the particle emitting source.
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To further illustrate the method, let us assume the source could simply be described
by a Gaussian distribution with a spatiotemporal extension R

inv
:

The approriate parametrization of the correlation function in this case is given by

with the four momentum difference q
inv
= p

1
�p

2 .

Extracting the parameter R
inv in the measured correlation function C

2
q yields the

width of the source distribution ρeff
x .

2.5 Classical current formalism

A realistic source function is certainly more complicated than the Gaussian shaped
density assumed in the previous paragraph. The longitudinal and transverse expansion
for example have a considerable impact on the source function and hence on the
correlation function. Furthermore the correlation function can be measured in three
independent momentum components and therefore the emission function is not
restricted to one dimension as in equation 2.13.

A more comprehensive framework is deduced for example in [Hei99a]. The model is
based on a description of the particle emitting source using classical currents. We
denote the final pion state of a heavy ion collision with |J 〉 and assume that at kinetic
freeze out the emitting source is not affected by the emission of a single particle. |J 〉
is then a coherent state which is by definition an eigenstate of the annihilation
operator a

p

where J p is the on shell fourier transform of the current J x . The latter is a space
time function approximating the nuclear current operator defining sources of pions at
freeze out J x  [Boa90].

The classical current is approximated by the sum over individual elementary source
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functions J
0 :

A "chaotic" source is characterized by random phases φ i . It is currently not known to
which degree this independence is established in nuclear collisions, the laser is an
example in quantum optics of a completely non−chaotic source. The effect of partial
chaoticity on the two particle correlation function could be severe. In the extreme
case of a completely non−chaotic source the correlation would even vanish. There is
no unambigious evidence from two particle correlations, to which degree the source is
chaotic. Perhaps the study of three−pion correlations answers this question [Hei97].
In the following we will assume a completely chaotic source, but a similar formalism
can also be derived for a partial chaotic source.

The goal is to gain as much information as possible about the emission function
S(x,k), which is the Wigner phase space density of the pion source. When averaged
over phase−space volumes which are large compared to the volume of an elementary
phase−space cell, this function can be interpreted as the classical phase−space density.

The emission function S(x,k) can be identified as the fourier transform of the
covariant quantity 

If the emission function has a sufficiently smooth momentum dependence it can be
related to the correlation function

Because the emitted particles are on shell, i.e. E
i
= p

i

2+m
i

2 for all particles, the

correlation function C
2

q , k depends only on three independent components. Due

to this "mass shell constraint" relation 2.18 yields not a unique expression for the
emission function S x,k . To resolve this ambiguity one has to make additional
assumptions about the emission process which cannot be derived by two particle
interferometry.

The measured correlation function is usually parametrized by a Gaussian function 

where the HBT radius parameters R
ij equal the space−time variances of the emission

function S x,k . 
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The factor λ k summarizes several distortions of the correlation function. It is
strongly affected by resonance decays, final state interactions and detector
uncertainties. But λ k also indicates to which degree the emission is chaotic, if
there were no other influences and the phases introduced in 2.16 were completely
random λ k would equal unity. If on the other hand the emission were correlated

and the phases were fixed in equation 2.16, the λ k parameter would vanish and
hence the radii were immeasurable.

2.6 Approximating the emission function

To connect the measured HBT radii from equation 2.19 to the emission function
S x,k in equation 2.18, we have to make some basic assumptions. First we
approximate the emission function by a Gaussian function. Therefore we define

effective source centers x̄µ k as the points of maximum emission probability

where ... denotes the space time average over the emission function. This allows to
express the space time coordinates relative to a hypersurface

Then we are able to approximate the emission function with 

where B�1

µν is related to the space time variances by

and with equation 2.19 we derive the correlation function 

Obviously the correlation functions yields no information about absolute values of

emission points within the source since only distances relative to x̄µ k occur. HBT
radii are therefore identified with the size of the "region of homogeneity", the region
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from which particle pairs with momentum k are most likely emitted. Only in the
special case, that the emission function has no space−momentum correlations the
space time variances equal the actual source extensions. Otherwise the HBT radii
depend on the expansion dynamics of the source.

Next, we introduce two HBT parametrizations, i.e. choices for decomposing the
momentum difference q in equation 2.24. We explain the actual meaning of the
corresponding HBT radii and later these parametrizations will be applied to
experimental data.

In chapter 2.9 we introduce a specific emission function with explicit space−
momentum correlations and discuss the interpretation of the measured HBT radii in
this case.

2.7 Pratt−Bertsch parametrization

A convenient choice for the three independent components of q in equation 2.24 is
give by q= q

out
,q

side
,q

long
 with 

and

The vectors qout and qside lie in the transverse plane, qout is parallel and qside

perpendicular to kt. Figure 2.2 shows the decomposition of the transverse
components. This parametrization is often referred to as Pratt−Bertsch (PB) after the
references [Pra86][Ber89]. 
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With this choice the mass shell constraint takes the form

with

Hence q
0 is not explicitly measured and the corresponding temporal component is

eliminated.

Assuming an azimuthally symmetric source, we can rotate the out−side−long system

until q
x
=q

out and q
y
=q

side . In this case we find ȳ= y =0 and hence three space

time variances x
µ
x
ν

k in equation 2.24 linear in y vanish. Four non vanishing

space time variances remain which are associated with the HBT radius parameters
R

side , R
out , R

long and R
outlong :
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Figure 2.2
Composition of qout  and  qside  according to equation 2.25.
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Assuming a longitudinal boost invariant Bjorken szenario [Bjo83][Won94] with a
freeze out at constant proper time τ

0
, the space time position of the emitted particle

and its rapidity Y are related by

and the emission function is symmetric along z . If we boost the correlation function
in the longitudinal comoving system (LCMS), a frame where the longitudinal velocity
of the pair vanishes, we find βlong

=0  and expressions 2.28 simplify to 

The more symmetries in the emission function are assumed the simpler the
expressions for the HBT radii become. If we give up for example the assumption of a
vanishing impact parameter, and with it an azimuthal symmetric source, we need a
more sophisticated framework, but on the other hand with an appropriate formalism
we gain valuable information about exactly this non−symmetry [Lis99][Hei97].

In summary, choosing the Pratt−Bertsch parametrization the correlation function
takes the form 

and the HBT radii can be interpreted as :

� R
side  measures the width of the emission region in side direction.

� R
out measures a combination of the extension in out direction and the emission

duration. 

� In the LCMS frame R
long  measures the longitudinal width of the emission region.
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2.8 Yano−Koonin−Podgoretskii parametrization

A different choice for the decompostion of q  in equation 2.24 is given by

Assuming an azimuthally symmetric collision region and a longitudinal expansion
velocity

the correlation function takes the form

This parametrization is based on the work of Yano, Koonin [Yan78] and Podgoretskii
[Pod83] (YKP). Compared to the PB parametrization the YKP formulation takes the
longitudinal expansion explicitly into account and the emission duration is given
directly by R

0
.

The parameters are related to the Gaussian space time variances in 2.24 by 
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with 

using the shorthand ξ=x+i y .

The parameter β
YKP

k is related to the velocity of the source element which emits
the particles contributing to the correlation function. In model studies [Hei99a] it was
shown that this parameter follows closely the velocity of the Longitudinal Saddle
Point System which is the longitudinally comoving Lorentz frame at the point of
highest particle emissitivity for a given pair momentum k. The relation between the
longitudinal pair rapidity Yππ and the Yano Koonin rapidity

illustrates the meaning of this parameter. For a static source, i.e. without any space
momentum correlations, YYKP is independent of Yππ and identical to the rapidity of
the CMS of the whole source:

If we consider however sources with strong longitudinal expansion or even
longitudinal boost invariant sources for which the thermal freeze out occurs close to a
hypersurface of constant longitudinal proper time, YYKP depends linearly on Yππ

The linear dependence means not necessarily a boost invariance, it only indicates a
longitudinal expansion which is sufficiently strong to overcome the thermal smearing
of the particle momenta [Hei99a].

The interpretation of the radii in this parametrization becomes particularly simple if
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the correlation function is measured in a frame where the Yano Koonin velocity β k
vanishes. In this case the radius parameters measure directly the transverse,
longitudinal and temporal size of the effective source in the rest frame of the source
element

2.9 PB versus YKP parametrization

The information carried by the correlation function does not depend on the
parametrization. Hence radii from PB and YKP parametrizations are related to each
other and results from the two methods can be directly compared. These relations can
be used as a consistency check.

If we express the PB parameters in terms of YKP parameters we find

β
long vanishes in the longitudinal comoving system (LCMS). If we further assume

the source had a strong longitudinal expansion and that therefore β
YKP vanished,

equations 2.41 simplify to
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2.10 Collective expansion and the kt−dependence of
measured HBT radii

If the particle momenta and emission points are correlated, the space−time variances
in 2.24 depend on the pair momentum k. The most important mechanism to produce
such correlations is collective expansion of the source. Random motion due to the
finite temperature of the source tends to weaken the space−momentum correlations
caused by collective flow. Assuming a rather general emission function the
dependences of HBT radii on k can be related to prominent features of the expansion
and to the temperature of the source.

A widely used parametrization of the emission function is given by [Hei99]

Where r2=x2+y 2 , η=0.5⋅ln t+z ⁄ t�z and τ= t2�z 2 parametrize the

space time coordinates xµ , and Y=0.5⋅ln E+k ⁄ E�k and m
t
= m2+k

t

2 the

pair momenta k.

R is the transverse radius of the source, τ0 the average freeze out proper time and

∆τ the mean duration of particle emission. ∆η accounts for the finite longitudinal
extension of the source. 

The space momentum correlations are introduced by the Boltzmann factor
exp �k⋅u x ⁄T x with a velocity field u(x) and a temperature T. Usually the
velocity field is decomposed into

with longitudinal and transverse flow rapidities η
l

x and η
t

x . In longitudinal

direction, boost invariant flow is assumed η
l

x =η v
l
=z ⁄ t and in transverse

direction the flow profile is parametrized by ηt
x =η

f
⋅ r ⁄R  with a scale parameter 

η
f  and the transverse radius R.

Using the emission function given in equation 2.43 and employing the saddle point
approximation 2.22, the characteristics of the source R, T, τ0 , ∆τ and η

f can be
related to the k−dependence of the measured HBT radii. According to [Hei99] we
find the following approximations:
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and

These relations are highly model dependent, they rely on a number of approximations
and assumptions, nevertheless they are often used to associate a specific physical
meaning to extracted HBT radii. To test the validity of the approximations above, one
has to check whether the resulting source parameters are consitent with other
observations. E.g. temperature and transverse expansion also determine the shape of
single particle transverse momentum spectra and can therefore be derived via this
observable. Only if all observations fit into a consistent picture, we can draw
conclusions about the early stages of a heavy ion collision and a possible phase
transition.

2.11 Coulomb correction

The coulomb repulsion between like sign charged pions acting when they leave the
collision region changes their relative momentum. This effect is corrected for by
weighting the mixed pairs with a Coulomb correction factor. It is calculated by taking
the square of the nonrelativistic wave function describing a particle in a Coulomb
field [Mes61]
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with 

For pions emitted from a pointlike source, F equals unity and the Coulomb correction
becomes the Gamov factor [Hei99a]. Assuming a finite source size the correction can
be calculated numerically. In Fig. 2.3 the correction is displayed for several source
sizes.
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3. The STAR experiment

3.1 The Relativistic Heavy Ion Collider (RHIC)

The Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory in
New York, USA, was built to study pp and AA collisions at various energies from

S
NN
≈ 20 GeV  up to S

NN
≈ 200 GeV . 
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Figure 3.1

The RHIC complex consists of four accelerators: 

� Tandems (top energy 1 MeV/u, charge of a gold ion at top energy Q=+32)

� Booster (95 MeV/u, Q=+77)

� AGS (10.8 GeV/u, Q=+79 )

� RHIC (100.0GeV/u, Q=+79)

At four interaction points detector systems are mounted named BRAHMS,
PHOBOS, PHENIX and STAR.
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We will focus here on the first AuAu run at RHIC in the year 2000 [Ros02] when the
data used in this analysis were collected.

Several steps are necessary to obtain the preaccelerated gold ion beam needed by the
Relativistic Heavy Ion Collider (see figure 3.1). A "Tandem Van de Graaff"
accelerator delivers an ion beam to the "Booster Synchrotron", which accelerates ions
to 37% the speed of light and injects them into the "Alternating Gradient
Synchrotron" (AGS). At this facility the nuclei are brought to 99.7% the speed of
light and finally transferred to the collider. The gold ions are ionized stepwise as they
are acclerated to RHIC injection energy, at which point they are fully ionized.

RHIC consists of two concentric independent rings with 3834 m in circumference.
1740 superconducting magnets cooled down to 4.5o K keep the ion beams inside two

highly evacuated tubes. In one of the the rings bunches of ions are accelerated
clockwise and in the other one counterclockwise. 60 bunches are injected into each

collider ring with ~ 1⋅109 ions per bunch. This yields a design luminosity of

�≈2⋅1026cm�2 s�1
,but in 2000 only an average luminosity of

�≈1.7⋅1025cm�2 s�1
was reached. This luminosity allowed to collect several 105

events during the two month run in 2000.

The filling of the collider with accelerated ion bunches takes approximately 1 min
and the acceleration another ~75 s. The beam is than stored up to 10 h before another
fill becomes necessary, a typical store in 2000 lasted 5 h. The top energy is 100 GeV
per nucleon which was not achieved until the 2001 run period. 65 GeV per nucleon
were reached during the 2000 run period.

At four interaction regions, large detector systems named BRAHMS, PHOBOS,
PHENIX and STAR are installed. At these interaction points the beams cross each
other to generate collisions of ions. The crossing angle at the interaction region is
below 1.7 mrad . The design value for the length of the interaction diamond of

≈20 cm was not achieved in 2000. Events occuring too far away from the detector
center had to be rejected, since the detectors are optimized for events with the main
vertex in their center.

Besides gold ions the collider facility is also capable of accelerating light nuclei and
even protons. A whole program is set up to study collisions of polarized protons in
order to analyse the spin structure of nucleons [Vig99]. To meet the different
requirements from all physics programs the detector systems have to be very flexible.
They must be able to handle several thousand particles produced in a single central
AuAu collision, and on the other hand they are used to study ultra peripheral
collisions where only a few particles are produced.
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3.2 The Solenoidal Tracker At RHIC (STAR)

Each of the four experiments at RHIC focuses on different aspects of particle
collisions. The Solenoidal Tracker At Rhic (STAR) [Har02][Nim03OV] is built to
measure thousands of particles which can be produced by a single collision at RHIC.
STAR consists of several individual detectors with different tasks, figure 3.2 shows a
schematic layout.

The curvature of trajectories of charged particles in a magnetic field allows the
determination of their momentum. Therefore the tracking detectors are surrounded by
a solenoid magnet providing a uniform magnetic field up to 0.5 T. During the run
period 2000 it was operated at 0.25 T.

The central detector of STAR is a Time Projection Chamber (TPC) measuring
trajectories of charged particles with η <1.8 . Analyses presented in this thesis are
based only on TPC data, therefore this detector is discussed in detail in chapter 3.3.
Several other detectors improve momentum resolution, two track resolution, vertex
resolution and particle identification or they increase the acceptance of STAR. Many
of these devices were installed after the year 2000 run. 
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Figure 3.2 

STAR layout with the main subdetectors



The main subdetecors besides the TPC are listed below :

� Silicon Vertex Tracker (SVT): consists of three concentric barrels of silicon drift
detectors 5 cm, 10 cm and 15 cm from the beam with precise position
measurement to increase the vertex position resolution as well as the momentum
and two track resolution. Additionally energy loss measurements improve the
particle identification capabilities [Nim03SVT].

� Silicon Strip Detector (SSD): another cylindric silicon detector 23 cm from the
beam axis further improving momentum resolution as well as particle
identification [Nim03SSD].

� Forward Time Projection Chamber (FTPC): this radial drift TPC measures tracks
with 2.5< η<4.0  increasing the acceptance of STAR [Nim03FTPC].

� ElectroMagnetic Calorimeter (EMC): the EMC is a lead−scintillator sampling
electromagnetic calorimeter in form of a barrel and an end cap calorimeter
enclosing the TPC. This detector will extend the capabilities of STAR to study
direct photons, certain particle species with high transverse momentum and
electrons [Nim03EMC][Nim03EEMC].

� Ring Imaging CHerenkov detector (RICH): with a relatively small acceptance this
device increases the ability of STAR to identify particles at high momenta
[Nim03RICH]. 

The read out time of most of the detectors is large compared to the bunch crossing
frequency. Therefore a set of fast detectors is installed which are able to recognize
when a collision has happend and provide rough information about such an event, e.g.
the multiplicity around midrapidity. According to this information a trigger is issued
and the slower tracking detectors are read out. The two main trigger detectors are :

� Central Trigger Barrel (CTB): a barrel of 240 scintillator slats surrounding the
main TPC yields information about the multiplicity [Nim03TRI].

� Zero Degree Calorimeters (ZDC): two calorimeters close to the beam but 18.25 m
from the main event vertex measure spectator neutrons. These measurements
contain information about the z−coordinate of the event vertex as well and about
the centrality [Nim03TRI] [Adl01].

If a trigger is issued, the raw data from all subdetectors are collected by the Data
Acquisition system (DAQ) [Nim03DAQ] and written to tape. The DAQ is capable of
writing ~30 MB/s which is equivalent to ~5 central AuAu events per second.

The design luminosity of RHIC and the readout time of the STAR tracking detectors
allow an event rate up to 100 events per second. Therefore another trigger layer is
introduced called "Level 3" (L3) [Nim03L3][Lan00] [Adl01][Adl02]. This trigger is
based on an online analysis of the TPC data and selects events with certain rare
features, e.g. an J ⁄ψ→ e+e� decay candidate. In 2000 the L3 trigger capabilites were
only used for monitoring purposes since RHIC design luminositiy was not reached.
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3.3 The Time Projection Chamber (TPC)

The central detector in STAR is the TPC [Nim03TPC][Ret02], it is shown
schematically in figure 3.3. The TPC is a barrel which is 4.2  m long and 4.0  m in
diameter, sitting in a homogeneous B field along the z−axis, generated by the
solenoidal magnet. The central membrane and the inner and outer cylinder of the TPC
form an electrostatic field cage with a field gradient of ≈135  V/cm between the
high voltage membrane at the center of the TPC and each endcap. Consequently the E
field and the B field are parallel inside the TPC.

The TPC has a sensitive volume of 48 m3 filled with P10 gas (10% Methane, 90%

Argon). A charged particle travelling through the detector ionizes the gas along its
trajectory. Due to the electric field between the central membrane and the endcaps,
electrons from this ionization process drift towards the anode endcaps.

The anode endcaps are organized into sectors as shown in figure 3.3 with twelfe inner
and outer sectors at each end of the TPC. The readout section consists of the pad
plane with three layers of wires : the gating grid, the Frisch grid and the anode grid. 
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Figure 3.3

Schematic layout of the STAR TPC.



A schematic layout of the read out region is shown in figure 3.4:

� The gating grid is transparent to the drift of the electrons while an event is being
read out. It is closed after read out to prevent the drift of positive ions from the
amplification region into the TPC drift volume.

� The Frisch grid separates the homogeneous drift field from the strongly
inhomogeneous amplification field surrounding the anode wires.

� A strong inhomogeneous electric field around the anode wires accelerates electrons
and generates an electron avalanche. In this way the signal is amplified several
thousand times while still being proportional to the initial number of drifting
electrons. Finally the anode grid absorbs all electrons.

� The remaining positive charge induces a signal in the pad layer. Pads are organized
in rows roughly perpendicular to the expected particle track direction, as seen in
the schematic drawing of the pad plane in figure 3.5. The signal of each pad is
shaped and digitized. The evaluation of the signal induced in several adjacent pads
allows a precise two dimensional determination of the point where the particle
ionized the detector gas. The third coordinate is given by the drift time of the
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Principle of electron drift and signal amplification in a time projection chamber.

The values on the right hand side for the potential and the distance to the central
membrane z are typical values for the outer sector of the STAR TPC.



electron cloud. The drift velocity of ~5.4 cm/µs and the sampling rate of ~10 MHz
divide the maximum drift length of 2.09 m in up to 512 time buckets. The read out
electronics assigns a 10 bit ADC value, proportional to the deposited charge, to
each time bucket. The resulting pixel image of the TPC constitutes the raw data
which is further processed afterwards. The average raw data size of a single AuAu
event is ~6 MB after zero suppresion.

The process of reconstructing the three dimensional positions of ionization points
during the offline analysis is called cluster finding, since the drifting electron cloud is
often referred to as cluster. The cluster finding algorithm applied to the TPC raw data
is discussed in detail in chapter 4.1. For each ionization point the three dimensional
coordinate and the total amount of charge is determined. The detected amount of
charge is proportional to the energy loss of the particle travelling through the detector
gas (dE/dx).                 
The pad plane is optimized to achieve a high momentum resolution as well as an
sufficiently high dE/dx resolution. It is subdivided into an inner and outer sector. The
layout for one complete sector is shown in figure 3.5.

The inner sub−sector is optimized for good two−track resolution so the readout pads
are small and they are placed relatively close together in the region of the highest
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Figure 3.5

The pad plane layout of one complete sector of the STAR TPC. The inner sector
(13 innermost padrows) is optimized for good two track resolution, whereas the
outer sector (32 outer padrows) is optimized for dE/dx resolution.



track density. The pads are organized in rows that are widely separated in order to
reduce the total number of electronic channels.

The track density in the outer sub−sector is lower and so the two−track resolution is
not critical. Thus the pads are more densely packed to optimize the dE/dx resolution.

The size of the pads is usually optimized, according to the transverse and longitudinal
diffusion of the electron cloud drifting through the detector gas which determines the
width of the cluster at the anode plane [Blu93]. To achieve a sufficient precise spatial
resolution without an exceedingly high number of electronic channels the pads should
be approximately of the size of a typical electron cloud. The exact pad sizes are given
in figure 3.5, the total number of electronic channels is:

The absolute position error for any reconstructed point is below 500 µm. After all
ionization points are localized by the clusterfinder a tracking algorithm is applied to
reconstruct the particle trajectory. The tracking is discribed in chapter 4.1.2 in detail.
The relative error between a point and a track−model fit is below 50 µm
[Nim03TPC][Cal01].
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total number of pads×number of sectors=
3960+1750 ×24=136560

Figure 3.6

L3 online reconstructed central AuAu event with more than 105 found clusters

and several hundred reconstructed tracks.



Figure 3.6 shows a reconstructed central AuAu collision occuring in the center of the

TPC with more than 105 found clusters and more than 1000 reconstructed tracks. 

The parameters for the STAR TPC are summarized in table 1.
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Item Dimension Comment 
Length of the TPC  420 cm Two halves, 210 cm long 
Outer Diameter of the Drift Volume 400 cm 200 cm radius 
Inner Diameter of the Drift Volume  100 cm 50 cm radius 
Distance: Cathode to Ground Plane 209.3 cm Each side 
Cathode 400 cm Diameter At the center of the TPC 
Cathode Potential  28 kV Typical 
Drift Gas  P10 10% Methane, 90% Argon  
Pressure Atmospheric + 2 mB Regulated at 2 mB 
Drift Velocity  5.45 cm / µsec Typical 
Transverse Diffusion (sigma) 230 µm / √cm 140 V/cm & 0.5 T  
Longitudinal Diffusion (sigma) 360 µm / √cm 140 V/cm 
Number of Anode Sectors  24 12 on each end 
Number of Pad Rows per Sector  45  
Total Number of Pads per Sector  5690  
Pad Size  2.85 mm x 11.5 mm Rows 1 – 13 
Anode Wire to Pad Plane Spacing  2 mm Rows 1 – 13 
Anode Voltage 1170 Volts Rows 1 – 13 
Anode Gain 3800 Rows 1 – 13 
Pad Size  6.20 mm x 19.5 mm Rows 14 – 45 
Anode Wire to Pad Plane Spacing  4 mm Rows 14 – 45 
Anode Voltage 1390 Volts Rows 14 – 45 
Anode Gain 1200 Rows 14 – 45 
Anode Wire Diameter  20 µm Au plated W 
Anode Wire Spacing  4 mm  
Ground Grid Wire Diameter  75 µm Au plated Be-Cu 
Ground Grid Wire Spacing  1 mm  
Gating Grid Wire Diameter  75 µm Au plated Be-Cu 
Gating Grid Wire Spacing  1 mm  
Signal to noise 20 : 1  
Electronics Shaping Time  180 nsec FWHM 
Signal Dynamic Range  10 bits  
Sampling Rate  10 MHz  
Sampling Depth  512 time buckets  380 time buckets (typical) 
Magnetic Field   0,  ± 0.25 T,  ± 0.5 T Solenoid 
Magnetic Field Shape - limits Uniform: ± 0.0040 T at 0.5 T 

Table 1

Critical parameters for the STAR TPC and its associated hardware.



3.4 Particle Identification

The particles most probable energy loss per unit of path length (dE/dx) is linked to its
relativistic velocity β . Measuring this quantity along with the momentum allows to
determine the particle mass and thus its identity.
From each padrow crossed by a track a dE/dx sample is obtained, therefore the STAR
TPC provides a maximum of 45 dE/dx values per track. They are distributed
according to a Landau probability distribution. Typically the highest values are
discarded to reduce the fluctuations from the long Landau tail. In STAR usually the
30% highest values are discarded. From the remaining samples a mean value for the
energy loss per unit path length is calculated. The measured truncated mean values
for negatively charged particles pointing back to the main vertex are shown as a
function of momentum in figure 3.7.
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Figure 3.7

The dE/dx versus momentum distribution shows charateristic bands for electrons
pions, kaons, protons and deuterons. Red lines indicate the values for these
particle species calculated from the Bethe Bloch equation.



The curves in figure 3.7 indicate the expected ionization energy loss for different
particle species hypotheses according to the Bethe Bloch equation [Blu93] 

with

The measured dE/dx resolution [Cal01]

allows at low momenta a separation of pions from all other species except for
electrons. The contamination of identified pions with electrons is in the order of a few
percent and thus not critical for this analysis [Cal01].
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4. Experimental data set

4.1 Event reconstruction

The raw data from the subdetectors are analyzed by an offline analysis chain. Several
steps are necessary to reconstruct trajectories of particles traversing the various
detectors. Here we will focus on reconstruction and analysis of TPC data only.

The main steps of event reconstruction are sketched in figure 4.1. The cluster finder
algorithm converts TPC raw data to space points. These are input to the tracking
algorithm. A particle trajectotry appears as a chain of ionization points pointing
toward the event vertex in the detector center. The tracking algorithm recognizes
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Figure 4.1

Steps of the event reconstruction.



typical track patterns and connects points from up to 45 pad rows. Every set points
associated with a track is fitted with a helix model. Using the helix parameters the
track is extrapolated to the beam axis. Combining extrapolations from all tracks the
vertex position is calculated. Finally all tracks pointing back towards the vertex are
fitted again, now using the vertex as additional point on the track.

4.1.1 Cluster finding

A typical cluster spreads over several time bucktes on adjacent pads. The cluster
finder algorithm [Lis96] searches for contiguous regions of deposited charge, i.e.
ADC values above a threshold, in the pad−time plane. Figure 4.2 shows typical ADC
values in the pad−time plane and found cluster centroids.

Trajectories of particles with small momentum difference are close in space, hence
clusters from two different tracks can overlap. Therefores the cluster finder algorithm
searches for maxima in a contiguous region of deposited charge. If only one
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ADC pixel in the pad−time plane. ADC values can be decoded using the colour
code on the right hand side. Green symbols indicate cluster centroids, black bars
calculated cluster widths.



maximum is found the cluster is assumed to originate from a single separated track.
In case that more maxima are found, a deconvolution procedure is used to separate
contributions from different tracks. For each maximum the width of the cluster is
calculated as well as its total charge.

The deconvolution procedure cannot resolve clusters that are too close. The efficiency
is defined as the ratio of the distributions of the distance separating two clusters from
the same event and two clusters from different events. The cluster finding efficiency
in pad and time direction is shown in figure 4.3. It reaches a plateau if the clusters are
separated more than 1.5 cm in pad direction and more than 3.0 cm in (drift−) time
direction.

Clusters are more likely to overlap at the innermost padrows, because the track
density is higher at padrows closer to the beam. Therefore the pad design is different
in the inner and in the outer sector. And consequently the efficiency is different for
the inner and outer TPC sector. Figure 4.4 shows found clusters on a padrow in the
inner sector (upper panel) and in the outermost padrow (lower panel) in the same
event.

Cluster centroids in pad−time space are converted to points in real space using the
measured drift velocity and detector geometry. The transformation takes trigger time
offsets, detector geometry, electronics response and field inhomogeneities into
account. The resulting set of cluster coordinates including the deposited amount of
charge is propagated to the track finder algorithm.
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Figure 4.3

Cluster finding efficiency as a function of separation for inner and outer sector
[Nim03TPC].
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Figure 4.4

ADC values (according to the colour code on the right hand side) and clusters
(green symbols) in the pad−time plane. Upper panel: row 6 in the inner sector.
Lower panel: row 45 in the outer sector. In the year 2000 setting the maximum
drift length was divided into 348 time buckets (green line).



4.1.2 Tracking

The tracking algorithm for the TPC starts from the outermost padrows. Clusters close
in space and from successive padrows form track seeds. Using a follow−your−nose
approach these seeds are expanded with clusters from padrows closer to the beam.
The produced collections of space points associated with a track are called segments.
They are fitted with a helix model taking into account multiple scattering and energy
loss in the detector gas. Using the fit parameters the segments can be extrapolated and
segments obviously belonging to the same track are merged.

The next step is called global track fit. Track information from different subdetectors
are matched in this procedure. The dataset analysed here is based on the TPC, in this
case only tracks from different TPC sectors are matched.

All global tracks are used to determine the primary vertex. Since the vertex can only
be a few millimeters away from the beam axis it is found by projecting global track
vectors on the transverse plane. Minimizing the distance of all projections to a point
yields the main event vertex.

The vertex resolution is shown in figure 4.5. It is calculated by comparing the
position of vertices reconstructed using each side of the TPC separately. The
resolution increases with the number of tracks. For events with more than 800 tracks
it is below 400 µm.

Global tracks whose distance at closest approach to the vertex is less than 3.0 cm are
refitted with the vertex as additional point on track. Refitted tracks are called
primaries since it is assumed that the respective particles were produced directly at
the interaction. Extrapolations of tracks from decay products do usually not point
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Figure 4.5

Vertex position resolution as a function of event multiplicity [Nim03TPC].



back to the vertex, therefore they are treated differently. Since for HBT analyses only
particles coming directly from the collision region are relevant we concentrate on
primaries.

The helix fit is done by two simultaneous two dimensional fits. The projection of a
helix on a plane perpendicular to its axis yields a circle where the curvature
corresponds to the inverse transverse momentum of the particle in the magnetic field.
For a given curvature the bend plane is defined by the vector of the path length of the
helix and a vector parallel to the z−axis. In this plane helixes appear as straight lines
[Cal01]. Performing a circle fit in the transverse plane and simultaneously a straight
line fit in the bend plane the helix parameters are obtained.

Momentum resolution is a crucial value for each tracking device. In this case it is
determined by embedding Monte Carlo tracks into real events, running the whole
reconstruction chain and comparing the reconstruction with the input. Embedding
means to simulate the interaction of a particle with the detector gas, the drift of
electron clouds and the complete read out process. Comparing shape and residuals,
i.e. distances of cluster centroids to track helixes, from simulated to measured clusters
ensures a realistic simulation. The uncertainty in momentum assignment is dominated
by the error in the curvature fit [Blu93], hence the relative transverse momentum
resolution  

is determined to estimate the the quality of the reconstruction. As shown in figure 4.6
it is roughly 2% for all momenta between 0.2 and 0.6 GeV/c.

Although the STAR TPC completely surrounds the interaction region, not every
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Transverse momentum resolution as a function of transverse momentum
[Nim03TPC].
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charged particle leaves a detectable signal. For example trajectories crossing the
sector boundaries cannot be reconstructed completely since clusters are lost in these
regions. Also a number of pions decay and hence cannot be detected. The fraction of
particles that can be detected is called acceptance. The acceptance of negatively
charged pions is displayed in figure 4.7.a. It reaches more than 90% for particles with
transverse momenta above 0.300 GeV/c [Cal01].

Another key value for the tracking is its efficiency. It is defined as the ratio of the
number of reconstructed tracks that could be matchted to an embedded track over the
number of all embedded tracks. In figure 4.7.b the efficiency for negatively charged
pions in central events is displayed. The efficiency depends on the momentum
parameter of embedded tracks. For higher momenta a plateau of 80% is reached. Low
momentum tracks spiral up inside the TPC and do not reach the outer field cage. In
addition, these low momentum particles interact with the beam pipe and the inner
field cage before entering the tracking volume of the TPC. Hence the efficiency for
low momentum tracks drops rapidly.
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Figure 4.7

a.) lhs: pion acceptance for central events.

b.) rhs: pion reconstruction efficiency for central events [Cal01].
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4.2 Event selection

In this analysis we use only events with a small impact parameter. During the year
2000 run these central events were triggered by a combination of the ZDC and CTB
detectors. As the impact parameter decreases, the number of forward spectator
neutrons grows rapidly, eventually saturating and then decreasing for small impact
parameters. At the same time, the CTB multiplicity increases, with the most central
collisions corresponding to high CTB multiplicity and a small number of forward
spectator neutrons. Figure 4.8 shows the correlation between CTB and ZDC, the
central trigger requires a minium multiplicity from the CTB and a maxium number of
spectator neutrons in the ZDC. In total 362689 events with this trigger condition were
accepted for physical analyses.

Between ~700 and ~1800 tracks traversing the TPC are reconstructed for each central
event, the corresponding distribution is displayed in figure 4.9.a. The centrality is
closely related to the multiplicity of particles. A Glauber model study [e.g. Won94]
allows to specify this relation and to select a certain impact parameter range. To
determine the centrality in this analysis we use the number of reconstructed
negatively charged primary tracks in the pseudorapidity range η<0.5 which have
more than nine TPC points on track. The distribution of the number of tracks per
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ZDC versus CTB signal. For central events only a small number of spectator
neutrons is measured in the ZDC, but a high multiplicity is detected by the CTB
[Har01].



event fulfilling these criteria is shown in figure 4.9.b. Accepting only events that have
more than 174 of those tracks yields the 12% most central events [Cal01].

Because of the large interaction diamond in the 2000 run the event vertex is spread
over a wide range in z direction. The distribution of the vertex position is shown in
figure 4.10. The detector is optimized for events occuring in the center of the TPC,
therefore events more than 0.5 m away from the detector center are rejected.

The distribution of the main vertex position in the x−y plane is shown in figure 4.11.
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Vertex position in z−direction. Red lines indicate events close enough to the
detector center, only these are accepted for this analysis.

Figure 4.9

a.) lhs: number of all reconstructed TPC tracks per event.

b.) rhs: number of tracks used to determine the centrality, red lines indicate the
12% most central events.



The profile of the beam yields a width of this distribution of RMS≈500µm in x−
and y−direction. The distributions show an offset of a few millimeters of the beam
from the nominal position at (0,0). This shift has no impact on efficiency or
acceptance, since events are accepted independent on the x−y position of their vertex.

After the z−vertex position cut and the centrality cut, the total number of events
accepted for this analysis is 206789.
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Figure 4.11

Vertex position in x−y plane. Both beams were shifted from the nominal position
at (0,0), yielding an offset of the mean vertex position.



4.3 Track selection

The maximum number of points associated with a track depends on its orientation
relative to the detector as well as on its curvature. Malfunctions in the readout
electronics as well as reconstruction inefficiencies can cause loss of individual points
on track. Figure 4.12 shows the distribution of the number of points that were used to
fit the track. Only tracks with a minimum of 10 hits were accepted. According to the
number of padrows per sector, a maximum of 45 points per track is possible. Most of
the tracks are well defined by more than 25 hits. The large fraction of tracks that have
less than 13 hits, originates mainly from the sector layout. The gap between the inner
and outer sector makes the track finding algorithm split some tracks at this boundary.

The distance at closest approach (DCA) of the track helix to the vertex is calculated
for every track before the final helix fit when the vertex is included as an additional
point on track. Only tracks with a DCA below 3.0 cm are accepted as primary tracks.
The DCA of most of the tracks is only a few millimeters (figure 4. 13) which reflects
the accuracy of the space resolution of the TPC as well as the quality of the
reconstruction chain. 
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The distribution of the momentum components in all three space directions is shown
in figure 4.14. All distributions are centered around zero. The width of the
uncorrected yields transverse to the beam in x− and y−direction is about 0.45 GeV/c,
whereas in longitudinal direction it is about 0.50 GeV/c. The dip in the transverse
distributions at very small momenta is due to the small efficiency and acceptance for
particles with small transverse momentum.
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Figure 4.13

Distance at closest approach of the track helix to the vertex before the final fit.

Figure 4.14

The momentum distribution of primary tracks in x−, y− and z−direction.

[GeV/c]
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

10
-1

1

10

Momentum component in x direction

Mean  = -0.002114

RMS   = 0.4475

Momentum component in x direction

Mean  = -0.002114

RMS   = 0.4475

[GeV/c]
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Momentum component in y direction

Mean  = 0.001518

RMS   = 0.4463

Momentum component in y direction

Mean  = 0.001518

RMS   = 0.4463

[GeV/c]
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Momentum component in z direction

Mean  = -0.002752

RMS   = 0.5039

Momentum component in z direction

Mean  = -0.002752

RMS   = 0.5039

ar
b

it
ra

ri
ly

 s
ca

le
d

 n
u

m
b

er
 o

f 
tr

ac
ks



The corresponding transverse momentum and pion rapidity distributions are shown in
figure 4.15. Particle momentum cuts are applied only in these variables. To avoid
uncertainties due to the low tracking efficiency and acceptance in the low transverse
momentum range only particles with pt above 0.125 GeV/c are accepted. 
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Rapidity and pt distribution. Red lines indicate accepted tracks.



For the same reason, only particles less than one unit of rapidity away from
midrapidity are accepted. Particles with high transverse momentum do not contribute
to the correlation function, since particle pairs with low momentum difference are
very rare in this region. Therefore high pt particles with more than 2.0 GeV/c are
rejected. The idea here was to accept as many tracks as possible since further cuts will
be applied to the pair momentum.

Pions are the most frequently produced particles in an ultra relativistic heavy ion
collision, but also a number of other particles e.g. electrons, kaons or protons are
emitted. To select tracks that correspond most probably to pions, the energy loss per
unit path length in the detector gas is used. For a given particle momentum and a
given particle species, the most probable energy loss per unit path length in the
detector gas can be calculated (see chapter 3.4). The measured dE/dx values are
distributed around the most probable value. If the measured value is more than 3
standard deviations away from the most probable dE/dx value for a pion of the same
momentum, it is assumed that the track originiates not from a pion and hence it is
rejected. In figure 4.16 the distance to the most probable dE/dx value for pions with
the same momentum is shown in units of standard deviations. 

From figure 3.7 it is obvious that this method allows to separate pions from kaons and
protons, but there will be a fraction of electrons which are misidentified as pions. For
this analysis we neglect contributions from misidentified particles. After all track cuts
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Particle identification: number of standard deviations away from the most
probable energy loss per unit path length for a pion of this momentum. Red lines
indicate the cut values.



we find on average ~543 π− and ~550 π+ per accepted event which are used to
construct the correlation functions.

4.4 Pair selection

Events passing the cuts defined in 4.2 and tracks meeting the criteria defined in 4.3
are used to produce the kt −Yππ distribution shown in figure 4.17. The correlation
function is calculated in different kinematic regions, because its dependence on pair
momentum contains valuable information, e.g. the dependence on transverse pair
momentum allows to observe transverse flow. The two dimensional distribution is
subdivided into five bins in longitudinal pair rapidity Yππ and into four bins in
transverse pair momentum kt . This choice ensures a sufficient number of pairs in each
bin to observe the HBT correlation and to study the dependence of the correlation
function on kt and Yππ .
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Figure 4.17

Tranverse pair momentum versus pair rapiditiy. Red Lines indicate the twenty
bins into which the event sample is subdivided.
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4.4.1 Entrance separation cut

If two particle trajectories in the TPC lie too close, their clusters overlap and the
analysis chain possibly reconstructs a single track instead of two. This effect occurs
only in the signal distribution, not in the mixed event background, where the two
tracks are taken from different events.
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Figure 4.18

a.) upper panel : entrance separation for pairs from the same event and for pairs
from mixed events where the mixed event distribution is scaled
down.

b.) lower panel: ratio of entrance separation distriubtions. The red line indicates
the cut value. 
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Especially pairs of low momentum difference are affected since they are necessarily
close in space. The loss of particle pairs in the signal distribution compared to the
mixed event background alters the correlation function in the region of low
momentum differences where the HBT effect is observed. To reduce the impact of the
finite two track resolution we reject pairs that are too close in space in the signal and
likewise in the background distribution. A measure for the distance of two tracks is
the nominal entrance separation, which is the spatial distance between the two points
where two particles hit the inner field cage.

Figure 4.18.a shows the nominal entrance separation distribution for pairs with tracks
from the same event and for pairs with tracks from different events. Only pairs with
low momentum difference q

inv
<0.1 GeV ⁄c are accepted. The background is scaled

by the ratio of the total number of pairs in the signal to the total number of pairs in
the background. The ratio of the two distributions is displayed in figure 4.18.b. We
reject pairs that have less than 3.0 cm entrance separation. The same ratio in different
kt −Yππ bins is given in appendix A, similar distributions are obtained in all
momentum regions.

For pairs of very low entrance separation the ratio increases, reaching even values
above unity. This behaviour is mainly due to split tracks which are discussed in the
next section.

4.4.2 Split track cut

Due to inefficiencies in the cluster finder and track finder algorithms the
reconstruction chain produces split tracks. These are track segments in the TPC
belonging to the same particle, which are identified as stemming from two
independent particles. The relatively large number of tracks with a small number of
hits, shown in figure 4.12, is partly due to this effect.

If a track is split, it is reconstructed as two tracks with small momentum difference.
Therefore the correlation function is altered in the momentum region which is
relevant for HBT. To eliminate pairs consisting of split tracks belonging to the same
particle we use the track topology. For each pair a quality factor is calculated in the
following way: If both tracks have a hit in a pad row, (−1) is added to the running
split quality. If only one track has a hit in a pad row, (+1) is added to the running split
quality. After the sum of the split quality is made for the 45 pad rows in the TPC, the
number is divided by the sum of the hits in both tracks. This normalizes the split
quality to an interval from (−0.5) to (1.0).

In figure 4.19 the distribution of the split quality factor is shown for pairs with small
momentum difference: q

inv
<0.1 GeV ⁄c (the ratio in individual kt −Yππ bins is given

in appendix A). If a pair is made from two split tracks belonging to the same particle,
the overlap of the two tracks will be small and hence the quality factor close to 1.0.
Comparing the quality factor of pairs of tracks from the same event with pairs of
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tracks from different events an enhancement in the ratio is visible for pairs with a
quality factor larger than 0.8. To reduce the impact of track splitting we reject pairs
with a quality factor above 0.8 in the signal as well as in the background distribution. 

Tracks of background pairs do not point to exactly the same point due to varying z
position of the main vertex. Besides other effects, like e.g. the HBT correlations, this
causes the deviation of the quality factor ratio from unity for values below zero.
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Figure 4.19

a.) upper panel : track splitting quality factor for pairs from the same event and
for pairs from mixed events (the mixed event distribution
is scaled down).

b.) lower panel: ratio of track splitting quality distributions. The red line
indicates the cut value. 



4.5 Construction of the correlation function

After event−, track− and pair−cuts we end up with more than 2*1010 pairs in the
signal distribution. Since the statistical error of the correlation function should be
dominated by the number of pairs in the signal, we combine every track with all
tracks from five different events. These are required to have a z−vertex position in the
vicinity of the original z−vertex. Otherwise we would mix events with a different
acceptance which alters the shape of the background distribution.

This yields a total of more than 2*1011 pairs for the background distribution. Because
of the large number of pairs we calculate the correlation function not in a single
process. The event sample is subdivided into subsamples of roughly 104 events, which
are handeled by one process. Each of them calculates a signal− and background
distribution in the LCMS frame. Afterwards the three dimensional arrays holding
these distributions, are added up. The ratio of the total signal distribution over the
total background distribution yields the three dimensional correlation function.

Each axis of the three dimensional histogram ranges from 0.0 GeV/c to 0.2 GeV/c.
They are subdivided into 20 bins yielding a bin size of 0.01 GeV/c. Choosing larger
or smaller bin size, e.g. 0.012 GeV/c or 0.008 GeV/c, has no significant impact on the
extracted radii.

63



5. Experimental results

5.1 One dimensional correlation functions

Figure 5.1 shows the signal and background distribution of qinv, the Lorentz invariant
four momentum difference between two particles. Only events, tracks and pairs
satisfying the criteria discussed in chapter 4 are accepted. We observe that the overall
shape of the signal distribution is well reproduced by the mixed event background
over a wide range of relative momentum. Although the number of pairs decreases
rapidly with decreasing momentum difference, the enhancement of pairs in the signal
distribution due to the Bose−Einstein correlation at small relative momentum is
clearly visible.

Ratios of the signal over the normalized background distributions are shown in figure
5.2. The fact, that we observe a strong correlation in the π+π− ratio supports the need
to correct the like sign distributions for coulomb repulsion. The influence of the
coulomb correction on the correlation function of π−π− pairs is demonstrated in figure
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Figure 5.1

lhs : signal and background qinv distribution for π−π− pairs up to 2 GeV/c, 

rhs : Bose−Einstein enhancement at low relative momenta

 (enlarged green area on lhs).
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5.2.a. The coulomb correction is done by assuming a 5 fm source and weighting
background pairs according to the function introduced in chapter 2.11. 

We do not observe any significant deviations between π+π+ and π−π− correlation
functions as demonstrated in figure 5.2.b. 

In figures 5.1 and 5.2, qinv correlation functions from all kt −Yππ bins are added up. In
appendix A we show the correlation functions for π+π+ and π−π− in individual kt −Yππ

bins. Since we do not draw any quantitative conclusion from the qinv correlation
functions, we do not discuss them further. 
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Figure 5.2

lhs : a.) qinv correlation function for π+π− pairs and for π−π− pairs with and
without coulomb correction,

rhs : b.) qinv correlation function for π+π+ and for π−π− pairs.
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5.2 Fitting three dimensional correlation functions

The five parameter function 2.31 respectively 2.34 has to be fitted to the three
dimensional correlation function in order to obtain the HBT radii. To reduce
fluctuations of the correlation function due to limited statistics we accept only bins in
qout, qside and qlong (respectively qperp, qpara and q0) which have at least 50 entries in the
signal distribution. Since we assume only uncorrelated statistical errors, the χ2

function is defined as

with

where the statistical error is given by

Minimizing this functions using the MINUIT [Min94] software package yields the set
of parameters by which the measured data are described best. The error given with
each fit parameter indicates the range in which the parameter is likely to be found at a
confidence level of 95%. All free fit parameters are considered simultaneously for the
error calculation, that means all parameters are in their error range at a given
confidence level at the same time.

The background can be normalized by the ratio of the total number of pairs in the
signal to the total number in the background distribution. Another approach is to
introduce the normalization in the three dimensional fit procedure as an additional
sixth free fit parameter. Figure 5.3 demonstrates, that the way of normalizing the
background has little impact on the fitting results.

To test the stability of the fit procedure the range of accepted bins was varied. In
figure 5.3 the fitting results in the central Yππ bin are shown using different
normalization methods as well as various fitting ranges. A certain fitting range in the

PB parametrization means, that all bins satisfying q
out

2 +q
side

2 +q
long

2 <fitting range

are used for the χ2 determination.

The change of fit parameters is partly due to the systematical error. It might indicate a
deviation of the correlation function from a simple Gaussian distribution. For
reasonable cut values and fitting ranges the differences of the absolute values of the
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fitting parameters are in the order of 0.5 fm. The kt dependence and ratios of the radii
are more stable than the absolute values of the fit parameters.
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Figure 5.3

kt dependence of PB fit parameters of π−π− correlation function in the central Yππ

bin for various fit parameters. The symbols are not plotted at exact kt coordinates
to ease the comparison.
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Usually the quality of a χ2 fit is estimated by the ratio of the value of the χ2 function
at its minimum to the number of degrees of freedom (χ2/DOF). For all fits presented
here these ratios are close to unity. This indicates, that the fit functions were
reasonable assumptions. It is also instructive, to compare projections of correlation
functions to corresponding projections of fit functions. The projection is done by
summing over a certain range in the non projected variables, where the bins are
weighted by their statistical error. In figure 5.4 we show normalized projections of the
PB π−π− correlation function in one kt −Yππ bin.

Results presented in the following are determined by using the six parameter fit
procedure for the PB as well as for the YKP parametrization. The fitting range in both
cases extends to 0.200 GeV/c in all three momentum components.
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Figure 5.4

Projections of the PB π−π− correlation function and the corresponding projected

fit in  kt −Yππ bin : 0.1<k
t
<0.2  GeV ⁄c    and    �0.2<Yππ<0.2 .

Integration range:  0.0 − 0.030 GeV/c in each unprojected variable.

On this scale, statistical errors of data points are smaller than symbols.
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5.3 Systematical uncertainties

The systematical error of the measured HBT radii is evaluated by testing the
robustness of the correlation function against variations of different analysis
parameters. Figure 5.5 shows fit results to π−π− correlation functions in the central
Yππ bin using various pair cuts and assuming different source sizes for the coulomb
correction.

Varying the size of the coulomb source causes inevitably different fit parameters.
Since the true size is not known, we can only test the impact of reasonable values for
the source size on extracted fit parameters. If the correction is based on a smaller
source size the mean pair separation is smaller and therefore the correction is
stronger. In this case the correlation function becomes broader and hence the radii
smaller. On the other hand, if we assume a larger source for the coulomb correction,
the radii increase. In figure 5.5 we show fit results for correlation functions with
various coulomb corrections, assuming source sizes from 3.0 fm to 7.0 fm.
Eventually we chose a source size of 5.0 fm to correct the data, which corresponds
roughly to the size of the extracted HBT radii.

Changing pair cuts had no impact on the fit parameters, if the measured correlation
functions were exactly described by the fit functions. But limited statistics in
combination with little deviations of the measured correlation function to the fit
function lead to slight dependences on cut values.

As demonstrated in chapter 4.4.1, the finite two track resolution of the detector makes
it necessary to accept only track pairs, that can be resolved by the STAR TPC.
Therefore we apply the entrance separation cut. But this selection reduces the number
of entries in the signal distribution considerably. If too many pairs are rejected, we
loose the whole HBT signal. For this reason it is important to choose the optimal cut
value. With respect to the HBT radii we find that a larger cut value means smaller
radii, as shown in figure 5.5. For the final analysis we accepted only pairs that have
an entrance separation of more than 3.0 cm, which leaves enough entries in the signal
distribution and removes all track pairs which cannot be always resolved.

If the reconstruction chain splits a track into two or more pieces, the number of pairs
with low momentum difference is artificially increased. Therefore we have to apply
the split track cut, which is explained detail in chapter 4.4.2. In figure 5.5 we
demonstrate that this cut has little influence on the extracted fit values. In the final
analysis we rejected all pairs with a merging quality larger than 0.8.

In summary we find, that changing the analysis parameters alters the correlation
function. These changes originate from systematical uncertainties. The fit parameters
change up to 10% for reasonable settings of the analysis parameters. In the following
presentation of the results we quote only the error from the fit procedure.
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Figure 5.5

Fit parameters for various settings in the analysis chain.
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5.4 Momentum resolution correction

In addition to the correction for the coulomb repulsion between pions of the same
charge, we have to correct the correlation function for the finite momentum resolution
of the detector. Since this correction procedure is very CPU−time consuming we
apply it after all other parameters of the analysis procedure are fixed. The finite
momentum resolution is corrected for in the following way:

The background pairs are used to construct artificially an "ideal" and a "smeared"
correlation function. The former contains no momentum resolution effects the latter
does. If the "real" correlation function would be described by the ideal distribution we
would measure the smeared one. Therefore, the ratio of these two distributions yields
the factor we need to correct the measured correlation function:

here S and B mean respectively signal and background distribution. Below we
describe how signal and background of the ideal and smeared correlation functions in
the PB parametrization are constructed.

First we have to assume a correlation function

and reasonable values for the parameters λ, Rout, Rside, and Rlong.

For each pair of the the background distribution we calculate the momentum
difference q

true
=q

true
q

out
,q

side
,q

long . The three dimensional idealized signal
histogram Sideal is then constructed by weighting each entry at qtrue with the correlation
function C

model
q

true .

Since the ideal correlation function should also contain the coulomb effect, we have
to weight entries at qtrue in the background Bideal with the coulomb correction
introduced in chapter 2.11.

In order to fill the smeared distributions we have to consider the momentum
resolution of the STAR detector. We calculate the momentum of a particle based on
the azimuthal angle ϕ, the polar angle θ and the curvature of the track (~1/pt).
Measurement errors of these quantities lead to errors of the momentum components
assigned to a track. The main uncertainty in the momentum reconstruction in STAR
arises from the determination of the curvature of a track, therefore we neglect errors
in ϕ and θ and consider only the transverse momentum resolution.
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The relative momentum resolution of the x component for example, is given by

According to figure 4.6 the relative transverse momentum resolution of the STAR
detector is 

To emulate the measurement process we smear the momenta of the background pair,
e.g. the x component is smeared by:

with a random value g 2 %  from a gaussian shaped probability distribution centered
around zero and with a standard deviation of 2%.

From these values we can calculate the smeared momentum difference q
smeared . The

Ssmeared distribution is filled by weighting each entry at q
smeared  with C q

true .

Because we correct also the coulomb effect according to the measured momentum
difference, we construct the background Bsmeared by weighting each entry at q

smeared

with the coulomb weight factor K q
smeared .

The impact of the momentum resolution correction on PB radii is demonstrated in
figure 5.6. We show the parameters λ, Rout, Rside, and Rlong of the π−π− correlation
function in the central Yππ bin with and without momentum resolution correction. Rside

and Rlong change very little, but the Rout parameter increases up to 8% at high
transverse momenta. The finite transverse momentum resolution affects mainly the
qout component and therefore we see the largest effect in Rout . The relatively large
effect on the λ parameter is due to fact, that the finite momentum resolution changes
mainly the correlation function at very small momentum differences. Thus the
intercept of the correlation function is increased whereas the width of the Bose
Einstein enhancement changes less.

For the YKP parametrization we find that Rperp and Rpara change very little, the λ
parmeter changes similar to the PB case and R0 increases up to 5% if it is larger than
zero. 
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Figure 5.6

π−π− PB fit parameters in the central Yππ bin with and without momentum
resolution correction.
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5.5 Results for the YKP parametrization

The three dimensional YKP correlation functions in all kt −Yππ bins are constructed
for events, tracks and pairs selected according to the criteria discussed in chapter 4.
The six parameter function is fitted to each correlation function as described in 5.2.
Figure 5.7 shows the dependence of the extracted fit parameters λ, Rpara, Rperp, R0, and
β on pair rapidity Yππ in four kt intervals: 

Since the kt −Yππ distribution is not flat (see figure 4.17), we do not use the center of
the Yππ bin as Yππ coordinate, but the center of gravity in Yππ−direction of the
according kt −Yππ bin. 

The correlation functions are calculated and fitted for π+π+ and π−π− pairs separately.
Green symbols correspond to π+π+ and blue symbols to π−π− results. We do not
observe any systematic deviation between the two cases. 

None of the fit parameters depends on longitudinal pair rapidity Yππ, they are constant
within the observed range.

Since the acceptance of the detector and − we assume − also the pion source itself are
symmetric around midrapidity, violations of this symmetry are due to systematic and
statistical errors.

We find a λ parameter of ~0.4 which means, that we observe a clearly pronounced
Bose Einstein enhancement. The radius Rpara ranges from ~3.5 fm in the lowest kt bin
to ~6.5 fm in the highest. We see a similar behaviour for Rperp with slightly smaller
values, a maximum of ~5.1 fm and a minimum of ~3.5 fm.

Except for the first kt bin the parameter R0 equals zero. The physical implications of
this result will be discussed in chapter 6. At this point we only remark, that a
vanishing parameter often interferes with a proper fit. But the PB parametrization
shows compatible parameters and there we don’t have this complication.

The velocity parameter β is always close to zero. It is trivial, that we find non zero
values if the correlation function is not measured in the LCMS frame, but in the rest
frame of the source.

Figure 5.8 shows the dependence of the YKP fit parameters on transverse pair
momentum kt . For the same reason as above, the kt coordinate is not the center of the
bin but the center of gravity in kt−direction of the according kt−Yππ bin. The kt

dependence of all five parameters is shown for five rapidity intervals:
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Blue symbols correspond to π−π− and green to π+π+ correlation functions. We observe
a decrease of λ, Rpara and Rperp with increasing kt in all rapidity bins, while the
decrease for Rpara is strongest. Values for the fit parameters are tabulated in appendix
B. The meaning of these results with respect to the source function will be discussed
in chapter 6.
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Dependence of YKP fit parameters on Yππ .
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Figure 5.8

Dependence of YKP fit parameters on kt .



5.6 Results for the PB parametrization

The PB fit parameters are obtained using the same analysis settings as used for the
YKP parametrization. In figure 5.9 the dependence of λ, Rside, Rout, Rlong, and Routlong

on longitudinal pair rapidity Yππ is plotted in four bins of transverse momentum kt 

As above, the kt coordinate corresponds to the center of gravity in the corresponding
kt −Yππ bin. Fit parameters for π+π+ correlation functions are represented by green and
for π−π− correlations by blue symbols. No systematic differences between these two
are observed. The five HBT fit parameters are constant over all Yππ bins. The fit
procedure yields values between ~0.35 and ~0.45 for the λ parameter and the radii
Rside, Rout and Rlong range from ~3.0 to 6.5 fm. The cross term Routlong equals zero in
nearly all bins.

Figure 5.10 shows the dependence of the fit parameters on kt in the five bins of
longitudinal pair rapidity Yππ. 

The λ parameter and all three radius parameters Rside, Rout and Rlong decrease with
increasing kt . Rlong drops from ~6.5 fm to ~4.0 fm, Rout from ~5.5 fm to 3.0 fm and
Rside from ~5.5 fm to 4.0 fm. For higher transverse momenta the ratio of Rout over Rside

drops below unity, this behaviour corresponds to the vanishing R0 parameter in the
YKP parametrization. The meaning of these results will be discussed in chapter 6. All
fit parameters are tabulated in appendix B.
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Figure 5.9

Dependence of PB fit parameters on Yππ .
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Figure 5.10

Dependence of PB fit parameters on kt  .
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5.7 Consistency of PB and YKP parametrization

YKP parameters can be compared under certain assumptions to PB parameters. As
described in chapter 2.9 this comparison serves as a consistency check since both
parametrizations are applied to correlation functions from the same source. 

In figure 5.11 we show the fit results of π−π− correlation functions in the central Yππ

bin in both parametrizations. The fit parameters for λ, for the transverse radii Rside and
Rperp, as well as for the longitudinal radii Rlong and Rpara show compatible values as
expected from equation 2.42. Comparing the remaining radii is not very meaningful,
because the parameter R0 vanishes and the ratio of Rout to Rside drops below unity.
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Figure 5.11

YKP and PB fit parameters in the central Yππ bin.
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6. Discussion

6.1 Dependencies of HBT parameters on Yππ

The measured HBT radii do not depend on longitudinal pair rapidity Yππ as shown in
figures 5.7 and 5.9. In figure 6.1 we directly compare the kt dependence of the PB
radii in all five Yππ bins and find only small differences.

The STAR TPC records only particles in a relatively small window around
midrapidity. Measurements presented here cover only two units of rapidity, whereas
the gap between the two projectile nucleons reaches nearly ten units of rapidity. In the
measured momentum region the single particle rapidity distribution is flat [Adl01b],
i.e. we do not see the finite extension of the source in longitudinal direction.
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Figure 6.1

Dependence of PB HBT radii on kt in different Yππ bins.
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Therefore we can expect to find uniform longitudinal ’slices’ of the source. The
subdivision of the sample into intervals of pair rapidity corresponds to a set of such
slices around midrapidity [Won94]. The fact that the correlation function and hence
the radii are very similar in all examined rapidity bins, reflects the uniformity of the
source function around midrapidity.

An important information about the longitudinal behaviour of the source function is
given by the parameter β of the YKP parametrization. According to figure 5.7, β is
close to zero in all kt−Yππ bins. In figure 6.2 we show a different representation of this
parameter, namely the dependence of the YYKP rapidity 

on pair rapidity Yππ for four kt intervals. It can be shown, that the longitudinal
velocity of a source element follows closely YYKP [Wu98]. The dependence of YYKP

on Yππ is therefore determined by the longitudinal expansion. A linear relation
corresponds to a strong longitudinal or even a boost invariant expansion, whereas for
static sources YYKP would be constant. 
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Figure 6.2

Dependence of YYKP on Yππ . 

kt−intervals are the same as in figure 5.7.



In our measurements the parameter β vanishes in the LCMS system, and with it the
first term in equation 6.1. Hence YYKP is proportional to Yππ indicating a strong
longitudinal expansion. The same method also showed strong longitudinal expansion
at lower energies, e.g. [App98].

The crossterm Routlong in the PB parametrization vanishes if longitudinal boost
invariance is assumed, but also for symmetric collisions at midrapidity [Hei99a]. In
this analysis we find it to be close to zero in all momentum regions. Since we are
studying a symmetric system the crossterm vanishes as expected. No further
conclusions can be drawn from this observable.

6.2 Life time of the source

The life time τ of the source is defined as the time from the initial overlap of the
projectile nuclei until the kinematic freeze out. Makhlin and Sinyukov [Mak88] found
a simple relation between the mt dependence of Rlong and the lifetime τ of a
longitudinally boost invariant source at temperature T:

In general, HBT parameters measure only regions of homogeneity and therefore
relations to source parameters like temperature and life time are not self−evident. One
has to consider that any space−momentum correlation, like collective flow, alters the
two particle correlation function. Provided the space−momentum correlations depend
on mt , the HBT parameters will also change with transverse pair momentum. In this
case the dependence of the measured radii on mt may allow to quantify the underlying
space−momentum correlation.

To find relation 6.2 it is necessary to choose a Bjorken profile [Bjo83] for the
longitudinal flow for which the longitudinal velocity gradient is related to the total
proper time τ [Hei99]. The second term T/mt accounts for the thermal smearing
which weakens the strict space−momentum correlation introduced by the velocity
field.

In figure 6.3 we show for the π−π− correlation function the dependence of the
parameter Rlong on transverse mass mt and a fit of relation 6.2. We find at freeze out a
temperature of ~120 MeV and a life time of ~8 fm.

These values are close to measurements at lower energies at the SPS, e.g. [App98]. It
is not evident, why the correlation functions at different energies look so similar,
considering the fact that the initial conditions at RHIC and at the SPS are significantly
different [Bro02].
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Corrections to equation 6.2 were given in [Her95] or [Cha95] indicating that the
relation between length of homogeneity and life time of the source is sensitive to the
specific model used to describe the evolution of the collision.

Recent calculation reproduce the 1/mt dependence, while extracted values for Rlong are
systematically larger than the measured ones [Hir02][Sof01][Sof02][Lin02]. Various
explanations for this discrepancy are presently discussed, e.g.:

� If the system is not in perfect thermal equilibrium after chemical freeze out,
temperature and velocity fields fluctuate and single particle spectra as well as two
particle correlation functions must be interpreted in a different way [Dum02].

� Ideal hydrodynamics used to describe the collective effects might not be
appropriate, a correction due to the viscosity of nuclear matter reduces the Rlong

parameter considerably [Tea02].

� Thermal freeze out happens very early close to the chemical freeze out [Hei02a].

� The longitudinal expansion of the source might be significantly stronger than the
boost invariant Bjorken expansion [Hei02].

� Early chemical freeze out reduces the life time of the source and thus gives smaller
values for the parameter Rlong [Hir02].
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Figure 6.3

mt dependence of the parameter Rlong for the π−π− correlation function in the
central rapidity bin and fit according to equation 6.2.
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6.3 Transverse expansion 

Just as longitudinal expansion affects Rlong, transverse flow causes an mt dependence
of the parameter Rside. To derive the quantitative relation, one has to consider again a
specific source function. Using the emission function 2.43 introduced in chapter 2.10,
Rside is related to the strength of the transverse expansion η

f and the geometric radius
RG by [Cha95][Sch99][Csö96]

In case of Rside the transverse collective flow is the space−momentum correlation that
tends to reduce the length of homogeneity. The thermal smearing on the other hand
enlarges the region of homogeneity. It is represented in equation 6.3 by the factor
mt/T.

Transverse flow must be built during the collision, while longitudinal flow is already
given at the beginning due to the incomplete stopping of the two nuclei. Therefore the
effects from transverse flow are generally weaker than from longitudinal flow and
equation 6.3 is different from the corresponding relation 6.2 in the longitudinal case.
In simulations the HBT radius Rside at low mt equals nearly the geometric size RG of
the source [Hei99]. Consequently, Rside equals RG for vanishing transverse mass in
equation 6.3.

In figure 6.4 we show the measured dependence of Rside on mt in the central rapidity
bin for π−π− pairs and a fit according to equation 6.3. To put the geometric radius of
R

G
≈7.4 fm into perspective, we relate the two−dimensional rms width of the

collision region R
RMS

source= 2 R
G
≈10 fm , to the two−dimensional rms widths of a cold

gold nucleus R
hs

Au . The hard sphere radius of gold R
hs
≈7fm yields a two−

dimensional transverse rms width of R
hs

Au= 3⁄5 R
hs
≈5.4 fm . This means the initial

volume of the overlapping nuclei increases roughly by a factor of two until freeze out
[Tom02].

Compared to measurements at SPS ( R
G
≈6.5fm )[Ada02][App98] we find a

somewhat higher value for RG, which could be caused by stronger transverse
expansion or a longer life time of the source.

The strength of the transverse expansion over temperature η
f

2⁄T≈4.5 is only slightly

higher than at SPS ( η
f

2⁄T≈4.0 )[Ada02][App98]. One would expect, that the

transverse expansion velocity increases with initial energy density, and hence larger
values for η

f

2⁄T at higher beam energies. In order to derive a mean transverse

velocity v
⊥ from the paramater η

f

2⁄T an additional information is needed to resolve
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the ambiguity between temperature T and collective expansion strength η
f

2 . An
elegant solution is to consider single particle mt spectra and the dependence of Rside on
mt simultaneously.

When discussing single particle spectra one faces also the problem, how to
disentangle transverse expansion from temperature [Sch94][Xu01]. Using both
measurements simultaneously, means to establish an additional condition, which
further constraints the set possible values for transverse expansion and temperature.
This procedure was successfully applied to data at SPS [Ada02] and the mean
transverse velocity was found to be v

⊥
≈0.3�0.5 . Prelimary calculations with STAR

data using a similar method yield a mean transverse velocity of v
infinite

≈0.6  [Cer02].

The decrease of the radius Rside with increasing transverse momentum mt is
reproduced by most calculations, e.g. [Zsc02][Sof01]. But the absolute size of Rside

derived from models is lower than the experimentally measured values and the
dependence is usually weaker in simulations than in reality.

Just as for the parameter Rlong, it is not clear to which degree approximation 6.3 is
valid. Closer examination of the assumptions that yield the simple relation 6.3 might
help to eliminate the discrepancies between experiment and theory. But the weak
dependence of extracted HBT parameters on initial energy density requires a careful
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Figure 6.4

mt dependence of Rside for the π−π− correlation function in the central rapidity bin
and fit according to equation 6.3.



review of the interpretation of two particle correlations.
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6.4 Emission duration

An important parameter characterizing the thermal freeze out process is the emission
duration ∆τ . During the freeze−out particle interactions do not cease at exactly the
same time. It is rather assumed, that the last interactions happen at times ti close to the
lifetime τ of the source. The emission duration ∆τ is defined as the width of the
distribution ti. In the YKP parametrization this quantity is directly related to the
parameter R0 [Chap95a]

The values for R0 can be taken from figure 5.7: R0 equals zero except for the lowest kt

bin. 

In the PB parametrization ∆τ is not directly accessible. According to equation 2.28
Rside is only sensitive to spatial quantities, whereas Rout contains a temporal
contribution. Hence it is possible to extract ∆τ from the ratio Rout over Rside. The
relation is approximately given by [Pra86] [Pra94][Ber89]

In figure 6.5 we show the ratio Rout over Rside in the central rapidity bin. It drops
below unity at higher transverse momenta, which corresponds to unphysical emission
times according to equation 6.5.
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Rout over Rside in the central Yππ bin.



Measurements at lower beam energies yielded finite values for the source parameter
∆τ . Emission durations up to 3 fm/c were found at the AGS [Lis00] and at the SPS,
using the PB [Ada02] as well as the YKP parametrization [App98]. But model
calculations predict higher values for ∆τ already at these energies (see for instance
[Bea98]). Values of up to 1400 fm/c for the emission duration were experimentally
found at very low energies [Lis94], but these reactions are dominated by completely
different physical processes.

The "null result at RHIC" [Gyu02], i.e. the vanishing emission duration at
S

NN
=130 GeV , is apparently a novel feature of AA collisions at very high

energies. The experimental finding was not anticipated and it is since discussed under
the title "RHIC puzzle" [Dum02].

Early predictions suggested this ratio as a possible signature for the formation of a
Quark Gluon Plasma. It was claimed however, that the large latent heat of a QGP
would lead to a prolongated emission duration [Ber89][Pra86][Pra94][Gyu96] and
hence to larger values for Rout over Rside. In figure 6.6 we show the ratio Rout over Rside

extracted from model calculations based on hydrodynamics [Gyu96]. Assuming a
first order phase transition, the parameter Rout is up to ten times larger than Rside(thick
lines), depending on the initial conditions of the collision. If in contrast an ideal gas
scenario without phase transition is considered (thin lines), the ratio remains close to
unity nearly independent of the initial conditions.
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After the first preliminary experimental results became public [Fli00][Lau01], many
possible scenarios were suggested to explain the measurement
[Hir02][Csö02][Tea02], so far a comprehensive and conclusive explanation sill is
missing.

An example of a recent calculation is presented in [Sof01]. The first stage of the
collision, when the hot and compressed nuclear matter forms a QGP phase, is
described by a hydrodynamical model. At a critical temperature TC the fluid freezes
out into hadrons. A microscopic model is applied to simulate the rescattering of
hadrons in the gas phase until the particles leave the interaction region. In figure 6.7
the ratio Rout over Rside at chemical and at thermal freeze out is shown, assuming two
different values for TC. Due to rescattering in the hadron gas the ratio increases at
higher kt, and it is always well above unity.

Most of the source functions assume a transparent source, i.e. particles are emitted
from the entire source volume. Already at SPS energies the validity of this
assumptions was discussed [Hei98]. If the source is assumed to be not transparent but
opaque, i.e. particles are emitted from a surface at a fixed radius, especially the ratio
Rout over Rside will be affected. A very preliminary calculation [McL02] indeed shows,
that applying this freeze out condition allows to explain the experimental data.

Another reason for the discrepancy between experiment and theory is discussed in
[Lin02]. In this model the approximation of the source function by a gaussian
functions yields HBT radii which are up to two times larger than the radii directly
derived from the source function assumed in the model. This makes it difficult to
extract any information about the emission duration from the measured HBT radii.

1. Possible difficulties in using the ratio Rout/Rside as a measure for the emission
duration were also discussed at lower energies. As pointed out in [Hei99] the
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Figure 6.7

Rout over Rside dependence on transverse momentum from a recent model study
[Sof01]. The ratio is above unity in the considered momentum region.



emission duration is the most model dependent parameter and should be
interpreted with care. Fields et al. [Fie95] found at SPS energies that only for
small transverse momenta this method yields the actual emission duration. At
higher momenta the correlation function is strongly altered by space−momentum
correlations (flow) and hence the interpretation of HBT parameters depends on the
implementation of this effect into the source model. Consequently, extraction of
the emission duration should only be attempted at low kt.
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6.5 Comparison to published results from RHIC

The analysis presented here is based on a reanalysis of the experimental data, which
were already subject to an HBT study [Lau01][Adl01a]. The main difference between
them is the improved event reconstruction of the dataset used for this analysis. Figure
6.8 shows that the extracted HBT parameters of the two independent analyses agree
within statistical errors. 

The Phenix collaboration has published results of an HBT study at S
NN
=130 GeV

[Adc02]. Because of the different acceptance of the Phenix detector, their results
extend to higher transverse momenta kt. In figure 6.8 we compare the results from the
two experiments. In the overlap region they agree well.

Preliminary results from the PHOBOS collaboration are compatible with the shown
HBT radii [Man02].
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HBT radii at S
NN
=130 GeV  from different experiments and different analyses.



6.6 HBT radii from AGS to RHIC

Most of the global observables, for example the total multiplicity, change
significantly with beam energy, i.e. with the initial conditions of the heavy ion
collision. The evolution of a collision at RHIC should therefore be completely
different from low energy collisions at the AGS. At RHIC for instance, the initial
energy density is sufficient to easily produce very heavy strange objects like the Ω
particle [Cai01], whereas at lower energies these are rare. Another example is the
anisotropy of the collision measured by the elliptic flow parameter v2. It increases
considerably between the highest energies at the SPS and RHIC top energy [Adl01c].
Besides these two examples there is other evidence, that the scenario changes when
going from AGS to RHIC energies [QM01][QM02].

In contrast, the HBT radii change apparently very little with the beam energy. Figure
6.9 summarizes the HBT radii measured in different experiments at the AGS [Lis00],
the SPS [Blu02] and at RHIC. Absolute values are similar for all energies and all
radii decrease with increasing transverse momentum. 

A closer inspection shows a slight increase of Rlong with beam energy. According to
equation 6.2 this corresponds to a larger life time of the system. If the system evolves
from a higher initial energy density, the cool down of nuclear matter takes probably
longer which increases the life time of the source.

Absolute values of the parameter Rside change surprisingly little with beam energy.
According to equation 6.3 Rside is determined by the geometrical extension of the
source, the strength of the transverse expansion and the temperature at freeze out.
Since the interplay between these factors is not known, it is hard to make any
prediction about the absolute size of Rside. But according to equation 6.3 the
dependence of Rside on transverse momentum is determined by the transverse
expansion. The weak increase of Rside at high energies, corresponds to a weak
transverse expansion at higher energies. This is counter−intuitive and in contradiction
with current model predictions.

The discussion of the dependence of Rout on beam energy is rather complicated, since
this HBT radius mixes contributions from temporal and spatial components. The
experimental results show no clear systematic behaviour. Using the ratio Rout over
Rside as measure for the emission duration of the freeze out process yields only
satisfying results at lower energies, it fails at RHIC energies.

Since many experimental uncertainties and model dependent assumptions influence
the λ parameter we will not discuss it in detail. The fact, that it is well above unity at
all experiments, corresponds to a clearly pronounced Bose Einstein enhancement in
two particle correlations in heavy ion collisions at all energies studied so far.

The measured HBT radii can be used to associate a freeze out volume to heavy ion
collisions at different energies. Based on multiplicities of the most frequent particles
and the cross sections between them it is possible, to derive the mean free path length
λf of pions in this volume [Ada02a][Tom02]. If a univeral freeze out density at a
critical λf of ~2.5 fm is assumed the weak dependence of the HBT radii on beam
energy can be explained. However, this model does not include the expansion of the
source, and it is therefore perhaps an oversimplification.
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Figure 6.9

Dependence of HBT radii (PB parametrization) on transverse momentum at
various beam energies at AGS [Lis00], SPS [Blu02] and RHIC.



6.7 Final considerations

Systematical uncertainties on the experimental as well as on the theoreticall side make
the determination of HBT radii a difficult task. Many things, which possibly change
the correlation function, were considered and if necessary a correction was applied.
Nevertheless, the uncertainty in the extracted values for the HBT radii is high
compared to the precision, required in many model calculations.

One aspect which was not discussed in this analysis is the contribution of long lived
resonaces to the two particle correlation function. Some pions are not emitted directly
from the source, but they are produced by resonace decays. These do not contribute to
the HBT effect, since they are usually emitted at larger distances and at later times. It
is certainly impossible to distinguish experimentally pions which are decay products
of long lived resonaces from "thermal" pions. This effect might cause deviations of
the correlation function from a Gaussian shape and may hence interfere with a proper
fit. It might even produce a halo like emission function which would require a
completely different fit function [Wie97]. In a recent review [Tom02] it is argued
however that the contributions from resonace decays are small and therefore it is
neglected in this analysis.

Another problem represents a correct treatment of the coulomb effect. The two
particle correlation due to the coulomb effect could only be calculated, if the emission
times and points were known. But this information is given by exactly the source
function, which we are looking for with the study of the Bose Einstein correlations.
After all, the correction method applied here is acceptable, since the finally extracted
HBT radii are compatible to the radius assumed for the coulomb source. In some
analyses this consistency is ensured by simultaneously considering the HBT
correlations and the coulomb correction in the fit procedure [Blu02]. Another
approach is to use the experimetally measured π+π− correlations, which are only due
to the coulomb force, to quantify the correction for the like sign correlations, e.g.
[App98]. This method doesn’t solve the problem either, since the correlation function
due to the attractive coulomb force equals not exactly the inverse of the correlation
function in the repulsive case and the topology of π+π− pairs is quite different from
the topology of like sign pairs.

A fraction of particles used to construct the correlation function are not thermal pions
obeying Bose−Einstein statistics. For example, with the particle identification in the
TPC it is hard to distinguish between pions and electrons. Also pions from resonace
decays do not contribute to the Bose−Einstein enhancement. The coulomb correction
however is applied to each particle pair, and hence the correlation function is
overcorrected in this sense. But since it is not known which fraction of the detected
pions contributes to HBT effect, it is hard to take this effects into account.
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7. Conclusion and outlook

In this thesis we presented an analysis of the two pion correlation function in AuAu

collisions at S
NN
=130 GeV . The experimental data were collected with the STAR

detector at the RHIC collider in Brookhaven.

The correlation functions were studied in different momentum regions using the
Pratt−Bertsch as well as the Yano−Koonin−Podgoretskii parametrization. The
analysis was performed for negative and positive charged pions separately. No
significant difference between these two cases was observed.

The correlation functions show no systematic dependence on the longitudinal pair
rapidity. The linear dependence of the YKP rapidity on longitudinal pair rapidity
indicates strong longitudinal expansion, it is compatible with longitudinal boost
invariance of the source.

The dependence of the parameter Rlong on transverse momentum is related to the life
time of the system. Fitting the Mahklin−Sinyukov approximation to the data yields a
life time of ~8 fm/c. This result is close to measurements at lower energies. The life
time was expected to increase with beam energy, since the system is assumed to be
larger at freeze out when it started from a higher initial energy density.

The dependence of the HBT radius parameter Rside on transverse momentum is
determined by the strength of the transverse expansion. Fitting a simple
approximation to the measured dependence we extract the strength of the transverse
expansion over temperature η

f

2⁄T≈4.5 . This result is compatible with a moderate

mean transverse expansion velocity of vt~0.6. In order to resolve ambiguities in the
interpretation of this parameter, one had to consider single particle transverse
momentum spectra and the dependence of Rside on transverse momentum
simultaneously. Simply comparing the Rside dependence on transverse momentum at
different beam energies yields the counter−intuitive observation, that with increasing
initial energy density the transverse expansion velocity does not increase.

The most puzzling result however is the vanishing emission duration. The parameter
R0 in the YKP parametrization and the ratio Rout over Rside in the PB parametrization
are used to determine the emission duration. Both methods yield consistently very
small or even vanishing values for the emission duration. The ratio Rout over Rside

drops below unity, applying the usual first order approximation to derive the emission
duration yields unphysical results. The observation of this "explosive" freeze out
comes as a surprise, especially since early predictions suggested large values of the
emission duration as a signature for the formation of a QGP. The theoretical
implications of this experimental result are currently intensely discussed.

In summary, the weak dependence of the measured HBT radii on beam energy and
the vanishing emission duration do not fit into a comprehensive picture of the
evolution of a heavy ion collision at high energies.

The existing STAR data are subject to several more sophisticated analyses [Ray02].
Three particle correlations allow to test the chaoticity of the source [Wil02]. HBT
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with kaons or protons will help to quantify collective effects [Lop02]. We will gain
more insight into the last stages of the collision by studying the correlations of non−
identical particles [Ret02a]. Flow analyses allow to determine the reaction plane for
each event, this information can be used to test the azimuthal dependence of HBT
radii [Wel03].

Besides the ongoing analyses, future runs at the RHIC collider will expand the
systematics of "soft" physics in AA collisions. HBT radii will be measured at various
beam energies and probably also for lighter systems. The STAR detector system will
be expandend, yielding a higher acceptance, higher momentum resolution and better
particle identification capabilities. With these improvements the quality of the
measurements will further increase. Along with the progress in model calculations
this will eventually allow to draw a more comprehensive conclusive picture of the
evolution of a heavy ion collision at RHIC energies.

In 2007 the LHC collider at CERN will generate heavy ion collision at
S

NN
=5500 GeV . Large detector systems, like ALICE, will measure several

thousand particles produced with each central collision. Results obtained at this
energy will hopefully help us to understand better what we currently observe at
RHIC.
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Splitting quality correlation function in different kt−Yππ bins.

For explanation see chapter 4.4.2 (naming of the bins according to chapter 5.6).
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Qinv correlation function in different kt−Yππ bins (bins are named according to
chapter 5.6). For explanation see chapter 5.1.
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Table B1: 

π+π+ correlation function

YKP parametrization 

<Yππ > <kt > λ Rpara Rperp R0 β

−0.728 0.168 0.463 ±0.0237 6.58 ±0.271 5.13 ±0.176 1.64 ±1.2 0.0407 ±0.0514

−0.73 0.286 0.466 ±0.0266 5.39 ±0.226 4.61 ±0.139 0 ±1.8 0.0476 ±0.0511

−0.732 0.409 0.438 ±0.0424 4.34 ±0.282 4.06 ±0.205 0 ±0.898 0.0217 ±0.0779

−0.733 0.533 0.422 ±0.0715 3.89 ±0.405 3.66 ±0.309 0 ±1.24 −0.0107 ±0.117

−0.379 0.168 0.455 ±0.0201 6.48 ±0.219 5.19 ±0.151 1.82 ±0.998 0.058 ±0.0444

−0.382 0.286 0.464 ±0.0262 5.33 ±0.208 4.61 ±0.132 0.0182 ±1.61 0.00842 ±0.0473

−0.386 0.409 0.434 ±0.0425 4.32 ±0.258 3.96 ±0.194 0 ±0.888 0.0554 ±0.0743

−0.388 0.533 0.464 ±0.0797 3.77 ±0.368 3.84 ±0.301 0 ±1.3 0.0246 ±0.121

0 0.167 0.476 ±0.0216 6.49 ±0.221 5.3 ±0.152 1.27 ±1.44 −0.0303 ±0.047

0 0.285 0.458 ±0.0276 5.34 ±0.217 4.65 ±0.142 0 ±1.12 −0.0314 ±0.0493

0 0.408 0.441 ±0.0458 4.4 ±0.286 4 ±0.2 0 ±0.918 0.0081 ±0.0739

0 0.532 0.417 ±0.0837 3.73 ±0.404 3.71 ±0.341 0.00337 ±1.07 −0.0356 ±0.139

0.378 0.168 0.438 ±0.02 6.35 ±0.22 5.21 ±0.157 0.91 ±1.99 −0.0459 ±0.0481

0.382 0.286 0.458 ±0.0263 5.3 ±0.212 4.65 ±0.135 0 ±1.1 −0.0248 ±0.0487

0.385 0.409 0.437 ±0.044 4.33 ±0.275 4.06 ±0.2 0 ±0.838 −0.0296 ±0.0748

0.387 0.533 0.42 ±0.0768 3.78 ±0.392 3.64 ±0.315 0 ±0.999 −0.0463 ±0.122

0.728 0.168 0.461 ±0.0237 6.54 ±0.268 5.17 ±0.182 1.18 ±1.73 −0.0645 ±0.0542

0.73 0.286 0.474 ±0.0275 5.4 ±0.229 4.66 ±0.143 0 ±1.69 0.00299 ±0.0512

0.732 0.409 0.46 ±0.0431 4.3 ±0.276 4.15 ±0.199 0 ±0.887 0.0185 ±0.078

0.733 0.533 0.422 ±0.0738 3.64 ±0.404 3.92 ±0.33 0 ±1.25 0.0289 ±0.138
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Table B2:

π−π− correlation function

YKP parametrization

<Yππ > <kt > λ Rpara Rperp R0 β

−0.728 0.168 0.433 ±0.0212 6.32 ±0.255 5.03 ±0.168 1.16 ±1.57 0.0363 ±0.0514

−0.73 0.286 0.459 ±0.025 5.29 ±0.215 4.6 ±0.132 0.00124 ±1.75 0.0324 ±0.0488

−0.732 0.409 0.445 ±0.0416 4.43 ±0.281 4.03 ±0.193 0 ±0.849 0.0231 ±0.0725

−0.733 0.533 0.421 ±0.071 3.86 ±0.407 3.72 ±0.3 0 ±1.07 0.0104 ±0.123

−0.379 0.168 0.444 ±0.0191 6.43 ±0.213 5.17 ±0.147 1.4 ±1.23 0.0577 ±0.0435

−0.382 0.286 0.466 ±0.0251 5.37 ±0.197 4.64 ±0.128 0 ±1.08 0.0428 ±0.045

−0.386 0.409 0.461 ±0.045 4.57 ±0.275 4.09 ±0.192 0.00278 ±0.83 0.0202 ±0.0694

−0.388 0.533 0.436 ±0.0826 3.87 ±0.399 3.79 ±0.338 0 ±1.08 0.0244 ±0.122

0 0.167 0.448 ±0.02 6.32 ±0.214 5.26 ±0.153 1.48 ±1.24 0.0267 ±0.0464

0 0.285 0.439 ±0.0249 5.21 ±0.2 4.55 ±0.132 0 ±1.1 0.00325 ±0.0481

0 0.408 0.435 ±0.0464 4.51 ±0.297 4.02 ±0.204 0.00199 ±1.12 0.00469 ±0.0724

0 0.532 0.421 ±0.083 3.77 ±0.414 3.69 ±0.326 0 ±1.08 0.000272 ±0.131

0.378 0.168 0.45 ±0.0197 6.49 ±0.218 5.24 ±0.152 1.46 ±1.21 −0.0636 ±0.0444

0.382 0.286 0.456 ±0.0255 5.3 ±0.202 4.64 ±0.133 0 ±1.3 −0.0105 ±0.0481

0.385 0.409 0.446 ±0.0437 4.34 ±0.274 4.14 ±0.195 0 ±1.15 0.0249 ±0.0736

0.387 0.533 0.377 ±0.0631 3.43 ±0.354 3.47 ±0.283 0 ±0.913 −0.097 ±0.123

0.728 0.168 0.452 ±0.0228 6.47 ±0.265 5.2 ±0.177 1.14 ±1.77 −0.0567 ±0.0534

0.73 0.286 0.453 ±0.0258 5.36 ±0.228 4.59 ±0.138 0 ±1.98 −0.0337 ±0.0501

0.732 0.409 0.461 ±0.0438 4.57 ±0.285 4.13 ±0.198 0 ±0.983 −0.0278 ±0.0749

0.733 0.533 0.389 ±0.0671 3.62 ±0.393 3.58 ±0.319 0 ±0.89 −0.0299 ±0.123
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Table B3:

π+π+ correlation function

PB parametrization

<Yππ > <kt > λ Rside Rout Rlong Routlong

−0.728 0.168 0.471 ±0.024 5.21 ±0.185 5.26 ±0.212 6.61 ±0.267 0.0014 ±1.49

−0.73 0.286 0.472 ±0.0271 4.71 ±0.175 4.52 ±0.195 5.37 ±0.223 0.0 ±1.22

−0.732 0.409 0.444 ±0.0429 4.39 ±0.253 3.64 ±0.27 4.38 ±0.282 0.0022 ±4.07

−0.733 0.533 0.421 ±0.0727 3.98 ±0.37 2.74 ±0.644 3.71 ±0.539 0.0 ±1.22

−0.379 0.168 0.461 ±0.0203 5.23 ±0.156 5.38 ±0.187 6.48 ±0.216 0.0 ±1.1

−0.382 0.286 0.468 ±0.0265 4.67 ±0.165 4.51 ±0.186 5.31 ±0.205 0.0012 ±1.33

−0.386 0.409 0.439 ±0.0429 4.25 ±0.238 3.53 ±0.261 4.34 ±0.253 0.0 ±1.46

−0.388 0.533 0.473 ±0.0811 4.15 ±0.365 3.21 ±0.7 3.75 ±0.491 0.0 ±1.98

0.0 0.167 0.479 ±0.0217 5.35 ±0.16 5.35 ±0.188 6.48 ±0.218 0.0 ±0.793

0.0 0.285 0.46 ±0.0277 4.79 ±0.178 4.42 ±0.194 5.31 ±0.213 0.0018 ±1.35

0.0 0.408 0.445 ±0.0467 4.29 ±0.248 3.44 ±0.432 4.32 ±0.376 0.0 ±1.62

0.0 0.532 0.402 ±0.0801 4.05 ±0.401 2.9 ±0.414 3.7 ±0.397 0.0 ±3.61

0.378 0.168 0.439 ±0.0199 5.23 ±0.163 5.22 ±0.191 6.33 ±0.217 0.0 ±1.08

0.382 0.286 0.455 ±0.0262 4.76 ±0.171 4.45 ±0.188 5.26 ±0.209 0.0 ±1.15

0.385 0.409 0.438 ±0.0446 4.42 ±0.247 3.15 ±0.391 4.18 ±0.349 1.47 ±0.957

0.387 0.533 0.417 ±0.0783 4.08 ±0.374 2.47 ±0.618 3.68 ±0.496 0.0 ±1.14

0.728 0.168 0.466 ±0.0239 5.22 ±0.191 5.26 ±0.217 6.53 ±0.264 0.0013 ±1.71

0.73 0.286 0.48 ±0.0281 4.75 ±0.18 4.56 ±0.196 5.4 ±0.227 0.0 ±1.47

0.732 0.409 0.455 ±0.0427 4.49 ±0.25 3.27 ±0.399 4.11 ±0.357 1.56 ±0.965

0.733 0.533 0.436 ±0.0772 4.39 ±0.418 2.59 ±0.723 3.45 ±0.516 2.05 ±0.947
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Table B4:

π−π− correlation function

PB parametrization

<Yππ > <kt > λ Rside Rout Rlong Routlong

−0.728 0.168 0.441 ±0.021 5.12 ±0.172 5.09 ±0.197 6.35 ±0.245 0.0 ±2.23

−0.73 0.286 0.465 ±0.0247 4.71 ±0.164 4.49 ±0.18 5.29 ±0.207 0.0 ±3.9

−0.732 0.409 0.442 ±0.0403 4.32 ±0.235 3.55 ±0.244 4.43 ±0.269 0.0 ±2.36

−0.733 0.533 0.442 ±0.0731 4.2 ±0.365 2.86 ±0.644 3.87 ±0.521 0.0 ±1.56

−0.379 0.168 0.447 ±0.0188 5.19 ±0.151 5.27 ±0.176 6.42 ±0.206 0.0 ±1.04

−0.382 0.286 0.468 ±0.0248 4.79 ±0.16 4.45 ±0.172 5.33 ±0.19 0.0 ±1.26

−0.386 0.409 0.462 ±0.045 4.44 ±0.238 3.55 ±0.331 4.56 ±0.312 0.0128 ±2.45

−0.388 0.533 0.444 ±0.0821 4.27 ±0.41 2.21 ±0.738 3.59 ±0.488 2.14 ±0.883

0.0 0.167 0.45 ±0.0197 5.27 ±0.155 5.39 ±0.184 6.28 ±0.207 0.0 ±0.859

0.0 0.285 0.441 ±0.0245 4.69 ±0.165 4.38 ±0.178 5.17 ±0.192 0.0 ±1.12

0.0 0.408 0.438 ±0.046 4.25 ±0.245 3.49 ±0.44 4.43 ±0.372 0.0 ±1.43

0.0 0.532 0.436 ±0.0847 4.21 ±0.395 2.58 ±0.728 3.77 ±0.543 1.15 ±1.61

0.378 0.168 0.45 ±0.0194 5.25 ±0.154 5.37 ±0.183 6.46 ±0.212 0.0022 ±1.16

0.382 0.286 0.451 ±0.0249 4.74 ±0.162 4.38 ±0.187 5.25 ±0.194 0.0 ±1.27

0.385 0.409 0.446 ±0.0435 4.39 ±0.242 3.46 ±0.447 4.19 ±0.365 1.51 ±1.03

0.387 0.533 0.382 ±0.0628 4.03 ±0.358 1.95 ±0.464 3.29 ±0.412 1.83 ±0.633

0.728 0.168 0.454 ±0.0225 5.22 ±0.181 5.27 ±0.211 6.46 ±0.258 0.0 ±2.29

0.73 0.286 0.445 ±0.0251 4.65 ±0.172 4.33 ±0.187 5.29 ±0.218 0.002 ±2.47

0.732 0.409 0.457 ±0.0438 4.45 ±0.246 3.56 ±0.344 4.59 ±0.305 0.006 ±1.93

0.733 0.533 0.387 ±0.0657 4.18 ±0.4 2.05 ±0.55 3.38 ±0.479 1.87 ±0.755
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