LETTER TO THE EDITOR

A self-consistent equation of state for nuclear matter

M I Gorenstein, D H Rischke†, H Stöcker†, W Greiner† and K A Bugaev‡
† Institut für Theoretisch Physik der J W Goethe Universität, Postfach 111032, D-6000
Frankfurt am Main 11, Federal Republic of Germany
‡ Department of Physics, National Taiwan University, Taipei, Taiwan 10674, Republic
of China

Received 25 March 1992, in final form 21 December 1992

Abstract. We formulate a phenomenological extension of the mean-field theory
approach and define a class of thermodynamically self-consistent equations of state for
nuclear matter. A new equation of state of this class is suggested and examined in detail.

One of the foremost goals in today’s heavy-ion physics is the determination of the
nuclear matter equation of state (EOS) (see, for example, [1]). Up to now our
knowledge of the the nuclear EOS is restricted to one point in the plane of the
independent thermodynamical variables temperature T and net baryon density n.
This point is the so-called ground state of nuclear matter: at $T = 0$ nuclear matter
saturates (i.e. the pressure $p = p_0 = 0$) at a density of about $n_0 = 0.16$ fm$^{-3}$. From
nuclear physics data one derives the following value for the energy per particle
$W(n) = (\epsilon/n)_{T=0} = \epsilon_0$ (ϵ is the energy density, M is the nucleon mass) of infinite
nuclear matter:

$$W(n = n_0) = \epsilon_0 \approx -16 \text{ MeV}.$$

In [2] a comprehensive analysis of the incompressibility

$$K_0 = 9 \left(\frac{\partial p}{\partial n} \right)_{T=0, n=n_0} = 9n_0^3 \left(\frac{\partial W}{\partial n} \right)_{n=n_0}$$

has been performed. It is found that a large value of K_0 (=300 MeV, with
considerable error) may be more compatible with the data than the previously
reported low one, $K_0 = 180 \pm 240$ MeV [3, 4]. The estimations of the effective
nucleon mass M^* at $T = 0$, $n = n_0$ which can be found in the literature are
$M^*_0 = (0.7 \pm 0.15) M$.

Any reasonable model for the nuclear matter EOS must be thermodynamically
self-consistent and reproduce the above quantities n_0, ϵ_0, K_0 and M^*_0. Its behaviour
in other regions of the n–T plane can be then probed via heavy-ion collisions.

Permanent address: Institute for Theoretical Physics, 25130 Kiev-130, Ukraine.
aim of the present work is to formulate a phenomenological generalization of the mean-field theory approach and obtain a class of nuclear matter equations of state. We present a new EOS of this class which we investigate in detail and compare with the non-relativistic many-body theory of [5] and various relativistic equations of state.

Following early theoretical suggestions [6], experiments which measure the π-meson multiplicity in heavy-ion collisions [7] have been performed in order to extract the nuclear EOS directly from data. For this purpose the following decomposition for the energy per baryon

$$\epsilon(n,T)/n = M + W_{th} + W_c$$

was introduced with some phenomenological ansätze for the thermal energy W_{th} and the compression energy W_c. The whole construction was, however, not physically self-consistent; for the calculation of W_{th} the momentum distribution of an ideal nucleon gas was used, but when introducing, in addition, the ‘compression energy’ one took into account the interaction between nucleons. The interaction, however, modifies the ideal-gas momentum distribution, and one faces the problem of adjusting the relativistic Fermi distribution of the nucleons to the functional form of the ‘compression energy’.

To find a solution of this problem we remember that in the relativistic mean-field theory of Walecka [8] (see also [9–10]) the interaction is described by scalar φ and vector U^μ mesonic fields with baryon–meson interaction terms in the Lagrangian:

$$g_\varphi \bar{\psi} \psi \varphi$$

and

$$g_\mu \bar{\psi} \gamma^\mu \psi U^\mu.$$

For nuclear matter in thermodynamical equilibrium these meson fields are considered to be constant classical quantities. The scalar field describes the attraction between nucleons and changes the nucleon mass $M \rightarrow M^* = M - g_\varphi(\varphi)$. The nucleon repulsion is described by the vector field which adds $U(n) = C_\gamma n$ ($C_\gamma^2 = \text{const}$) to the nucleon energy ($-U(n)$ for the antinucleon).

Following [12] we now formulate a generalized nuclear matter EOS which includes the mean-field theory and pure phenomenological models as special cases. Restricting ourself at the moment to nucleonic degrees of freedom we suggest the following general form for the nuclear EOS.

$$p(T, \mu) = \frac{\gamma_N}{3} \int \frac{d^3k}{(2\pi)^3} \frac{k^2}{\sqrt{k^2 + M^{*2}}} (f_N + f_\bar{N}) + nU(n) - \int_0^n dn' U(n') + P(M^*)$$

where f_N and $f_\bar{N}$ are the distribution functions of nucleons and antinucleons

$$f_{N(\bar{N})} = \left[\exp\left(\frac{\sqrt{k^2 + M^{*2}} \mp \mu \pm U(n)}{T} \right) + 1 \right]^{-1}$$

μ is the baryonic chemical potential and γ_N is the number of spin–isospin nucleon states, which equals four for symmetric nuclear matter. The dependence of the effective nucleon mass M^* on T and μ is defined by extremizing the thermodynamical potential (maximum of the pressure):

$$\left(\frac{\delta p}{\delta M^*} \right)_{T,\mu} = \frac{dP(M^*)}{dM^*} - \gamma_N \int \frac{d^3k}{(2\pi)^3} \frac{M^*}{\sqrt{k^2 + M^{*2}}} (f_N + f_\bar{N}) = 0.$$

the baryonic number density and energy density can be found from (1)–(3) using the
well-known thermodynamical relations:

\[n(T, \mu) = \left(\frac{\partial p}{\partial \mu} \right)_T = \gamma T \int \frac{d^3k}{(2\pi)^3} (f_N - f_N) \]

(4)

\[\varepsilon(T, \mu) = T \left(\frac{\partial p}{\partial T} \right)_\mu + \mu \left(\frac{\partial p}{\partial \mu} \right)_T - p \]

\[= \gamma N \int \frac{d^3k}{(2\pi)^3} \sqrt{k^2 + M^{*2}} (f_N + f_N) + \int_0^n \frac{dU(n')}{dn'} - P(M^*) . \]

(5)

It follows from (2) that the nucleon (antinucleon) momentum distribution has the form of the ideal Fermi distribution in 'external fields': the scalar field changes the nucleon (antinucleon) mass \(M \) to the effective mass \(M^* \) and the vector field adds the energy \(U(n) (-U(n) \) for the antinucleon). It is important, however, that additional terms in (2) and (5) appear and represent thermodynamically self-consistent 'field' contributions to the pressure and the energy density. The form of these additional contributions to the pressure (1) is adjusted to the Fermi distributions (2) through the general thermodynamical relation (4)!

Formal (1)-(5) define, therefore, a special class of thermodynamically self-consistent equations of state for nuclear matter. It is a phenomenological extension of the mean-field theory. Models of this class are fixed by specifying the two functions \(U(n) \) and \(P(M^*) \). General physical restrictions on these functions have the form:

\[U(-n) = -U(n) \]

\[U(n)_{n \to \infty} \sim n^a \quad 0 \leq a \leq 1 \]

\[U(n)_{n=0} \sim n^b \quad b \geq 0 \]

\[P(M^*) = \sum_{k=2} a_k (M - M^*)^k \quad \alpha_2 < 0. \]

(6)

Particular choices of \(U(n) \) and \(P(M^*) \) satisfying (6) reproduce a great variety of nuclear EOS models known from the literature. The models of [13, 14] correspond to \(M^* = M \) \(P(M^*) = 0 \) in (1) and special forms of \(U(n) \). For the mean-field theory models [8-11] \(U(n) = C^n \). The choice \(\alpha_2 = -1/2 \alpha_3, \alpha_k = 0 \) \(k \geq 3 \) corresponds to the linear mean-field theory (in the following also referred to as 'Walecka model') [8], while considering \(\alpha_2 = -1/2 \alpha_3, \alpha_3, \alpha_4 \neq 0, \alpha_k = 0 \) \(k \geq 5 \) we reproduce the non-linear mean-field theory [10, 11].

At \(T = 0 \) we find the general relation for the models (1)-(5):

\[U(n) + \sqrt{\left(\frac{3\pi^2}{2} n \right)^{2/3} + M^{*2}} = M + W(n) + n \frac{dW}{dn} \]

which corresponds to the Hugenholtz–Van Hove theorem [13] for an interacting Fermi gas at zero temperature. As \((dW/dn)_{n=n_0} = 0 \), at saturation density we obtain the original Weisskopf relation [14] between Fermi energy and the energy per particle

\[U(n_0) + \sqrt{\left(\frac{3\pi^2}{2} n_0 \right)^{2/3} + M^2_0} = M + W_0 \equiv 922 \text{ MeV}. \]

(7)

Equation (7) gives us the relation between \(U(n_0) \) and \(M^2_0 \), therefore only one of these quantities (e.g. \(M^2_0 \)) is free.
We consider now one new example for the nuclear matter EOS from the
generalized mean-field theory class (1–5). We choose

\[P(M^*) = -\frac{1}{2} C^2_d (M - M^*)^2 \]

\[U(n) = C^2_d n - C^2_d n^{1.3}. \]

(8)

Thus, the Walecka model is extended by an attractive term in the potential \(U(n) \). Such a modification of \(U(n) \) is to some extent similar to the approach of the models [15, 16]. However, unlike these models we now account for the fact that \(M^* \neq M \) in the nuclear medium. The introduction to the third parameter \(C^2_d \) allows us to choose \(M^*_0 \) freely in addition to the required values of \(n_0 \) and \(W(n_0) \). We stress that, if we require that our 'coupling constant' \(C^2_d \) has the dimension of an integer power of the fundamental units, only the power \(\frac{1}{3} \) of \(n \) in the new attractive term of \(U(n) \) has the property to satisfy the constraints (6).

The additional term in the potential \(U(n) \) could be derived (in mean-field approximation) from a Lagrangian containing an additional nucleon–nucleon self-interaction term of the form

\[\frac{3}{2} C^2_d (\bar{\psi} \gamma^\mu \psi \bar{\psi} \gamma_\mu \psi)^{2/3}. \]

Of course, there is no immediate physical motivation for such a term on field-theoretical grounds. However, such a motivation is certainly not strictly required for a phenomenological equation of state. As justification, it is sufficient that the equation of state has physically reasonable properties. This will be shown in the following.

Although the incompressibility \(K_0 \) cannot be chosen independently from \(M^*_0 \), we find that reasonable values of \(M^*_0 \) lead to values of \(K_0 \) which lie in the experimentally found range (see table 1). The first line in table 1 corresponds to the Walecka model for which we have a too small value of \(M^*_0 \) and a too large value of \(K_0 \).

The surprisingly good correlation between \(M^*_0 \) and \(K_0 \) implies that the above model accounts for four ground-state properties of nuclear matter with only three independent parameters. The energy density in our model has the form

\[\epsilon(T, \mu) = \gamma_n \int \frac{d^3k}{(2\pi)^3} \frac{\sqrt{k^2 + M^*_0^2 (f_N + f_\bar{N}) + \frac{1}{2} C^2_d n^2 - \frac{3}{2} C^2_d n^{1.3} + \frac{1}{2 C^2_d} (M - M^*)^2}}. \]

(9)

For further analysis we fix \(K_0 = 300 \) MeV (cf [2]). The nuclear EOS at \(T = 0 \) (i.e.

<table>
<thead>
<tr>
<th>(M^*_0/M)</th>
<th>(C^2_d) (GeV^{-2})</th>
<th>(C^2_d) (GeV^{-2})</th>
<th>(C^2_d)</th>
<th>(K_0) (MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.543</td>
<td>285.90</td>
<td>377.56</td>
<td>0</td>
<td>553</td>
</tr>
<tr>
<td>0.600</td>
<td>257.40</td>
<td>326.40</td>
<td>0.124</td>
<td>380</td>
</tr>
<tr>
<td>0.635</td>
<td>238.08</td>
<td>296.65</td>
<td>0.183</td>
<td>300</td>
</tr>
<tr>
<td>0.688</td>
<td>206.79</td>
<td>251.14</td>
<td>0.254</td>
<td>210</td>
</tr>
<tr>
<td>0.720</td>
<td>186.94</td>
<td>244.52</td>
<td>0.288</td>
<td>170</td>
</tr>
</tbody>
</table>
the function $W(n)$ is shown in figure 1 in comparison to the Walecka model and the non-linear mean-field theory. We note that for this value of K_0 the effective mass M^*_0 is in very good agreement with that obtained in the non-relativistic many-body calculations of Friedman and Pandharipande [5]. In figure 2 we compare the free energy per baryon in their calculations [5] with that of our model. We find rather good agreement at small n and systematic deviations from the non-relativistic results at large n. This happens at $n \approx 3n_0$ where the nucleon Fermi momentum is large, $k_F > M$ and therefore relativistic effects become important.

At low temperatures and densities our EOS exhibits a ‘liquid–vapour’ phase.
transition, as shown in Figure 3. The critical temperature beyond which there is no two-phase equilibrium is \(\sim 14 \text{ MeV} \). We point out however, that a realistic description in the region \(n \leq 0.03 \text{ fm}^{-3} \) and \(T \leq 5 \text{ MeV} \) requires that one takes into account clustering effects (e.g. deuterons and \(\alpha \)-particles).

The non-linear mean-field theory [10] with four parameters \(C^2, C^2, \alpha_2, \alpha_4 \) allows one to choose \(M_0^* \) and \(K_0 \) at will. However, the value of \(\alpha_4 \) is positive for experimentally reasonable sets of \(M_0^* \) and \(K_0 \) (see [11]). This means that the energy density of the system is not bounded from below (because of the term \(-P(M^*) \)) with respect to variations of \(M^* \): such a theory is unstable, since its energetic minimum is \(-\infty \) for \(\varphi \) (the scalar field) \(\rightarrow \pm \infty \).

In conclusion we present the generalized mean-field theory approach to the nuclear matter EOS. It gave us the rules (1)–(5) to construct a class of thermodynamically self-consistent phenomenological models. As an example, we have suggested and investigated a simple version of the nuclear EOS from this class. It allows for a reasonable value of the nucleon effective mass \(M_0^* \) and simultaneously allows from an incompressibility \(K_0 \) in the range of the experimental values. The non-relativistic many-body calculations of [5] coincide with this EOS up to a few percent in the low-density and low-temperature region. Its agreement with known nuclear matter properties is better than for either the phenomenological models with \(M^* = M \), or the Walecka model as well as stable versions (\(\alpha_4 \leq 0 \)) of the non-linear mean-field theory.

Acknowledgments

We are indebted to B L Friman, B Kämpfer, B M Waldhauser and V I Zhdanov for fruitful discussions. One of the authors (MIG) expresses his gratitude for the warm hospitality at the Institute for theoretical Physics of Frankfurt University.
References

Stock R 1986 Phys. Rev. 138 259
Boguta J and Stöcker H 1983 Phys. Lett. 120B 289