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Abstract

A unified chiral mean field approach is presented for QCD thermodynamics in a wide range of temperatures and den-
sities. The model simultaneously gives a satisfactory description of lattice QCD thermodynamics and fulfills nuclear
matter and astrophysical constraints. The resulting equation of state can be incorporated in relativistic fluid-dynamical
simulations of heavy-ion collisions and neutron stars mergers. Access to different regions of the QCD phase diagram
can be obtained in simulations of heavy-ion data and observations of neutron star mergers.
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1. Introduction

Current first-principle calculations of the finite temperature QCD equation of state are limited to small
values of the baryochemical potential, where lattice QCD methods are applicable [1, 2, 3, 4, 5]. The experi-
mental studies of collisions of heavy ions provide only a limited information on QCD thermodynamics due
to the finite lifetime and size of the system created.

Lattice QCD data at vanishing baryochemical potential μB = 0 suggest a smooth crossover at T ≈ mπ,
the chiral transition, where (approximate) chiral symmetry is restored. Does this crossover turn into a first-
order transition at finite baryon number density? What is the relation of the chiral symmetry restoration to
the deconfinement? An analysis of lattice data at zero and imaginary chemical potential at T ≥ 130 MeV
shows no indications for the presence of a critical point in the real T − μB plane at moderate baryochemical
potentials μB/T � π [6]. For larger chemical potentials, μB/T > π, one has to rely on effective model
descriptions. These models are usually constrained either by lattice data at zero chemical potential or by
nuclear matter properties at zero temperature.

Here a new model is introduced, where both constraints, at zero μB and at zero T are used successfully.
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2. The CMF model

The SU(3) flavor parity doublet quark-hadron chiral mean field model (CMF model) [7, 8, 9] is a unified
description of the statistical and thermodynamical properties of QCD matter. The complete description of
QCD bulk properties includes a complete list of known hadrons (with masses below 2.6 GeV) as well as
the three light quark flavors. The transitions between quark matter and a hadron-resonance gas (HRG) as
well as nuclear matter are driven by mean fields. Nucleons and other baryons of the respective SU(3) flavor
representation (octet and decuplet) interact via mesonic mean fields (σ, ω, ρ, φ, ζ) in a non-linear σ − ω
model approach. Properties of nuclear matter are reproduced [10, 11]. Parity doubling introduces heavy
parity partners to the baryons of the lowest flavor multiplets [8]. Hence an explicit mass term for baryons
in the Lagrangian is possible, which preserves chiral symmetry. The effective masses of the parity partners
depend on the chiral fields, therefore the partners become mass-degenerate as chiral symmetry is restored:

m∗
i =

√[
(g(1)
σiσ + g(1)

ζi ζ)
2 + (m0 + nsms)2

]
± g(2)
σiσ ± g(2)

ζi ζ , (1)

This approach is supported by recent lattice calculations, which do indeed show that the masses of the parity
partners approach the same value above the pseudocritical temperature [12].

The quarks are treated here as in the PNJL-like approach [13]. The effective quark mass m∗
q is dy-

namically generated by the chiral fields σ and ζ (non-strange and strange quark condensates). The quark
contribution to thermodynamic potential Ωq is controlled by the Polyakov loop order parameter Φ, the value
of Φ is determined by the potential U(Φ) [14]:

Ωq = −T
∑
i∈Q

γi

(2π)3

∫
d3k ln

(
1 + Φ exp

E∗
i − μi

T

)
, m∗

q = −gqσσ + δmq + m0q , m∗
s = −gsζζ + δms + m0q ,

U = −1
2

(a0T 4 + a1T0T 3 + a2T 2
0 T 2)ΦΦ∗ + b3T 4

0 log[1 − 6ΦΦ∗ + 4(Φ3 + Φ∗3) − 3(ΦΦ∗)2] (2)

The additional mass shift δmq for quarks is motivated by gluon contributions to the effective quark mass. It
prevents quarks from appearing in the nuclear ground state.

Excluded volume corrections implemented for hadrons [15] prevent a “reconfinement” at high densities
[7]:

ρi =
ρid

i (T, μ∗i )

1 +
∑

j
v j ρ

id
j (T, μ∗j)

. (3)

The excluded volume parameter v j is set to vB = 1 fm3 for baryons and to vM = 1/8 fm3 for all mesons.

3. Comparison with the lattice data

First-principle lattice calculations of QCD thermodynamics provide a valuable input to phenomenologi-
cal models, as a basis for calculations at finite baryon densities. To constrain the free parameters of the quark
sector of the CMF model we use the interaction measure I at μB = 0 as a representative measure to describe
the thermodynamics of the transition from hadron to quark degrees of freedom. We treat the parameters of
the Polyakov loop potential and quark couplings to the chiral fields as free parameters. Lattice QCD data on
the interaction measure are well reproduced when the following parameters are used:

T0 = 180 MeV, a1 = −11.67, a2 = 9.33, b3 = −0.53 and gqσ = gsζ = −1.0 .

The temperature dependence of the interaction measure and pressure as well as the baryon number
susceptibilities

χB
n =
∂n(P/T 4)
(∂μB/T )n , (4)
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are shown in in Fig. 1. The lattice data on the kurtosis χB
4 /χ

B
2 and the CMF model predictions show a smooth

transition from 1 – the ideal HRG model value – to 2/(3π2) – the value for the Stefan-Boltzmann limit of
massless quarks. The small bump at T ≈ 200 MeV, in the CMF model, is not supported by the lattice data.
It results from the chiral symmetry restoration which occurs in the model at this temperature.
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Fig. 1. Trace anomaly I, pressure P, and net baryon number susceptibilities ratio χB
4 /χ

B
2 at μB = 0 as a functions of temperature T . The

red line depicts the CMF model, blue and green bands show the results of the lattice QCD calculations from Wuppertal-Budapest and
the HotQCD collaborations, respectively [1, 2, 4, 5].

4. Finite density applications

Experimentally, QCD thermodynamics at large densities can be probed in relativistic heavy-ion colli-
sions, by neutron star properties, and, since GW170817, in binary neutron star mergers [16]. The densities
created in both event-scenarios are in excess of several times nuclear saturation density. The QCD equation
of state is the common ingredient for fluid-dynamical simulations which connect all these phenomena [17].
Which regions of the phase diagram can be probed in those different physical situations?

The CMF model successfully describes nuclear matter, so at T = 0 properties of the nuclear ground
state are close to the empirical data. The model produces nuclear ground state with the following properties:
ground state density n0 = 0.16 (fm−3), binding energy per nucleon is E0/B = −15.2 (MeV), asymmetry
energy S 0 = 31.9 (MeV), and compressibility K0 = 267 (MeV).

The neutron star mass is related to its radius by the Tolman-Oppenheimer-Volkoff (TOV) equation
[18, 19], which uses the pressure as a function of the energy density at zero temperature as input. The astro-
physical constraints on neutron star masses and radii then serve as a benchmark for the low-temperature and
high-density part of the EoS. The mass-radius relation for compact stars with the CMF model is presented
in Fig. 2 (left). The solution of the TOV equation predicts that stars with a total quark fraction of more than
30% are unstable. The model does not yield a second family of quark stars. There is no first order phase
transition for neutron star matter for this CMF model parametrization. A rather smooth appearance of the
quarks does not lead to a quark core in the center of the star as the quark phase is not spatially separated,
by a phase boundary, from the hadrons. The predicted CMF mass-radius relation lies within the measured
mass and radius constraints for neutron stars [20, 21].

The entropy in heavy ion collisions is mostly produced in the initial state of the collision and, for mod-
erate beam energies, can be estimated using the Taub adiabate [24] (shock solution). As the system expands
along a line of constant entropy per baryon, S/A, it cools until a dynamical freeze-out range of T and μB

values is reached. The predicted isentropes are shown on the right hand side of Fig. 2. At FAIR energies,
the system probes temperatures from 10 < T < 270 MeV and chemical potentials from 500 < μB < 1500
MeV.

In this region the CMF model has one first order phase transition – the nuclear liquid-gas transition
at T ≈ 10 MeV. Therefore, there is no critical point associated with a deconfinement transition and the
transformation to quarks is smooth. Signatures of the nuclear liquid-gas transition, on the other hand,
appear to be relevant and are measurable and observed even at higher temperatures, probed by the highest
energy heavy-ion collisions (see also [9, 22, 23]).
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Fig. 2. Left: Mass-radius diagram of neutron stars in β−equilibrium and at T = 0, calculated within the CMF model. Color indicates
the fraction of the star’s mass due to deconfined quarks. Bands are taken from [20, 21]. Right: The evolution of central heavy-ion
collisions through the T − μB plane for different FAIR bombarding beam energies. Black line – Taub adiabat that describes initial state
of heavy ion collisions as implicit function of

√
sNN. Colored lines – isentropes (lines of constant entropy per baryon S/A).

5. Summary

A unified chiral mean field approach is presented for QCD thermodynamics in a wide range of tem-
peratures and densities. The model simultaneously gives a satisfactory description of lattice QCD thermo-
dynamics and fulfills nuclear matter and astrophysical constraints. The resulting equation of state can be
incorporated in fluid-dynamical simulations of heavy-ion collisions and in simulations of neutron stars. The
simulations access the high density and moderate temperature region of the QCD phase diagram, which can
only be constraint by heavy ion collisions and observations of neutron star mergers.
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