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The gauge principle is fundamental in formulating the Standard Model. Fermion–gauge-boson couplings
are the inescapable consequence and the primary determining factor for observable phenomena.
Vertices describing such couplings are simple in perturbation theory and yet the existence of strong-
interaction bound-states guarantees that many phenomena within the Model are nonperturbative. It is
therefore crucial to understand how dynamics dresses the vertices and thereby fundamentally alters the
appearance of fermion–gauge-boson interactions. We consider the coupling of a dressed-fermion to an
Abelian gauge boson, and describe a unified treatment and solution of the familiar longitudinal Ward–
Green–Takahashi identity and its less well known transverse counterparts. Novel consequences for the
dressed-fermion–gauge-boson vertex are exposed.

© 2013 Elsevier B.V. Open access under CC BY license.
1. Introduction

Identities of the Ward–Green–Takahashi (WGT) type [1–3] have
long been known and used in gauge theories. The widely famil-
iar forms provide constraints on the longitudinal part of n-point
Schwinger functions; i.e., propagators and vertices. For example, in
an Abelian gauge theory the dressed-fermion–gauge-boson vertex,
Γμ(k, p) in Fig. 1, satisfies

qμiΓμ(k, p) = S−1(k) − S−1(p), (1)

where the dressed-fermion propagator may be written

S(p) = 1/
[
iγ · p A

(
p2) + B

(
p2)]. (2)

Eq. (1) is a nonperturbative consequence of gauge invariance in
an Abelian theory and, following Ref. [4], it has been used ex-
tensively in the construction of models for the dressed-fermion–
gauge-boson vertex. (Renormalisation does not affect the form of
the identities we consider, so we do not explicitly refer to it.
A Euclidean metric is used herein: {γμ,γν} = 2δμν ; γ

†
μ = γμ;
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Fig. 1. Dressed-fermion–gauge-boson vertex, Γμ(k, p), with the momentum flow in-
dicated.

γ5 = γ4γ1γ2γ3, tr[γ5γμγνγργσ ] = −4εμνρσ ; σμν = (i/2)[γμ,γν ];
a · b = ∑4

i=1 aibi ; and Q μ spacelike ⇒ Q 2 > 0.)
It is natural to question the need for vertex Ansätze, given

that QED has been tested perturbatively to remarkable precision
through comparison with experiment [5]. However, the context for
utility here is not the QED of interactions between leptons and
photons. Instead, one has in mind theories in which the dressed-
fermion propagator is strongly modified from its perturbative be-
haviour and hence so, too, is the vertex.

An obvious example is QCD, in which the dressed-quark
two-point function is described by two momentum-dependent
functions: a wave-function renormalisation, Z(p2) = 1/A(p2),
and mass function, M(p2) = B(p2)/A(p2), both of which are
strongly modified from their perturbative forms for p2 � (5ΛQCD)2

[6,7]. This dressing is associated with dynamical chiral symmetry
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breaking (DCSB), a particularly striking feature of the Standard
Model that plays an important role in formation of the visible mat-
ter in the Universe [8]. In a massless theory; i.e., in QCD’s chiral
limit in the absence of DCSB, M(p2) ≡ 0. (Notably, the gluon also
acquires a momentum-dependent mass function [9,10], mG(k2),
which is large at infrared momenta [11–18]: mG(0) � 0.5 GeV �
M(0).)

The electromagnetic vertex associated with such a quark must
differ markedly from the perturbative form at infrared momenta.
This is obvious from Eq. (1), since

iqμγμ �= iγ · kA
(
k2) + B

(
k2) − iγ · p A

(
p2) − B

(
p2); (3)

and the mismatch is largest within that domain upon which A, B
differ conspicuously from their perturbative forms. The importance
of this and kindred dressing to the reliable computation of observ-
ables involving composite systems was exposed in Refs. [19–22].
The most sophisticated Ansätze currently available are detailed in
Refs. [23,24] but they follow upon a great deal of work, which may
be traced from Ref. [4].

2. Transverse identities

The transverse WGT identities [25–29] are less familiar and,
prima facie, less useful, too. In (colour-singlet) vector and axial-
vector channels connected with a fermion of mass m, these iden-
tities read (t = k + p):

qμΓν(k, p) − qνΓμ(k, p) = S−1(p)σμν + σμν S−1(k)

+ 2imΓμν(k, p) + tλελμνρΓ A
ρ (k, p)

+ AV
μν(k, p), (4)

qμΓ A
ν (k, p) − qνΓ A

μ (k, p) = S−1(p)σ 5
μν − σ 5

μν S−1(k)

+ tλελμνρΓρ(k, p)

+ V A
μν(k, p), (5)

where σ 5
μν = γ5σμν and Γμν(k, p) is an inhomogeneous tensor

vertex. Whereas the longitudinal WGT identity expresses proper-
ties of the divergence of the vertex, the transverse identities relate
to its curl (as Faraday’s law of induction involves an electric field).
The last two terms in Eq. (4) arise in computing the momentum
space expression of a nonlocal axial-vector vertex, whose defini-
tion involves a gauge-field-dependent line integral [29]; and the
last two terms in Eq. (5) arise from similar manipulations of an
analogous nonlocal vector vertex. Note that, like Eq. (1), the trans-
verse identities are valid in any covariant gauge, which is the class
we focus upon, and do not explicitly display dependence on the
gauge-fixing parameter. (Whilst an anomaly term can be included
in Eq. (5) [30], we concern ourselves with flavoured vertices; i.e.,
those free from such amendment.)

It is the presence of the unfamiliar quantities AV
μν(k, p),

V A
μν(k, p) in the transverse identities that lends them an appear-

ance of impracticality, since even at one-loop order the expressions
for AV

μν(k, p), V A
μν(k, p) are complicated [30–32] and, moreover,

they lead to a coupling between the vector and axial-vector iden-
tities. We cannot overcome the complexity but something can be
done about the induced coupling between the identities.

Before doing so, it is worthwhile explaining that, in general,
twelve independent tensor structures are required to specify a
fermion–vector-boson vertex: given the matrix-valued vectors γμ ,
kμID, pμID, where ID is the 4 × 4 identity in Dirac space, one can
construct twelve independent quantities that behave as a vector
under Poincaré transformations.
We make our conventions explicit by writing

Γμ(k, p) = Γ L
μ(k, p) + Γ T

μ (k, p), (6)

Γ L
μ(k, p) =

4∑

j=1

λ j(k, p)L j
μ(k, p), (7)

Γ T
μ (k, p) =

8∑

j=1

τ j(k, p)T j
μ(k, p), (8)

where the matrix-valued tensors {L j
μ(k, p), j = 1, . . . ,4} and

{T j
μ(k, p), j = 1, . . . ,8} are given, respectively, in Eqs. (A.1)

and (A.2). Following inspection of Eqs. (A.2), it becomes clear that
qμΓ T

μ (k, p) ≡ 0.
Now consider the matrix-valued tensors

T 1
μν = 1

2
εαμνβtαqβ ID, T 2

μν = 1

2
εαμνβγαqβ . (9)

Contracting the left-hand-side of Eq. (5) with these tensors pro-
duces zero. Operating then with the right-hand-sides equated to
zero, and using

T 1
μνtλελμνρΓρ(k, p) = t2q · Γ (k, p) − q · tt · Γ (k, p), (10)

T 2
μνtλελμνρΓρ(k, p) = γ · tq · Γ (k, p) − q · tγ · Γ (k, p), (11)

one finds

q · tt · Γ (k, p) = T 1
μν

[
S−1(p)σ 5

μν − σ 5
μν S−1(k)

]

+ t2q · Γ (k, p) + T 1
μν V A

μν(k, p), (12)

q · tγ · Γ (k, p) = T 2
μν

[
S−1(p)σ 5

μν − σ 5
μν S−1(k)

]

+ γ · tq · Γ (k, p) + T 2
μν V A

μν(k, p). (13)

This series of identities involves only the vector vertex. We have
thus uncoupled the equations.

It is worth remarking that the vector and axial-vector vertices
together are required in order to understand electroweak inter-
actions within the Standard Model. One may obtain information
about the axial-vector vertex through an analogous procedure in-
volving Eq. (4).

The complicated elements in Eqs. (12), (13) are T 1,2
μν V A

μν(k, p).
Whilst these quantities cannot readily be computed, they are, nev-
ertheless, merely matrix-valued scalar amplitudes and hence can
be expressed succinctly:

iT 1
μν V A

μν(k, p) = ID X1(k, p) + γ · qX2(k, p)

+ γ · t X3(k, p) + [γ · q, γ · t]X4(k, p), (14)

iT 2
μν V A

μν(k, p) = ID X5(k, p) + γ · qX6(k, p)

+ γ · t X7(k, p) + [γ · q, γ · t]X8(k, p), (15)

where {Xi, i = 1, . . . ,8} are scalar functions, which are undeter-
mined until one has an Ansatz or solution for the vector vertex.
We note that the mass-dimensions of T 1,2

μν V A
μν(k, p) are, respec-

tively, three and two.
Although it might not be immediately obvious, these manipula-

tions have achieved an important end. They have brought us to a
set of three matrix-valued equations for scalar-valued projections
of Γμ(k, p); viz., Eqs. (1), (12), (13). This amounts to a collection
of twelve linearly-independent, coupled linear equations for twelve
unknown scalar functions; and therefore a solution of these equa-
tions completely determines Γμ(k, p).
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3. Solution of the coupled identities

One may now use any reliable means to solve the system of
coupled linear equations. Irrespective of the presence and form of
the functions {Xi, i = 1, . . . ,8}, part of the complete solution has

λ1(k, p) = ΣA
(
k2, p2), λ2(k, p) = �A

(
k2, p2),

λ3(k, p) = �B
(
k2, p2), λ4(k, p) = 0, (16)

where (x = k2, y = p2)

Σφ(x, y) = 1

2

[
φ(x) + φ(y)

]
, �φ(x, y) = φ(x) − φ(y)

x − y
. (17)

Namely, a necessary consequence of solving Eqs. (1), (12), (13), is
the identification of Γ L

μ(k, p) with the result derived in Ref. [4];
i.e., the Ball–Chiu Ansatz. The system of equations is linear, so the
solution for Γ L

μ(k, p) is unique. Note that we made no attempt to
impose a particular kinematic structure on the solution. Irrespec-
tive of the tensor basis chosen, and we used a variety of forms,
not just those in Eqs. (A.1)–(A.9), this part of the solution is free of
kinematic singularities. The functional form of λ3(k, p) signals that
the coupling of a dressed-fermion to a gauge boson is necessarily
influenced heavily by DCSB.

The eight functions in Eq. (8) are also completely specified.
Their form depends on {Xi, i = 1, . . . ,8}; e.g., the simplest is

τ1(k, p) = 1

2

X1(k, p)

(k2 − p2)((k · p)2 − k2 p2)
. (18)

The expressions for {τ j, j = 2,4,6,7} are more complicated but,
in common with τ1, they do not explicitly involve the scalar func-
tions (A, B) which define the dressed-fermion propagator. This is
the material point. It means that any and all effects of (A, B) in
{τ j, j = 1,2,4,6,7} are only expressed implicitly through a solu-
tion of the vertex Bethe–Salpeter equation. (N.B. Our subsequent
discussion is independent of all other details about the forms of
{τ j, j = 2,4,6,7}.)

In contrast, the expressions for {τ j, j = 3,5,8} explicitly in-
volve combinations of A(k2), A(p2), B(k2), B(p2) and {Xi, i =
1, . . . ,8}. If one supposes that {Xi ≡ 0, i = 1, . . . ,8}, then simple
results are obtained:

2τ3(k, p) = �A
(
k2, p2), (19)

τ5(k, p) = −�B
(
k2, p2), (20)

τ8(k, p) = −�A
(
k2, p2). (21)

The following features of the transverse part of the solution to
Eqs. (1), (12), (13) are particularly noteworthy.

A T 3
μ(k, p) term generally appears in the solution and, with

{Xi ≡ 0, i = 1, . . . ,8}, its coefficient is (1/2)�A(k2, p2), Eq. (19).
The functional form is a prediction of the transverse WGT identity
because, apart from our choice of tensor bases in Eqs. (A.1)–(A.9),
we implemented no other constraints. Based upon considerations
of multiplicative renormalisability and one-loop perturbation the-
ory, a vertex Ansatz was proposed in Ref. [24]. It involves a
T 3
μ(k, p) term whose coefficient is a3�A(k2, p2), with a3 + a6 =

1/2, where a6 is associated with the T 6
μ(k, p) term in Eq. (8). The

agreement between the coefficients’ functional forms is remark-
able. The choice (a3 = 0, a6 = 1/2) produces the Curtis–Pennington
Ansatz [33]. The system of equations we have solved prefers the al-
ternative (a3 = 1/2, a6 = 0). Corrections to Eq. (19) involve {Xi, i =
2,3,5}. They will depend on the gauge parameter and can affect
the balance between a3 and a6 on that domain within which it is
meaningful to think in these terms. Curiously, then, the existence
and strength of a Curtis–Pennington-like term in the vertex is de-
termined by the nonlocal quantity V A

μν(k, p) in Eq. (5).
The solution contains an explicit anomalous magnetic moment

term for the dressed-fermion; viz., a T 5
μ(k, p) term. We find that

its appearance is a straightforward consequence of Lagrangian-
based symmetries but its necessary existence has been argued by
other authors using very different reasoning [34–37]. With {Xi ≡ 0,

i = 1, . . . ,8}, the coefficient of T 5
μ(k, p) is “= −1 × �B(k2, p2);”

i.e., Eq. (20). We reiterate that the functional form is a predic-
tion. It signals the intimate connection of this term with DCSB.
In Ref. [24], following a line of argument based upon multiplica-
tive renormalisability and leading-order perturbation theory, a ver-
tex Ansatz was proposed in which the coefficient of this term is
“−4/3 × �B(k2, p2).” The latter analysis was performed in Landau
gauge whereas, herein, we have not needed to specify a gauge-
parameter value. The perfect agreement between the functional
forms is striking and the near agreement between the coefficients
is interesting. Corrections to Eq. (20) involve {Xi, i = 1,4,6}. They
will depend on the gauge parameter, and on that domain within
which it is meaningful to characterise the vertex Ansatz in the
manner of Ref. [24] they may be seen as modifications to the
coefficient of T 5

μ(k, p) therein. Thus, the strength of the explicit
anomalous magnetic moment term in the vertex is finally deter-
mined by the nonlocal quantity V A

μν(k, p) in Eq. (5).
It was explained in Ref. [37] that in the presence of an ex-

plicit anomalous magnetic moment term, agreement with per-
turbation theory requires the appearance of τ8(k, p) �= 0. (N.B.
τ8 herein corresponds to τ4 in the notation of Refs. [37,38].)
This was confirmed in Ref. [24], wherein the analysis yields a
vertex Ansatz that includes τ8 = a8�A(k2, p2), whose functional
form is precisely the same as that predicted herein, Eq. (21). We
find a8 = −1. The asymptotic analysis in Ref. [24] indicates that
1 + a2 + 2(a3 − a6 + a8) = 0, where a2 is associated with the τ2
term. If {Xi ≡ 0, i = 1, . . . ,8}, then (a2 = 0, a3 = 1/2, a6 = 0) and
hence the solution to Eqs. (1), (12), (13) is consistent with the
known constraint. Corrections to Eq. (21) involve {Xi, i = 2,3,8}.
They will depend on the gauge parameter and can modify the co-
efficient in Eq. (21) on that domain within which it is meaningful
to describe the vertex Ansatz in this way.

The preceding considerations lead us to a minimal Ansatz for
the vertex that describes the interaction between an Abelian gauge
boson and a dressed-fermion:

Γ M
μ (k, p) = Γ BC

μ (k, p) + Γ TM
μ (k, p), (22)

where Γ BC
μ (k, p) is constructed from Eqs. (7), (16), (A.1) and

Γ TM
μ (k, p) is built from Eqs. (8), (19)–(21), (A.2)–(A.9) plus the

results {τ j ≡ 0, j = 1,2,4,6,7}. We describe the Ansatz as min-
imal because it is the simplest structure that is simultaneously
compatible with the constraints expressed in Ref. [24] and all
known Ward–Green–Takahashi identities, both longitudinal and
transverse.

Employed to express the electromagnetic coupling of a dressed-
fermion described by a spinor that satisfies

ū(p,M )(iγ · p + M ) = 0 = (iγ · p + M )u(p,M ), (23)

the vertex produces a renormalisation-point-invariant anomalous
magnetic moment [24]

κ = 2M
2M δA − 2δB

σA − 2M 2δA + 2M δB
= −2MδM

1 + 2MδM
, (24)

where σA = ΣA(M 2,M 2), δA,B,M = �A,B,M(M 2,M 2). In the chi-
ral limit and absent DCSB, M = 0 and hence κ vanishes. In con-
trast, using the DCSB-improved gap equation kernel in Ref. [39],
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which yields a Euclidean constituent-quark mass M = 0.38 GeV,
we find κ = 1.14. The anomalous moment is positive, as it must
be for an Abelian interaction, and commensurate with the value
computed using the Ansatz in Ref. [24]; viz., κ = 1.6. The com-
puted value of κ is large but, like the Euclidean constituent-quark
mass, this is just one (infrared) value on a curve that describes the
anomalous magnetic moment distribution of a dressed-quark [37]:
averaged over a nonperturbative domain p2 ∈ [0,2] GeV2, κ̄ =
0.49.

As with all nonperturbative quantities in QCD, the dynami-
cal component of the κ distribution vanishes as a power-law for
p2 � (5ΛQCD)2. Thus, and for example, the dynamically generated
anomalous magnetic moment influences the long-wavelength be-
haviour of electromagnetic form factors but is not discernible on
the domain within which perturbative analyses are valid [40].

4. Epilogue

We elucidated novel consequences of Lagrangian-based sym-
metries for the fermion–gauge-boson vertex, therewith confirming
numerous features of the Ansatz described in Ref. [24] and thus
placing it both in a broader context and on firmer ground. Our
proposal, Eq. (22), is simpler, however. It is thus easier to use, e.g.,
in Poincaré-covariant symmetry-preserving studies of hadron elec-
tromagnetic form factors of the type described in Refs. [41,42]; and
might serve readily as a prototype in the construction of electro-
magnetic currents for use in few-nucleon physics [43].

Well-motivated, realistic Ansätze for the dressed-quark-gluon
vertex are also needed because this vertex is a critical part of all
gap and Bethe–Salpeter equation studies of hadron spectra and in-
teractions, and yet information available from continuum or lattice
methods is limited [37,38,44–46]. In this connection, Eq. (22) may
be compared with the vertex in Ref. [38], which is associated with
the most realistic Poincaré-covariant, continuum description of the
light-quark meson spectrum that is currently available. Whilst the
τ5,8 structures, crucial to the expression of DCSB in the spectrum,
are included therein, the τ3 term is omitted. This suggests both:
that the Ansatz in Ref. [38] can be improved; and a simple way
by which that may be accomplished. This phenomenological ex-
tension of the model-independent results described herein is un-
derway.

In another direction, given that the Abelian transverse Ward–
Green–Takahashi identities may now be judged useful, it is worth
revisiting their non-Abelian analogues [47], in the hope that from
them our methods might distill qualitative and perhaps even semi-
quantitative constraints on the dressed-quark-gluon vertex. Realis-
ing dynamical chiral symmetry breaking in that vertex is vital to
a continuum explanation of the hadron spectrum [48] and, there-
fore, to reliable predictions regarding the existence and properties
of exotic mesons, that new state of matter which is conceivable
in QCD but whose being is impossible in a quantum mechanics
based solely on a constituent-quark, constituent-antiquark picture
of mesons. It has implications, too, for studies of QCD in-medium.
The new structures related to anomalous magnetic moments will
certainly affect the location, and possibly even the existence, of a
critical endpoint in the temperature-chemical potential plane [49];
and, given that strong fields are generated at the core of the fire-
ball produced in a relativistic heavy ion collision, nonperturbatively
generated features of the quark-gluon vertex may affect the phase
transition in as yet unknown ways.
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Appendix A

Here we list the tensors used in Eqs. (7), (8):

L1
μ(k, p) = γμ, L2

μ(k, p) = 1

2
tμγ · t,

L3
μ(k, p) = −itμID, L4

μ(k, p) = −σμνtν, (A.1)

where ID is the 4 × 4 identity matrix in Dirac space; and

T 1
μ(k, p) = i

[
pμ(k · q) − kμ(p · q)

]
, (A.2)

T 2
μ(k, p) = −iT 1

μ(γ · k + γ · p), (A.3)

T 3
μ(k, p) = q2γμ − qμγ · q =: q2γ T

μ, (A.4)

T 4
μ(k, p) = iT 1

μpνkρσνρ, (A.5)

T 5
μ(k, p) = σμνqν, (A.6)

T 6
μ(k, p) = −γμ

(
k2 − p2) + (k + p)μγ · q, (A.7)

T 7
μ(k, p) = i

2

(
k2 − p2)[γμ(γ · k + γ · p) − (k + p)μ

]

+ (k + p)μpνkρσνρ, (A.8)

T 8
μ(k, p) = kμγ · p − pμγ · k − iγμpνkρσνρ. (A.9)
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