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We construct net baryon number and strangeness susceptibilities as well as correlations between electric 
charge, strangeness and baryon number from experimental data at midrapidity of the ALICE Collaboration 
at CERN. The data were taken in central Pb–Pb collisions at √

sNN = 2.76 TeV and cover one unit 
of rapidity. The resulting fluctuations and correlations are consistent with Lattice QCD results at the 
chiral crossover pseudocritical temperature Tc � 155 MeV. This agreement lends strong support to the 
assumption that the fireball created in these collisions is of thermal origin and exhibits characteristic 
properties expected in QCD at the transition from the quark gluon plasma to the hadronic phase. The 
volume of the fireball for one unit of rapidity at Tc is found to exceed 3000 fm3. A detailed discussion on 
uncertainties in the temperature and volume of the fireball is presented. The results are linked to pion 
interferometry measurements and predictions from percolation theory.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Uncovering evidence for (partial) restoration of chiral symmetry 
in the medium created in nucleus–nucleus collisions at very high 
energy is one of the most important but also challenging problems 
[1–3]. Recently, experimental studies along this line have been car-
ried out by measuring fluctuations of conserved charges [4–6] as 
part of the RHIC Beam Energy Scan (BES) program.

Fluctuations of conserved charges are particularly interesting 
probes of critical phenomena and the phase diagram in QCD 
[7–11], as well as freezeout conditions in heavy ion collisions 
[12–15]. The intent of the present work is to provide a link be-
tween fluctuations derived from measurements of particle yields 
in Pb–Pb collisions at the LHC and predictions from Lattice QCD.

Early on, the QCD phase transition was conjectured to be of 
second order, belonging to the O (4) universality class [16], for 
massless light quarks. Current Lattice QCD (LQCD) simulations at 
physical quark masses show that, at vanishing or small baryon 
density, the transition from a hadron gas to a quark gluon plasma 
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is most likely a crossover [17]. The results further indicate that 
the chiral crossover appears in the critical region of the second or-
der transition belonging to the O(2)/O(4) universality class [18–20]. 
Consequently, observables such as fluctuations of net baryon num-
ber and electric charge, which are sensitive to criticality related 
with a spontaneous breaking of chiral symmetry, should exhibit 
characteristic properties governed by the universal part of the free 
energy [9,12,21].

The magnetic equation of state and cumulants of net charges 
at physical quark masses have been studied in LQCD calculations 
[20,22–25], as well as in effective chiral models [21,26–36]. Their 
properties have been shown to be consistent with general expecta-
tions for O (4) scaling. These results have opened a new approach 
to get experimental information on the QCD phase boundary, by 
measuring higher moments of distributions of event-by-event fluc-
tuations of conserved charges [12,13,19,21,24,37], and their proba-
bility distributions [38–40].

The direct measurement of higher moments of event-by-event 
fluctuations is complicated by several issues. First, quantities like 
fluctuations of the net baryon number can only be reliably ob-
tained if effective methods are applied to correct the data for the 
efficiency of the detector. Furthermore, for conserved quantities 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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like baryon number, appropriate corrections need to be applied, 
due to the finite detector acceptance. The situation has been an-
alyzed by [41,42] and attempts at corrections have been applied 
for acceptance [5,6] and for fluctuations induced by the difficult 
to measure neutral baryons [43,44]. Second, such measurements 
are sensitive to critical effects near the QCD phase boundary only 
for higher moments of the distributions [21], necessitating huge 
statistics as well as a very precise understanding of possible back-
grounds in the measurements. Here we present a different ap-
proach, where the second order cumulants and correlations of con-
served charges are directly obtained from the measured inclusive 
distributions, albeit under a special assumption on the shape of 
the probability distributions.

In the special case that the probability distribution of the num-
ber of particles Nq and antiparticles N−q is uncorrelated and Pois-
son, the probability distribution of the variable N = Nq − N−q is a 
Skellam function, which is entirely determined by the mean num-
ber of particles 〈Nq〉 and antiparticles 〈N−q〉 [37]. As is explained 
in the following section one can then determine the second order 
susceptibilities directly from inclusive measurements.

The assumption of a Skellam distribution for the distribution 
of net baryon number seems to be well fulfilled at RHIC energies 
up to the second order cumulants [5,6,37], see also the discussion 
below. Nevertheless, assuming independent production of baryons 
and anti-baryons is a strong assumption. However, one should note 
that generalized susceptibilities cn

B do not contain, at least for 
μB = 0, any singular terms corresponding to chiral critical behav-
ior if n < 6 [9,21]. Further, there is strong evidence that the fireball 
is very close to thermal equilibrium as demonstrated by analysis 
within the framework of the Hadron Resonance Gas (HRG) parti-
tion function [45–51], which also quantifies the LQCD equation of 
state in the confined phase [24,52,54].

The current approach leads then to a direct connection between 
experimental data integrated over all transverse momenta and sec-
ond order susceptibilities and, consequently, to direct contact be-
tween predictions from LQCD and experimental data without the 
need to consider, on the experimental side, effects of acceptance 
and, on the theoretical side, how to extract baryons from LQCD 
calculations.

2. Fluctuations and correlations of net charges

We consider a thermal medium of strongly interacting parti-
cles of volume V at temperature T , where the baryon number B , 
strangeness S and electric charge Q are conserved on the aver-
age. The thermodynamics of such a system is characterized by 
the pressure, P (T , V , �μ) in the grand canonical ensemble, where 
�μ = (μB , μS , μQ ) are chemical potentials which guarantee the 
conservation of all ‘charges’ q = (B, Q , S).

In this thermal medium, fluctuations of the net charge N

χ̂N ≡ χN

T 2
= ∂2 P̂

∂μ̂2
N

, (1)

and correlations χN,M of charges N and M

χ̂N M ≡ χN M

T 2
= ∂2 P̂

∂μ̂N∂μ̂M
(2)

are obtained as derivatives of the reduced thermodynamic pressure 
P̂ = P/T 4, with respect to the corresponding reduced chemical po-
tential μ̂N = μN/T , where N, M = (B, S, Q ).

The susceptibility of a conserved charge can be also related to 
its variance,

χ̂N = 1
3
(〈N2〉 − 〈N〉2). (3)
V T
If P (N) is the probability distribution of a conserved charge N , 
then the n-th moment 〈Nn〉, is calculated as

〈Nn〉 =
∑

N

Nn P (N). (4)

For the special case of a Skellam distribution, and from Eqs. (3)
and (4), the susceptibility is determined by the total mean number 
of particles and antiparticles [37],

χN

T 2
= 1

V T 3
(〈Nq〉 + 〈N−q〉). (5)

The above result is valid if there are only particles of the same 
charge, as for baryons, where the charge is B = 1. For strangeness 
and an electric charge, there are hadrons with charge two and 
three. In this case, the Skellam probability distribution can be gen-
eralized, and P (N) is expressed by the mean numbers of all parti-
cles and antiparticles of different charges Q , S [38]. The net charge 
susceptibility is then obtained from

χ̂N = χN

T 2
= 1

V T 3

|q|∑
n=1

n2(〈Nn〉 + 〈N−n〉), (6)

where |q| = (1, 2) and |q| = (1, 2, 3) for electric charge and 
strangeness, respectively.

For the correlation of different charges, the corresponding ex-
pression reads

χ̂N M = χN M

T 2
= 1

V T 3

qN∑
n=−qN

qM∑
m=−qM

nm〈Nn,m〉, (7)

where 〈Nn,m〉 is the mean number of particles and resonances car-
rying charges N = n and M = m.

2.1. Modeling susceptibilities and correlations in heavy ion collisions at 
the LHC

The probability distribution of fluctuations of conserved charges 
can, in general, be measured in heavy ion collisions using event-
by-event analysis. The results for fluctuations of the net baryon, 
or rather net proton number, obtained by the STAR Collaboration 
at RHIC [5,6], demonstrate clearly that, in central Au–Au collisions 
at 

√
sNN = 200 GeV, the fluctuations up to third order can be well 

described by the Skellam distribution. Thus, for small N , the distri-
bution P (N) of protons and antiprotons must be independent and 
very close to Poisson. No dramatic changes in soft particle pro-
duction have been observed so far when going from RHIC to LHC 
energy. Consequently, the assumption of independent particle pro-
duction also at LHC energy seems well founded and, moreover, can 
be directly tested experimentally.

We take advantage of the above experimental observations, and 
construct the fluctuations and correlations in central Pb–Pb colli-
sions at the LHC by using results of Eqs. (5), (6) and (7). This way 
we obtain the susceptibilities χB , χS and χQS from particle yields, 
measured by the ALICE Collaboration at central rapidity.

The net baryon number fluctuations are obtained as

χB

T 2
= 1

V T 3
[〈p〉 + 〈N〉 + 〈� + �0〉 + 〈�+〉 + 〈�−〉

+ 〈�−〉 + 〈�0〉 + 〈�−〉 + antiparticles], (8)

where 〈 〉 denotes the corresponding mean particle yield per unit 
rapidity.

The net strangeness susceptibility is calculated following Eq. (6), 
and approximated as
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χS

T 2
� 1

V T 3
[(〈K +〉 + 〈K 0〉 + 〈� + �0〉 + 〈�+〉

+ 〈�−〉 + 4〈�−〉 + 4〈�0〉 + 9〈�−〉 + antiparticles)

− (�φ→K + + �φ→K − + �φ→K 0 + �φ→K̄ 0)〈φ〉]. (9)

At LHC energy we assume that K 0 = K̄ 0 = K + and take the 
experimentally measured value. In the kaon yields 〈K 〉, there are 
contributions from non-strange resonances decaying into kaons. 
From Eq. (1), it is clear, that such particles should not contribute 
to strangeness fluctuations. To correct for the above, we have sub-
tracted kaons coming from φ decay. The contributions of further 
non-strange resonances cannot be accounted for since their yields 
are not known. However, due to their larger masses, such contri-
butions are subleading.

The mixed susceptibilities, from Eq. (2), are selecting contribu-
tions of particles carrying the corresponding quantum numbers. 
We consider, the strangeness–charge correlations χQS . Following 
Eq. (7), the χQS receive contributions only from strange parti-
cles with non-vanishing electric charge. We construct strangeness–
charge correlations from particle yields as

χQS

T 2
� 1

V T 3
[(〈K +〉 + 2〈�−〉 + 3〈�−〉

+ antiparticles) − (�φ→K + + �φ→K −)〈φ〉
− (�K ∗

0 →K + + �K ∗
0 →K −)〈K ∗

0 〉], (10)

where we have again subtracted the contribution from decays of 
φ and K ∗

0 , which are contributing to charged kaon yields, but ac-
cording to Eq. (2), should not be included. As in the case of χS , 
there are also decays of further non-strange, as well as, neutral 
strange hadrons which are contributing to 〈K ±〉, but should not be 
included. However, due to lack of data their contribution cannot be 
subtracted; nevertheless it is expected to be small.

In heavy ion collisions at the LHC, due to transparency, par-
ticles and antiparticles are produced symmetrically at midrapidity. 
Consequently, the yields of particles and their antiparticle are iden-
tical. In addition, at midrapidity, the system is isospin symmetric 
and charge neutral, thus leading to equal number of protons and 
neutrons, and, more generally, to equal yields for different charge 
states of the same particle. Consequently, from Eqs. (8), (9) and 
(10), one gets

χB

T 2
= 1

V T 3
[4〈p〉 + 2〈(� + �0)〉 + 4〈�+〉

+ 4〈�〉 + 2〈�〉]
χS

T 2
� 1

V T 3
[2〈K +〉 + 2〈K 0〉 + 2〈(� + �0)〉 + 4〈�+〉

+ 16〈�〉 + 18〈�〉 − 2(�φ→K + + �φ→K 0)〈φ〉]
χQS

T 2
� 1

V T 3
[2〈K +〉 + 4〈�−〉 + 6〈�−〉 − 2�φ→K +〈φ〉

− 2�K ∗
0→K +〈K ∗〉]. (11)

Furthermore, from data on inclusive � and �0 production 
in pBe collisions at 

√
s = 25 GeV, we obtain the ratio, �0/� =

0.278 ± 0.011 ± 0.05, with a statistical and a systematic error, 
respectively [55]. We take �0/� = 0.278 ± 0.052, thus 〈�〉 =
(0.2175 ± 0.032)〈� + �0〉. The branching ratios, �φ→K 0 = 0.342 ±
0.004, �φ→K = 0.489 ± 0.005, and �K ∗

0 →K + = 0.666 are from [56].
The charge susceptibilities and correlations between conserved 

charges can be calculated from the recent ALICE Collaboration data 
for particle yields per unit rapidity measured in heavy ion colli-
sions at 

√
s = 2.76 TeV at midrapidity, and momentum integrated 

[57–60]. The results are summarized in Table 1.
Table 1
ALICE data on rapidity distributions at 
y = 0 for different particle yields in 
0–10% most central Pb–Pb collisions 
at √s = 2.76 TeV [57–60].

〈π±〉 668.90 ± 47.50
〈K +〉 99.67 ± 8.25
〈K 0

S 〉 97.43 ± 8.00
〈K ∗〉 19.01 ± 3.18
〈p〉 30.52 ± 2.50
〈φ〉 12.73 ± 1.54
〈� + �0〉 23.37 ± 2.50
〈�−〉 3.34 ± 0.24
〈�−〉 0.60 ± 0.10

The baryon number, strangeness and strangeness–electric
charge correlations are obtained from Eq. (11) and from Table 1, as

χB

T 2
= 1

V T 3
(203.7 ± 11.44) (12)

χS

T 2
� 1

V T 3
(504.35 ± 24.14) (13)

χQS

T 2
� 1

V T 3
(178.5 ± 17.14). (14)

Particularly interesting are the susceptibility ratios,

χB

χS
� 0.404 ± 0.028,

χB

χQS
� 1.141 ± 0.1266 (15)

which are independent of temperature and volume.
In Eqs. (12) to (15) the uncertainties of rapidity densities for 

particles and their antiparticles (apart from absorption corrections) 
were assumed to be fully correlated and therefore were added lin-
early. All remaining errors were treated as being independent, thus 
were added in quadrature. In the calculation of the errors of dif-
ferent susceptibility ratios, the partial cancelation of errors due to 
particles which appear both in the nominator and denominator has 
been explicitly taken into account.

2.2. Relating LHC data to LQCD

The net baryon number and strangeness susceptibilities, as 
well as the electric charge–strangeness correlations, have been re-
cently calculated in LQCD at μB = 0 for different temperatures [20,
22–25]. The results are extrapolated to the continuum limit, thus 
can be directly compared to heavy ion data.

One expects that a fireball created in heavy ion collisions is of 
thermal origin and its properties are governed by statistical QCD, 
as quantified by LQCD. If there is a phase change from QGP to the 
hadronic phase, then the particle yields and fluctuations of con-
served charges should be established at the chiral, pseudocritical 
temperature Tc . The value of Tc is well established by LQCD and 
coincides within a different discretization scheme of fermionic ac-
tion. The value, Tc = 155(1)(8) was recently obtained in LQCD with 
domain wall fermions [61], which preserves all relevant symme-
tries of QCD.

The most transparent way to check if the fluctuations of con-
served charges, extracted from ALICE data, are consistent with 
LQCD at T � Tc , is to compare the ratios from Eq. (15) to the cor-
responding LQCD results.

In Fig. 1, we compare χB/χS , χB/χQS and χS/χQS ratios with 
the continuum limit extrapolated LQCD values at pseudocritical 
temperature, Tc = 155 MeV [24,25]. Fig. 1 shows that, within sys-
tematic uncertainties, there is a very good agreement between 
Pb–Pb collision data from the ALICE experiment at the LHC and 
the LQCD results at T � 155 MeV.
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Fig. 1. Comparison of different susceptibility ratios obtained by using data mea-
sured by the ALICE Collaboration in Eq. (15) with LQCD results at T = 155 MeV
from Refs. [24,25].

Fig. 2. The LQCD results on temperature dependent baryon number and strangeness 
susceptibility ratio from Ref. [24]. The LQCD value at T = 155 MeV is from Ref. [25]. 
Also shown is a band for the expected value of this ratio constructed from ALICE 
data in Eq. (15).

However, the value of the temperature, at which experimental 
results and theory predictions agree, cannot be uniquely deter-
mined by comparing ratios shown in Fig. 1. This is illustrated in 
Figs. 2 and 3, where experimental results for χB/χS and χB/χQS

from Eq. (15) are compared with LGCD predictions at different 
temperatures [25].

The LQCD susceptibility ratios exhibit a rather weak temper-
ature dependence, and for T > 0.15 GeV, are consistent, within 
statistical and systematic uncertainties, with results obtained by 
using ALICE data. From Figs. 2 and 3, one can exclude temperatures 
T ≤ 0.15 GeV as a possible range where the saturation of fluctu-
ations in heavy ion data appears. The upper limit, on the other 
hand, can be as large as 0.21 GeV.

However, based on different combinations of charge fluctua-
tions and correlations, it was shown, that at T > 163 MeV, the 
LQCD thermodynamics cannot be anymore described by hadronic 
degrees of freedom [54]. This argument reduces a conceivable win-
dow for the saturation of the net baryon number and strangeness 
fluctuations to 0.15 < T < 0.163 GeV.

Further constraints on the lower temperature limit for chemical 
freezeout in heavy ion collisions at the LHC can be also obtained 
Fig. 3. Ratio χB/χQS from LQCD data from Refs. [24,25], and obtained from ALICE 
data in Eq. (15).

Fig. 4. The LQCD results on temperature dependent ratio of baryon–strangeness cor-
relation χBS and strangeness susceptibility from Ref. [24]. Also shown is a band for 
the lower limit on this ratio extracted from ALICE data from Eqs. (13) and (16). The 
horizontal line at high-T is an ideal gas value in a QGP.

by considering correlations between strangeness and baryon num-
ber, χBS . Particulary interesting is the ratio χBS/χS , which was 
proposed as a diagnostic observable for deconfinement [53].

The χBS correlations are obtained from Eq. (7). Their upper limit 
can be expressed by yields of measured strange baryons by ALICE 
Collaboration, as

−χBS

T 2
>

1

V T 3
[2〈� + �0〉 + 4〈�+〉

+ 8〈�〉 + 6〈�−〉] = 97.4 ± 5.8. (16)

Eq. (16) sets only an upper limit for χBS since, e.g., the contri-
butions of strange baryonic resonances decaying into non-strange 
baryon and strange meson, like decay of �∗ → N K̄ , are not in-
cluded as they are not known experimentally.

In Fig. 4 we show the (−χBS/χS ) ratio obtained in LQCD by 
the HotQCD Collaboration [24]. The LQCD results are compared 
with the lower limit, (−χBS/χS ) > 0.193 ± 0.0127, obtained from 
Eqs. (13) and (16), and ALICE data summarized in Table 1. A strong 
increase of this ratio with temperature, makes it an ideal observ-
able to fix the temperature in HIC through a direct comparison of 
data to LQCD results. From Fig. 4, it is clear that data are pointing 
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Fig. 5. Volume calculated from Eqs. (17) and (18). Also shown are results for particle 
density at corresponding temperature and the critical density in percolation theory, 
as well as the chemical freezeout volume V HBT

ch , extracted from the HBT data at 
thermal freezeout and rescaled to higher T within 3D-hydrodynamics.

towards temperatures T > 0.15 GeV. This supports the conclusion 
already drawn from Figs. 2 and 3.

The agreement of the fluctuation ratios extracted from ALICE 
data and LQCD in the chiral crossover, seen in Figs. 1–4, supports 
our assumption, that at the QCD phase boundary, the second order 
cumulants and charge correlations are well approximated by an 
uncorrelated particle production.

The susceptibilities in Eqs. (12), (13) and (14) can also be used 
to obtain information on the volume of the fireball for one unit of 
rapidity,

VχB = 203.7 ± 11.44

T 3(χB/T 2)LQCD
, VχS = 504.35 ± 24.14

T 3(χS/T 2)LQCD
(17)

and

VχQS = 178.5 ± 17.14

T 3(χQS/T 2)LQCD
. (18)

Clearly, if χB , χS and χQS are established in a common fireball, 
then not only the temperature, but also the corresponding vol-
umes, VχB , VχS and VχQS must be equal.

In Fig. 5, we show the temperature dependence of volume pa-
rameters obtained from Eqs. (17) and (18). There is a clear de-
crease of volume with temperature, which is needed to reproduce 
LQCD susceptibilities. For a given temperature, the volume of the 
fireball is extracted as overlap of all VχB , VχS and VχQS .

The volume parameters from Fig. 5, together with the total 
number of particles in the final state 〈Nt〉, are used to calculate 
the density of particles in a collision fireball, n(T ) = 〈Nt〉/V (T ).

We calculate the total number of particles per unit of rapid-
ity at midrapidity in central Pb–Pb collisions at 

√
s = 2.76 TeV, as 

follows

〈Nt〉 = 3〈π〉 + 4〈K 〉 + 4〈p〉 + 2〈� + �0〉 + 4〈�〉
+ 4〈�̄〉 + 2〈�̄〉, (19)

which gives 〈Nt〉 = 2486 ± 146
In Fig. 5, we show the corresponding density of particles, n(T ). 

Clearly, due to deconfinement, there is a limiting temperature and 
corresponding density, above which the fireball constituents can-
not be hadronic anymore.

In percolation theory of objects of (eigen-)volume V 0, there is 
a critical density, nper

c = 1.22/V 0 beyond which the objects start 
to overlap [62]. Relating percolation to deconfinement [62], one 
can estimate the critical particle density in the hadronic phase. 
Considering hadrons as objects of volume V 0 = (4/3)π R3

0, with 

R0 =
√

〈r2
p〉 and 〈r2

p〉 = 0.67 ± 0.02 being the mean squared strong 
interaction radius of the proton [63],1 one gets, nper

c � 0.53 ±
0.024 fm−3. The central nper

c value is also marked in Fig. 4.
Remarkably, this critical percolation density appears at T =

152 ± 1 MeV, thus within systematic uncertainties, is consistent 
with the transition temperature obtained from LQCD. Clearly, the 
value of T at nper

c strongly depends on R0. The lower limit of 
R0 � 0.67 fm corresponds to T � 163 MeV, since above this tem-
perature, the LQCD thermodynamics is not anymore described by 
the hadronic degrees of freedom. This lower value of R0 coin-
cides, within error, with a measured charge radius of the pion, √〈r2

π 〉 = 0.657 ± 0.012 [65]. Consequently, the percolation of pi-
ons and protons appears at temperatures which overlap with the 
QCD chiral crossover.

Some limitations on the volume of the fireball, thus also on 
temperature, can be imposed from the HBT interferometry mea-
surements. The Hanbury–Brown–Twiss (HBT) analysis of multipar-
ticle production processes is becoming a widely used technique 
in heavy ion collisions. It provides information on the space–time 
evolution of an excited strongly interacting system produced in 
high energy collisions.

The HBT volume, can be obtained from the product of the lon-
gitudinal Rl , outward Ro and the sideward Rs radius, as V HBT =
(2π)3/2 Rl Ro Rs , if the Ri are rms values of Gaussian distributions. 
From the first measurement of two-pion Bose–Einstein correlations 
in central Pb–Pb collisions at 

√
sNN = 2.76 TeV at the LHC by ALICE 

Collaboration [66], one gets V HBT = 4800 ± 580 fm3 for central-
ity (0–5%). We note, however, that V HBT is, in general, considered 
as the volume at thermal freeze-out. Thus, the fireball volume at 
chemical freezeout V HBT

ch (T ) is smaller than the V HBT introduced 
above due to the expansion of the system between chemical and 
thermal freeze-out. To connect V HBT

CH (T ) with V HBT involves model 
assumptions which we discuss briefly below.

Furthermore, V HBT is not representing the source size, but only 
the volume of the homogeneity region at the last interaction. Fol-
lowing the procedure developed in [67] we estimate that the true 
thermal freeze-out volume per unit of rapidity exceeds the V HBT

value above by a factor of 1.28 for thermal freeze-out at T =
155 MeV, by 1.47 at T = 120 MeV and by 1.63 at T = 100 MeV. We 
further note that V HBT grows with the charge particle multiplicity 
[66], as expected from the fireball volume at chemical freeze out. 
As a consequence we use the volume appropriate for (0–10%) cen-
trality and correct with the above factors.

The relevant corrected volumes are then V ch = 5510 ± 670 fm3

for T = 155 MeV, V ch = 6340 ± 770 fm3 for T = 120 MeV and 
V ch = 7050 ± 850 fm3 at T = 100 MeV. For thermal freeze-out at 
155 MeV, i.e. close to the chiral crossover temperature, there is no 
further extrapolation needed, and the minimal corrected volume is 
V HBT

ch = 4840 fm3. As seen in Fig. 5, this chemical freezeout vol-
ume is within uncertainies comparable with that extracted from 
the LQCD analysis at temperature T = 155 MeV.

For thermal freeze-out at T = 100 and T = 120 MeV, one can 
calculate the volume decrease with increasing temperature, i.e. to-
wards the chiral crossover temperature, by employing models for 
expansion dynamics in heavy ion collisions. We have here adopted 
the 3D-hydrodynamics approach with initial conditions appropri-
ate for LHC energy and calculated in the MC Glauber model to 

1 This hadronic radius of the proton is somewhat smaller than its recently ob-
tained charge radius, rE

p = 0.84 ± 0.01 [64].
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extract the relative change of the fireball volume with tempera-
ture [68].

In Fig. 5 we show the T -dependent fireball volume V HBT
ch (T )

obtained by rescaling the above kinetic freezeout volume at T =
100 MeV with the factor obtained from the 3D-hydrodynamics for 
a temperature range between 140 and 170 MeV. Starting from the 
kinetic freezeout volume at T = 120 MeV leads to very similar re-
sults.

As seen in Fig. 5, the V HBT
ch (T ) coincides with the volume ex-

tracted from LQCD and ALICE data, in the chiral crossover region. 
This by itself is a non-trivial observation. At the same time, such 
comparison does not restrict the value of the chemical freezeout 
temperature at LHC energy.

From the comparison of different fluctuation ratios extracted 
from ALICE data and LQCD results, one concludes that, in heavy ion 
collisions at the LHC, the second order fluctuations are of thermal 
origin and saturate at LQCD values at temperature T > 0.15 GeV. 
This together with the LQCD observation, that at T > 0.163 GeV, 
the fluctuations of conserved charges cannot be anymore described 
by the hadronic degrees of freedom implies that 0.15 < Tc < 0.163
is the most likely temperature range for particle freezout at the 
LHC. In this temperature window, which overlaps with the chiral 
crossover temperature, the T -correlated fireball volume per unit 
rapidity is obtained from Fig. 5 as 5000 > V ≥ 3000 fm3. This 
range of volumes is also consistent with that extracted from the 
HBT measurement and extrapolated to higher temperatures within 
3D-hydrodynamics [68].

A recent analysis of particle yields in heavy ion collisions at 
the LHC, within the thermal model, has shown that T � 156 MeV
and V � 5300 fm3, reproduce all yield data [50]. This temperature 
value agrees well with the present analysis. The somewhat larger 
volume in Ref. [50] appears, since repulsive interactions of parti-
cles were included in the analysis. In this case, particle densities 
are reduced, and to reproduce measured yields, a larger volume is 
required.

3. Concluding remarks

We have proposed a method to construct the net baryon num-
ber and strangeness susceptibilities as well as correlations between 
electric charge and strangeness from experimental data of the AL-
ICE Collaboration, taken in Pb–Pb collisions at 

√
sNN = 2.76 TeV.

Using this approach, we have shown that fluctuations and 
correlations derived from ALICE data at the LHC are consistent 
with LQCD predictions in the temperature window, 0.15 < Tc ≤
0.163 GeV, which overlap with the chiral crossover. In this tem-
perature interval, the fireball volume per unit rapidity corresponds 
to 5000 > V ≥ 3000 fm3.

Such a direct agreement between experiment and LQCD lends 
strong support to the notion that the fireball created in central 
nucleus–nucleus collisions at the LHC is of thermal origin and ex-
hibits characteristic properties expected in QCD at the transition 
from a quark–gluon plasma to a hadronic phase.

We have discussed uncertainties in the determination of tem-
perature and volume of the fireball at the LHC. We have also 
discussed possible constraints on the parameters originating from 
pion interferometry measurements and percolation theory.

The analysis presented here provides the first direct link be-
tween LHC heavy ion data and predictions from LQCD. This was 
possible since, at the LHC, the conditions of charge neutrality in 
the fireball directly match that in LQCD calculations. In addition, 
the constructed susceptibilities and correlations contain contribu-
tions from all charged hadrons integrated over the full momentum 
range. This is essential and necessary to make a successful com-
parison of data to the first principle LQCD calculations.
Finally, our method is based on the assumption that the prob-
ability distribution of baryons at LHC energy is close to a Skel-
lam distribution. The probability distribution for net baryon num-
ber production at LHC energy can be directly obtained from 
measurements of protons and antiprotons. Since we are inter-
ested in results at midrapidity, issues related to isospin can be 
safely neglected and proton and neutron mean numbers should 
be equal. Furthermore, corrections due to baryon number con-
servation should be negligible since near midrapidity the baryon 
rapidity distribution is very close to flat. Since the present method 
only relies on the second moment of the distribution, very high 
statistics is not needed and a typical 106 central collisions should 
be sufficient, implying that our assumption can be tested experi-
mentally in the near future.
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