phase of sepsis may counteract the cytokine storm. Furthermore, stabilization of Pellino3 by inhibition of autophagy in the hypoinflammatory phase of sepsis may improve immunity. In consideration of these two conflicting sepsis phases, modulation of Pellino3 may provide a new strategy for the development of a therapy approach in sepsis.

Acknowledgements: This research was supported by a grant from the Deutsche Forschungsgemeinschaft (KN493/9-1 and SFB TP3).

References

PS1

Attenuated NOX2 expression impairs ROS production during the hypoinflammatory phase of sepsis
L Krucker1, V Morbitzer1, A Heeg1, LK Eifler1, T Knape1, B Brüne1, A von Krenthen1
1Institute of Biochemistry I - Pathobiochemistry, Goethe-University Frankfurt, Germany; 2Fraunhofer IME Project Group - Translational Medicine and Pharmacology, Frankfurt, Germany
Critical Care 2012, 16(Suppl 3):PS1

Background: The multifunctional phagocytic NADPH oxidase produces reactive oxygen species (ROS) after activation by microorganisms or inflammatory mediators [1]. In the hypoinflammatory phase of sepsis, macrophages are alternatively activated by contact with apoptotic cells or their secretion products. This inhibits NADPH oxidase and leads to attenuated ROS production [2] and furthermore contributes among others to a hyporeactive host defense. Due to this immune paralysis, sepsis patients suffer from recurrent and secondary infections [3]. We focused on the catalytic subunit of NADPH oxidase, the transmembrane protein NOX2 [4]. We assume that after induction of sepsis the expression of NOX2 is reduced and hence ROS production is decreased.

Methods: We induced polymicrobial sepsis in mice by cecal ligation and puncture. The ability of peritoneal macrophages (PMs) to produce ROS was determined by FACS via hydroethidine assay. NOX2 expression of PMs was determined by western blot and qPCR. To elucidate the mechanism causing mRNA destabilization, we performed in vitro experiments using J774 macrophages. To obtain an alternatively activated phenotype, macrophages were stimulated with conditioned medium from apoptotic T cells (CM). By luciferase assays we figured out a 3'UTR-dependent regulation of NOX2 mRNA stability. Assuming that a protein is involved in the mRNA degradation, we performed a RNA pulldown with biotinylated NOX2-3'UTR constructs followed by mass spectrometry. We verified the role of SYNCRIP by siRNA approach. Additionally, we overexpressed NOX2 in J774 cells and analyzed the ROS production (w/wo CM treatment) by FACS.

Results: We found an impaired expression of NOX2 at RNA and protein level along with decreased ROS production after induction of sepsis in mice as well as stimulating J774 macrophages with CM of apoptotic T cells. This is due to a time-dependent NOX2 mRNA degradation depending on SYNCRIP, a RNA-binding protein, which stabilizes NOX2 mRNA through binding to its 3'UTR under normal conditions. In line, knockdown of SYNCRIP also decreases NOX2 mRNA expression. We assume that a CM-dependent modification or degradation of SYNCRIP prevents its stabilizing function. As the overexpression of NOX2 restores ROS production of CM-treated J774 cells, we assume that NOX2 expression is crucial for maintaining NADPH activity during the hypoinflammatory phase of sepsis.

Conclusion: Our data imply a regulatory impact of SYNCRIP on NOX2 stability during the late phase of sepsis. Therefore, further understanding of the regulation of NADPH oxidase could lead to the design of a therapy to reconstitute NADPH oxidase function, finally improving immune function in sepsis patients.

Acknowledgements: This work was supported by a grant from the Deutsche Forschungsgemeinschaft (KN493/9-1 and SFB TP3).

References

PS2

Kinetic characterization of selective peroxisome-proliferator-activated receptor gamma modulators in vitro
T Knape1, LK Eifler1, A Heeg1, LK Krucker1, B Brüne1, MJ Pamh1, A von Krenthen2
1Fraunhofer IME Project Group - Translational Medicine and Pharmacology, Frankfurt, Germany; 2Institute of Biochemistry I - Pathobiochemistry, Goethe-University Frankfurt, Germany
Critical Care 2012, 16(Suppl 3):PS2

Background: The ligand-activated transcription factor, peroxisome-proliferator-activated receptor gamma (PPARγ), has been shown to play an essential role in immunosuppression during sepsis. PPARγ is upregulated in T cells of septic patients, sensitizing these cells to PPAR-dependent apoptosis and thus contributing to T-cell depletion [1,2]. In the polymicrobial cecum ligation and puncture (CLP) sepsis model in mice, both T-cell-specific gene knockout (Lck-Cre PPARγfl/fl) and systemic pharmacological PPARγ antagonism by GW9662 improved survival [3]. Because GW9662 was only effective when applied 3 hours after CLP, we were interested to extend this time frame. For this reason we characterized the kinetics of PPARγ-Ms when administered before or in combination with the agonist thiazolidinedione, rosiglitazone.

Methods: A PPARγ-dependent transactivation assay was used in HEK293T cells. It is based on the vector pFA-PPARγ-LBD-GAL4-DDB encoding the hybrid protein PPARγ-LBD-GAL4-DDB and the reporter vector pFR-Luc, carrying a GAL4-responsive element in front of the Firefly luciferase gene. These two vectors were co-transfected, in combination with a control vector encoding Renilla luciferase (pRL-CMV) to normalize Firefly luciferase activity for transfection efficiency. Following transfection, cells were incubated with the PPARγ-Ms F-MOC and MCC-555 and the PPARγ antagonist GW9662 for different times (2 to 48 hours) and at increasing doses (0.01 to 10 μM), with or without rosiglitazone (0.01 to 10 μM). Transactivation was analyzed using a 96-well plate format.

Results: Rosiglitazone transactivated PPARγ in a time-dependent and dose-dependent manner, the response gradually increasing to a maximum at 48 hours with 10 μM. Low concentrations (0.01 to 1 μM) of PPARγ-Ms F-MOC and MCC-555 and the PPARγ antagonist GW9662 all exerted dose-independent agonistic effects at an early incubation time point (2 hours). From 10 hours onwards, MCC-555 and GW9662, given alone, both exerted PPARγ agonistic effects, MCC-555 in parallel to responses to rosiglitazone (0.01 to 10 μM). Transactivation was analyzed using a 96-well plate format.

Conclusion: Our kinetic analysis reveals clear differences in the modulatory characteristics of PPARγ inhibitors, with previously unreported early inhibitory effects and late agonistic or partial agonistic activity. New PPARγ-Ms with extended inhibitory activity may prove useful in the therapy of sepsis.

References
IL-6 and IFNγ play a role in fatal cases of SNI1 influenza in children
A Alam1, H Jusuf, CB Kartasasmita, D Setiabudi, S Sudarwati, DA Wulandari, AU Suardi, DH Somasetia
Medical Faculty Universitas Padjadjaran, Bandung, Indonesia
Critical Care 2012, 16(Suppl 3):P53

Background: Fatal human critical cases associated with influenza A subtype H5N1 have been documented in Bandung, Indonesia. Of four children, three died. We determined the level of cytokines and chemokines in those patients.

Methods: The Luminex method was used to look for the profile of cytokine and chemokine gene expression induced by H5N1 influenza virus from patient’s serum.

Results: We found that H5N1 influenza virus in the dead children was a more potent inducer of IL-6, the level being higher (17.00, 74.31, 85.75) than in the one child who survived (4.78). The IFNγ level of the fatal cases was also higher (21.43, 31.75, 384.38) than in the one child who recovered (5.51). This suggested that a cytokine storm may play a role in the pathogenesis of fatal H5N1 cases.

Conclusion: The H5N1 influenza A virus is a potent inducer of proinflammatory cytokines and chemokines. This hyperinduction of cytokines may be relevant to mortality of children with H5N1 infection.

Cholecystokinin protects rats against Staphylococcus aureus-induced sepsis
RO Saia1, FMC Zuelli, EC Cârnio
University of Sao Paulo, Ribeirão Preto, São Paulo, Brazil
Critical Care 2012, 16(Suppl 3):P56

Background: Cholecystokinin (CCK) was firstly described as a gastrointestinal hormone, but immune cells express their receptors, suggesting a possible involvement of this peptide in pathophysiological processes. Our aims were to evaluate the role of CCK on resistance against Gram-positive Staphylococcus aureus-induced sepsis, as well as cell influx to infectious focus. Furthermore, since nitric oxide, TNFα and IL-10 play a key role in the innate immune system controlling bacterial infection, we also evaluated the synthesis of these inflammatory mediators during this sepsis model.

Methods: Male Wistar rats (180 to 200 g) received an intraperitoneal injection of pneumoligneum (P) (nonselective CCK receptor antagonist; 30 or 50 mg/kg) 30 minutes before bacterial S. aureus inoculum (0.5 to 1 × 10^8 CFU/animal). At 4 and 24 hours after sepsis induction, blood and peritoneal lavage fluid (PLF) were collected for microbiological analysis, cytokines and nitrate quantifications and also differential cell counting. Nitrate was detected by chemiluminescence, while TNFα and IL-10 were determined by ELISA sandwich kits.

Results: The pretreatment with P at higher dose (50 mg/kg) increased bacteremia in comparison with the saline-injected group (2,052 ± 810.7 vs. 154.3 ± 47.0 CFU/ml, P < 0.01) at 4 hours after sepsis induction. At the same time point, the bacterial counting in PLF increased in a dose-dependent manner in the P-treated rats (P < 0.05). On the other hand, only the higher P dose elevated significantly the CFU/ml in the PLF at 24 hours (97.75 ± 12.77 × 10^3 vs. 35 ± 10.05 × 10^3 CFU/ml, P < 0.05). The plasma TNFα and nitrate concentrations were not changed by treatment or time after sepsis induction. However, the administration of CCK receptors antagonist reduced the TNFα production in comparison with the control group in PLF, at both time points. The plasma IL-10 concentration increased at 4 hours in P-treated rats, while at 24 hours it was reduced (85.83 ± 48.0 vs. 1,698 ± 265.6 pg/ml, P < 0.001). In PLF, the rats pretreated with P reduced the IL-10 measurements (P < 0.05) when compared with the control group. In agreement, the macrophage influx to peritoneal infectious focus was compromised by treatment with a high P dose at 24 hours after S. aureus-induced sepsis (3,947.73 ± 269.99 vs. 5,629.61 ± 786.90 cells/μl; P < 0.005). Moreover, the neutrophil count did not change among the experimental groups (6,860.59 ± 211.90 vs. 6,273.54 ± 798.91 cells/μl).

Conclusion: These data suggest a protective role for CCK peptide during S. aureus-induced sepsis, modulating the systemic and local inflammatory response, as well as increasing the macrophage influx to the infectious focus.