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Lipid membranes are integral building blocks of living cells and perform a multitude of biological functions. Currently,
molecular simulations of cellular-scale membrane structures at atomic resolution are nearly impossible, due to their
size, complexity, and the large times-scales required. Instead, elastic membrane models are used to simulate mem-
brane topologies and transitions between them, and to infer their properties and functions. Unfortunately, efficiently
parallelized open-source simulation code to do so has been lacking. Here, we present TriMem, a parallel hybrid Monte
Carlo simulation engine for triangulated lipid membranes. The kernels are efficiently coded in C++ and wrapped with
Python for ease-of-use. The parallel implementation of the energy and gradient calculations and of Monte Carlo flip
moves of edges in the triangulated membrane enable us to simulate also large and highly curved sub-cellular structures.
For validation, we reproduce phase diagrams of vesicles with varying surface-to-volume ratios and area difference.
The software can tackle a range of membrane remodelling processes on sub-cellular and cellular scales. Addition-
ally, extensive documentation make the software accessible to the broad biophysics and computational cell biology
communities.

I. INTRODUCTION

Living cells are bounded by lipid membranes, and the inte-
rior of eukaryotic cells is filled with membranous organelles.
Cellular membrane structures are highly dynamic, strongly
curved, and branched1,2. Membranes are flexible and behave
like two-dimensional fluids. Super-resolution microscopy
and cryo-electron tomography (cryo-ET) have given unprece-
dented insights into the spatial organization of cellular mem-
branes and their associated protein structures3. However, a
detailed and comprehensive biophysical understanding of the
mechanisms underlying organellar membrane reshaping in the
cellular context remains elusive.

Molecular dynamics simulations are increasingly becom-
ing state of the art for understanding membrane biophysics
in the cellular context4–7. Multi-scale approaches combin-
ing all-atom, coarse-grained and meso-scale methods are used
to tackle various aspects of membrane remodeling8,9. All-
atom models are used to gain detailed insight into protein-
lipid interactions and protein-protein interactions inside mem-
branes but are limited in size and time scale9. Coarse-
grained particle-based simulations approaches make it possi-
ble to study large membrane-associated complexes and com-
plex membrane shape changes9–12. However, simulations
of large cell-scale membrane systems are currently impossi-
ble with molecular models at atomic or near-atomic resolu-
tion. Computational resources limit the time and length scales
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that can be studied with particle-based approaches. There-
fore, sub-cellular and cell-scale remodelling processes of or-
ganelles, vesicles, and cells are commonly studied by us-
ing meso-scale models and continuum approaches, primarily
membrane-elastic theory13,14.

Dynamic triangulated surfaces (DTSs) have emerged as
a useful meso-scale model to solve the Helfrich Hamilto-
nian numerically and study large-scale membrane-shaping
processes. Initially, DTSs were used to study shaping and
properties of fluctuating giant unilamellar vesicle (GUV)15–18.
The discretization of membranes makes it possible to sam-
ple non-axisymmetric shapes17 beyond symmetric arc length
parameterizations19,20. This method has been applied to a
number of biological processes with increasing complexity in-
cluding nano-particle wrapping21,22, membrane tubulation23,
formation of autophagic vesicles24, formation of Golgi
stacks25, and protein-induced membrane budding26,27.

Here, we present TriMem, an open-source software pack-
age for efficient simulation and optimization of DTSs using
a parallelized hybrid Monte Carlo (MC) approach. This ap-
proach overcomes limitations of existing serial implementa-
tions. In such non-parallel approaches, the number of vertices
of the triangulated membrane representation is severely lim-
ited to keep computational times manageable. Yet, large num-
bers of vertices are needed to describe highly curved mem-
branes, which are ubiquitous in cellular organelles such as
mitochondria or the tubular ER. As a further challenge, the
commonly used random single-particle MC moves are inef-
ficient with respect to sampling. Importantly, only few code
bases for these types of simulations have been made freely
available to the broader community despite the large amount
of scientific research in this area, and none of them are paral-
lelized yet28,29.
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This paper is structured as follows. First, we briefly re-
capitulate the discretized version of Helfrich theory and the
Helfrich Hamiltonian used throughout this work (section II).
We then introduce the TriMem software, including its imple-
mentation strategy and algorithms (section III). We present
benchmark results on timings for varying mesh sizes and com-
pare the performance to a serial single-core implementation
(section III D). We validate the software by reproducing well
established phase diagrams of vesicle shapes (section IV). Fi-
nally, we provide a comprehensive outlook on the expected
impact of our software and on future developments (section
VI)

II. MEMBRANE MODEL

Membrane-elastic theory describes membranes as 2D sur-
faces with fluid properties embedded in 3D space. In its sim-
plest form, the bending free energy of a membrane can be
written in terms of the so-called Helfrich Hamiltonian13,14,

EB =
κB

2

∮
dA(2H−C0)

2 +κG

∮
dAKG. (1)

with H = 0.5(c1 + c2) the mean curvature and KG = c1c2 the
Gaussian curvature, where c1 and c2 are the principal curva-
tures. C0 signifies the intrinsic curvature of the membrane
which is modulated by a variety of factors, including pro-
teins, lipid composition and membrane asymmetry. κB and
κG are the bending rigidity and Gaussian bending modulus,
respectively, and describe the elastic properties of the stud-
ied membrane. The second term, the Gaussian curvature,
can usually be neglected because it is constant in the absence
of changes of the topology according to the Gauss-Bonnet
theorem. Multiple extensions and variations of the Helfrich
Hamiltonian have been introduced to include a broad spec-
trum of external factors such as area difference, protein in-
clusions, and osmotic pressure. Variational minimization of
the Helfrich Hamiltonian with respect to the membrane shape
leads to fourth-order differential equations, which have been
solved analytically only for a limited number of cases of high
symmetry30,31. However, numerical solutions are achievable.

To make simulations of membrane shapes computationally
tractable and amenable to integration and MC sampling, the
surface is discretized as a triangular mesh, which can in prin-
ciple represent arbitrary surface shapes. The Hamiltonian of
this discretized system (Htot) is more complex than the origi-
nal Helfrich Hamiltonian. We decompose the energy as

Htot = EB +EV +EA +E∆A +ET +ER (2)

where EB is the bending energy, EV the volume energy to
maintain the total internal volume, EA the area energy to main-
tain the total surface area, E∆A the area-difference energy
(ADE), ET the tethering potential, and ER the repulsive po-
tential. In the following, we explain how we calculate these
energies from triangulated surfaces.

To introduce the energy terms, we first have to define the
DTS. A closed surface system consists of NT = 2(NV −2) tri-
angles, with NV vertices connected by 3(NV − 2) tethers. To

this end we introduce a triangulation T := (x,F) as a tuple
of vertex positions x := {xi}NV

i=1 (with a single vertex xi ∈ R3)
and triangles F := { fi}NT

i=1. Thereby a single oriented trian-
gle fl := {(i, j,k)|i, j,k ∈ [1,NV ], i 6= j 6= k} is given by an
ordered 3-tuple indexing into the vertices x. For the conve-
nience of notation, we define the vertex-vertex connectivity
vv

i := { j|i, j ∈ fk∀ fk ∈ F, i 6= j}, the vertex-face connectivity
v f

i := { j|i ∈ f j∀ f j ∈ F}, the set of edges E := {(i, j)|i, j ∈
fk∀ fk ∈F, i 6= j} and the edge-face connectivity e f

i j := {k|i, j∈
fk}

We discretize the calculation of the Helfrich Hamiltonian
Htot on the DTS using a vertex-averaged formulation as pre-
viously described extensively in ref. 17. The total bending
energy Eb is given by the sum over all vertices of the bending
energy per vertex

EB = 2κB

NV

∑
i=1

M̂2
i

Âi.
(3)

The area Âi per vertex i is calculated as

Âi =
1
3 ∑

j∈v f
i

A j, (4)

where A j is the area of the single triangle f j. The average
mean curvature M̂i associated with vertex i can be calculated
as sum over all adjacent edges

M̂i =
1
4 ∑

j∈vv
i

ri jφi j, (5)

where ri j = ‖x j−xi‖ and φi j is the angle between the oriented
normal vectors na, nb of the triangles in e f

i j, i.e., adjacent to
the edge (i, j), calculated as cos(φi j) = na ·nb.

The total mean curvature of the system is then computed by

M =
NV

∑
i=1

M̂i. (6)

The energies for the volume and area constraint are given
by EV and EA, respectively, and can be written as simple har-
monic potentials

EV = κV

(
V
V0
−1
)2

(7)

and

EA = κA

(
A
A0
−1
)2

(8)

with κV , κA being the coupling constants, respectively. The
corresponding reference values are given by V0 and A0. κV
and κA are usually chosen several orders of magnitude larger
than κB to avoid non-physical area and volume fluctuations.
The total area A is calculated as

A =
NT

∑
j=1

A j. (9)
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Also the volume V can be calculated as a discrete sum,

V =
NT

∑
j=1

Vi =
1
3

NT

∑
i=1

(Ri ·ni)A j, (10)

where Vi is the signed sub-volume of a single triangle, Ri the
position vector, and ni the unit normal vector.

The ADE, E∆A, is given by

E∆A = κ∆A

(
∆A
∆A0
−1
)2

(11)

The area difference ∆A of a bilayer with respect to its shape
can be written similarly as previously defined for continuous
representations32,33 as

∆A = 2h
NV

∑
i=1

M̂i, (12)

where the sum runs over all vertices and M̂i is the mean cur-
vature associated with each vertex, respectively, and h is the
thickness of the neutral surfaces. When choosing κ∆A → ∞

we recover the bilayer couple model where ∆A acts as a
constraint33. Numerically we convert this by choosing κ∆A
to be on the order of 105 - 106kBT , where kB is Boltzmann’s
constant and T is the temperature23.

The overall tether-energy is given by a coupling constant
κT times the sum over the tether pair-potential T (ri j) over all
edge lengths ri j,

ET = κT ∑
(i, j)∈E

T (ri j). (13)

This energy serves to constrain the edge length ri j and to guar-
antee the efficient and accurate simulation of fluid triangu-
lated surfaces. Previous work17,23 used discrete flat bottom
potentials; however, these are not amenable to smooth time
integration. In order to use the tether potential in hybrid MC
simulations a continuous representation is required18. To be
able to use large integration time steps ∆t, it is crucial to avoid
diverging branches that are present in previous formulations.
Therefore, we use a continuous tether potential of the func-
tional form

T (l) =


e

l
l−lc1 l−r if l ≤ lc1

rr+1(l− lc0)
r if l ≥ lc0

0 otherwise

(14)

with the lc1 and lc0 being the lower- and upper onset of penal-
ization and the slope r ∈ N1 of the potential well.

The overall repulsion energy is given by

ER = κR

NV

∑
i=1

NV

∑
j=1, j/∈Si

R(ri j), (15)

where Si is a set of excluded vertices for vertex i, e.g., the set
of directly connected neighbors. The O(N2

V ) complexity in-
volved in the evaluation of this potential is in practice reduced

by the use of efficient neighbor tracking techniques34. Mim-
icking the repulsive electrostatic membrane-membrane inter-
actions, mesh intersection is prevented by the introduction of
a penalty that applies a repulsive force on pairs of non-bonded
vertices that are below a certain threshold distance lc1. Such
a penalty is implemented by the repulsive branch of the tether
penalty, Eq. (14). It is given by

R(l) =

{
e

l
l−lc1 l−r if l ≤ lc1

0 otherwise.
(16)

The functional form of the membrane-membrane interaction
could be adapted to model various properties of membrane
adhesion and repulsion.

III. ALGORITHMS AND IMPLEMENTATION FOR
SIMULATION AND ENERGY MINIMIZATION

In the following we discuss how to efficiently sample the
configurational space of the DTS using the hybrid MC ap-
proach. First, we introduce the general sampling strategies
and discuss how they are implemented. Next, we highlight
the issues and solutions for efficient parallelization and evalu-
ate their performance. Finally, we discuss important features
to efficiently equilibrate and minimize structures in practice.
The different algorithmic components introduced below are
shown in the flow-chart in Fig. 1. We apply these tools in Sec.
IV.

A. General Sampling Strategy

The statistical properties associated with the Hamiltonian
(2) follow the canonical distribution function given by

p(x,F) ∝ exp [−βHtot(x,F)] . (17)

where we use β = 1 for the inverse temperature using reduced
units. We use a Markov chain MC procedure to sample con-
figurations (x,F). To account for the compound nature of the
state of the triangulation, given by vertex position as well
as vertex connectivity, we generate new samples using the
Metropolis algorithm with two alternating, well established
MC moves: (i) global vertex displacements and (ii) edge flips.
After each step the resulting configuration is accepted or re-
jected according to the Metropolis criterion15 by evaluating
the differences in the Hamiltonian Htot as a function of x and
F . Edge flips ensure membrane fluidity.

Vertex displacements are generated by a Hybrid Monte
Carlo scheme (HMC)35. HMC draws on the lifting of the
vertex coordinates x onto an artificial phase-space x 7→ (x,p),
where the components of the vector p are the momenta for all
vertices. On this phase-space, we impose a symplectic struc-
ture via the lifted Hamiltonian

H(x,p) = Htot(x)+
1
2

p>M−1p. (18)
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start

restart? read cpt
yes

algorithm?

no

do iter

hmc

run l-bfgs

minim

write cpt

finish

hmc move

yes

flip edges

update

write cpt

no

finish

FIG. 1. Algorithmic flow-chart of the TriMem software. ‘run l-bfgs’
refers to section III F, ‘hmc move‘ and ‘flip edges’ are introduced in
Algorithm 1 and Algorithm 2, respectively. ‘update’ summarizes the
update of the reference parameters η , see Sec. III E, and the temper-
ature T , see Sec. III G.

The transpose of a vector is indicated by superscript ‘>’ and
M−1 is the inverse of the diagonal mass matrix M. We exploit
HMC to generate state transitions (xn,pn)→ (xn+1,pn+1) in
the high-dimensional phase-space with high efficiency. Tran-
sitions generated in this way can then trivially be un-lifted
(xn+1,pn+1)→ xn+1 to give a new sample xn+1. In practice,
we use symplectic time-integration schemes such as the leap-
frog/Verlet integration method34. We show the general con-
cept of a HMC step from n→ n+ 1 in Algorithm 1. Verlet-
type integration accurately conserves H(x,p). As a result, the
global vertex moves of HMC are accepted with a probability
close to one.

Conceptually, a HMC step consists of a short molecular dy-
namics (MD) simulation of the vertices, with velocities drawn
from a Maxwell-Boltzmann distribution and forces given by
the negative gradient of Htot with respect to the vertex posi-
tions (see appendix A). Subsequently, the lifted Hamiltonian
is subject to the Metropolis criterion. The time integration pa-
rameter ∆t and L can be used to tune the efficiency of the HMC
algorithm. The time step ∆t influences the acceptance proba-
bility within the Metropolis criterion. The number of steps L
affects the mixing of the generated Markov chain. Tuning of
these parameters is crucial for an efficient sampling scheme.
The mass matrix M is another free parameter that can be tuned
to optimize the sampling performance. In this work we use a
single mass m, M = mI, and set m = 1 as a default. This

Algorithm 1 One step of the HMC algorithm. We randomly
draw new momenta from a Maxwell-Boltzmann distribution,
perform a number of integration steps, and accept or reject

the resulting configuration.
function HMC STEP(xn,∆t,L,T = 1)

p0 ∼N (0,mT I)
s0← xn
i← 0
while i < L do

pi+1/2 = pi−
∆t
2

∇ Htot(x)|x=si

si+1 = si +∆tM−1 pi+1/2

pi+1 = pi+1/2−
∆t
2

∇ Htot(x)|x=si+1

i← i+1
end while
α ← min(1,exp(H(s0, p0)−H(sL, pL))/T )
σ ∼U (0,1)
if σ ≤ α then

return sL
else

return xn
end if

end function

setting has proven efficient in practice. For sampling accord-
ing to Eq. (17), the application of the HMC framework leads
to an enormous gain in efficiency compared to a sequential
single-vertex-move dynamic. In particular in a high dimen-
sional regime, i.e., large number of vertices NV , HMC is es-
sential for efficient sampling.

Edge flips ensure the 2D-fluidity of the membrane and al-
leviate a possible bias due to a fixed vertex connectivity. In
an edge flip, the shared edge (i, j) of two adjacent triangles
(i, j,k) and (i, l, j) is changed to (k, l), resulting in modified
triangles (i, l,k) and ( j,k, l) (Fig. 2).

One step of edge flips consists of a sweep over a predefined
fraction γ ∈ [0,1] (in the following also referred to a target
flip rate) of the set of edges E. It is conceptually depicted in
Algorithm 2.

B. Implementation

The vast part of the computational workload of the algo-
rithms is the evaluation of the Hamiltonian and its gradient
(see also Appendix A). This evaluation is needed from within
the vertex moves as well as in the edge-flip move routine. At
the core of the energy computation is the evaluation of the
vertex-averaged quantities in Eqs. (4) and (5). Efficient eval-
uation of the vertex-connectivity is thus essential for overall
performance. To this end, we utilize the concept of the half-
edge data structure. This data structure for polygonal meshes
efficiently tracks incidence information of edges, vertices and
faces36,37. In particular, we make use of the OpenMesh li-
brary, which provides a generic implementation of the half-
edge data structure in C++38 that can handle various mesh
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Algorithm 2 One sweep of edge flips. The input is the set of
triangles F , the set of edges E, and the fraction γ of flips to

attempt. It makes use of the Hamiltonian H(F) as a function
of the mesh triangles, and the routines shuffle_edges(E) to
shuffle the list of edges and flip_egde(e), which takes an

edge, flips it, and alters the mesh connectivity. The routine
called update_hamiltonian(h, F , e) incrementally updates the

total energy for the changed flip patch (see Fig. 2).
function FLIP SWEEP(F ,E, γ)

hn← H(F)
E← shuffle_edges(E)
for i in range(γ |E|) do

flip_edge(ei)
hn+1← update_hamiltonian(hn,F,ei)
α ← min(1,exp(hn−hn+1))
σ ∼U (0,1)
if σ ≤ α then . evaluate Metropolis criterion

hn← hn+1
else

flip_edge(ei) . flip back in case of rejection
end if

end for
end function

sizes and geometries as input. To fully leverage the Open-
Mesh interface, we implement the evaluation of the Hamilto-
nian and its gradient in C++ and provide bindings to Python
using the pybind11 Python package39. This approach com-
bines the efficiency of a compiled programming language with
the convenience of the well-established Python ecosystem for
clear and extensible algorithm development. Using C++ for
the computationally intensive evaluations further allows us to
exploit shared-memory parallelism and the speedup offered
by modern multi-core architectures. To achieve this, we use
OpenMP40 to parallelize the loops that involve scans or reduc-
tions over all vertices in the triangulation, such as Eqs. (6)-
(10) and (12) and the respective gradient evaluations (see
Sec. III D). While parallelization of both the vertex moves and
components of the integration of short trajectories is straight-
forward, flip moves are more complex and require a more de-
tailed discussion.

C. A strategy for the parallel evaluation of edge flips

To increase the computational efficiency of flip moves, we
pre-select a set of possible flips and evaluate in parallel in-
dependent changes of geometric membrane properties and of
the energy. We then evaluate sequentially the correspond-
ing Monte Carlo flip moves, including the associated energy
changes from the aforementioned pre-calculated quantities.
We designed this Algorithm 3 to alleviate two of the main effi-
ciency bottle necks of Algorithm 2: (i) flip execution, i.e., the
technical realization of the change in vertex connectivity that
is provided by the underlying data structure; and (ii) energy
evaluation, i.e., the evaluation of the change in the Hamilto-

nian due to the change in connectivity. Both components are
crucially influenced by the evaluation of the vertex connectiv-
ity.

Due to the edge-based connectivity information imple-
mented by the half-edge data structure, flip execution pro-
vided by OpenMesh is realized efficiently by simply swap-
ping edge connectivity38. Since the individual edge flip can
technically be performed efficiently, the main computational
workload results from the energy evaluation of the flip-patch
associated to an edge flip. A straightforward exploitation of
the speed-up provided by the evaluation of the change of the
Hamiltonian for several edge flips in parallel is, however, still
complicated by two intermingled issues.

First, individual edge flips tend to have very low acceptance
probabilities due to the rather strict penalty on neighborhood
distances that is imposed by the tether potential (Eq. (14)).
The evaluation of the Metropolis criterion for a flip of sev-
eral edges at once thus suffers from an exponential decay of
the acceptance probability due the multiplicative nature of the
acceptance probabilities of single flips. Consequently, the ac-
ceptance of edge flips must be evaluated sequentially to estab-
lish a reasonable flip rate ε , which is defined as

ε =
number of accepted flips

γ |E|
, (19)

where |E| indicates the cardinality of the set of edges E. This
sequential evaluation therefore represents an inherent serial
component of Algorithm 2 that limits the potential speed-up
by construction.

Second, selected edges have to be independent such that
we can evaluate the respective changes in the Hamiltonian in
parallel. Afterwards, we sequentially evaluate the respective
acceptance probabilities. The independence of edges means
that they cannot be part of the same flip patch. A flip patch is
the set of edges affected by a flip (see Fig. 2). This condition
imposes a constraint on the set of edges for which the change
in the Hamiltonian can be evaluated in parallel. In order to
avoid the NP-hard problem of a deterministic pre-computation
of sets of non-interfering edges, we propose a randomized ap-
proach that is outlined in the remainder of this section.

Inspired by the batch-parallel evaluation of mesh proper-
ties of Shang et al.42, we adopt a batch-parallel version of
the flip-sweep Algorithm 3. Edges are first linearly assigned
to participating threads by chunking the vector of edges as
managed by the underlying data structure. During the sweep-
iteration, edges are then selected at random by each thread
from its respective chunk. To ensure independence of such a
parallel batch of edges, each edge is attempted to be locked
together with the associated flip-patch for the use by other
threads. For technical reasons, we impose this strict condition
of non-overlapping flip-patches within a batch of edges even
though non-inclusion of a flipped edge in another patch would
already suffice. The implementation draws upon a scoped data
locking mechanism that allows for an efficient detection of
patch clashes. Upon success of locking, a thread can indepen-
dently evaluate the patch-local contributions to the geomet-
ric properties M (Eq. (6)), A (Eq. (9)) and V (Eq. (10)), as
well as the contributions to the bending energy (Eq. (3)), the
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i

j
k l

FIG. 2. Extent of an exemplary flip patch. Shown is a patch of ver-
tices involved in a flip which is locked during a the flip move. In
a flip move the edge (i, j) (light red, solid) is flipped to (k, l) (light
red, dashed). All edges involved in the computation of the averaged
vertex properties (dark red) for the vertices i, j,k and l are included
in the flip patch and must be locked during the flip operation. Note,
for comparison, that this patch is significantly larger than the patch
required for a flip subject to the Delaunay criterion41 where the first
shell neighbors are not required.

tether-penalty (Eq. (14)) and repulsion-potential (Eq. (16)).
The computationally intense evaluations are thus parallelized
over a batch of edges with batch-size equal to the number
of threads used in parallel. Subsequently, the change in the
Hamiltonian and the acceptance probability for each edge in
the batch are evaluated sequentially, thus preserving ergodic-
ity of the resulting Markov chain. Although this inherent se-
rial component reduces the theoretically achievable speedup
as mentioned above, it has shown to be satisfactory in prac-
tice while maintaining a flip rate ε close to the serial version
(see section III D for detailed results).

D. Parallel performance

We analyze the parallel performance of the algorithms and
methods introduced in Sec. III on a unit sphere with differ-
ent degrees of mesh discretization as a test geometry. We
use the icosahedron recursion technique from the meshzoo
Python package43 to create high quality meshes with NV ∈
[624,2562,10242,40962,163842,655362] vertices. The re-
sults referred to in this section are produced on a dual socket
node with Intel® Xeon® Platinum 8280 CPUs with 56 cores
in total.

Figure 3 shows results for the parallel scaling of the differ-
ent algorithmic components with the number of threads for
different numbers of vertices: energy evaluation (Eq. (2)),
its gradient/force, flip-sweep according to Algorithm 3 and
a full step of the MC-procedure outlined above, comprised of
1 HMC-step (Algorithm 1 with L = 100 and ∆t = 1.0×10−4;
note that the results in Fig. 3 and Fig. 4 are invariant with re-
spect to the exact value of the time step ∆t) plus 1 flip-sweep.
To improve consistency, the measurements for energy, gradi-
ent and flip-sweep comprise 10 evaluations of the respective
components due to their short run-time.

The high arithmetic intensity involved in the energy and
gradient evaluations leads to efficient use of the available re-
sources, which is reflected in good parallel speedup on the
compute node. The flip-move sweep and MC-step evalua-

Algorithm 3 Parallel version of algorithm 2. The directives
# BARRIER and # CRITICAL refer to OpenMP directives
used in shared memory parallelism40. # BARRIER indicates

a barrier where threads have to wait for each other.
# CRITICAL defines a region that can only be executed by

one thread at a time.
function FLIP SWEEP(F ,E, γ)

hn← H(F)
# PARALLEL
E j← assign_edges_to_thread(E, j,γ)
E j← shuffle_edges(E j)
for i in range(

∣∣E j
∣∣) do

# BARRIER
locks← lock_patch(ei)
# BARRIER
if locks.empty() then

continue
end if
relase_locks(locks)
flip_edge(ei)
hn+1← update_hamiltonian(hn,F,ei)
# CRITICAL {
α ← min(1,exp(hn−hn+1))
σ ∼U (0,1) . evaluate Metropolis criterion
if σ ≤ α then

hn← hn+1
else

flip_edge(ei) . flip back in case of rejection
end if
} . end critical section

end for
end function

tions also benefit from an increase in parallel execution per-
formance, but a saturation trend is visible. This trend is a
result of both of these components containing a significant
amount of low arithmetic intensity workload. Thus, they are
more exposed to the bound of the memory bandwidth than the
energy and gradient evaluation. In addition, the flip-sweep
still has a serial portion that will inherently limit the achiev-
able speedup. However, in the experiments presented here,
this does not manifest itself as the critical component control-
ling the effective speedup. The scaling of the full MC-step
is only minimally affected by the flip-sweep due to the small
contribution of the flips-sweep to a full MC-step. Instead it is
governed by the amount of low arithmetic intensity workload
in the HMC-step (Algorithm 1).

Importantly, with our parallelized scheme, the computation
of a mesh with 40962 vertices is comparable to a single-core
run with a small system with 642 vertices. Without an explicit
limit on mesh size in openmesh, it is possible in principle to
simulate meshes at least up to a size of 106 − 107 vertices
(Fig. 3), as required for cellular scale membranes. The global
vertex moves in HMC ensures efficient sampling of the high
dimensional space even for large mesh sizes.

The effective time complexity of the algorithmic compo-
nents is shown in Fig. 4. The distance calculations necessary
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FIG. 3. Strong scaling of different algorithmic components with the number of threads for different problem sizes NV (shades of green). The
components are the evaluation of the energy, Eq. (2), its associated gradient/force, a flip-sweep according to Algorithm 3, and a full step of the
MC-procedure outlined in Sec. III with 1 HMC-step (with L = 100) and 1 flip sweep. For the components energy, gradient, and flip-sweep,
measurements consist of 10 evaluations each. The measurement for the component full-step consists of 2 steps.

for the computation of the repulsion penalty given by Eq. 16
are effectively reduced to O(NV ) by the neighbor list data
structures. This complexity on the level of the energy and
gradient evaluation is directly passed on to the evaluation of
the full MC-step.

The influence of the parallel implementation (algorithm 3)
on the flip rate ε of the flip-sweep is shown in Fig. 5. The
measurements are carried out for a mesh with NV = 10242
vertices and a target flip rate γ = 10%. We found that the
mean efficiency of ε ≈ 0.17% observed for the serial imple-
mentation reduces to ≈ 0.15% when using a full node with
56 cores. This slight decay is due to our randomized ap-
proach, in which the number of clashes in the locking of the
necessary flip patches increases with the number of parallel
threads used. These clashes lead to threads skipping a flip-
batch and can consequently result in a reduced number of
edge flips in total. Due to the linear distribution of edges
to threads, the spatial order of edges as reflected in the data
structure in memory can have an influence on the probabil-
ity of clashes. As applied by42, a spatial pre-ordering of the
edges (e.g., by space filling curves) might thus improve the
efficiency for high thread counts. Since the spatial ordering

of vertices resulting from the icosahedron reconstruction used
here is already rather good, preliminary tests have not shown
to improve the presented results. Nevertheless, for general
meshes the influence of spatial ordering is considered to have
significant influence. Therefore, this topic might be followed
up in future developments. In any case, the obtained effective
flip rates have proven sufficient to provide the desired effect
on the mesh mutability that is necessary to achieve membrane
fluidity and accurate results, cf. section IV.

E. Parameter Continuation for Stiff Restraints on Membrane
Shape

The accurate representation of the constraints regarding
volume and surface area requires large values for the fac-
tors κV , κA and κ∆A0 in the respective penalty formulations
given by Eqs. (7), (8), and (12). The conditioning of the
Hamiltonian in Eq. (2) is determined by these penalty terms.
That is, slight deviations of the initial configuration from the
desired target configuration in terms of the area A and the
volume V can have a large impact on the numerical stabil-
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orange). The components are according to Fig. 3. For the components energy, gradient and flip-sweep, measurements consist of 10 evaluations
each. The measurement for the component full-step consists of 2 steps. Color intensity indicates higher thread numbers. The slope of the grey
dashed line indicates O(NV ) linear time.

ity of the Hamiltonian and the sampling performance. To
mitigate such a performance degradation, TriMem offers the
possibility to use a technique from the concept of parameter
continuation44. To this end, we introduce the parameterized
Hamiltonian Hp(x,F ;η), with the explicit definition of pa-
rameters η := (V0,A0,∆A0). This enables a smooth blending
of the Hamiltonian Hp(x,F ;η0) → Hp(x,F ;η1) from some
initial parameters η0 to the target parameters η1 via the linear
interpolation

η = λη1 +(1−λ )η0 (20)

by varying an interpolation parameter λ ∈ [0,1] smoothly
from 0→ 1. By doing so, the sampling efficiency remains
higher, even in situations in which the initial configuration is
not consistent with the specific constraints in place. Param-
eter continuation can also help to overcome energy barriers
that might appear in an immediate instantiation of the tar-
get Hamiltonian. More generally, the parameterized Hamil-
tonian allows us to integrate systematic approaches to branch
tracking44 in future work.

Currently, we interpolate the whole set of parameters η si-
multaneously by defining and implementing a single interpo-

lation parameter λ . The efficiency of this scheme could be im-
proved by using a vector of interpolation parameters such that
individual components of the Hamiltonian are transformed in-
dependently.

F. Gradient-based energy minimization

If the initial configuration is not consistent with the imposed
constraints, we can improve the sampling efficiency by initial
energy minimization. Such a minimization can be interpreted
as the one-time application of a preconditioning and will bring
the initial configuration closer to the equilibrium configura-
tion, determined by Eq.(17). Energy minimization also avoids
the necessity of running long simulations with parameter in-
terpolation in the beginning. Since this is only an initial en-
ergy minimization prior to a HMC simulation, no particu-
lar requirements must be imposed on the convergence to the
global optimum. By ignoring edge flips during minimization,
we can use well established and efficient methods for function
optimization such as the L-BFGS method45. In TriMem, sim-
ulations can be run in minimization or HMC mode (see Fig.
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FIG. 5. Flip rate ε given by Eq. (19) of the parallel flip implementa-
tion given the number of threads. The target rate is γ = 10% and the
number of vertices is NV = 10242. For comparison, we show the rate
for the serial version (leftmost data). The cardinality of the sample
size is given in parentheses for every box. The flip efficiency de-
creases slightly with increased number of threads due to the locking
of flip patches from different threads.

1).

G. Simulated Annealing

Gradient-based Energy minimization of the vertex posi-
tions must be followed by a global minimization strategy ac-
counting for both vertex positions as well as mesh connec-
tivity. We apply a simulated annealing procedure for the ex-
ploration of the domain of Eq. (17) that is capable of find-
ing global minima/maxima. Following Ref.46, we implement
this method by simply modifying the temperature argument of
the HMC step in Algorithm 1 according to a cooling sched-
ule. Specifically, we apply an exponential cooling scheme
Tn+1 =max[exp(−λ )Tn,Tmin], with the cooling factor λ ∈R+

controlling the rate of cooling.
In TriMem, cooling can be initiated during HMC simula-

tions directly in the beginning or after a longer equilibration
period prior to the cooling. This enables sufficient sampling
of the configurational space before settling into the global (or
deep local) energy minimum.

IV. VALIDATION METHODS

We tested the robustness of the TriMem software and com-
pared it to analytical and numerical calculations from the lit-
erature. We reproduced several well established aspects of
the phase diagram for closed vesicles with c0 = 0 and with
respect to varying volume or area difference. In all simula-
tions, we used a bending rigidity of κB = 30kBT , which is a
typical value for biological membranes. The coupling con-
stants of the volume, κV , the area, κA, and the area differ-
ence, κ∆A, were chosen several orders of magnitude larger

with κV = κA = κ∆A = 1× 106kBT to impose a strong re-
straint. All simulations were performed using a mesh size of
NV = 1962 or 642 vertices starting from a sphere. The ini-
tial shapes were generated with the meshzoo library43. Our
results are not affected by mesh size.

A practical instruction to setup and run such simulations
with TriMem is available via Github (https://github.
com/bio-phys/trimem) on the documentation webpage.

1. Volume Phase Diagram

The individual configurations of the branches of the volume
phase diagram (Fig. 6) were generated as follows. The initial
shapes for each branch were generated using the minimiza-
tion procedure to initialize the system. Prolate simulations
were started at the reduced volume v = 3V/(4πR3) = 1.0 (Fig
6; blue triangles), oblate simulations at volume v = 0.65 (or-
ange circles) and stomatocyte simulations at v = 0.3 (green
squares). These initial shapes and volumes on the respec-
tive branches were achieved by using the preconditioning pro-
cedure (see Section III F). Then, using these initial shapes
the reference reduced volume v was lowered or increased by
0.025 instantaneously in each step. In each step the previous
final structure was used as initial configuration for the sub-
sequent step. By doing so the respective branches could be
mapped out by exploiting hysteresis. In all cases the simu-
lations could, in principle, switch their respective branches
on the phase diagram and otherwise no special restraint were
applied. Each simulation was run for 5× 105 steps using a
temperature T = 1kbT and in an additional 6× 105 steps the
temperature was reduced from 1 to 0 following section III G.
The rescaled bending energy of the lowest energy configu-
ration was plotted for each value. In all HMC simulations
an integration step size of 7−5 was used. The trajectories in
each HMC step were 100 steps long. The flip ratio was set to
γ = 0.1 of the vertex move steps. Previous tests showed this
flipping ratio was sufficient for fast vertex diffusion.

2. Area-Difference Phase Diagram

The area-difference phase diagram is another commonly
used benchmark to test the robustness of numerical membrane
bending simulation codes23,28,47. The simulations were per-
formed as follows. The initial shape for the HMC run was
generated in a two-step minimization procedure. First, the
volume was reduced to the respective target reduced volumes
of v = {0.5,0.55,0.6}, and second, the reduced area differ-
ence ∆a = ∆A/(4πR) was adjusted to the respective target
values between 1 and 1.8, by using the L-BFGS minimizer for
gradient based energy minimization for both parameters suc-
cessively. Then a HMC simulation was run for 1.5×107 steps.
After 1.4×107 steps 1×106 steps of cooling were performed
where the temperature was reduced from 1 to 0 according to
section III G. The bending energy and shape at the final step of
each simulation were extracted and normalized to the reduced
energy by 8πκB to construct the phase diagram. Otherwise
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FIG. 6. Phase diagram for a vesicle with Nv = 1962 vertices of spher-
ical topology in the plane of the reduced volume v and the bend-
ing energy EB. Shown are minimum energies obtained for different
membrane shapes as a function of v. Filled symbols indicate the re-
spective lowest-energy shapes. Open symbols indicate metastable
shapes at a given reduced volume. All states with prolate shapes are
shown as blue triangles. Oblate shapes are shown as orange circles.
Stomatocytes are shown as green rectangles. The dot-dashed and
dashed lines correspond to v = 0.59 and 0.56, respectively, and mark
transitions between stable branches. Exemplary energy-minimized
shapes for all corresponding branches are shown in Fig. S1.

the same parameters were used for the HMC simulations as
described above in section IV 1.

V. RESULTS AND DISCUSSION

We extensively validated our software for varying mesh
sizes and exhaustively tested all features by reproducing
known phase diagrams of vesicle shape47,48. First, we ran a
range of simulations to produce the volume phase diagram for
a vesicle shown in Fig. 6. In the following, we consistently
use reduced volumes v as an order parameter. Starting with
a sphere (v = 1), we explored the range between v = 1 and
0.2 to locate minimal shapes found as described in section IV.
The y-axis shows the bending energy EB and was re-scaled
with 8πκB, the bending energy of a sphere, as in previous
work23,47.

Here, we explored the stability of the three well established
branches in the vesicle volume phase diagram; the prolate,
the oblate and the stomatocyte17,28. The transitions between
the three branches are not smooth, i.e., the first derivative of
the energies with respect to the reduced volume are discon-
tinuous. Stable and metastable states representing the various
shapes are separated by energy barriers.

The prolate branch (Fig. 6, blue triangles) gives the global
energy minima for v & 0.65. As the reduced volume is low-
ered, the vesicle changes its shape from the sphere at v = 1

to a prolate shapes and then to extended tubular structures.
Low reduced volumes result in long metastable tubes with nar-
row diameter and a far higher bending energy than the corre-
sponding oblate or stomatocyte shapes with the same reduced
volume, which constitutes the global minimum for v . 0.65.
Below this reduced volume the branch is metastable as pre-
viously outlined in23,28. All prolate shapes and tubes below
v = 0.65 are only found when starting from an initial prolate
configuration and mapping out the branch by hysteresis, indi-
cating that they are local minima and metastable.

The oblate branch is the global minimum between 0.59 .
v . 0.65 (Fig. 6 orange spheres). Simulations starting from
the sphere instantaneously reducing the volume and using the
L-BFGS minimizer to a target value v < 0.65 always con-
verged to an oblate shape. This result is in agreement with
observations of previous work17,28. Above v = 0.725, the
oblate is always unstable and the local energy minimum for
the branch vanishes, and all initial shapes (sphere, prolate,
oblate) converged to the prolate shape, which is consistent
with previous theoretical work49. Oblates in the range of
0.65 < v . 0.725 can only be seen when starting with an
oblate configuration in the globally stable range and tracing
out the branch by hysteresis. By doing so the structures re-
maining in the metastable minimum. Similarly, the oblate
shape is metastable at a reduced volume of v . 0.59.

For a reduced volume of v . 0.59 the stomatocyte is the
global minimum, which is also achieved from the precondi-
tioning step with the L-BFGS minimizer from a sphere using
a stiff restraint on the target volume (Fig 6 green squares). For
v > 0.59, we find that the stomatocyte shapes are metastable
with respect to oblates. The energy of the stomatocytes are
nearly independent of the reduced volume with EB ≈ 16πκB.
Overall, all energies for the globally energy-minimized shapes
are in good agreement with previous work following similar
approaches17,28.

To test if the area-difference is correctly evaluated, we also
produced the phase diagram for varying area differences at
multiple fixed reduced reduced volumes. Fig. 7 shows the
rescaled bending energy as a function of the area difference
∆a0. Simulations were run for area-difference increments of
0.025 and the energy-minimized structures after cooling to
T = 0 were plotted (see IV).

We verified that both the minimized energies and the corre-
sponding shapes are in agreement with previous simulations
and theoretical calculations23,28,47. Small differences in the
bending energies for some shapes in Fig. 7 are likely caused
by hysteresis effects around boundaries in shape space, the
use of edge flips here, and different resolutions of the trian-
gulations. The oblate configuration and the tube shapes are
metastable for v= 0.55 and are separated by an energy barrier.
The top of the barrier corresponds to the non-axisymmetric
paddle shape which separates the prolate and tube branch and
converts to a tube with increasing ∆a. For all values with
∆a < 1.4 we observed structures with a D3h symmetry. First
triangular shaped oblates emerge which transition into three-
armed starfish shapes (Fig. S2). We also find that the dumb-
ell/tube structure47 is a local minimum for ∆a0 > 1.4. Tubes
are found for all higher values of ∆a0. We note that extensive

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 26, 2022. ; https://doi.org/10.1101/2022.05.25.493239doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.25.493239
http://creativecommons.org/licenses/by-nc/4.0/


11

1.0 1.2 1.4 1.6 1.8

area difference ∆a

2.0

2.5

3.0

3.5

EB

8πκB

Theory
v = 0.5
v = 0.55
v = 0.6

FIG. 7. Energy as function of reduced area difference ∆a at con-
stant volume v for a mesh with Nv = 642. The simulation results are
shown as empty circles for a constant volume v = 0.5 (blue), 0.55
(green), and 0.6 (red), respectively. For reference, the light lines are
adapted from earlier calculations47 using numerical triangulation50.
Exemplary energy-minimized shapes for varying area difference are
shown in Fig. S2

descriptions and discussions of these phase diagrams and their
symmetries are provided in previous systematic studies23,28,47.

Taken together, these simulations validate that TriMem
faithfully reproduces data from previous studies and can be
used to study a broad range of reshaping processes. All pa-
rameters are correctly assessed and our parallel dynamics pro-
tocol produces the expected results.

VI. CONCLUSIONS AND OUTLOOK

We presented TriMem, a parallelized open-source software
package for hybrid MC simulations of triangulated meshes
representing lipid membranes. TriMem offers a robust, ef-
ficient, and parallel implementation of the method that en-
ables users to perform simulations efficiently with large mesh
sizes of 106− 107 vertices, which was not previously possi-
ble. Many previously available software packages were lim-
ited to a few thousand vertices by the computational cost. We
demonstrated how all relevant move types can be efficiently
parallelized across multiple CPU cores up to a full two-socket
shared memory compute-node (Fig. 3). While parallelization
of energy and force routines to generate short MD trajecto-
ries for vertex moves is straightforward, we showed that flip
parallelization requires a more complex algorithm to produce
correct results. We introduced a novel method for flip moves
that combines an effective generation of sets of edges with
non-interfering flip-patches. The parallel computation of the
independent energy changes and subsequent evaluation of the
acceptance in series increases the performance. We bypass a
major issue resulting from serial energy evaluation required
for individual flip moves.

Additionally, the HMC approach allows for more effi-
cient global vertex displacement moves with acceptance ratios
of nearly one due to efficient proposals generated by short

molecular dynamics trajectories of the mesh and vertices18.
This leads to fast convergence of sampling and will be partic-
ularly useful when simulating large meshes with millions of
vertices.

We implemented an efficient neighbor-list algorithm to en-
able the use of repulsive, and possibly adhesive potentials, be-
tween non-neighbor vertices. The resulting code scales lin-
early, O(NV ), with mesh size, and makes calculations with
large meshes possible. This feature proved particularly im-
portant to sample highly curved membrane shapes such as
stomatocytes, where self-intersection of the mesh could re-
sult in faulty representations. It can also be further expanded
to model the general physical properties of membrane repul-
sion due to charges, possible protein-mediated adhesion, and
systems with multiple membrane meshes.

The user interface of the software was designed for versatil-
ity but with ease-of-use in mind. Some functionality, such as
the configuration file, is kept loosely in the style of well estab-
lished molecular simulation packages such as GROMACS51,
which is widely used in the biophysics community. The ease-
of-use and open-source nature of the code should empower a
broad community of biophysicists to quickly set up, run, and
evaluate large-scale membrane remodeling processes of inter-
est. The Python front-end should also enable other users to
quickly add novel features to the code.

We validated the software by reproducing several phase di-
agrams and results for vesicle shaping, which have been previ-
ously explored in various software packages and foot on theo-
retical calculations17,23,28,47,49. We found in all cases that the
validation was in good agreement with existing work, indicat-
ing the robustness of our algorithms.

The code was designed for performance with C++ in the
backend and for ease-of-use with a Python interface in the
frontend. The framework provided by the TriMem pack-
age can be extended in the future in a straightforward way
to incorporate more complex biological assemblies of mem-
branes. Protein membrane interactions, multiple membrane
meshes, and cyctoskeletal attachments will likely be added
to the features of TriMem, enabling a broader range of cell-
scale simulations. Systems containing multiple membranes
in close vicinity are needed to build organelles and cell-scale
membrane structures. Additionally, protein vertices and lipid
domains can be included to study complex protein-induced
membrane remodeling processes7,19.

We anticipate that TriMem, with some modifications, will
also enable simulations of complex membrane topologies.
One possible direction is to include periodic boundary con-
ditions (PBC) when defining the topology through the local
connectivity of the graph. An implementation of PBC will en-
able the preparation of quasi-infinite membrane shapes from
tubes (PBC in z direction) over flat membranes (PBC in the
x-y plane) to lipidic mesophases (PBC in all directions x, y,
z). Another possible direction is to simulate multiple discon-
nected membranes, such as one vesicle enclosing another, or
stacks of membranes as they occur in the Golgi25. Here, the
vertex repulsion can ensure that the different membranes do
not interpenetrate. It is also possible to fix the spatial position
of certain vertices. In this way, the dynamic membrane can
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be connected at fixed seams to other shapes, e.g., to form the
half-toroidal pores connected with two flat background mem-
branes as seen in nuclear pore complexes12.

In the future, we envision that TriMem in combination with
modern structural biology techniques such as cryo-ET will
shed light on the structure and dynamics of membranes on
an organelle and eventually cell-scale level. Cryo-ET will
increasingly serve as data source to build accurate compu-
tational models for coarse-grained simulations. We envi-
sion a combination of multi-scale simulation techniques in-
cluding TriMem’s parallelized capability of performing large-
scale simulations required to gain mechanistic understanding
of cell-scale membrane remodeling processes.

VII. SOFTWARE AVAILABILITY

TriMem is available as free software under a GPL-3 license
from (https://github.com/bio-phys/trimem) and can
be installed as a Python package using pip52. As such, it can
be used as a Python library with predefined building blocks for
the methods and algorithms presented in the previous sections.
It also provides a command line interface that encapsulates the
algorithmic flow shown in Fig. 1, which is controlled via an
input configuration file. For a more detailed description on the
usage, we refer the reader to the documentation which can be
found via the Github link above. Software contributions from
third party developers are welcome as pull requests on Github.

SUPPLEMENTARY MATERIAL

See the supplementary material for Figs. S1 and S2 show-
ing minimum-energy vesicle shapes.
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Appendix A: Gradient of the Hamiltonian

The gradient of the Hamiltonian (2) can be derived in terms
of the derivatives of quantities defined on the n-simplexes that
define the triangulation T . For the derivatives of these quan-
tities with respect to the vertex positions xi, we apply efficient
and well-known formulas from discrete geometry53. In par-
ticular, we need the derivatives of the edge length, the face
area, the face volume and the dihedral angle with respect to
the involved vertex coordinates.

For the length ri j = ‖u‖ = ‖x j − xi‖ of the directed edge
(xi,x j), the gradient is given by

dri j

dxi
=− u
‖u‖

(A1)

dri j

dx j
=

u
‖u‖

. (A2)

The gradient of the area A of an oriented triangle (i, j,k) ∈
F with normal n is given by

dA
dxi

=
1
2

n× (xk− x j), (A3)

dA
dx j

=
1
2

n× (xi− xk), (A4)

dA
dxk

=
1
2

n× (x j− xi). (A5)

The gradient of the volume V associated to an oriented tri-
angle (i, j,k) ∈ F (computed as the volume of the tetrahedron
(xi,x j,xk,O), O being the origin, is given by

dV
dxi

=
1
6
(x j× xk), (A6)

dV
dx j

=
1
6
(xk× xi), (A7)

dV
dxk

=
1
6
(xi× x j). (A8)

And the gradient of the dihedral angle φi j between the nor-
mals of the two oriented triangles (i, j,k) ∈ F and (i, j, l) ∈ F ,
with common edge (i, j) and normals n1 and n2, is given by

dφi j

dxi
= (cot(α3)n1 + cot(α4)n2)/ri j, (A9)

dφi j

dx j
= (cot(α1)n1 + cot(α2)n2)/ri j, (A10)

dφi j

dxk
=−(cot(α1)+ cot(α3))n1/ri j, (A11)

dφi j

dxl
=−(cot(α2)+ cot(α4))n2/ri j, (A12)

whereby the αi are the sector angles defined by

α1 := ∠xkxix j, (A13)
α2 := ∠x jxixl , (A14)
α3 := ∠xix jxk, (A15)
α4 := ∠xlx jxi. (A16)

(A17)
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