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Abstract: In the last few years, the modeling of asymptotic giant branch (AGB) stars has been much
investigated, both focusing on nucleosynthesis and stellar evolution aspects. Recent advances in
the input physics required for stellar computations made it possible to construct more accurate
evolutionary models, which are an essential tool to interpret the wealth of available observational
and nucleosynthetic data. Motivated by such improvements, the FUNS stellar evolutionary code
has been updated. Nonetheless, mixing processes occurring in AGB stars’ interiors are currently
not well-understood. This is especially true for the physical mechanism leading to the formation
of the 13C pocket, the major neutron source in low-mass AGB stars. In this regard, post-processing
s-process models assuming that partial mixing of protons is induced by magneto-hydrodynamics
processes were shown to reproduce many observations. Such mixing prescriptions have now been
implemented in the FUNS code to compute stellar models with fully coupled nucleosynthesis. Here,
we review the new generation of FRUITY models that include the effects of mixing triggered by
magnetic fields by comparing theoretical findings with observational constraints available either
from the isotopic analysis of trace-heavy elements in presolar grains or from carbon AGB stars and
Galactic open clusters.

Keywords: nucleosynthesis; s-process; asymptotic giant branch stars; stellar abundances; nuclear
reaction cross-sections; chemically peculiar stars; circumstellar dust; magnetic fields; galactic chemical
evolution

1. Introduction

The synthesis of elements heavier than iron mostly takes place through neutron-
capture processes. Depending on the reaction timescales of neutron captures, two main
processes can be distinguished: the slow (s) process (see Käppeler et al. [1] for a review)
and the rapid (r) process (see Cowan et al. [2] for a review). The s-process takes place
under relatively low neutron density conditions (Nn ∼ 107–1011 neutrons cm−3) so that the
time scale for neutron captures is much longer than the β-decay time scale of radioactive
isotopes. As a consequence, nuclei produced through the s-process are located very close
to the stability valley. On the contrary, the r-process proceeds on timescales shorter than β-
decay timescales, thus synthesizing strongly β-unstable nuclei, up to the neutron-drip line.
The Solar System abundances can be explained as a superposition of these two processes [3].
In particular, the abundance of about half of nuclei heavier than strontium is accounted for
by slow neutron captures occurring in low- and, to a lesser degree, intermediate-mass stars
(M . 8 M�).

In these stars, once the core He supply has been exhausted after the central He burning
phase, and electron degeneracy has been set up in the resulting C-O core, He burning
is established in a thin shell. The high energy production causes the overlying layers to
expand and cool, and the above H-burning shell gradually becomes less active. In the H-R
diagram, this early phase corresponds to the beginning of the asymptotic giant branch
(AGB). The stellar structure then begins to shrink until the H-burning shell re-ignites. At
the end of this stage, the star has a degenerate core of C-O that is growing in mass, two
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burning shells of He and H that are separated from a He-rich intermediate zone in radiative
equilibrium (He-intershell), and an expanded convective envelope. The helium produced
by the H-burning shell accumulates, causing an increase of density and temperature in the
innermost zones. As a result, over tens of thousands of years, the He-shell switches on in
semi-explosive conditions. On the one hand, the energy released during this thermal pulse
(TP) drives convective motions across the He-intershell region, homogenizing it with freshly
synthesized He-burning products (helium, carbon, and heavy s-process elements). On the
other hand, it causes an expansion, and thus, cooling of the H-shell, which eventually dies
down, while He-burning continues in radiative conditions. Later on, the star contracts
again, heating up and leading to the re-ignition of the H-shell. This alternating sequence
of burning defines the thermally pulsing AGB (TP-AGB) phase of these stars. During
envelope expansion, convection penetrates below the H-He discontinuity, beyond the
region where the H-shell was active. As a result, convective motions carry the by-products
of the fusion reactions to the surface, modifying the star’s surface abundance distribution.
This is referred to as the third dredge-up (TDU).

The He-burning shells of AGB stars is one of the astrophysical environments in
which the s-process takes place (see, e.g., Busso et al. [4]). The other is represented by
the He-burning cores and C-burning shells of massive stars (see Raiteri et al. [5] and
references therein). During the interpulse period, the zone between the two burning shells
is significantly enriched in 14N produced by the H-burning shell in its outward advance.
Such 14N is then mixed downward into the helium shell during the ensuing convective
thermal pulse and eventually converted into 22Ne through a series of α-captures. If the
temperature is high enough (T & 3× 108 K), the 22Ne(α, n)25Mg reaction is triggered as
well. Due to the high temperature required for this reaction to take place, neutron emission
through this channel is only efficient in intermediate AGB stars (M & 4 M�; see, for
instance, Karakas and Lattanzio [6]). Those temperatures can be attained also during the
latest TPs of less massive AGB stars, although the resulting neutron fluxes have only a little
impact on the final distribution of s-element abundance [7]. The primary neutron source in
AGB stars is actually provided by 13C nuclei, which are burnt via the 13C(α, n)16O reaction.
This involves the occurrence of both proton and α captures in the He-intershell. One of
the challenges in modeling this neutron production channel is related to the production
of 13C itself. In fact, the amount of 13C left in the ashes of the H-burning shell is not large
enough to account for the observed neutron enrichment in evolved stars. Hence, during
a TDU, some process responsible for the partial mixing of protons from the envelope
into the 12C-rich region must be at work. Protons would subsequently be captured by
12C nuclei, resulting in the formation of a thin layer enriched in 13C, the so-called 13C pocket.
Neutrons are then efficiently released, during the interpulse phase, at about T ≈ 9× 107 K
through the 13C(α, n)16O reaction [8], which therefore represents the main neutron source
in low-mass AGB stars (M ≤ 3 M�; see Busso et al. [4]).

The formation of the 13C pocket is still a matter of in-depth research. While classical
post-process models generally assume an ad hoc 13C pocket [9,10], several physically-
based approaches have recently been devised to model the partial mixing of proton-rich
material from the convective envelope. They are briefly reviewed in Section 2. Besides
the comprehension of the role played by hydrodynamic and magnetohydrodynamic phe-
nomena usually neglected in standard stellar model computations, understanding the
s-process nucleosynthesis in AGB stars requires the adoption of refined input physics
data. In Section 3.1 the recent updates made to the FUNS code are outlined, along with
a description of mixing triggered by magnetic fields, which is now included to account
for the formation of the 13C pocket in FRUITY models. New magnetic FRUITY models
of low-mass stars computed with the FUNS code are presented in Section 4. A thorough
comparison with available high-accuracy data from laboratory measurements of presolar
meteoritic grains, observational data for intrinsic and extrinsic AGB stars, and heavy el-
ements abundance in Galactic open clusters is also described. Conclusions are drawn in
Section 5.
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2. Mixing Processes in AGB Stars

The circulation of material in stars is tightly linked to the transport of energy. The main
modes of energy transport are radiation and, in degenerate conditions, electron conduction.
To these, we must add a third form of energy flow contribution, namely convection. Convec-
tion is a process for transporting energy and chemical elements in star interiors that involves
large-scale motions of matter. If we imagine that bubbles of matter move within the star,
then turbulence will mediate the creation and destruction of these bubbles. Since a full de-
scription of the convective mixing processes is computationally too expensive, usually one
relies on the phenomenological mixing length theory (MLT) [11]. In standard stellar models,
convection is the sole process considered for transporting chemical elements. However,
such models with pure convection have been demonstrated to be incapable of reproducing
AGB isotopic and elemental distributions, which therefore can provide constraints on the
velocity and, possibly, the nature of the mixing phenomena that are taking place. This is
particularly the case of processes driving to the synthesis of neutron-rich elements that
occurs during the TP-AGB phase (see., e.g., Cristallo et al. [7,12], Trippella et al. [13]). In
this regard, one of the open questions concerns the formation of the 13C pocket, the an-
swer to which is closely related to understanding the physical mechanisms driving mass
exchange at the boundary between the convective envelope and the radiative core. Recent
studies have concentrated on non-convective additional transport processes, ranging from
diffusive to quite rapid dynamic and magnetohydrodynamic mixing, which are often
ignored by the canonical theory of stellar structure and evolution.

One kind of additional transport process is represented by convective overshoot-
ing [14]. When the convective envelope approaches the H-exhausted zone during a TDU,
the innermost layers become unstable owing to the creation of a sharp chemical disconti-
nuity (see, e.g., Frost and Lattanzio [15]). Because of the chemical gradient, the turbulent
eddies of the convective envelope have a high average radial velocity and may overshoot
beyond the Schwarzschild limit, reaching the underlying stable layers and inducing some
extra-mixing. Convective overshooting is usually described in stellar evolution calculations
as an exponential decrease of the diffusion coefficient [14,16] or the convective veloci-
ties [12,17], depending on the numerical algorithm used for chemical transport (see also
Goriely and Siess [18]). The aforementioned exponential profile has firstly been found in
hydrodynamic simulations by Freytag et al. [19]. Based on two-dimensional hydrodynamic
simulations [20], the Ref. Battino et al. [21,22] used a double exponential decreasing profile
to account for Kelvin-Helmholtz instabilities as well as internal gravity waves (IGWs)
mixing [23] at the bottom of the convective envelope. The resulting predictions for heavy
s-process enhancements agree with the majority of the observational data but have issues
in reproducing the entire ranges of some isotope ratios recorded in presolar grains unless
some additional rotation-induced mixing is invoked [22].

Rotation is actually recognized to have an effect on the dynamic processes at work in
stellar interiors (e.g., Maeder [24]). Many constraints on these processes have been estab-
lished by helioseismology and asteroseismology (see Aerts [25] for a review). Furthermore,
rotation, and particularly differential rotation, induces various instabilities that result in
mixing processes capable of transporting materials from the inner layers to the surface.
Although it is evident that stars rotate and that rotation can cause several instabilities that
might lead to mixing, it is uncertain how efficient these processes are and how the various
instabilities interact with each other (see, for example, Maeder [24]). Rotation-induced
mixing in AGB stars has been examined extensively [26–29]. These studies raised doubts on
the capacity of rotation alone to induce a sizable 13C pocket. Nonetheless, a variation in the
initial rotational velocity might lead to a change in the final surface s-process enhancements
and spectroscopic indexes, if the star rotates fast enough [29]. On the other hand, AGB
models rotating at a rate that matches the asteroseismic measurements, show an s-process
production comparable to that of the non-rotating model [29,30], questioning that mixing
induced by rotation may still play a significant role in s-process nucleosynthesis in low-
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mass AGB stars. That said, other processes triggered by rotation may play an important
role in mixing processes inside AGB stars.

As a matter of fact, a phenomenon strictly connected to rotation is stellar magnetism.
The latter is often neglected in the computation of stellar evolutionary models. However,
the interplay between convection and stellar differential rotation can generate complex
internal magnetic fields that may play a major role in the evolution of stars. Such internal
magnetic fields can be grouped into two different categories. The first deals with fossil
fields, which are relics of the star formation process that have managed to survive in a
stable configuration. The other type is related to time-dependent magnetic fields generated
and sustained by a dynamo process, taking advantage of energy sources such as convection
and/or differential rotation. The latter could produce a self-sustained small-scale mag-
netic field in a radiative zone (see, e.g., Braithwaite and Spruit [31]) which could also be
responsible for the transport of angular momentum and chemical elements [32,33]. This
is e.g., the case of mixing induced by magnetic buoyancy [32,34]. This theory advances
the hypothesis that the dynamo-generated buoyancy of magnetized material might offer
a physical mechanism for transporting material from the radiative regions to the above
convective envelope of low-mass stars during the RGB and AGB phases. In this scenario,
the original poloidal field of a rotating star generates a strong toroidal field developing
various instabilities [35,36] among which the buoyancy of magnetized structures (e.g.,
Schuessler [37]). Such magnetic instabilities may also supply a sufficient mass transport
rate capable to explain the formation of the 13C pocket in TP-AGB stars [13,38,39]. There-
fore, the presence of magnetic fields adds new transport mechanisms, some of which could
compete with or suppress purely hydrodynamic processes and could alter stellar surface
element distributions (see Section 4).

3. Updating FRUITY Stellar Models
3.1. Input Physics

Solving the system of equations that defines the stellar structure requires the knowl-
edge of the equation of state (EOS), opacity, and mass/energy losses/gains as a function
of temperature, density, and chemical composition for the typical conditions of stellar
interiors. In the past few years, the great advance in computing power allowed to provide
larger and larger stellar yield sets from detailed AGB models (see, e.g., Ventura et al. [40],
Herwig [41], Karakas and Lattanzio [42], Cristallo et al. [43], Ritter et al. [44]). In this
regard, stellar evolutionary tracks of low- and intermediate-mass stars from the pre-main
sequence to the AGB tip are usually computed using a reduced nuclear network, while the
nucleosynthesis calculations of heavy s-process elements are confined to post-processing
techniques. An exception is represented by the FUNS code [17], in which the physical
evolution of the star is coupled to a full nuclear network including all relevant isotopes up
to the termination point of the s-process path. The chemical and physical features of the
stellar models obtained with the FUNS code are collected in the FRUITY (FUNS Repository
of Updated Isotopic Tables & Yields) online database [7,43], which is, at present, one of the
most complete available databases for the s-process in AGB stars in terms of the range of
masses and metallicities. During recent years, the FUNS code has been extensively updated
with the state of the art of input physics available in the literature. In the following, we
briefly report the major updates to the EOS, the heavy-element admixture, the opacity
tables, the mass-loss rate, and the nuclear reaction network.

Regarding the EOS, in its latest version, FUNS employs two different EOS valid in
different physical conditions, provided as pre-computed tables to be interpolated. For log
T [K] < 6.5 the most recent version of the OPAL EOS [45] (updated in 2005) is adopted. To
correctly describe high-density plasma in which electrons must be treated as degenerate
particles and configurations where hydrogen is absent are reached, such as He, C, and O
cores during RGB and AGB phases, the EOS for fully ionized given by Straniero [46], in the
form updated by Prada Moroni and Straniero [47], is used for log T [K] ≥ 6.5.

For the heavy element mixture, that is, the abundance distribution of the chemical
elements heavier than helium, FUNS utilizes the proto-solar abundance distribution given
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by Lodders [48] for close-to-solar metallicity stars, while for metal-deficient objects, a given
amount of α-enhancement is adopted (see Vescovi et al. [49] for more details).

Similar to the EOS, the opacity coefficients are given as pre-computed tables, covering
a wide range of densities and temperatures. The opacity is strongly dependent on the
relative abundances of the various elements and the specific solar mixture adopted. In
the more advanced RGB and AGB phases, when the stellar structure develops a core with
partial degenerate electrons (helium or carbon core), electron conduction becomes the
predominant mechanism for energy transport and must be considered to total opacity. Con-
versely, in the cool external layers of stars, the formation of molecules (T . 4500–4000 K)
presenting many absorption lines, increases the radiative opacity. In the present version
of the FUNS code, we adopt the most recent version of the OPAL radiative opacity ta-
bles [50] for log T[K] > 4.05. The final opacity tables have then been obtained by adding
the conductive opacity computed by Potekhin et al. [51], Shternin and Yakovlev [52]. For
lower temperatures (log T [K] ≤ 4.05), typical of the external layers of stars, we used the
ÆSOPUS tool [53] to compute the opacity tables in order to take into account the chemical
composition variations of the envelope occurring during the TP-AGB phase. The present
opacity tables have been calculated for the updated solar admixture of Lodders [48] and
for (eventual) considered α-enhancement.

In the late stage of low- and intermediate-mass stars evolution, mass loss induces
important changes in the stellar properties. During the AGB phase, large-amplitude
pulsations cause the compression of the outer atmospheric layers and the formation of
molecules and dusty particles leading the star to lose mass conspicuously due to strong
stellar winds [54]. Such mass loss directly affects the duration of the AGB phase, the
strength of the pulse, and the efficiency of the TDU [6,17,55]. For the practical purposes
of stellar evolution computations, the effect of mass loss is usually included by means
of empirical or semi-empirical formulas. In particular, the AGB mass-loss rate can be
estimated from the observational correlation with the pulsation (see, e.g., Vassiliadis and
Wood [56]). In past FRUITY models [7,12,17,43], the mass-loss law was obtained by fitting
the mass-loss rate versus period for a sample of Galactic O-rich and C-rich giants. The
stellar period is computed employing the relation between the magnitude in the K band
and period provided by Whitelock et al. [57]. The bolometric magnitude of the model is
then calculated by applying a bolometric correction (BCK) as a function of the effective
temperature (Teff). In new FRUITY models, we adopt a new fit given by Abia et al. [58],
who considered an updated Teff dataset of O-rich red giants from Buzzoni et al. [59] and a
new BCK vs. Teff relation.

The calculation of nuclear processes in stellar plasma is a fundamental aspect for
the integration of a stellar model: in addition to defining the energy generated and thus
establishing the balance of a stellar structure, nuclear reactions are also responsible for
the chemical evolution of the star. The standard version of the FUNS code nuclear net-
work follows the chemical evolution of almost 500 isotopes (from hydrogen to bismuth)
linked by more than 800 reactions (charged particle reactions, neutron captures, and β-
decays). The baseline nuclear network is essentially the same already described in the Ref.
Cristallo et al. [12] with the inclusion of some recent updated reaction rates. All the up-
dated charged particle reactions and neutron capture reactions are shown in Tables 1 and 2,
respectively.

In addition, (n, γ) reaction rates for 61Ni, 74Se, 79Kr, 81Kr, 83Kr, 84Sr, 93Nb, 94Nb, 103Rh,
109Ag, 119Sn, 121Sn, 122Sb, 125Te, 129I, 129Xe, 142Pr, 147Pm, 151Eu, 152Eu, 153Eu, 154Eu, 158Gd,
158Dy, 169Tm, 171Tm, 170Yb, 181Hf, 181Ta, 182Ta, 182W, 183W, 189Os, 192Ir, 193Ir, 193Pt, 205Pb, and
210Bi have been recomputed by using the updated stellar enhancement factor (SEF) from the
KADoNiS v0.3 database [60]. The new β-decay rate for 60Fe is from Rugel et al. [61]. The
60Fe(n, γ) cross-section is from Uberseder et al. [62] and renormalized to take into account
the new half-life of 60Fe from Rugel et al. [61]. For the 7Be electron-capture rate, we use that
computed by Simonucci et al. [63] and provided in the tabulated form by Vescovi et al. [64].
The effects induced by the adoption of further re-evaluated neutron-capture cross-sections,
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as provided by Reifarth et al. [65], on the s-process nucleosynthesis in low-mass AGB stars
has been recently investigated in the context of FRUITY models [66].

Table 1. Updated charged particle reactions included in the FUNS’s nuclear network.

Reaction Reference Reaction Reference Reaction Reference
7Li(p, α)4He [67] 23Na(p, γ)24Mg [68] 16O(α, γ)20Ne [69]
15N(p, γ)16O [70] 23Na(p, α)20Ne [71] 18O(α, γ)22Ne [71]
17O(p, γ)18F [72] 24Mg(p, γ)25Al [71] 22Ne(α, n)25Mg [73]
17O(p, α)14N [74] 25Mg(p, γ)26Alg [75] 22Ne(α, γ)26Mg [73]
14C(p, γ)15N [71] 25Mg(p, γ)26Alm [75] 14N(α, p)17O [76]
18O(p, γ)19F [77] 26Mg(p, γ)27Al [71] 15N(α, γ)19F [71]
18O(p, α)15N [78] 26Alg(p, γ)27Si [71] 17O(α, γ)21Ne [79]
19F(p, α)16O [80] 27Al(p, γ)28Si [71] 17O(α, n)20Ne [79]
9Be(p, α)6Li [81] 27Al(p, α)24Mg [71] 18O(α, n)21Ne [82]
10B(p, α)7Be [81] 4He(2α, γ)12C [83] 19F(α, p)22Ne [84]

20Ne(p, γ)21Na [71] 12C(α, γ)16O [85] 20Ne(α, γ)24Mg [71]
21Ne(p, γ)22Na [71] 13C(α, n)16O [86] 24Mg(α, γ)28Si [71]
22Ne(p, γ)23Na [87] 14C(α, γ)18O [88]
22Na(p, γ)23Mg [89] 14N(α, γ)18F [71]

Table 2. Updated neutron-capture reactions included in the FUNS’s nuclear network.

Reaction Reference Reaction Reference Reaction Reference
13C(n, γ)14C [90] 75As(n, γ)76As [91] 176Lu(n, γ)177Lu [92]
14N(n, p)14C [90] 79Br(n, γ)80Br [93] 174Hf(n, γ)175Hf [94]
17O(n, α)14C [95] 81Br(n, γ)82Br [93] 176Hf(n, γ)177Hf [96]
19F(n, γ)20F [97] 78Kr(n, γ)79Kr [98] 177Hf(n, γ)178Hf [96]

20Ne(n, γ)21Ne [99] 80Kr(n, γ)81Kr [98] 178Hf(n, γ)179Hf [96]
21Ne(n, γ)22Ne [99] 84Kr(n, γ)85Kr [98] 179Hf(n, γ)180Hf [96]
22Ne(n, γ)23Ne [99] 84Km(n, γ)85Kr [98] 180Hf(n, γ)181Hf [96]
23Na(n, γ)24Na [100] 86Kr(n, γ)87Kr [98] 182Hf(n, γ)183Hf [94]
24Mg(n, γ)25Mg [101] 85Rb(n, γ)86Rb [93] 180W(n, γ)181W [102]
25Mg(n, γ)26Mg [103] 87Rb(n, γ)88Rb [93] 184W(n, γ)185W [104]
26Mg(n, γ)27Mg [101] 88Sr(n, γ)89Sr [105] 186W(n, γ)187W [104]

35Cl(n, γ)36Cl [106] 90Zr(n, γ)91Zr [107] 184Os(n, γ)185Os [102]
40Ar(n, γ)41Ar [108] 91Zr(n, γ)92Zr [109] 186Os(n, γ)187Os [110]

41K(n, γ)42K [111] 92Zr(n, γ)93Zr [112] 187Os(n, γ)188Os [110]
40Ca(n, γ)41Ca [113] 93Zr(n, γ)94Zr [114] 188Os(n, γ)189Os [110]
45Sc(n, γ)46Sc [111] 94Zr(n, γ)95Zr [115] 190Os(n, γ)191Os [116]
54Fe(n, γ)55Fe [117] 96Zr(n, γ)97Zr [118] 192Os(n, γ)193Os [116]
58Fe(n, γ)59Fe [119] 96Ru(n, γ)97Ru [120] 190Pt(n, γ)191Pt [102]

59Co(n, γ)60Co [119] 102Ru(n, γ)103Ru [120] 192Pt(n, γ)193Pt [121]
58Ni(n, γ)59Ni [122] 104Ru(n, γ)105Ru [120] 194Pt(n, γ)195Pt [121]
60Ni(n, γ)61Ni [123] 102Pd(n, γ)103Pd [124] 195Pt(n, γ)196Pt [121]
62Ni(n, γ)63Ni [125] 120Te(n, γ)121Te [124] 196Pt(n, γ)197Pt [121]
63Ni(n, γ)64Ni [126] 130Ba(n, γ)131Ba [124] 198Pt(n, γ)199Pt [116]
64Ni(n, γ)65Ni [119] 132Ba(n, γ)133Ba [124] 197Au(n, γ)198Au [127]
63Cu(n, γ)64Cu [128] 139La(n, γ)140La [129] 196Hg(n, γ)197Hg [102]
65Cu(n, γ)66Cu [130] 151Sm(n, γ)152Sm [131] 202Hg(n, γ)203Hg [116]
64Zn(n, γ)65Zn [132] 154Gd(n, γ)155Gd [133] 204Hg(n, γ)205Hg [116]
70Zn(n, γ)71Zn [132] 156Dy(n, γ)157Dy [124] 204Pb(n, γ)205Pb [134]
73Ge(n, γ)74Ge [135] 168Yb(n, γ)169Yb [102] 206Pb(n, γ)207Pb [136]
74Ge(n, γ)75Ge [91] 174Yb(n, γ)175Yb [116] 207Pb(n, γ)208Pb [137]
76Ge(n, γ)77Ge [91] 176Yb(n, γ)177Yb [116] 209Bi(n, γ)210Bi [138]

By using the aforementioned choices for the opacity tables, EOS, and nuclear reaction
rates, we computed a standard solar model (for more details on the followed procedure see
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Vescovi et al. [64,139]) to extract the initial solar helium and metallicity abundances, that
are Y = 0.267 and Z = 0.0167, respectively. The corresponding mixing length parameter
was found to be αMLT = 1.86. Such values are adopted for computing solar metallicity
FRUITY models. Different values for Y and Z adopted in calculating models at different
metallicities are reported in Vescovi et al. [49].

3.2. Magnetic-Buoyancy-Induced Mixing and the 13C Pocket Formation

The appearance of carbon and s-process heavy elements on the surface of AGB stars is
related to the interplay of mixing and nuclear processes occurring in their interiors, but
the physical mechanism that drives the creation of a 13C pocket remains uncertain (see
Section 1). In past FRUITY models, the opacity-induced overshoot [12,17] was adopted
for modeling the partial mixing of hydrogen from the envelope required to synthesize
fresh 13C. According to the MLT, the average convective velocity is proportional to the
difference between the radiative (5rad) and the adiabatic (5ad) temperature gradients. At
the convective boundary, this quantity, and hence the average velocity, suddenly decreases
to zero. However, some convective plumes may reach the underlying radiative and stable
layer, resulting in some extra-mixing. During a TDU episode, the steep chemical gradient
between the opaque H-rich convective envelope and the H-exhausted region below causes
5rad to exceed5ad at the convective envelope’s inner border which, therefore, becomes
unstable. Then, driven by their inertia, the convective plumes overshoot beyond the formal
Schwarzschild boundary, causing extra-mixing and the creation of a chemically smooth
transition zone between the convective envelope and the radiative region. In FUNS, the
mixing exerted by convective overshooting is computed by solving a time-dependent
mixing equation [17,140], in which the average convective velocity is determined according
to the MLT [11]. The Schwarzschild criterion is used to identify the convective boundary.
The velocity of the descending material pushed by convection is evaluated at the inner
border of the convective envelope as

v = vcb exp
(
− δr

βHP

)
, (1)

where δr is the distance from the convective border, while vcb and HP are the veloc-
ity and the pressure scale height at the convective border, respectively. β is a free pa-
rameter adjusted to 0.1 to maximize s-process production in low-mass AGB stars (see
Cristallo et al. [12], Guandalini and Cristallo [141] for more details). The β parameter con-
trols the amount of protons mixed beyond the convective boundary, as well as the TDU
efficiency. In standard FRUITY models, the partially mixed zone extends over 2 HP be-
yond the Schwarzschild limit [17], while in FRUITY Tail models [142], it extends up to
the layer where the convective velocity is 10−11 times lower than the value reached at the
Schwarzschild border. The resulting 13C pocket was found to be much larger than the
one generated in standard FRUITY models, leading to a significant increase in surface
s-process enrichment, but without altering the TDU efficiency. FRUITY models computed
by adopting β = 0.1 were shown to be able to reproduce the bulk of the luminosity function
of Galactic C-stars [141] and the solar distribution of s-only isotopes [143]. More recently,
the inclusion of the updates described in Section 3.1 led Vescovi et al. [144] to conclude that
setting the β parameter to 0.1 would lead to an excessive TDU efficiency and found that
it has to be reduced down to 0.025 to reproduce standard FRUITY results. On the other
hand, this parameter option leads to a so weak partial mixing of hydrogen that almost no
13C and so s-process nuclei are synthesized. Thus, mixing driven by magnetic fields has
been included in the FUNS code as the source of extra-mixing required for the formation of
the 13C pocket.

The magnetic-buoyancy-induced mixing is implemented in the FUNS hydrostatic stel-
lar evolutionary code, starting from the magnetic buoyancy model of Nucci and Busso [34].
Following these authors, it assumed that a toroidal field is present in the radiative He-
intershell at the beginning of the TDU and triggers the buoyant rise of magnetic flux tubes
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(see also Trippella et al. [13]). The toroidal field is supposed to be generated by a dynamo
working in the AGB interiors, which amplifies a tiny seed poloidal field by draining the
available differential rotation energy [32,145,146]. The Ref. Nucci and Busso [34] showed
that the complex MHD equations valid for a stellar plasma may be considerably simplified
for the particular geometry of the radiative layers underneath an evolved star’s convective
envelope. In this scenario, since the density distribution of the plasma can be approximated
with a power law as a function of the radius (ρ(r) ∝ rk) with an exponent k that is negative
and has a modulus larger than unity, the system of equations can be analytically solved,
providing simple formulas that can be used in stellar models to simulate the local effects
generated by the magnetic field. Under these conditions, the radial velocity of magnetized
structures turns out to be

v(r) = vp

( rp

r

)k+1
, (2)

where rp refer to the radial position of the innermost layer where a magnetic flux tube,
formed in the He-intershell region due to the buoyancy instability, starts to rise, while vp

is its initial buoyant velocity. k is the exponent in the relation ρ ∝ rk and it is typically
lower than−3 in the He-rich radiative layers below the convective envelope of an AGB star,
when the H-burning shell is extinguished during a TDU episode (see also Busso et al. [147]).
The above process outlines a mass up-flow, forced by magnetic buoyancy, that causes a
down-flow of protons from the envelope for mass conservation. The ensuing down-flow
velocity is

v(r) = up

( rp

r

)k+2
, (3)

where up ≡ f · vp is the effective starting buoyant velocity (see Vescovi et al. [144] for more
details). The filling factor f , that is, the fraction of the total mass of the stellar layer occupied
by the magnetized domains, is of the order of 10−5 [13,32].

The critical toroidal Bϕ required for the emergence of magnetic buoyancy instabilities
can be used to identify rp [144] and it can be expressed as [36,146,148]

Bϕ =
(

4πρrN2Hp
η

K

)1/2
, (4)

provided that the field gradient is smooth, that is, ∂ ln Bϕ/∂ ln r ∼ O(1). Here N is the
adiabatic Brunt-Väisälä frequency, η the magnetic diffusivity, K the thermal diffusivity
and Hp the local pressure scale height. The critical Bϕ, at the moment of the maximum
penetration of the H-rich envelope during a TDU, varies from ∼104 G to a few 105 G, in
the region of interest for the formation of a 13C pocket [144]. The position at which the
pre-existing magnetic field exceeds Bϕ determines the radial position of the layer from
which buoyancy (on average) starts, thus defining the extension of the mixed zone and of
the 13C pocket. Therefore, the efficiency of magnetic-buoyancy-induced mixing depends
on both the critical toroidal Bϕ and the effective buoyant velocity up, whose values have to
be calibrated (see Section 4.1).

The updated input physics data, network, and mixing velocity described in this
Section were used to calculate the evolutionary sequence of 1.5 and 2 M� stars at different
metallicities presented in Vescovi et al. [49], Vescovi et al. [144], Magrini et al. [149] and
that are recapped in Section 4.

4. Nucleosynthesis and Chemical Enrichment in Magnetic FRUITY Models
4.1. SiC Grains

AGB stars are major polluters of the ISM. The cool layers above their surface host the
formation of solid dust grains, whose composition is determined by the relative elemental
and isotopic abundances in the stellar atmosphere. About 90% of presolar silicon carbide
(SiC) grains, representing the so-called mainstream (MS) group, are thought to come from
ancient C-rich AGB stars that evolved prior to the formation of the Solar System (see
Zinner [150] for a review). Thus, they keep a record of nucleosynthesis and mixing events
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in their parent stars, providing clues on the stellar processes at play, provided that we are
able to identify the kind of stars they originated from. In particular, isotopic s-element
abundance ratios measured in these grains have been shown to offer accurate constraints
on the 13C pocket (e.g., Liu et al. [151]). According to the Si isotope ratios of MS grains,
their parent stars should have close-to-solar (e.g., Hoppe et al. [152]) or slightly super-
solar metallicity [153]. In particular, chemical and chemo-dynamical models of the Galaxy,
properly combined with dust yields resulting from AGB models, showed that the bulk of
presolar SiC grains originated from AGB stars with M ∼ 2 M� and Z ∼ Z� [154,155]. On
the other hand, the extremely rare µm-sized MS SiC grains may originate from AGB stars
with nearly twice the solar metallicity of the Sun [156].

FRUITY Magnetic models for 2 M� AGB stars with close-to-solar metallicities with a
single configuration for the toroidal field strength (Bϕ = 5× 104 G) and the initial buoyant
velocity (up = 5× 10−5 cm s−1) consistently reproduce the majority of the heavy-element
isotope ratios measured in presolar SiC grains from AGB stars. In Figure 1, we compare
FRUITY Magnetic models with available laboratory measurements of isotope ratios for
Ni, Sr, Zr, Mo, and Ba in presolar SiC grains. The isotope ratios are given using the
standard δ-notation, which is defined as the variation, in parts per thousand, of the isotopic
ratio measured in a grain relative to the terrestrial ratio. The Mo isotope data are instead
reported in the usual spectroscopic notation. The capability of FRUITY Magnetic models of
matching grain data can be understood by focusing on the trends of 88Sr and 138Ba isotopes.
Previous studies using post-processing s-process models found that 13C pockets with a
flat 13C profile and masses larger than a few 10−4 M� are needed to explain the bulk of
mainstream SiC grains with negative 88Sr/86Sr and 138Ba/136Ba isotope ratios [151].
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Figure 1. Comparison between FRUITY Magnetic 2 M� models at different metallicities and presolar
grain isotopic ratios. Grain data are from Nicolussi et al. [157], Barzyk et al. [158], Liu et al. [159],
Liu et al. [151,160], Trappitsch et al. [161], Stephan et al. [162], Stephan et al. [163].
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The action of magnetic-buoyancy-mixing results in deep penetration of a few protons,
so that, when H-burning restarts, almost all the protons are captured by 12C, producing
13C but a small amount of 14N. Therefore, the ensuing 13C pocket is quite extended and
with a low and rather constant 13C abundance (see Figure 2), as required to explain Sr–Ba
grain data [144,164,165]. Conversely, the scarcity of 14N substantially inhibits the synthesis
of those isotopes whose nuclear production channel starts from nitrogen, including 19F (see
Section 4.2).
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Figure 2. Effective 13C in the 13C pocket region for models with different physical prescriptions.
The mass fraction of effective 13C is defined as X(13Ceff) = X(13C)− 13/14× X(14N). Since 14N is
the most efficient neutron poison, the X(13Ceff) quantifies the number of neutrons that will be
released at following activation of the 13C(α, n)16O reaction and therefore is a good estimator of the
s-element production.

4.2. Fluorine Nucleosynthesis

One of the most fascinating subjects in nuclear astrophysics is the origin of fluorine
in the Universe. While several sources are required to explain the galactic chemical evolu-
tion of fluorine abundance (see Grisoni et al. [166] and references therein), spectroscopic
findings of photospheric [F/Fe] enhancements in intrinsic AGB carbon stars [167–171] and
metal-poor extrinsic stars [171,172] provide the only direct observation of fluorine produc-
tion. In AGB stars, starting from free neutrons and 14N, the fluorine synthesis occurs via
the reactions chain 14N(n, p)14C(α, γ)18O(p, α)15N(α, γ)19F. Neutrons are made available
through the activation of the 13C(α, n)16O reaction. During the interpulse phase, neutrons
are burnt along with the 14N present in the He-intershell to synthesize 15N, which is then
consumed to create 19F via 15N(α, γ)19F reaction in the following convective TP [173–175].
19F is additionally produced from any secondary 13C and 14N left in H-burning ashes and
from the eventual un-burnt 13C in the pocket [12], that are engulfed in the convective shell
generated by the TP. Fluorine is then brought by convective motions to the surface during
the subsequent TDU. As a result, the 19F envelope abundance should correlate with those
of carbon and s-process elements (see Abia et al. [171] and references therein).

Compared to observational data for the F-enhancement trend with the metallicity,
current theoretical predictions for low-mass AGB stars provide a good agreement [174,176].
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When considering [F/s] ratios at close-to-solar metallicities, standard FRUITY models were
shown to be able to reproduce the decreasing trend of [F/s] with the surface s-process
enrichment. However, at lower metallicities they overestimate the fluorine production
with respect to heavy elements [171,176]. Even FRUITY Tail models, despite the larger
13C pockets leading to larger s-process surface enhancements, barely reach negative values
for [F/Ba] and [F/La] observed in low-metallicity objects [171,172], pointing out that fluo-
rine production needs to be further suppressed, without altering the s-process enrichment
(see also Abia et al. [171]). Instead, FRUITY Magnetic models can effectively reproduce
the observed spread for both [F/Ba] and [F/La] ratios as a function of the corresponding
s-process enhancement (see Figure 3). As mentioned above, 19F is primarily synthesized in
AGB stars via a complex nuclear chain involving 14N nuclei. In FRUITY Magnetic models,
the low proton abundance resulting from the magnetic-buoyancy-induced mixing guar-
antees the production of a small amount of primary 14N. As a consequence, this fluorine
production channel is suppressed and, in those models, the fluorine envelope abundance is
determined by the amount of secondary 14N left behind by H-shell burning [49]. On the
other hand, the extended 13C pocket allows to achieve high s-enhancements that, coupled
to low fluorine enhancements, put FRUITY Magnetic models in close agreement with
observations in very metal-poor AGB stars.
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Figure 3. [F/X] against [X/Fe] for the sample stars with [Fe/H] ≤ −1.0. Symbols refer to three data
groups: circles, galactic (N-type) carbon stars; squares, extragalactic carbon stars; pentagons, extrinsic
CH/Ba stars. Data from Abia et al. [171], Lucatello et al. [172]. The lines are theoretical predictions for
1.5 M� AGB stars with low metallicity. Note that at these low metallicities, theoretical AGB models
predict that the star becomes C-rich from the first TDU episodes. Data points and theoretical lines are
color-coded by [Fe/H]. Typical error bars are indicated.

4.3. Stellar Yields and the Galactic Evolution of Yttrium Abundance

Stellar yields from AGB stars are crucial in building a galactic chemical evolution
model. AGB yields from FRUITY models, when combined with yields for rotating massive
star models from Limongi and Chieffi [177], successfully reproduce the solar distribution
of s-process elements [143]. However, those yields are not able to explain the observed
[Y/H] and [Y/Mg] abundance ratios of star clusters located in the inner galactic disk, that
is, with Galactocentric distances RGC < 7 kpc [178]. Instead, theoretical predictions on
average agree with data for clusters located at larger radii. Analogous considerations apply
for other literature s-process yields (see Casali et al. [178] and references therein). This
points to the fact that clusters in the inner disk have a lower or equal yttrium abundance
with respect to clusters located at higher RGC at the same age. To reproduce the observed
trends, Casali et al. [178] adopted a set of empirical yields in which the production of Y at
high metallicity is significantly lowered (by a factor of ten). This suggests that current AGB
models overestimate the yttrium yield trend with the metallicity because the neutron-to-
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seed ratio attained in those models is likely excessive, as also indicated by the comparison
with isotope ratios of heavy elements measured in presolar SiC grains [179,180]. Conversely,
FRUITY models accounting for mixing triggered by magnetic fields were shown to provide
a good match to grain data (see Section 4.1) and reach milder neutron densities than
standard FRUITY models at close-to-solar metallicities.

The yttrium and barium net yields for a 2 M� star as a function of [Fe/H] both for
FRUITY Standard and FRUITY Magnetic models are shown in Figure 4. The two sets are
markedly different due to different attained neutron-to-seed ratios. The latter is determined
by the number of free neutrons, that are of primary origin, and the number of iron nuclei as
seeds for the neutron captures, which is instead a secondary-like quantity that depends on
the metallicity. Overall, magnetic models present fewer neutrons and so a lower neutron-
to-seed ratio. At low metallicities, this implies that the neutron fluxes are sufficiently high
to robustly produce Y but not to saturate the first s-process peak and move to the second
peak, so efficiently producing Ba. On the contrary, moving at higher metallicities, the net Y
production of magnetic models drops faster than standard FRUITY models. The decrease
is less evident for the Ba yields. Such differences in the net yields have a decisive impact in
a galactic chemical evolution (GCE) modeling of the inner Galactic disk, where super-solar
metallicity is reached. Including the set of FRUITY Magnetic stellar yields in a GCE model,
it was shown that it is possible to reproduce the almost constant trend of [Y/H] versus age
while adopting standard FRUITY yields would result in a net increase of [Y/H] in the inner
disk regions (that is not observed; see [149]). Similar outcomes were also obtained when
considering Zr, Ba, La, and Ce trends [149]. In this framework, present FRUITY Magnetic
models offer a theoretical explanation of the behavior of slow neutron-capture elements in
the inner Galactic disk.
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Figure 4. Net yttrium (top panel) and net barium (bottom panel) yields as a function of [Fe/H] for a
2 M� AGB star as predicted by FRUITY and FRUITY Magnetic models.

5. Summary and Outlook

Significant improvements in understanding the evolution and nucleosynthesis of
AGB stars have been made in recent years. One of the remaining unknowns concerns
the physical mechanism responsible for the formation of the 13C neutron source in these
stars. Several additional transport processes have been invoked and accordingly included
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in stellar evolution codes. Among them, the mixing induced by magnetic buoyancy of
material in the He-rich regions to the envelope has shown to induce the development of
rather extended 13C pockets. Post-process models adopting such 13C-reservoirs are able to
reproduce many observational constraints.

In this review, we have discussed a new series of FRUITY models accounting for the
magnetic-buoyancy-induced mixing, which is now included in the FUNS evolutionary
code, along with the latest available input physics data. Once properly calibrated, FRUITY
Magnetic models of 2 M� and close-to-solar metallicity provide a very good match to
most of the isotope ratios measured in presolar SiC grains. The peculiar proton profile in
these models leads to the generation of extended 13C pockets moderately-rich in 13C and
with a small amount of 14N. This has various implications. The first is a relatively low
19F envelope abundance, accompanied by a significant production of s-process nuclei. In
turn, this results in high surface s-process enrichment at low metallicities that, combined
with mild fluorine enhancements, pose magnetic FRUITY models in fair agreement with
observations for Galactic and extragalactic AGB stars. Instead, models with solar and super-
solar metallicity, substantially favor the production of light s-process elements against
heavy ones. Therefore, yields from magnetic FRUITY models for elements like yttrium
show a decreasing metallicity trend, as required by GCE models reproducing the s-process
elements behavior in galactic open clusters.

These results add to the evidence that the present calibration of the parameters de-
scribing the magnetic-buoyancy-induced mixing adopted in FRUITY models is robust.
Nonetheless, additional pieces of evidence, based both on further comparisons with in-
trinsic and extrinsic objects, as barium stars and post-AGB stars, and multidimensional
magnetohydrodynamic simulations are needed for a definitive claim.
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