
Fachbereich 12 Informatik und Mathematik
Institut für Informatik

Bachelor Thesis

Distributed Annotation in Virtual
Reality

Simon Lööck
Course of Studies: Computer Science

Frankfurt am Main
October 19, 2020

Supervisor: Prof. Dr. Alexander Mehler

Set on October 19, 2020 with LATEX.

Abstract

The main goal of this work was to create a network environment for the Unity Engine
project StolperwegeVR, developed by the Text Technology Lab of Goethe Uni-
versity, in which you will be able to annotate one to several documents in a group.
For this, basic network utils like seeing other users or moving objects had to be
implemented which had to be easy to use and work with in the future.

iii

Acknowledgements

I want to thank my supervisor Professor Mehler for always supporting me, Giuseppe
Abrami and Atilla Kett for helping me when I had difficulties and Melisa Yenal for
supporting me and testing my work.

v

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Related Work . 1
1.3 Structure . 2
1.4 Notation . 2

2 Applicable Components 3
2.1 Virtual Rooms . 3
2.2 Network Connectivity . 3
2.3 Annotator Tool . 4

3 Tasks 5
3.1 Basic Network Tools . 5

3.1.1 CustomNetworkIdentity . 5
3.1.2 NetworkClientTransform . 5
3.1.3 NetworkInteractiveObject . 7
3.1.4 Spawning GameObjects . 7

3.2 Multiple Users in a VirtualRoom . 7
3.3 Communication between Users . 8
3.4 Network-capable Annotator Tool . 10
3.5 Permissions for VirtualRooms and Annotator Tool 12
3.6 Distributed working on one to several Annotation Tasks in a Virtual-

Room . 12

4 Evaluation 15
4.1 Structure . 15
4.2 Results . 15

5 Conclusion 19
5.1 Results of the Evaluation . 19
5.2 Future Work . 19

Bibliography 21

Appendices 23

vii

1 Introduction

StolperwegeVR is an application made with the Unity 3D Engine1 and developed
by the Text Technology Lab of Goethe University in Frankfurt am Main, Germany as
a part of the Stolperwege project. It is a Virtual Reality application for experiencing
history, tracking the life of specific people during World War 2 along with the original
Stolperwege App [8] and amongst other things annotating in Virtual Reality. While
there seems to be no connection between these two features, they can be connected
for example through text annotation.
Supposing we have two documents of different life sections of a person and we don’t
know when these sections happened. One report may describe that the person worked
at place A and the other may picture his escape to place B. Then we annotate and
filter both texts and we discover that the person mentioned place B in the first
document, so that it can be suspected he already planned to escape to place B. With
this information, the texts can be ordered and we can reconstruct his life.

1.1 Motivation

The primary motivation behind this work was to create a network system for Stolper-
wegeVR that can be used for future work at the application. Additionally, since
the old possibility for distributed annotation was just working at a browser, a more
motivating solution was desirable. After a lot of past experience, using a Virtual
Reality application is very motivating and applicable for text annotation since Attila
Kett already implemented the required tools for this.

1.2 Related Work

So far there were a few applications which provided network-compatible Virtual Re-
ality functions, for example, VRChat [17] where you are able to connect with anyone
with and without a Virtual Reality headset in so called worlds. In these worlds you
can interact with different objects and other players. Furthermore you can change
the look of the avatar to many different persons and creatures, mostly provided by
the community.
Many other applications have similar features, but most of them have primarily hu-
morous purposes and - according to my research - none of them has distributed text
annotating functionalities.
The best previous solution of the Text Technology Lab for distributed text annotation

1https://unity3d.com/de/unity

1

1 Introduction

was to use the TextAnnotator [3][5] Website2 along with third-party applications
for communication. The TextAnnotator is a browser-based framework for anno-
tation purposes like part of speech tagging, named entity recognition and so on. It
uses a UIMA Database Interface [1] to process database-based UIMA documents. All
of this should be improved with this work for easy distributed text annotation.

1.3 Structure
The work was split into three phases. The first phase was to know and analyze existing
components that could be useful. The second phase was to implement everything that
was needed for a good working network experience, along with the Annotator Tool.
For this, many basic network components had to be implemented since they were
either missing or not working. The last phase was to evaluate the outcome and
analyze whether it was better than the pre-existing system.

1.4 Notation
When addressing coordinates, the Unity 3D Engine standard [16] will be used:

• x: right

• y: up

• z: forward

2http://www.textannotator.texttechnologylab.org

2

2 Applicable Components

Some useful elements were already existing that could be used for this work. Mainly
the network components and the Annotator Tool were beneficial.

2.1 Virtual Rooms
VirtualRooms are the scenes of StolperwegeVR which are dedicated to a net-
worked room. Any user with necessary permissions can host and connect to a Vir-
tualRoom. The specifications of the VirtualRooms, as well as the permissions are
stored in the Stolperwege database.
Currently existing permissions are:

0. None

1. Read

2. Write

3. Delete

4. Grant

Apart from that, a VirtualRoom can be public, so that (currently) every user has
permission class 3 (Delete). Every permission inherits from the lower permissions,
for instance, permission class 4 extends class 0 to 3.
Any user that has permission class 1 (Read) for a VirtualRoom can excess it, class 2
(Write) can change content and class 3 (Delete) can add and remove content, which
had to be implemented.
The VirtualRooms were used as a base for all new network components, while it was
ensured that only users with the right permission can contribute.

2.2 Network Connectivity
Fundamental network connectivity tools were previously implemented with a system
to choose between VirtualRooms and connecting to them. Until then, only the con-
nection was successful, it was neither possible to see another user trouble-free nor to
interact with anything.
It uses the Unity build-in network function UNET [11] which could be used for further
work. In the end, only a part of it was used, since on the one hand, it did not hold
everything necessary for this work and on the other hand, it was already deprecated,
so that if the engine version of StolperwegeVR will be updated, most algorithms
could be used again.

3

2 Applicable Components

2.3 Annotator Tool
The Annotator Tool is the tool for annotating a text in StolperwegeVR developed
by Attila Kett as a component of VAnnotatoR [9][10][2]. The VAnnotatoR is a
part of StolperwegeVR, in which you are able to annotate visualizations of, for
example, individual words of documents, images, videos, and sound files jointly.
The Annotator Tool connects to the web-service of the TextAnnotator and can
open a document along with the tools to annotate it. The Annotator Tool updates
itself whenever the annotation of the text is changed and displays it through token
objects with different colors.
The previous use of the Annotator Tool was in a specific room in the Resources2City
Explorer [6][6], where a document is transformed into a generated city. The room
contains everything necessary to annotate a document. The tool was quite useful for
this work as it already held nearly all necessities for distributed annotating.
Since it is connected to the web-service of the TextAnnotator, it synchronizes
every change of the document immediately regardless of the origin.
Related work to the VAnnotatoR that is worth mentioning is the gesture-based
interface in StolperwegeVR [7]. With this work and the gesture-based interface,
it could be possible to write and annotate texts simultaneously in Virtual Reality in
the future, only using gestures without any kind of virtual keyboard.
Additionally,

4

3 Tasks

Since the only available network component was the connectivity between users in a
VirtualRoom, some basic tools had to be implemented first. After it was possible to
interact with other users and objects, the components for distributed text annotations
could be developed.

3.1 Basic Network Tools

For reasons that will be explained in section 3.2, the Network had to be partly
constructed client-based. For this, the following two new components, Network-
ClientTransform and CustomNetworkIdentity, were implemented. Additionally the
component NetworkComponentIdentifier was implemented which assigns every com-
ponent of a GameObject an identification number so that if data is sent and the
GameObject has multiple components that could recieve the data, the right one is
chosen (see fig. 3.1).

3.1.1 CustomNetworkIdentity

This class is the equivalent to the UNET component NetworkIdentity [12]. It gives
every networked GameObject a unique ID through which it can be identified on every
client, so that information is sent to the correct GameObject.
In this case, the ID is determined by the ID of the user that spawned the object
along with a counter that increases every time a new ID is used. The GameObject
will be then saved in a Dictionary with the ID as a key so that if a client receives
information, the correct GameObject will be chosen.
This component is used for custom generated GameObjects like DrawedObjects,
which can be drawn inside StolperwegeVR. Those objects cannot be spawned
with the conventional method since it demands the registration of a GameObject in
order to spawn it on all clients. How those drawn objects can be spawned nonetheless
will be explained in section 3.1.3.

3.1.2 NetworkClientTransform

This component is the pendant to the UNET component NetworkTransform [13]. It
synchronizes the position, rotation, and local scale of a GameObject on all clients.
The reason why this component needed to be implemented instead of using the Net-
workTransform is that the client cannot interact with Server objects the way it was
necessary.

5

3 Tasks

Parse
data to

Dictionary
of strings

Transform of Net-
workClientTrans-
form changed

ClientSyncVar changed

Data send through
NetworkInterac-
tiveObject

Pass data
to local
Net-

workUser

From here on, the data includes
the component ID, the Cus-
tomNetworkIdentity ID if the
GameObject has one and option-
ally all StolperwegeUsers that
the data is dedicated to (if they
are not included, all users get the
data).

Is
GameOb-

ject
replace-
ment?

Identify
correct

GameOb-
ject in

Dictionary

Send data
to server
Net-

workUser

Send data
to every

client Net-
workUser

Is current
Stolper-
wegeUser
in data?

Stop

Uses
GameOb-

ject
NetworkI-
dentity?

Was
GameOb-

ject
replaced?

Identify
correct

GameOb-
ject in

Dictionary

Identify
correct
compo-
nent with
Network-
Compo-
nentI-
dentifier

Pass
data to

component

Apply recieved data

yes

no

no

yes

no

yes

no

yes

Figure 3.1: How NetworkInteractiveObjects and NetworkClientTransform communi-
cate with the equivalents on the clients

6

3.2 Multiple Users in a VirtualRoom

3.1.3 NetworkInteractiveObject
This class is an extension of the InteractiveObject. The InteractiveObject is a compo-
nent to make a GameObject interactive in StolperwegeVR. Amongst other things,
it can be grabbed and clicked.
The NetworkInteractiveObject additionally has the ability to send and receive data.
It adds the NetworkClientTransform, and if needed the CustomNetworkIdentity, au-
tomatically and spawns and synchronizes the object on all clients. The inheritance of
the InteractiveObject was chosen to simplify future work since on the one hand the
ability to grab and to click a GameObject can be turned off and on the other hand,
it is the most used class in this project. It is much easier and more efficient to create
the ClientSyncVar for this particular component.
The ClientSyncVar can be compared to the SyncVar of UNET [15], however, it syn-
chronizes on each client if anyone changes it on the client-side. At the moment not
all types are supported, but the support can be implemented rather quickly in the
NetworkInteractiveObject.

3.1.4 Spawning GameObjects
There are two ways of spawning GameObjects on the server:

1. Before runtime: Add a NetworkIdentity to the GameObject, register it as
spawnable Prefab on the NetworkManager, add a NetworkInteractiveObject
and set the string ObjectPath as the path from the Resources folder to the
prefab

2. Before or during runtime: Do not add a NetworkIdentity, add a NetworkIn-
teractiveObject and set the variable ColliderType to the Type of the wanted
collider.

When using option 1, a message is sent to the server that a prefab at ObjectPath
wants to be instantiated. The prefab will be spawned on the server and the client
that created it will create a forwarding link from the spawned to the original object
so that it seems like it is the same. Additionally, all MeshRenderers and Colliders
will be destroyed so that it cannot be seen or used by the client that created the
object. Instead, he or she can interact with the original, and all other objects will
act the same.
When using option 2, the mesh of the GameObject will be sent through the network
that will be reconstructed on all clients. This is not recommended for complex meshes
since there will be a lot of data to send.

3.2 Multiple Users in a VirtualRoom
One of the biggest challenges was the NetworkUser. Previous attempts to make the
default StolperwegeVR user object network capable failed because it was too com-
plex. Two users could connect but one user controlled the other and none of them

7

3 Tasks

could move. Apart from that, there would have been a lot more problems for input,
InteractiveObjects and so on. Imagine having your Virtual Reality headset on when
suddenly your connection breaks down and your own sight lags. This could result for
example in motion sickness and frustration.
The solution was simple: to make a separate empty NetworkUser object which spawns
the default StolperwegeVR user if it represents the local user and an avatar (see
fig. 3.2) else. This worked well but also added some problems. Since the Stolper-
wegeVR user does not exist on the server, the actions could not be caught on the
server-side. Because of that, the whole network system had to be construct partly
client-based, meaning a client can change something on his local machine and it will
be synchronized on all other clients. This could add a bit of delay since the client
has to send all the data to the server which then sends it to all clients instead of just
sending input commands to the server which then reacts to it and sends the result to
all clients. But it can provide a more enjoyable experience since for example the only
problems with the Virtual Reality headset will be on the local machine and cannot
caused by the network.
By virtue of UNET, the NetworkUser was used as a tunnel for all messages that will
be sent through the network using ClientRpc [14] and Command [14]. Through these
functions, dictionaries containing string keys and values can be sent to the corre-
sponding GameObject of all clients or specific StolperwegeUsers. The function sorts
and assigns the information to the correct GameObject and component which then
can react to it.
The NetworkUser synchronizes position, y-rotation, and height of the user as well
as the position and rotation of the hands through NetworkTransform components
of UNET via empty GameObjects that follow the movements of the Virtual Reality
user. In addition to that, the state of the hand (relaxed, pointing, grabbing, and
fist) and the StolperwegeUser of the client is synchronized by using the functions
mentioned above. Along with the allocation of the StolperwegeUser, the avatar will
be painted using the specifications made by the StolperwegeUser that are saved in
the database.
Thereby users can see and interact with each other without creating problems with
the controls together with the advantage of not having to spawn a complex user ob-
ject every time a user connects. An example result of the StolperwegeUsers dummy
and abrami can be seen in fig. 3.2. Note that none of the users had avatar color
specifications at that moment.

3.3 Communication between Users
Since the main goal was to create a working space in Virtual Reality where users
can work together, some sort of communication was reasonable. There were three
options:

1. Text chat with text input (combinable with text to speech)

2. Text chat with voice input (speech to text, also combinable with text to speech)

8

3.3 Communication between Users

Figure 3.2: How users see other users and network objects

Figure 3.3: A turned off communicator

Figure 3.4: a turned on communicator

9

3 Tasks

3. Voice chat

The one option that will be neglected is the usage of third party applications. Since
the goal was to create a complete working system for distributed working, the possi-
bility to communicate had to be implemented.
Option one was rejected since it would be too overelaborate to type something on a
keyboard in Virtual Reality every time you want to communicate. Apart from that,
there is some kind of natural text chat through the text type of an InfoSurface which
was also made network compatible with which you can write messages that all other
users can read on the InfoSurface.
Option two could have been promising, but it would have been too complicated, and
since it was not the central goal, it was also rejected.
At last, option three was chosen. It was implemented using Unity’s Microphone class.
The AudioInput script captures when turned on a 0.2 seconds long clip of the selected
microphone, converts the clip to a float stream of values between −1 and 1 which
is checked for data worth sending and then send to all other clients. Data is worth
sending if the absolute value is bigger than 0.05. Everything else will be interpreted
as silence. The received data is then transferred to the current AudioOutput script,
converted into a clip which will be played.
The controls, which microphone device is used and if the AudioInput is turned on,
lies within the Communicator GameObject. When accessing a VirtualRoom, one
Communicator for each device will be generated (plus one if you have no microphone
so that you can at least hear the other users) in the bottom part of a shelf as you can
see in fig. 3.9. At the start, each Communicator will be turned off (see fig. 3.3) and
can be turned on by clicking on it. If you do so, the Communicator will be stuck to
your left hand above the clock for easy access (see fig. 3.4). By clicking on it again,
the AudioInput will be turned off so that you are muted. As long as you have a
Communicator on the arm, you will be able to hear all users that have turned on the
AudioInput. If you grab the communicator it will come off your arm and you won’t
be able to hear anyone anymore and no one will be capable of hearing you.

3.4 Network-capable Annotator Tool
Since the TextAnnotator already synchronizes the annotations, making it net-
work capable was quite simple. The first step was to make the existing annotator
portable since the original was designed to be a table in a room. Since the goal was to
annotate as many documents as needed with as many users as wanted, there had to
be a possibility to create multiple instances and place them as wished. The result of
the modifications can be seen on the left side of fig. 3.6. To instantiate a portable an-
notator, you have to create an InfoSurface, choose a document instance (see fig. 3.5),
insert a resource from the ResourceManager and click on the "Annotate" button at
the bottom of the IOEditor that opens if you long click on the InfoSurface that is
seen on the right side of fig. 3.6.
The portable annotator uses a NetworkInteractiveObject so that all transformations
will be synchronized, as well as the loaded document and sentence pointer.

10

3.4 Network-capable Annotator Tool

Figure 3.5: Where to insert a ResourceData object in an InfoSurface of document
type

Figure 3.6: Left: A network capable portable annotator; Right: The parent InfoSur-
face of the annotator

11

3 Tasks

Figure 3.7: A closed book that holds data with the title "Anne Frank"

3.5 Permissions for VirtualRooms and Annotator
Tool

As described in section 2.1, there are currently five permission types for the Stolper-
wegeVR. It was already implemented that only users with permission class 1 (Read)
can enter the specified VirtualRoom and only users with permission class 4 (Grant)
can grant and revoke permissions for the VirtualRoom. The following was addition-
ally implemented:
Permission class 2 (Write)
Users with the permission to write in a VirtualRoom can grab and click on Network-
InteractiveObjects that were spawned on the server. When they try to instantiate
a NetworkInteractiveObject, it will not be spawned on the server but exists on the
client who is able to interact with it.
Permission class 3 (Delete)
Users with the permission to delete in a VirtualRoom are able to add and remove Net-
workInteractiveObjects. Every NetworkInteractiveObject that the instantiate will be
spawned on the server so that every client can see it.

The permissions for the Annotator Tool are managed through the TextAnnota-
tor. As soon as a document is opened on an InfoSurface or a portable annotator,
the user has to log into a TextAnnotator account. This account determines if
you can open and edit the specific document.

3.6 Distributed working on one to several
Annotation Tasks in a VirtualRoom

The final task was to bring it all together to create an environment in which multiple
users can annotate several documents.

12

3.6 Distributed working on one to several Annotation Tasks in a VirtualRoom

Figure 3.8: The same book as in fig. 3.7 but opened. You can see the ResourceData
object it holds

Since the portable annotators use data from the ResourceManager [4], which al-
ready can be visualized as a DataResource, it would have been valuable if you could
share and save this data. Making the existing visualizations network capable would
not have been very useful since once you use them, for example, for an InfoSurface,
they disappear. So a container was constructed in which you can store and replicate
any DataResource. These containers appear as books as seen in fig. 3.7 since they
stand for securing and distributing information. The title of the book matches the
enclosed DataResource, which can be inserted when the book is opened as seen in
fig. 3.8. To replicate the contained information, all you have to do is long click on
the DataResource that is seen when you open the book. The books will be spawned
with a random size and color on the shelf as seen in fig. 3.9, and the data can always
be overwritten by users that have the permission to write in the VirtualRoom.
The final problem was that the TextAnnotator is only capable of opening a con-
nection to one document at a time. Since there should be the possibility to annotate
on multiple documents at once, the other annotation processes would not have worked
anymore once another is opened. The solution was simple. There is always only one
active portable annotator on a client, all others are paused. They do not receive
or send any annotation updates as long as it is not unpaused, which can be done
effortlessly by clicking on the pause screen (see fig. 3.10). Each client can have a
different active annotator so that they will not be limited. As soon as you unpause a
portable annotator, the name of the current StolperwegUser will be displayed on the
right side of the annotator (see fig. 3.6) on all clients so that everyone knows which
annotator you are currently using.

13

3 Tasks

Figure 3.9: The shelf that exists in every VirtualRoom that holds empty books and
the communicators

Figure 3.10: A paused portable annotator

14

4 Evaluation

To test the efficiency of the new system in comparison to the web-interface, an eval-
uation had to be carried out.

4.1 Structure

The evaluation was structured in two parts. The first part was the testing of the old
solution, using the TextAnnotator website1, a small self-made Java application
for recording the results and Discord2 for communication. The second part was the
testing of the new solution, the Annotator Tool in a Virtual Room in Stolper-
wegeVR.
Both parts had the same tasks:

1. trying to communicate without any Chat-like feature and

2. discussing over Voice-chat.

In both tasks, the participants had to annotate a specific type of words in four sen-
tences of a document. Additionally, only one participant knew which type of words
had to be annotated in task one, and he had to try to explain it to the other. The
attendees were given two Annotator Tools in the VirtualRoom so that they had the
possibility to divide the second task since both knew what they had to do.
Subsequently, the participants had to fill in a short questionnaire. The original ques-
tionnaire in German can be seen in the appendix.

4.2 Results

The evaluation was carried out with twelve pairs, where all uneven pairs started with
the TextAnnotator in the Browser, and all others started with the Annotator
Tool in a Virtual Room. Task 1 was correct if the second participant guessed correct
which type of words he had to annotate. The results can be seen in table 4.3.

1http://www.textannotator.texttechnologylab.org
2https://discordapp.com/

15

4 Evaluation

Task 1 Task 2
Pair Time (in sec) Correct Time (in sec)
1 219.8 0 277.2
2 255.8 0 404.8
3 368.3 1 293.0
4 183.5 1 257.9
5 279.0 1 429.6
6 294.3 1 332.5
7 513.3 1 232.2
8 232.5 1 159.6
9 349.1 1 450.3
10 414.4 1 546.6
11 127.2 0 549.5
12 286.5 1 219.9

Table 4.1: Results of the TextAnnotator part

Task 1 Task 2
Pair Time (in sec) Correct Time (in sec)
1 343.4 1 405.9
2 757.4 0 117.1
3 315.3 0 454.7
4 353.4 1 293.7
5 347.9 1 418.8
6 827.0 0 480.7
7 358.7 1 259.3
8 474.1 1 336.8
9 483.1 1 749.8
10 856.1 0 213.3
11 421.7 1 512.8
12 616.1 1 174.5

Table 4.2: Results of the Annotator Tool part

Task 1 Task 2
Part Time (in sec) Correct Time (in sec)
TextAnnotator 293.6 9/12 346.1
Annotator Tool 512.8 8/12 368.1

Table 4.3: Average Results

16

4.2 Results

The results of the questionnaire are the following:

1. I am satisfied with the way the communicators work

4.17% 4.17% 16.67% 20.83% 25.00% 29.17%

Average: 5.42 (Variance: 2.24)
100%

1 2 3 4 5 6 7Strongly
disagree

Strongly
agree

2. I am satisfied with the way I see the movements of other users (apart from the
look of the avatar)

4.17% 8.33% 16.67%
41.67% 29.17%

Average: 5.79 (Variance: 1.41)
100%

1 2 3 4 5 6 7Strongly
disagree

Strongly
agree

3. The annotation of texts with several people at the same time has increased my
motivation.

4.17% 4.17% 8.33% 12.50%
33.33% 37.50%

Average: 5.79 (Variance: 1.83)
100%

1 2 3 4 5 6 7Strongly
disagree

Strongly
agree

4. The annotation tool meets my expectations for distributed annotation.

4.17% 8.33%
37.50% 37.50%

12.50%

Average: 5.46 (Variance: 0.91)
100%

1 2 3 4 5 6 7Strongly
disagree

Strongly
agree

17

4 Evaluation

5. I am more motivated to annotate a text with a colleague or in a group in this
environment

4.17% 8.33% 8.33% 8.33%
29.17% 41.67%

Average: 5.75 (Variance: 1.48)
100%

1 2 3 4 5 6 7in a Browser in VR

What stood out during the evaluation was the confusion about the sentence number-
ing. Since the web-interface displays parts of a document without paying attention
to the sentences, most participants miscounted the correct numbering, whereas the
Annotator Tool only displays one sentence of a document at a time. Along with
the synchronization of the current sentence position, this helped many participants
finding the correct sentences.
Since the main focus was on the distributed aspect of the new system, the correct-
ness of the annotations weren’t checked. But according to my observations during
the evaluation, it was more or less equal.

18

5 Conclusion

5.1 Results of the Evaluation
Since there were only twelve pairs involved in the evaluation, the results in table 4.3
can only be used partially.
Apart from the average times of task 1, the results are more or less identical. The
time difference could be explained with the initial confusion about the handling in
Virtual Reality since most attendees experienced it for the first time. To solve the
first task, almost all participants used the same technique of annotating the words
themselves so that their partner had to guess which was the correct category. To solve
the second part in Virtual Reality, some used both Annotators to be more efficiently.
Nonetheless, most participants remarked that the distributed Virtual Reality method
of annotating a text was far more motivating than distributed annotating in the
web-interface. This review is also reflected in the results of the questionnaire. The
distribution of the answers to the first question was virtually expected since the
communicators work rather simple and are not the ideal way of implementing a
voice-chat.
All in all, the result of this work can be called successful since the main goal was
to create a stable working environment for motivating distributed text annotating,
which most participants of the evaluation experienced.

5.2 Future Work
As already mentioned, the voice chat is currently a bit rudimentary. Making a fully
working chat would have been too complicated for this work since the focus was on
the distributed text annotation possibility additionally to the working networkability
of StolperwegeVR. Adding a better solution for the voice-chat could be a task for
future students.
Additionally, some other opportunities were discovered to improve the experience.
For example, the Annotator Tool could be renewed for smoother annotations. Also,
the Avatar has to be redone since some bugs were discovered like the vanishing of
some parts when the user is looking at it from different angles.
At last, the network usability of the StolperwegeVR application can be expanded
more efficiently since many components that were implemented for this work can be
used simply. For example, any InteractiveObject can be made network-compatible
by changing it to a NetworkInteractiveObject and making sure it will be spawned
(see section 3.1.4). Furthermore, ClientSyncVars (see section 3.1.3) can be utilized
to synchronize any variable with a value or an implemented type.

19

Bibliography

[1] Giuseppe Abrami and Alexander Mehler. “A UIMA Database Interface for Man-
aging NLP-related Text Annotations”. In: Proceedings of the 11th edition of
the Language Resources and Evaluation Conference, May 7 - 12. LREC 2018.
Miyazaki, Japan, 2018.

[2] Giuseppe Abrami, Alexander Mehler, and Christian Spiekermann. “Graph-
based Format for Modeling Multimodal Annotations in Virtual Reality by
Means of VAnnotatoR”. In: Proceedings of the 21th International Conference
on Human-Computer Interaction, HCII 2019. Ed. by Constantine Stephanidis
and Margherita Antona. HCII 2019. Orlando, Florida, USA: Springer Interna-
tional Publishing, July 2019, pp. 351–358. isbn: 978-3-030-30712-7.

[3] Giuseppe Abrami et al. “TextAnnotator: A flexible framework for semantic
annotations”. In: Proceedings of the Fifteenth Joint ACL - ISO Workshop on
Interoperable Semantic Annotation, (ISA-15). ISA-15. accepted. Gothenburg,
Sweden, May 2019.

[4] Rüdiger Gleim, Alexander Mehler, and Alexandra Ernst. “SOA implementa-
tion of the eHumanities Desktop”. In: Proceedings of the Workshop on Service-
oriented Architectures (SOAs) for the Humanities: Solutions and Impacts, Dig-
ital Humanities 2012. Hamburg, Germany, 2012.

[5] Philipp Helfrich et al. “TreeAnnotator: Versatile Visual Annotation of Hierar-
chical Text Relations”. In: Proceedings of the 11th edition of the Language Re-
sources and Evaluation Conference, May 7 - 12. LREC 2018. Miyazaki, Japan,
2018.

[6] Attila Kett et al. “Resources2City Explorer: A System for Generating Interac-
tive Walkable Virtual Cities out of File Systems”. In: Proceedings of the 31st
ACM User Interface Software and Technology Symposium. Berlin, Germany,
2018.

[7] Vincent Roy Kühn. A gesture-based interface to VR. Bachelor Thesis. Bachelor.
Goethe University of Frankfurt. 2018. url: http://publikationen.ub.uni-
frankfurt.de/frontdoor/index/index/docId/50915.

[8] Alexander Mehler et al. “Stolperwege: An App for a Digital Public History of
the Holocaust”. In: Proceedings of the 28th ACM Conference on Hypertext and
Social Media. HT ’17. Prague, Czech Republic: ACM, 2017, pp. 319–320. isbn:
978-1-4503-4708-2. doi: 10.1145/3078714.3078748. url: http://doi.acm.
org/10.1145/3078714.3078748.

[9] Alexander Mehler et al. “VAnnotatoR: A Framework for Generating Multi-
modal Hypertexts”. In: Proceedings of the 29th ACM Conference on Hypertext
and Social Media. Proceedings of the 29th ACM Conference on Hypertext and
Social Media (HT ’18). Baltimore, Maryland: ACM, 2018.

21

Bibliography

[10] Christian Spiekermann, Giuseppe Abrami, and Alexander Mehler. “VAnnota-
toR: a Gesture-driven Annotation Framework for Linguistic and Multimodal
Annotation”. In: Proceedings of the Annotation, Recognition and Evaluation of
Actions (AREA 2018) Workshop. AREA. Miyazaki, Japan, 2018.

[11] Unity - Manual: Multiplayer and Networking. Apr. 15, 2019. url: https://
docs.unity3d.com/2018.3/Documentation/Manual/UNet.html (visited on
09/13/2019).

[12] Unity - Manual: Network Identity. Apr. 15, 2019. url: https://docs.unity3d.
com/2018.3/Documentation/Manual/class-NetworkIdentity.html (visited
on 09/13/2019).

[13] Unity - Manual: Network Transform. Apr. 15, 2019. url: https://docs.
unity3d.com/2018.3/Documentation/Manual/class-NetworkTransform.
html (visited on 09/13/2019).

[14] Unity - Manual: Remote Actions. Apr. 15, 2019. url: https://docs.unity3d.
com/2018.3/Documentation/Manual/UNetActions.html (visited on 09/13/2019).

[15] Unity - Manual: State synchronization. Apr. 15, 2019. url: https://docs.
unity3d.com/2018.3/Documentation/Manual/UNetStateSync.html (visited
on 09/13/2019).

[16] Unity - Scripting API: Vector3. Apr. 15, 2019. url: https://docs.unity3d.
com/2018.3/Documentation/ScriptReference/Vector3.html (visited on
09/22/2019).

[17] VRChat. 2019. url: https://www.vrchat.net/ (visited on 09/13/2019).

22

Appendices

23

Simon Lööck
E-Mail: simon.loeoeck@web.de

Nutzerstudie zu verteilten Annotationen in virtuellen
Umgebungen

UMUX-Fragebogen

12. September 2019

Zur Auswertung des verteilten Annotationstools wird die Usability Metric for User Experience
(UMUX, Finstad 2010) verwendet. UMUX umfasst die folgenden fünf Fragen, die Sie bitte per
Ankreuzen jeweils eines Feldes beantworten.

1. Ich bin zufrieden mit der Funktionsweise der Kommunikatoren

1 2 3 4 5 6 7
Stimme
nicht zu

Stimme voll
und ganz zu

2. Ich bin zufrieden, wie ich die Bewegungen anderer User sehen kann (abgesehen vom Aus-
sehen des Avatars)

1 2 3 4 5 6 7
Stimme
nicht zu

Stimme voll
und ganz zu

[bitte wenden]

3. Die Annotation von Texten mit mehreren Personen gleichzeitig hat meine Motivation ge-
steigert.

1 2 3 4 5 6 7
Stimme
nicht zu

Stimme voll
und ganz zu

4. Das Annotations-Werkzeug erfüllt meine Erwartungen an das gemeinsame Annotieren.

1 2 3 4 5 6 7
Stimme
nicht zu

Stimme voll
und ganz zu

5. Ich bin eher motiviert mit einem Kollegen oder in einer Gruppe hier einen Text zu annotie-
ren

1 2 3 4 5 6 7
im Browser in VR

6. Anmerkungen (Optional)

Literatur

Finstad, Kraig (2010). „The usability metric for user experience“. In: Interacting with Computers 22.5, S. 323–327.

Bitte dieses Formular zusammen mit der Abschlussarbeit abgeben!

Erklärung zur Abschlussarbeit

gemäß § 25, Abs. 11 der Ordnung für den Bachelorstudiengang Informatik
vom 06. Dezember 2010:

Hiermit erkläre ich Herr / Frau

Die vorliegende Arbeit habe ich selbstständig und ohne Benutzung
anderer als der angegebenen Quellen und Hilfsmittel verfasst.

Frankfurt am Main, den

 __

 Unterschrift der Studentin / des Studenten

