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1 Introduction

A sizeable literature has investigated the predictability of stock returns, and several papers have

quantified the impact of return predictability on stock-bond asset allocation decisions in a standard

utility maximization framework. For households, portfolio decisions should be seen in a life-cycle

perspective incorporating human capital and real estate, the dominant assets for many households

(Campbell 2006). The ability to predict house prices and labor income is potentially as important

for households as stock market predictability. In this paper we estimate empirically the joint

dynamics of stock prices, house prices, and labor income. We show that the net corporate payout

yield predicts both the stock market index and house prices, whereas the log home rent-price ratio

predicts both house prices and labor income.1

We embed the estimated dynamics in a rich model of household decisions involving consumption

of perishable goods and housing services, unspanned labor income, stochastic house prices, home

renting and owning, stock investments, and portfolio constraints. Within this model we show that,

by optimally conditioning decisions on the predictors, households can (a) generate larger average

returns on investments and thus larger consumption and (b) reduce the likelihood of ending up

with very low consumption and thus very low utility. In our baseline case for a modestly risk-

averse agent having a 35-year working period and a 15-year retirement period, the present value of

the higher average life-time consumption amounts to roughly $179,000 (assuming both an initial

financial wealth and an initial annual income of $20,000), and the certainty equivalent gain of

applying predictor-dependent strategies is around 5.5% of total wealth (financial wealth plus human

capital). As strategies are chosen to maximize expected utility, along a given sample path the

strategy derived assuming predictability is not guaranteed to perform better than the strategy

ignoring predictability. However, we show that all cohorts of agents entering our model in the years

1961 to 1976 would have benefited from conditioning decisions on the predictors, especially the

1970-1976 cohorts since one or both predictors have been sizeable in most years since 1970.

We estimate the joint dynamics of stock prices, house prices, and labor income based on ag-

gregate, annual 1960-2010 U.S. data for the CRSP value-weighted stock market portfolio, the

national Case-Shiller home price index, and the disposable income per capita (all series are infla-

tion adjusted). We capture predictability by allowing expected growth rates to depend linearly on

potential predictors. After considering various predictor candidates, we find that the net corporate

1
The net payout of a company in a given period equals the dividends plus equity repurchases less equity issuances.
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payout yield positively predicts stock returns and negatively predicts house price growth, and that

the log of the home rent-price ratio negatively predicts house price growth and positively predicts

labor income growth. The predictive power of the net payout yield on stock returns is known from

Boudoukh, Michaely, Richardson, and Roberts (2007), but its relation to house price growth rates

has not been established before. Likewise, the rent-price ratio is known to predict house prices

(Himmelberg, Mayer, and Sinai 2005; Plazzi, Torous, and Valkanov 2010), but we document its

ability to predict income growth. More importantly, our study is the first to study predictability in

the joint dynamics of stock prices, house prices, and income, which is essential for household deci-

sions. Due to the contemporaneous correlation between the prices and income on one hand and the

predictors on the other hand, the model produces a rich longer-run correlation structure between

stock prices, house prices, and labor income that, for example, allows expected stock returns to be

correlated with house prices or labor income.2

Our paper builds on the large literature on stock return predictability which reports that ex-

pected stock returns vary with such variables as the price-earnings ratio (Campbell and Shiller

1988), the net payout yield (Boudoukh, Michaely, Richardson, and Roberts 2007), past stock re-

turns (Fama and French 1988; Moskowitz, Ooi, and Pedersen 2012), or short-term interest rates

(Ang and Bekaert 2007). Koijen and van Nieuwerburgh (2011) survey this literature. The implica-

tions for stock-bond asset allocation has been explored by Kim and Omberg (1996), Campbell and

Viceira (1999), Barberis (2000), and Wachter (2002) in stylized models disregarding housing and

income. Since expected stock returns vary counter cyclically in these models, intertemporal hedging

considerations lead to an increased demand for stocks, although the quantitative effects are typically

found to be modest. However, it is well known by now that optimal portfolios change substan-

tially with the inclusion of labor income or housing, so the impact of stock return predictability on

household portfolios should be explored in richer models. Furthermore, the predictability of house

prices or labor income may also affect optimal portfolios.

Cocco, Gomes, and Maenhout (2005) showed that a labor income process calibrated to life-cycle

data is more bond-like than stock-like and thus induces agents to invest a large share of financial

wealth in stocks, in particular early in life where human capital dominates. Two papers extend their

study by allowing the expected income growth to depend on a business cycle variable, either the

level of the short-term interest rate level (Munk and Sørensen 2010) or the stock market dividend

2
The housing collateral ratio and the ratio of aggregate labor income to aggregate consumption are also reported

to help predicting stock returns (Lustig and van Nieuwerburgh 2005; Santos and Veronesi 2006), which supports our
assumption that the expected stock return can be correlated with house prices and labor income.
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yield (Lynch and Tan 2011), but these papers ignore housing aspects.

Only few papers derive life-cycle consumption and investment strategies in settings capturing

both human capital, housing, and investment risk. Assuming for tractability a perfect correlation

between house prices and aggregate income shocks, Cocco (2005) concludes that house price risk

crowds out stock holdings and can therefore help in explaining limited stock market participation.

Yao and Zhang (2005) generalize Cocco’s setting to an imperfect house-income correlation and

endogenize the renting/owning decision. They find that home-owners invest less in stocks than

home-renters, which confirms that housing risk crowds out stock market risk.3 In our more general

setting, we also find that the optimal stock investment is zero or low for many young households.

While several papers find evidence of predictability in real estate prices (Case and Shiller 1990,

Poterba 1991, Malpezzi 1999, Ghysels, Plazzi, Valkanov, and Torous 2013), only few papers dis-

cuss the implications for household decisions. Fischer and Stamos (2013) solve a life-cycle utility

maximization problem assuming that expected housing returns depend on realized past returns.

We add time-varying drift rates in stocks and income, and we allow the drift rates to be correlated

with the levels of stock, house price, and income, which can substantially affect the magnitude and

risk characteristics of human capital and therefore optimal investment and consumption decisions.

Corradin, Fillat, and Vergara-Alert (2014) show that predictability in house prices causes house

[stock] investments to be increasing [decreasing] in the current expected house price growth. Even

with a relatively high risk aversion, they report significant stock investments.

The remainder of the paper is organized as follows. Section 2 sets up and estimates the dynamic

model of stock prices, house prices, and labor income. In Section 3 we formulate the life-cycle

utility maximization problem of an individual consumer-investor and explains how we solve it.

Section 4 presents and discusses various aspects of the derived life-cycle consumption and investment

behavior. Finally, Section 5 summarizes the paper.

2 The joint dynamics of stock prices, house prices, and income

This section presents our model for the joint dynamics of labor income, stock prices, and house

prices, and calibrates it to U.S. data. We use a continuous-time formulation since this facilitates

the derivation of the optimal consumption and investment decisions in subsequent sections.

3
van Hemert (2010) generalizes further by allowing for stochastic variations in interest rates and thereby intro-

ducing a role for bonds, but his focus is on the interest rate exposure and mortgage choice over the life cycle.
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2.1 Our main model

The time t level of the stock market index is denoted by St, the unit house price by Ht, and the

labor income rate by Lt. Our main models assumes that the dynamics of these variables are

dSt
St

= (r + µS + χSxt) dt+ σS dBSt, (1)

dHt

Ht
=
(
r + µH + χHxxt + χHyyt

)
dt+ σH (ρHS dBSt + ρ̂HdBHt) , (2)

dLt
Lt

= (µL(t) + χ̄L(t)yt) dt+ σ̄L(t) (ρLS dBSt + ρ̂LHdBHt + ρ̂L dBLt) . (3)

Here x and y are the predictors with xt represented by the corporate net payout yield and yt by

the log of the home rent-price ratio (some alternatives are discussed below). Both predictors have

been detrended and are assumed to vary around zero according to the processes

dxt = −κxxt dt+ σx (ρxS dBSt + ρ̂xHdBHt + ρ̂xL dBLt + ρ̂x dBxt) , (4)

dyt = −κyyt dt+ σy
(
ρyS dBSt + ρ̂yHdBHt + ρ̂yL dBLt + ρ̂yx dBxt + ρ̂y dByt

)
, (5)

where BS , BH , BL, Bx, By are independent standard Brownian motions. All instantaneous corre-

lations are constant. We let ρHS = ρSH denote the instantaneous correlation between stock price

and the house price and use similar notation for the other pairs of processes. In addition, define

ρ̂H =

√
1− ρ2

HS , ρ̂LH =
ρLH − ρLSρHS

ρ̂H
, ρ̂L =

√
1− ρ2

LS − ρ̂
2
LH ,

ρ̂xH =
ρxH − ρxsρHS

ρ̂H
, ρ̂xL =

ρxL − ρxSρLS − ρ̂xH ρ̂LH
ρ̂L

, ρ̂x =

√
1− ρ2

xS − ρ̂
2
xH − ρ̂

2
xL ,

ρ̂yH =
ρyH − ρysρHS

ρ̂H
, ρ̂yL =

ρyL − ρySρLS − ρ̂yH ρ̂LH
ρ̂L

, ρ̂y =

√
1− ρ2

yS − ρ̂
2
yH − ρ̂

2
yL − ρ̂

2
yx ,

and

ρ̂yx =
ρyx − ρySρxS − ρ̂yH ρ̂xH − ρ̂yLρ̂xL

ρ̂x
.

By construction µS and µH are the long-term average expected growth rates of the stock and

house prices per year in excess of the risk-free interest rate r, which is assumed constant. The

stock price and house price volatilities σS and σH are also constant. The stock pays a constant

dividend yield of D̄ so that the total dividends paid out over a short interval [t, t + dt] is D̄St dt.

The parameters κx and σx denote the speed of mean reversion and the volatility of the net payout

4



yield. Similarly for κy and σy. Increments to x and y are correlated with increments to S, H, and

L, which implies that the longer-term relations between S, H, and L can be markedly different

from the short-term relations, cf. the discussion below.

2.2 Calibration

We estimate the above dynamics on time series of the stock market index, the national Case-Shiller

home price index, and aggregate labor income. In this estimation we assume µL, χ̄L, and σL are

constant. When embedding the dynamics in the life-cycle decision problem in subsequent sections,

we adjust the estimates of the house price and income volatilities to be more representative of

individual house prices and labor income, and we allow for age dependence in µL, χ̄L, and σL.

We use annual U.S. data for stock prices, house prices and aggregate labor income starting in

1960 (where available data on the home rent-price ratio begins) and ending in 2010 (where available

data on net payout yield ends). As stock market data, we use returns on the CRSP value-weighted

market portfolio inclusive of the NYSE, AMEX, and NASDAQ markets (cum dividend). The risk-

free asset is estimated from the Treasury bill yield provided by the Risk Free File on CRSP Bond

tape. The house price is represented by the national Case-Shiller home price index with data taken

from Robert Shiller’s homepage.4 From the National Income and Product Accounts (NIPA) tables

published by the Bureau of Economic Analysis of the U.S. Department of Commerce, we obtain

quarterly U.S. data for aggregated disposable personal income (per capita). The annual returns are

computed from quarterly data. To obtain real values, all time-series are deflate using the consumer

price index (CPI) taken from CRSP. Figure 1 depicts the time series of the stock price index, per

capita labor income, and the national home price index.

As suggested by Boudoukh et al. (2007) we use the log of the sum of 0.1 and the net payout

yield as our x-variable (for simplicity, we refer to x as the net payout yield in the following), and

Professor Michael Roberts supplies the data until 2010 on his homepage.5 We use the net payout

yield for nonfinancials, but obtain very similar results when including all firms. The data for the

rent-price ratio is described in Davis, Lehnert, and Martin (2008) and is downloaded from the

homepage of the Lincoln Institute of Land Policy.6 Since the log rent-price ratio is nonstationary

but integrated of order one, we use the difference in the log rent-price ratio. To avoid that extreme

outliers significantly affect the estimation, we winsorize x at the 4% level and y at the 2% level.

4
http://www.econ.yale.edu/$\sim$shiller/data.htm

5
http://finance.wharton.upenn.edu/~mrrobert/

6
http://www.lincolninst.edu/resources/
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Figure 1: Historical evolution of stock market, house prices, and income per capita
in the U.S. The stock market is represented by the CRSP value-weighted market portfolio inclusive

of the NYSE, AMEX, and NASDAQ markets (cum dividend). The house prices uses the national Case-

Shiller home price index. Income is disposable labor income per capita from NIPA. All time series are

standardized to 100 in 1960 and inflation-adjusted using CPI.
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Figure 2 depicts the time series of the detrended predictors before winsorizing.

In our sample, the net payout yield is a statistically better stock predictor than various alterna-

tives suggested in the existing literature, namely the dividend yield, the log price-earnings ratio, the

cyclically adjusted log price-earnings ratio, and the GDP growth rate, and none of these predictor

candidates notably improve the prediction when added along with the net payout yield.7 The net

payout yield has no predictive power for income growth, and the rent-price ratio has no predictive

power for stock returns.

We estimate a VAR(1) system which is a discretization of our continuous-time model and

transform the VAR parameter estimates into estimates of our model parameters. Details are given

in Appendix A. We estimate both the main model described above as well as the three special cases

in which either x or y or both are eliminated from the system, since we are going to explore the

predictors’ individual and joint impact on portfolios and welfare in later sections.

Table 1 lists the parameter values used as the benchmark in the following. These values equal

the empirical estimates with a few exceptions. First, we reduce the equity premium from the

7
Furthermore, the GDP growth rate is not an AR(1) process as required in our formulations, but rather a moving

average process.
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Figure 2: The time series of detrended predictors. The figure depicts the annual net payout

yield (left panel) and the annual change of the log rent-price ratio (right panel), both series are shown

before winsorizing.
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estimated 5.3% to 4% to account for survivorship bias (Brown, Goetzmann, and Ross 1995) as well

as the decline in discount rates and the implied unexpected capital gains over the sample period

(Fama and French 2002). Moreover, a 4% equity premium is used in related papers such as Cocco,

Gomes, and Maenhout (2005) and Yao and Zhang (2005). Secondly, the use of a house price index

and aggregate income underestimates the volatilities of an individual house price and the labor

income of a typical worker. We increase the volatility of house prices from the estimated value of

6.1% to 12%, which is identical to the value assumed by Flavin and Yamashita (2002) and Yao and

Zhang (2005) and in the range estimated by Case and Shiller (1989) and Bourassa, Haurin, Haurin,

Hoesli, and Sun (2009). Furthermore, we increase the income volatility from the estimate of 2.1%

to 10%, in line with the estimate in Cocco, Gomes, and Maenhout (2005). Finally, the average

growth rate of the aggregate income series is 1.7% per year, but this is not reflecting the income

growth an individual can expect. As our benchmark we assume an expected income growth rate of

1% throughout the working life. Over the 35-year working period the income is then expected to

grow by a factor exp(0.01 × 35) ≈ 1.42, which seems reasonable and is close to the 38% reported

as the median individual’s income growth by Guvenen, Karahan, Ozkan, and Song (2015).

The net payout yield is borderline significant in predicting excess stock returns (p-value of 5.1%)

and highly significant in predicting house price growth (p-value of 1.0%). The positive estimate of χS

shows that the net payout yield positively predicts stock prices as found by Boudoukh et al. (2007),

although the slope coefficient of 0.329 is smaller than they report for the univariate regression using

1926-2003 data. The net payout yield negatively predicts house price growth as indicated by the

estimate −0.106 of χHx. The rent-price ratio is a significant (p-value 0.4%) negative predictor

7



Table 1: Baseline parameter values. The table shows the estimates of the model parameters

based on 1960-2010 US data. Here, x refers to the net payout ratio and y to the change in the log

rent-price ratio. Some parameter estimates have been adjusted as explained in the text. (N.A. means

‘not available’ as the parameter is not included in that model.)

Parameter Model specifications

Symbol Explanation Main No y No x No x, y

Drift and volatility
r Interest rate 0.010 0.010 0.010 0.010
µS + D̄ Equity premium 0.040 0.040 0.040 0.040
χS Stock predictor coefficient 0.329 0.314 N.A. N.A.
σS Stock volatility 0.170 0.170 0.175 0.171
µH Excess expected house price growth -0.010 -0.010 -0.010 -0.010
χHx House predictor coefficient -0.106 -0.148 N.A. N.A.
χHy House predictor coefficient -0.398 N.A. -0.446 N.A.
σH House price volatility 0.120 0.120 0.120 0.120
µL Expected labor income growth 0.010 0.010 0.010 0.010
χL Income predictor coefficient 0.126 N.A. 0.119 N.A.
σL Income volatility 0.100 0.100 0.100 0.100
κx Mean reversion speed 0.234 0.228 N.A. N.A.
σx Volatility of net payout yield 0.087 0.087 N.A. N.A.
κy Mean reversion speed 0.298 N.A. 0.298 N.A.
σy Volatility of rent-price ratio 0.037 N.A. 0.037 N.A.

Correlations
ρHS House, stock 0.300 0.302 0.195 0.210
ρLS Income, stock 0.268 0.235 0.232 0.222
ρLH Income, house 0.212 0.073 0.228 0.111
ρxS Net payout yield, stock -0.249 -0.248 N.A. N.A.
ρyS Rent-price ratio, stock 0.007 N.A. 0.028 N.A.
ρxH Net payout yield, house -0.121 -0.137 N.A. N.A.
ρyH Rent-price ratio, house -0.619 N.A. -0.607 N.A.
ρxL Net payout yield, income -0.228 -0.196 N.A. N.A.
ρyL Rent-price ratio, income -0.003 N.A. -0.003 N.A.
ρyx Rent-price ratio, net payout yield -0.027 N.A. N.A. N.A.

Derived correlation parameters
ρ̂H 0.954 0.953 0.981 0.978
ρ̂LH 0.138 0.002 0.186 0.066
ρ̂L 0.953 0.972 0.955 0.973
ρ̂xH -0.049 -0.065 N.A. N.A.
ρ̂xL -0.162 -0.142 N.A. N.A.
ρ̂x 0.954 0.956 N.A. N.A.
ρ̂yH -0.651 N.A. -0.625 N.A.
ρ̂yL 0.089 N.A. 0.112 N.A.
ρ̂yx -0.044 N.A. N.A. N.A.
ρ̂y 0.752 N.A. 0.772 N.A.

8



of house price growth with a χHy coefficient of −0.398 and a significant (p-value 1.7%) positive

predictor of income growth with a χL coefficient of 0.126.

The average house price growth r + µH is estimated to be zero. The net payout yield has a

mean reversion speed of 0.234 (expected half-life of (ln 2)/κx ≈ 3.0 years) and a long-run standard

deviation of σx/
√

2κx ≈ 0.127. The rent-price ratio has a mean reversion speed of 0.298 (expected

half-life of 2.3 years) and a long-run standard deviation of 0.048.

The pairwise contemporaneous correlations between stock prices, house prices, and labor income

are all positive. The stock price is positively related to the net payout yield, and since the two

variables are negatively correlated, the model captures to mean reversion in stock returns. In

contrast, since the house price index is both negatively related to and negatively correlated with

its predictors, the model captures momentum in house prices, referred to as housing cycles by

Fischer and Stamos (2013). The labor income is virtually uncorrelated with its predictor. Note

that ρ̂2
L = 90.8% of the variance of income shocks is unspanned.

The correlations of prices and income with the predictors generate interesting lagged effects.

For example, a positive shock to stock prices this period tends to be accompanied by a negative

shock to x (since ρxS < 0), which increases the expected house price growth next period (since

χHx < 0).

3 The decision problem of a consumer-investor

3.1 Formulation of the problem

We embed the estimated model (1)–(5) of the dynamics of stock prices St, house prices Ht, and

labor income Lt in the life-cycle consumption and investment choice problem of an individual agent

(consumer-investor or household). We assume the individual retires at a known time T̃ and lives

on until a known time T . At retirement, the income rate drops to by a fixed proportion 1−Υ,

L
T̃+

= ΥL
T̃−,

where Υ ∈ (0, 1) is the socalled replacement rate. This is consistent with the wide-spread final-

salary pension schemes and a common assumption in the literature (e.g., Cocco et al. 2005; Lynch

and Tan 2011). In our baseline case we assume µL(t) = µL = 0.01 before retirement and µL(t) = 0

in retirement and that both the sensitivity χL towards the predictor and the income volatility are
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not changing at retirement. Hence, in contrast to most studies, we allow for retirement income risk.

Even for a constant pay-out pension scheme the disposable retirement income is risky because of

uncertain medical costs (see De Nardi, French, and Jones (2010)). Also, some agents continue to

earn income from other sources such as proprietary businesses or other non-traded assets. Moreover,

due to mortality risk, the agent may not receive future retirement pay and, while we do not formally

model mortality, retirement income risk partially captures this effect parsimoniously.

The agent consumes a perishable good and housing services from living in a house (we let

“house” represent any type of residential real estate). The perishable good serves as the numéraire.

The agent can invest in a bank account with a constant interest rate r and in the stock index with

value St. The agent can invest in and rent houses. A house is characterized by a number of housing

units, where a “unit” is a one-dimensional representation of the size, quality, and location. Prices

of all houses are assumed to move in parallel. The purchase of a units of housing costs aHt. The

unit rental cost of houses is assumed proportional to their market prices so that the total costs of

renting φ housing units over a short period [t, t+ dt] are φRHt dt. These assumptions are standard

in the consumption and investment literature involving housing (e.g. Yao and Zhang 2005; Fischer

and Stamos 2013). Following Kraft and Munk (2011) we impose no restrictions on the number of

units owned and rented. In particular, simultaneous owning and renting is possible. The agent

derives utility from the number of housing units occupied, whether rented or owned.

To facilitate the solution of the agent’s utility maximization problem, we assume the agent

can continuously adjust both the number of units rented and the number of units owned without

transaction costs. Observed changes in the physical ownership of housing units seem rare and costly,

but the remodeling or the extension of a house would also count as an increase in the number of

housing units owned due to the higher quality or increased space. Moreover, real-life agents can

also invest in housing units by purchasing shares in residential REITs (Real Estate Investment

Trusts), exchange-traded funds tracking the REIT market, or other financial assets closely linked

to house prices such as the Case-Shiller derivatives.8 Homeowners can thus implement short-term

variations to their desired housing investment position by investing in REITs, whereas they might

prefer implementing larger changes in both desired housing consumption and investment through

(rare) physical transactions of housing units.

A housing investment can be seen as a physical purchase of a housing unit (by either the agent

8
Well-developed REIT markets exist in many countries. Cotter and Roll (2015) study the risk and return charac-

teristics of U.S. REITs. Tsai, Chen, and Sing (2007) report that REITs behave more and more like real estate and
less and less like ordinary stocks.
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himself or by a REIT he holds shares in) which is then rented out. Ownership entails maintenance

costs (including property taxes) equal to a constant fraction m ≥ 0 of the property value. The rate

of return on a housing investment over a period of length dt is therefore

(R−m) dt+
dHt

Ht
=
(
r + µ′H + χHxxt + χHyyt

)
dt+ σH (ρHS dBSt + ρ̂H dBHt) ,

where µ′H = µH + R −m is the average excess expected return on housing investments. Let φot

and φrt denote the number of housing units owned and rented, respectively, at time t, and let φft

denote the housing units owned via financial assets like REITs. What matters for the agent are

the total units of houses occupied, φCt, which provides utility from housing services, and the total

units of housing invested in, φIt, either physically owned or through REITs, where

φCt ≡ φot + φrt, φIt ≡ φot + φft . (6)

Hence, we have a degree of freedom. Physical ownership and REITs investments complement each

other, but we do not distinguish them in the model.

Let Wt denote the tangible wealth of the agent at time t, which includes the positions in the

bank account, the stock index, REITs, and physically owned housing units, but not the agent’s

human wealth, i.e., the present value of her future labor income. Let ΠSt and ΠHt = φItHt/Wt

denote the fractions of tangible wealth invested in the stock and in housing units, respectively, at

time t. The wealth invested in the bank account is residually determined as Wt(1 − ΠSt − ΠHt).

The rate of perishable consumption at time t is represented by ct. The wealth dynamics is then

dWt = Wt

[ (
r + ΠSt(µ

′
S + χSxt) + ΠHt(µ

′
H + χHxxt + χHyyt)

)
dt

+ (ΠStσSΠHtσHρHS) dBSt + ΠHtσH ρ̂H dBHt

]
+ (Lt − ct − φCtRHt) dt , (7)

where µ′S = µS + D̄.

The objective of the investor is to maximize life-time expected utility from perishable consump-

tion and consumption of housing services. The indirect utility function is

J(t,W,H,L, x, y) = sup
(c,φC ,ΠS ,ΠH)∈At

Et

[∫ T

t
e−δ(u−t)U(cu, φCu) du

]
, (8)

where W , H, L, x, and y denote time t values of wealth, house price, labor income, and the two
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predictors, and where U is a Cobb-Douglas-power utility function

U(c, φC) =
1

1− γ

(
caφ1−a

C

)1−γ
. (9)

Here γ > 1 is the relative risk aversion, and a ∈ (0, 1) the relative utility weight of the two goods.9

Similar preferences are assumed in other recent papers, such as Cocco (2005), Yao and Zhang

(2005), and van Hemert (2010). The set At contains all admissible control processes over the time

interval [t, T ]. Constraints on the controls are thus reflected by At. We shall impose the constraints

ΠS ≥ 0, ΠH ≥ 0, ΠS + qΠH ≤ 1, (10)

which rule out short-selling and limits borrowing to a fraction (1 − q) of the current value of the

housing investment. Because of incomplete markets (shocks to labor income and the predictors

are not spanned by traded assets) and portfolio constraints, we are unable to solve the problem in

closed form. Next, we outline our numerical solution method.

3.2 Solution method

We apply the SAMS (Simulation of Artificial Markets Strategies) approach introduced by Bick,

Kraft, and Munk (2013) and illustrated in Figure 3. The method exploits that we can derive

an explicit expression for the optimal strategy in each of various artificial markets. In any of

the artificial markets the agent is unconstrained, has access to the same assets (with identical or

higher returns) as in the true market plus additional assets completing the market, so the agent

can obtain at least as high an expected utility as in the true market. In our case an artificial

market is characterized by the adjusted Sharpe ratios on stocks and houses and Sharpe ratios on

the three fictitious assets spanning the risks associated with the shocks to labor income and the

two predictors. Cvitanić and Karatzas (1992) showed theoretically that the solution to the true,

constrained and incomplete market problem is identical to the solution in the worst of all the

artificial markets. We can solve the utility maximization problems in some artificial markets in

near-closed form in the sense that the solution involves two functions determined by numerically

solving standard partial differential equations. In Figure 3, the points marked to the right on the

axis indicate the maximal utility in such computable artificial markets denoted by Θ1,Θ2, etc. The

9
We disregard utility of bequests which is known to have a negligible impact on portfolio decisions except maybe

in the final few years of life. In an empirical study, Hurd (1989) concludes that bequest motives in various countries
are close to zero.
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Figure 3: The solution technique. The axis shows the agent’s expected utility. “Unknown
optimal” represents the indirect utility in the true market, i.e., the expected utility generated
by the unknown optimal consumption-investment strategy. Each point to the right corresponds
to the indirect utility in an artificial market with deterministic modifiers characterized by some
parameter set Θ. The corresponding strategy is transformed into a feasible strategy in the true
market which generates an expected utility on the left part of the axis. The best of these strategies
is derived from the optimal strategy in an artificial market for some Θ∗. The arrows above the
axis indicate the unknown utility loss and a computable upper bound on the loss the agent suffers
by following the best of the considered feasible strategies instead of the unknown optimal strategy.

Expected
utility

Unknown
optimal Θ1 Θ2 Θ3

Computable
artificial
markets

minimize

Θ̄Θ1

“feasibilization”

Θ2Θ3 Θ̄

Monte
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evaluation

maximize

Θ∗Θ∗

loss

loss bound

lowest expected utility among these artificial markets—indicated by Θ̄ on the axis—is at least as

large as the unknown maximum in the true market.

In any of the computable artificial markets, the fractions of wealth optimally invested in stocks

and housing units are of the form

ΠS =
1

γρ̂2
Hσ

2
S

(
µ′S(t, x, y) + χSx−

ρHSσS
σH

(
µ′H(t, x, y) + χHxx+ χHyy

))W + LF

W
(11)

+

(
MxS

Bx
B

+MyS

By
B

)
W + LF

W
−
(
MLS(t) +MxS

Fx
F

+MyS

Fy
F

)
LF

W
,

ΠH =
1

γρ̂2
Hσ

2
H

(
µ′H(t, x, y) + χHxx+ χHyy −

ρHSσH
σS

(
µ′S(t, x, y) + χSx

))W + LF

W
(12)

+ k
W + LF

W
+

(
MxH

Bx
B

+MyH

By
B

)
W + LF

W
−
(
MLH(t) +MxH

Fx
F

+MyH

Fy
F

)
LF

W
.

Here µ′S and µ′H are the adjusted expected excess stock and house returns (including dividends and

rents). The functions F = F (t, x, y) and B = B(t, x, y) are found by solving simple partial differen-

tial equations which involve the Sharpe ratios on the fictitious assets completing the market. The

product LF is the human capital, i.e. the present value of income in the remaining life time, which

is uniquely determined is any artificial market. The stock investment consists of the speculative

demand, a term hedging the variations in expected stock returns, and an adjustment for the extent
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Figure 4: The transformation of portfolio weights. The gray triangle is the feasible region.
The graph is drawn for q = 0.2 so the maximal loan-to-value ratio is 80%. The transformation
depends on which colored area the artificial market portfolio is located in. The arrows show
examples of the transformation.

to which the human capital replaces a direct stock investment. The housing investment consists of

three similar terms plus the term kW+LF
W , where k = (1−a)(γ−1)/γ, that hedges against increases

in housing consumption costs. Appendix B explains the construction of the computable artificial

markets and the solution to the corresponding utility maximization problem in more detail.

The explicit, optimal strategy in any of the artificial markets is infeasible in the true market,

but we can feasibilize it—that is, transform it into a feasible strategy in the true market—and then

evaluate the expected utility it generates in the true market by standard Monte Carlo simulation.10

The transformation follows Cvitanić and Karatzas (1992, Ex. 14.9) and is illustrated in Figure 4.

This procedure leads to the points on the left part of the axis in Figure 3. We then maximize

over these feasibilized strategies and obtain the expected utility indicated by Θ∗ in the figure. The

corresponding near-optimal strategy is the strategy suggested by the SAMS approach.

Just as with other numerical methods, the suggested strategy is unlikely to be identical to the

unknown, truly optimal strategy so by using the suggested strategy the agent suffers a welfare loss.

By comparing the expected utility generated by the near-optimal strategy to the expected utility in

10
In the artificial markets labor income is fully spanned and tangible wealth can be allowed to be temporarily

negative if balanced by human capital. In the true market, tangible wealth must stay non-negative because of the
unhedgeable shocks that may bring income close to zero. Follow Bick et al. (2013) we handle this by multiplying the
human capital by a factor (1− e

−ηWt), where η > 0 is a constant determined experimentally. This is consistent with
the intuition that future income has a smaller present value when current wealth Wt is small. Formally we replace
Ft by F̃t = (1 − e

−ηWt)F (t, xt, yt).
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the worst of the artificial markets considered, we derive an upper bound on the welfare loss which is

therefore a measure of precision of the approach. In our baseline case, the loss bound corresponds

to 1.7% of the agent’s wealth in certainty equivalent terms. In the examples studied by Bick et al.

(2013), the true loss is significantly smaller than the loss bound. In addition to the low loss bound,

the SAMS method is relatively easy to implement. As our optimization problem (8), in addition to

time, features five state variables (can be reduced to four after exploiting homogeneity of the utility

function), grid-based methods are infeasible with grid sizes that bring us near the continuous-time

solution.

4 Illustration and discussions of results

This section illustrates and discusses a number of properties of the investment strategies derived

using the method explained above. Unless otherwise noted, the estimation-based parameter values

in Table 1 are used. Furthermore, we assume a relative risk aversion coefficient of γ = 5. We set

the relative utility weight of the goods to a = 0.7, implying that total consumption expenditures

consists of 70% on perishable goods and 30% on housing consumption, which seems consistent

with observed household expenditure, cf. a report by the U.S. Department of Labor (2003). The

subjective time preference rate is δ = 0.05. The agent is initially of age t = 30, retires at age

T̃ = 65, and lives on until age T = 80. We assume an income replacement rate of Υ = 0.6.11

The results presented below are assuming the income growth component µL(t) is constant and

equal to the estimate µ̄L based on aggregate income. An age-dependent income profile is included

in a later version. We set the proportional rental rate to R = 0.067 as motivated by Fischer and

Stamos (2013) and assume maintenance costs of m = 0.035 (includes property taxes that constitute

1-2% in many U.S. states). Finally, as a benchmark we assume a 60% maximal loan-to-value ratio

corresponding to q = 0.4, but consider alternatives below.

For concreteness, we think of a housing unit as 1000 square feet of average quality and location.

Using a monetary unit of a thousand U.S. dollars, we set the initial unit house price to H = 250,

which implies an initial annual rent of $12,500 for a housing unit. Furthermore, the initial tangible

wealth is set to W = $20, 000 and the initial annual income to L = $20, 000 which are roughly

equal to the median values for individuals of age 30-40 in the 2007 Survey of Consumer Finances

(see Kraft and Munk 2011). Finally, we set the initial values of the time-varying drift components

11
The reduction from the 68%-93% estimate of Cocco et al. (2005) is a way to implicitly incorporate the higher

medical expenses in retirement as well as the increased mortality risk that lowers expected future income.
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Table 2: Output grid for regression of optimal strategies. The table shows values for our

state variables for which we compute the optimal strategies.

Variable Steps Min. value Max. value

t 8 0 35
H 5 200 300
L/W 200 0.01 2.00
x 11 -0.85 0.85
y 11 -0.25 0.25

of house prices and income to x = y = 0.

4.1 Optimal decisions

The optimal strategies are generally depending on time and five state variables, and are thus

difficult to depict graphically in an accessible way. To get an impression of the determinants of

the optimal strategies, we perform a linear regression of πS , πH , and c/W on the state variables

and some interaction terms.12 For tractability the regression is based on the optimal strategies

for the selected values for our state variables shown in Table 2. The regression output is shown

in Table 3. The very high R2 values indicate that the linear relation well approximates the true

relation between the decision variables and the explanatory variables. The stock weight tends to

be increasing in age, in the stock return predictor x (a well-known result since x generates mean

reversion in stock returns), and in the house and income predictor y. The stock weight is decreasing

in the labor-wealth ratio. Conversely, the housing weight tends to be decreasing in age, in the stock

market predictor, and in the house and income predictor. The latter is due to the fact that y is

generating momentum in house prices, not mean reversion.

To assess life-cycle patterns, we perform the following analysis. Based on our near-optimal

life-cycle consumption, housing, and investment strategy, we simulate 100,000 paths of exogenous

state variables and wealth (applying this strategy) forward, and in the figures mentioned below

we report expectations of consumption, wealth, investments, and portfolio weights computed by

averaging over the simulations.13

Figure 5 illustrates the optimal investment strategy over the life cycle with baseline parameter

12
Since the optimal spending on housing consumption relative to perishable consumption is equal to a constant we

do not regress φC separately.
13

We simulate using Euler discretizations with monthly time steps. Note that F and B involve numerical integra-
tion. Before running the simulations, we evaluate F and B on grids, and when we need values for F and B and their
derivatives in the simulations, we use the grid values and linear interpolation.
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Table 3: Regression results for optimal strategies. The table shows the regression results

based on the state variable values shown in Table 2. All parameters are significant at the 0.1% level.

πS πH c/W

t 0.004 -0.004 0.000
x 1.615 -1.839 0.002
y 1.116 -5.400 0.005
L/W -0.703 7.466 0.646
t× L/W 0.055 -0.110 -0.000
x× L/W 20.269 -23.866 -0.068
y × L/W 14.050 -66.331 0.219
Constant 0.170 0.545 0.043

R2 0.980 0.982 0.931
Obs. 968,000 968,000 968,000

values. The horizontal axes show time passed after the initial date where the agent is assumed

to be of age 30. The left panel shows the amounts invested in the housing asset, the stock index,

and the risk-free asset (bond), whereas the right panel depicts the portfolio weights relative to

tangible wealth. The left panel shows that the agent builds up wealth in the active phase to finance

consumption in retirement where income is markedly lower. The portfolio is dominated by housing,

especially early in life, where the investment is fully leveraged. Later in life, borrowing is less than

the allowed 60% of the house value. The stock weight is around 25% early in life, but increases

rather quickly to around 50%, where it remains relatively stable. In settings ignoring housing, labor

income typically leads to a full stock investment being optimal (leveraged if possible), cf. Cocco et al.

(2005), even for relatively high levels of risk aversion. Our results confirm the findings of Cocco

(2005), among others, that housing crowds out stocks. Not only is housing a decent investment in

itself (especially considering the rents), it also provides access to leverage, and constitutes a hedge

against increases in housing consumption costs.

The role of leverage is clear from Figure 6 which compares the portfolio weights for q ∈

{0.2, 0.4, 1.0}, corresponding to a maximal loan-to-value ratio of 80%, 60%, or 0%, respectively.

As an investment, the house is not nearly as attractive early in life if it does not give access to

leverage in which case the stock has a larger weight in the portfolio.

4.2 The effect of predictability

Now, we compare the investment profiles of an agent accounting for predictability and an agent

disregarding predictability. The latter agent assumes that the dynamics of stock prices, house prices,
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Figure 5: Optimal investments over the life cycle: baseline case. The left panel shows
the expected tangible wealth and its decomposition into stock investment, housing investment,
and risk-free (bond) investment (the unit is thousands of U.S. dollars). The right panel shows
the expected percentage investments of tangible wealth into stocks, housing, and bonds. Baseline
parameter values are used.
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Figure 6: The effect of collateralized borrowing on portfolio weights. The left [right]
panel shows the expected percentage investments of financial wealth in stocks [housing assets] for
three different values of the housing collateral parameter q. Baseline values are used for other
parameters.
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Figure 7: The effect of predictability on investments. The left [right] panel shows the
expected percentage investments of tangible wealth in stocks [housing assets]. Baseline parameter
values are used.
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and labor income are given by (1)–(3), but without the terms involving x and y, i.e., effectively

imposing χS = χHx = χHy = χ̄L(t) = 0, and thus arriving at the parameter estimates in the

right-most column of Table 1. The two agents’ expected portfolio weights over the life cycle are

shown in Figure 7. Predictability materializes as mean reversion in stock returns and thus leads

to a larger average portfolio share of the stock as found in simpler settings by Kim and Omberg

(1996) and others. In contrast, predictability in house price growth emerges as momentum and

therefore lowers the average share of housing in the portfolio.

By taking predictability into account, the agent can better time the market and thus generate

higher investment returns, which leads to a higher average consumption level. The top panel of

Table 4 reports the present value of the difference in future consumption levels between the case

in which predictability is accounted for and the case in which it is not.14 The present value is

computed by discounting the average consumption difference each year by the risk-free rate of 1%.

The present value of consumption differences over the entire 50-year adult period is $179,137.63,

which is sizable compared to the assumed initial financial wealth and initial annual income that

both are $20,000. The present value of consumption differences until retirement is $74,394.99,

so the present value difference of $104,742.75 summarizes the effect on retirement consumption.

Ignoring predictability in stock returns, house prices, and labor income leads to lower returns

on investments, lower savings, and thus significantly lower consumption in retirement. Strategies

based on predictability not only leads to different levels of consumption, but also reduces the

14
The relative utility weight of the two types of consumption is a = 0.7, so 70% of the consumption differences are

attributed to perishable consumption and 30% to housing consumption.
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Table 4: Welfare effect of predictability. PV is the present value at time t0 of the difference

between the optimal consumption with or without predictability. The present value is calculated by

discounting the average consumption difference at a 1% rate. RWEL is the certainty equivalent of the

consumption difference measured as a percent of initial total wealth. Baseline parameter values are used.

Until death Until retirement

PV RWEL PV RWEL

All paths 179,137.63 5.57% 74,394.88 4.30%

Sorted on x outcomes
25% upper 174,413.73 7.38% 71,388.70 5.57%
50% upper 165,637.71 6.53% 69,017.44 4.95%
50% lower 191,450.59 4.39% 79,971.43 3.56%
25% lower 216,569.51 4.14% 89,580.24 3.36%

Sorted on x volatility
25% upper 228,253.10 6.74% 90,631.17 5.21%
50% upper 207,432.06 6.20% 84,058.60 4.79%
50% lower 150,843.19 4.95% 64,731.17 3.81%
25% lower 139,580.23 4.59% 60,525.53 3.58%

Sorted on y outcomes
25% upper 118,610.91 6.17% 55,833.61 5.07%
50% upper 123,763.50 5.90% 56,733.31 4.66%
50% lower 233,324.79 5.31% 92,255.55 4.04%
25% lower 307,655.46 5.49% 116,817.37 4.13%

Sorted on y volatility
25% upper 269,948.74 6.96% 107,529.07 5.20%
50% upper 225,573.71 6.32% 91,302.29 4.73%
50% lower 132,701.55 4.87% 57,487.47 3.90%
25% lower 114,883.42 4.35% 50,976.32 3.56%

likelihood of ending up in states with low consumption and thus very low utility. We capture this

by the certainty equivalent of wealth. The consumption differences over the entire 50-year adult

life span correspond to a certainty equivalent of wealth of 5.57%, which can be interpreted as if

an agent ignoring predictability is giving up 5.57% of total initial wealth. Here total initial wealth

is computed as the sum of initial financial wealth and the present value of future income (average

income discounted at 1%).

Table 4 also dissects the welfare effects of predictability by considering various subsamples

of paths. Along each sample path, we compute the average and standard deviation of the two

predictors. First, we sort the sample paths based on the pathwise average value of the net payout

yield x. In the subsample consisting of the 25% of the paths with the highest average x, we find

that the present value of consumption differences is $174,413.73 and that the certainty equivalent of
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consumption differences corresponds to 7.38% of total initial wealth. Compared to the full sample,

the average effect of predictability on the consumption level is slightly smaller in this subsample,

but predictability is very effective in eliminating states with very low consumption. Conversely,

in the subsample of the 25% of the paths with the lowest average x, predictability has a larger

effect on the average consumption level, but a smaller (although still sizeable) effect on expected

utility. When we sort on average outcomes of the log rent-price ratio y, we find that incorporating

the predictability represented by y has the largest effect on average consumption when y tends to

be low, but the largest effect on expected utility when y tends to be high. When sorting on the

volatility of x or y, we see that it is particularly important to base the strategy on predictability

when the predictors are very volatile. In this case, expected stock and house returns and expected

income growth vary more so market timing is more important for increasing average returns and

for avoiding low consumption states.

Table 5 repeats the above analysis for the no borrowing case, q = 1. If the agent cannot

engage in collateralized borrowing, she cannot invests as aggressively in stocks and housing in the

situations where the predictors would induce that behavior and, consequently, the agent builds up

less wealth and consumes at a lower level. In particular, when the log rent-price ratio y is low, an

unconstrained agent would invest a lot in housing, but this would often violate a strict borrowing

constraint. Therefore, in the no borrowing case, predictability has a smaller effect on expected

utility and, in particular, on the average consumption level.

4.3 Historical simulations

Figure 2 shows the realized path of the two predictors over our sample period 1960-2010. How

important was it for investors living in this period to take predictability into account? With our

timing convention, an agent entering our model at age 30 in 1961, retired in 1996, and passed away

in 2011, so her life span is exactly covered by our sample period. Of course, along a given sample

path including the realized path, the strategy derived assuming predictability is not guaranteed

to perform better than the strategy ignoring predictability. However, as shown in Table 6, the

agent taking predictability into account would generally have consumed at a significantly higher

level with the present value (in 1961) of consumption differences equalling $44,168.56 until the

retirement date. Furthermore, the predictability-based strategy would have generated a higher

terminal wealth with a present value of $19,779.72. The total effect thus corresponds to $63,948.28.

Table 6 further considers agents entering our model in the years 1962 to 1976 whom we can all
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Table 5: Welfare effect of predictability: the no-borrowing case. PV is the present value

at time t0 of the difference between the optimal consumption with or without predictability. The present

value is calculated by discounting the average consumption difference at a 1% rate. RWEL is the certainty

equivalent of the consumption difference measured as a percent of initial total wealth. Baseline parameter

values are used except that q = 1 so that no borrowing is possible.

Until death Until retirement

PV RWEL PV RWEL

All paths 120,927.75 5.00% 48,257.01 3.80%

Sorted on x outcomes
25% upper 177,173.94 7.11% 70,639.08 5.39%
50% upper 150,100.85 6.29% 60,494.49 4.72%
50% lower 87,629.29 3.72% 34,445.81 2.78%
25% lower 75,778.83 3.36% 28,869.68 2.48%

Sorted on x volatility
25% upper 150,579.93 6.01% 57,000.58 4.52%
50% upper 137,031.59 5.50% 52,864.59 4.16%
50% lower 104,824.02 4.47% 43,649.40 3.43%
25% lower 97,830.71 4.50% 41,419.56 3.34%

Sorted on y outcomes
25% upper 111,386.76 5.40% 51,892.21 4.52%
50% upper 112,154.29 5.35% 50,057.93 4.25%
50% lower 125,575.84 4.92% 44,882.38 3.50%
25% lower 134,809.26 4.90% 44,265.04 3.37%

Sorted on y volatility
25% upper 131,873.76 4.99% 51,190.98 3.70%
50% upper 125,549.17 4.80% 49,534.80 3.66%
50% lower 116,306.43 5.20% 46,979.18 3.95%
25% lower 114,527.72 4.92% 46,612.73 3.79%
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Table 6: Welfare effect of predictability along realized path. We calculate the value of

including predictors in consumption and investment strategies along the observed sample path in 1960-

2010. PV cons diff is the present value at time t0 of the difference between the pre-retirement consumption

levels with and without predictability. PV W diff is the present value at time t0 of the difference between

the financial wealth at retirement date. Net effect is the sum of the total consumption difference PV cons

diff and the retirement wealth difference PV W diff. Baseline parameter values are used.

start PV cons diff PV W diff Net effect

Only active phase
1961 44,168.56 19,779.72 63,948.28
1962 42,424.15 13,599.56 56,023.71
1963 41,226.30 1,270.96 42,497.26
1964 36,539.25 -8,208.78 28,330.47
1965 35,294.67 -12,174.76 23,119.90
1966 37,928.28 4,387.58 42,315.86
1967 40,176.31 16,168.53 56,344.84
1968 42,407.70 35,607.30 78,015.00
1969 44,961.80 41,865.70 86,827.50
1970 48,537.36 54,020.10 102,557.46
1971 52,625.47 66,891.00 119,516.47
1972 58,078.04 51,935.24 110,013.28
1973 60,738.29 61,498.17 122,236.45
1974 68,406.69 28,164.25 96,570.94
1975 74,097.57 47,252.88 121,350.45
1976 71,407.03 59,083.07 130,490.10

follow until retirement 35 years later. All cohorts generated larger consumption levels by condi-

tioning their decisions on the predictors and most generated larger wealth at retirement, especially

the 1970-1976 cohorts since one or both predictors have been sizeable in most years since 1970.

The 1964-1965 cohorts generated lower wealth at retirement by including the predictors, but this is

more than outweighed by increased consumption levels. Figure 8 illustrates the effects for different

cohorts graphically.

5 Conclusion

We have estimated a model of the joint dynamics of stock prices, house prices, and labor income in

the United States over the period 1960-2010. We have shown that the net corporate payout yield

positively predicts stock house prices and negatively predicts house prices, whereas the log home

rent-price ratio negatively predicts house price growth and positively predicts labor income growth.

When embedding the estimated dynamics into a rich consumption and investment choice model,

we find that life-cycle investors can benefit significantly from conditioning their decisions on the two
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Figure 8: The dollar value of including predictability along the observed sample path.
We calculate the value of including predictors in consumption and investment strategies along the
observed sample path in 1960-2010. PV cons diff is the present value at time t0 of the difference
between the pre-retirement consumption levels with and without predictability. PV W diff is
the present value at time t0 of the difference between the financial wealth at retirement date.
Net effect is the sum of the total consumption difference PV cons diff and the retirement wealth
difference PV W diff. Baseline parameter values are used.
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predictors. By doing so, the investors generate higher returns and thus higher average consumption,

and investors can also reduce the likelihood of ending up in states with very low consumption and

thus very low utility. In the baseline case, the benefits can be quantified as a present value of

around $179,000 or 5.6% of initial wealth in certainty equivalent terms. In an innovative scenario-

based analysis, we show that in certainty-equivalent terms, the benefits of predictor-conditioning

strategies are largest when the net payout yield and the rent-price ratio are large and volatile.

Furthermore, we show that all cohorts of 30-year olds entering our model in each of the years 1961

to 1976 would have benefited from implementing conditional strategies, in particular the later of

these cohorts.
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A Details of the calibration

We estimate the following VAR(1)



rS,t+1 − rt+1

rH,t+1 − rt+1

rL,t+1

xt+1

yt+1


=



βS

βH

βL

βx

βy


+



βx,S βy,S

βx,H βy,H

βx,L βy,L

βx,x 0

0 βy,y


 xt

yt

+



εS,t+1

εH,t+1

εL,t+1

εx,t+1

εy,t+1


(13)

where
(
εS , εH , εL, εx, εy, εz

)
∼ N(0,Σ). The Stata regression output is shown in Table 7.

At first the full model SxyHxyLxy is calibrated with change of the log rent-price ratio and net payout

ratio as predictor for the stock return, house return and labor income return. In a next step, we exclude

all non-significant predictors and arrive at the model SxHxyLy. In this model all predictability coefficients

are at least significant at the 5% significance level. This is our benchmark model. Additionally, we report

the estimation results for our sub-models: SxHxL we have only x as predictor, SHyLy we have only y as

predictor and SHL we ignore predictability. Table 1 reports the resulting parameter values for the different

model specifications with some estimates adjusted as explained in the main text.

B Details on the numerical method

B.1 Artificial markets

Building on the idea of Cvitanić and Karatzas (1992), the constrained, incomplete market problem is em-

bedded in a family of artificial, unconstrained, complete market problems for which we can derive exact

closed-form solutions. In order to handle the constraints (10), we modify the risk-free rate as well as the

drift rates of the stock and the house as follows

µSt = µS + νSt , µHt = µH + νHt , rt = r + max
(
ν−St,

1
q ν
−
Ht

)
, (14)

where ν− = max(−ν, 0); see Cvitanić and Karatzas (1992) and Bick, Kraft, and Munk (2013, Sec. 8). Note

that for any values of νSt and νHt, we have rt ≥ r and rt + µSt ≥ r + µS as well as rt + µHt ≥ r + µH .

Intuitively, if the unconstrained ΠS or ΠH is above 1, we increase the risk-free rate to make investing

in the bank account relatively more attractive and bring down the risky investment. Conversely, if the

unconstrained ΠS or ΠH is negative, we increase the drift rate to boost the investment in the asset. To

complete the market in our case, we introduce an artificial asset for the idiosyncratic labor income risk, for
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Table 7: Regression results for model with cum returns for the stock. The table shows

the regression results based on annual data from 1960 to 2010. The house market uses the national

Case/Shiller home price index, for stock market data we use returns on the CRSP value-weighted market

portfolio inclusive of the NYSE, AMEX, and NASDAQ markets. The risk-free asset is the Treasury

bill yield from the Risk Free File on CRSP Bond tape. From NIPA tables, we obtain U.S. data for

aggregated disposable personal income (per capita). To obtain real values, all time-series are deflated

using the consumer price index (CPI) taken from CRSP. For the predictor variables we use for x the net

payout ratio, and for y the change of the log rent-price ratio. In parentheses are the p-values. *p < 0.05,

**p < 0.01, ***p < 0.001

SxyHxyLxy SxHxyLy SxHxL SHyLy SHL

Exc ret stock
Lagged x 0.300 0.329 0.314

(0.085) (0.051) (0.063)
Lagged y -0.164

(0.719)
Constant 0.041 0.041 0.041 0.041 0.041

(0.090) (0.088) (0.088) (0.100) (0.100)
Exc ret house
Lagged x -0.114** -0.106** -0.148*

(0.007) (0.010) (0.010)
Lagged y -0.412** -0.398** -0.446**

(0.004) (0.004) (0.003)
Constant -0.012 -0.012 -0.011 -0.012 -0.011

(0.110) (0.112) (0.162) (0.133) (0.195)
Ret income
Lagged x -0.016

(0.443)
Lagged y 0.126* 0.126* 0.119*

(0.020) (0.017) (0.028)
Constant 0.018*** 0.018*** 0.017*** 0.018*** 0.017***

(0.000) (0.000) (0.000) (0.000) (0.000)
x
Lagged x 0.782*** 0.766*** 0.772***

(0.000) (0.000) (0.000)
Constant 0.002 0.002 0.002

(0.879) (0.880) (0.879)
y
Lagged y 0.702*** 0.702*** 0.702***

(0.000) (0.000) (0.000)
Constant -0.000 -0.000 -0.000

(0.973) (0.973) (0.972)
Obs. 50.000 50.000 50.000 50.000 50.000
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the x risk, and for the y risk with price processes given by

dVxt = Vxt [(rt + λxt) dt+ dBxt] , (15)

dVyt = Vyt
[
(rt + λyt) dt+ dByt

]
, (16)

dVLt = VLt [(rt + λLt) dt+ dBLt] , (17)

where λxt, λyt, λLt denote the market prices of risk associated with x, y, L shock, respectively. Note that

the assumption of a unit volatility is without loss of generality. An artificial market is characterized by the

“modifiers” νS , νH , λL, λx, and λy.

The modifiers could be quite general stochastic processes, but we focus on the family of artificial markets

in which the modifiers are polynomials of time (age), x, and y. We therefore denote write νSt = νS(t, x, y)

and similar for other quantities, and specify

νS(t, x, y) = νS,0,act + νS,0,ret + νS,1,act t+ νS,1,ret t+ νS,2 x+ νS,3 y + νS,4x
2 + νS,5 y

2 + νS,6 xy

+ νS,7 t
2 + νS,8 xt+ νS,9 yt , (18)

νH(t, x, y) = νH,0,act + νH,0,ret + νH,1,act t+ νH,1,ret t+ νH,2 x+ νH,3 y + νH,4 x
2 + νH,5 y

2 + νH,6 xy

+ νH,7 t
2 + νH,8xt+ νH,9yt , (19)

λx(t, x, y) = Λx,0,act + Λx,0,ret + Λx,1,act t+ Λx,1,ret t+ Λx,2 x+ Λx,3 y + Λx,4 x
2 + Λx,5 y

2 + Λx,6 xy

+ Λx,7 t
2 + Λx,8 xt+ Λx,9 yt, (20)

λy(t, x, y) = Λy,0,act + Λy,0,ret + Λy,1,act t+ Λy,1,ret t+ Λy,2 x+ Λy,3 y + Λy,4 x
2 + Λy,5 y

2 + Λy,6 xy

+ Λy,7 t
2 + Λy,8 xt+ Λy,9 yt, (21)

λL(t, x, y) = ΛL,0,act + ΛL,0,ret + ΛL,1,act t+ ΛL,1,ret t+ ΛL,2 x+ ΛL,3 y + ΛL,4 x
2 + ΛL,5 y

2 + ΛL,6 xy

+ ΛL,7 t
2 + ΛL,8 xt+ ΛL,9 yt. (22)

We refer to such markets as the computable artificial markets since in these markets we can solve the agent’s

utility maximization in closed form as shown below.

For notational convenience, we define

µ′S(t, x, y) = µS(t, x, y) + D̄, µ′H(t, x, y) = µH(t, x, y) +R−m,

where D̄ is the dividend yield, R is the rental rate, and m the maintenance cost rate. By Πit we denote the

fraction of wealth invested in asset i at time t with i ∈ {S,H,L, x, y}.
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B.2 Human capital in computable artificial markets

In any of the computable artificial markets, the labor income is spanned and the agent can borrow against

future income. By combining these features with the assumed income dynamics, we can compute the human

capital—the present value of all future income—by solving a relatively simple partial differential equation

(PDE).

Lemma 1 In a computable artificial market, the human capital at time t equals LtF (t, xt, yt), where F

solves the PDE (23) stated in the proof below, with the discrete adjustment F (T̃−, x, y) = ΥF (T̃+, x, y) at

the retirement date.

Proof: In a complete, unconstrained market we can represent the human capital by the risk-neutral expec-

tation of the future labor income Ls discounted by (the integral of) the short-term interest rate r(u, xu, yu).

Let Q denote the unique risk-neutral probability measure in a given artificial market. To compute the human

capital we must therefore identify the Q-dynamics of L, x, and y. For that purpose we have to identify the

market prices of risk associated with the Brownian shocks BS , BH , BL, Bx, By. While the market prices of

risk associated with BL, Bx, By are λL(t, x, y), λx(t, x, y), λy(t, x, y) by assumption, we identify the market

prices of risk mSt,mHt associated with BS , BH by using the fact that the excess expected return on an

asset is the product of its sensitivities towards the shocks and the market prices of risks associated with the

shocks. For the stock, this means

µ′S(t, x, y) + χSxt = σSmSt ⇒ mSt =
µ′S(t, x, y) + χSxt

σS
.

For an investment in housing units, this implies

µ′H(t, x, y) + χHxxt + χHyyt = σHρHSmSt + σH ρ̂HmHt ⇒

mHt =
µ′H(t, x, y) + χHxxt + χHyyt

σH ρ̂H
− ρHS(µ′S(t, x, y) + χSxt)

ρ̂HσS
.

The risk-neutral income dynamics is therefore

dLt
Lt

=
[
µL(t) + χ̄L(t)yt − σL(t) (ρLSmSt + ρ̂LHmHt + ρ̂LλL(t, x, y))

]
dt

+ σL(t, x, y)
(
ρLS dB

Q
St + ρ̂LH dB

Q
Ht + ρ̂L dB

Q
Lt

)
=
[
− (MLS(t)χS +MLH(t)χHx)xt −

(
MLH(t)χHy − χ̄L(t)

)
yt + µL(t)

−MLS(t)µ′S(t, x, y)−MLH(t)µ′H(t, x, y)− σL(t)ρ̂LλL(t, x, y)
]
dt

+ σL

(
ρLS dB

Q
St + ρ̂LH dB

Q
Ht + ρ̂L dB

Q
Lt

)
,
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where

MLS(t) =
σL(t)

σS

(
ρLS −

ρHS ρ̂LH
ρ̂H

)
, MLH(t) =

σL(t)ρ̂LH
σH ρ̂H

.

For x, we obtain

dxt =
[
−κxxt − σx (ρxSmSt + ρ̂xHmHt + ρ̂xLλL(t, x, y) + ρ̂xλx(t, x, y))

]
dt

+ σx

(
ρxS dB

Q
St + ρ̂xH dB

Q
Ht + ρ̂xL dB

Q
Lt + ρ̂x dB

Q
xt

)
=
[
− (κx +MxSχS +MxHχHx)xt −MxHχHyyt

−MxSµ
′
S(t, x, y)−MxHµ

′
H(t, x, y)− σx (ρ̂xLλL(t, x, y) + ρ̂xλx(t, x, y))

]
dt

+ σx

(
ρxS dB

Q
St + ρ̂xH dB

Q
Ht + ρ̂xL dB

Q
Lt + ρ̂x dB

Q
xt

)
,

where

MxS =
σx
σS

(
ρxS −

ρHS ρ̂xH
ρ̂H

)
, MxH =

σxρ̂xH
σH ρ̂H

.

For y, we obtain

dyt =
[
−κyyt − σy

(
ρySmSt + ρ̂yHmHt + ρ̂yLλL(t, x, y) + ρ̂yxλx(t, x, y) + ρ̂yλy(t, x, y)

)]
dt

+ σy

(
ρyS dB

Q
St + ρ̂yH dB

Q
Ht + ρ̂yL dB

Q
Lt + ρ̂yx dB

Q
xt + ρ̂y dB

Q
yt

)
=
[
−
(
MySχS +MyHχHx

)
xt −

(
κy +MyHχHy

)
yt

−MySµ
′
S(t, x, y)−MyHµ

′
H(t, x, y)− σy

(
ρ̂yLλL(t, x, y) + ρ̂yxλx(t, x, y) + ρ̂yλy(t, x, y)

)]
dt

+ σy

(
ρyS dB

Q
St + ρ̂yH dB

Q
Ht + ρ̂yL dB

Q
Lt + ρ̂yx dB

Q
xt + ρ̂y dB

Q
yt

)
,

where

MyS =
σy
σS

(
ρyS −

ρHS ρ̂yH
ρ̂H

)
, MyH =

σyρ̂yH
σH ρ̂H

.

It follows that the human capital in retirement EQ
t

[∫ T
t
e−

∫ s
t
r(u,xu,yu) duLs ds

]
is a function P(t, L, x, y)

and that we can separate it as P(t, L, x, y) = LF (t, x, y). From general derivatives pricing results we know

that if z = (L, x, y)> and

dzt = µz(t, zt) dt+ Σz(t, zt) dB
Q
t ,
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the function P(t, z) satisfies the partial differential equation (PDE)

∂P
∂t

+
∂P
∂z
· µz +

1

2
tr

(
∂2P
∂z2 ΣzΣ

>
z

)
+ L = rP

and the terminal condition P(T, z) = 0. Given the separation P = LF , it follows that F (t, x, y) satisfies the

PDE

0 = 1 +
∂F

∂t
+
[
− (MLS(t)χS +MLH(t)χHx)x+

(
χ̄L(t)−MLH(t)χHy

)
y + µL(t)

−MLS(t)µ′S(t, x, y)−MLH(t)µ′H(t, x, y)− σL(t)ρ̂LλL(t, x, y)− r(t, x, y)
]
F

+
[
− (κx +MxSχS +MxHχHx)x−MxHχHyy + σxL(t)

−MxSµ
′
S(t, x, y)−MxHµ

′
H(t, x, y)− σx (ρ̂xLλL(t, x, y) + ρ̂xλx(t, x, y))

]
Fx

+
[
−
(
MySχS +MyHχHx

)
x−

(
κy +MyHχHy

)
y + σyL(t)

−MySµ
′
S(t, x, y)−MyHµ

′
H(t, x, y)− σy

(
ρ̂yLλL(t, x, y) + ρ̂yxλx(t, x, y) + ρ̂yλy(t, x, y)

)]
Fy

+
1

2
σ2
xFxx +

1

2
σ2
yFyy + σxyFxy,

(23)

where subscripts on F denote partial derivatives, and where σxL(t) = ρxLσxσL(t), σyL(t) = ρyLσyσL(t), and

σxy = ρxyσxσy. Given the specification of the interest rate r(t, x, y) in (14), we cannot solve the PDE (23)

in closed form, so we solve it backwards from the terminal date T where F (T, x, y) = 0 using standard finite

difference methods.

Before retirement, the human capital is computed from

EQ
t

[∫ T̃

t

e−
∫ s
t
r(u,xu,yu) du ds+

∫ T

T̃

e−
∫ s
t
r(u,xu,yu) duLs ds

]
,

where in the second integral we have to incorporate the drop in income at the retirement time T̃ . We

can handle that in the finite difference solution by multiplying the values F (T̃+, x, y) immediately after

retirement by Υ to get the values immediately before retirement. 2

Given the structure of the PDE (23), it follows that F can be written in the form

F (t, x, y) =


∫ T

t

A(t, s, x, y) ds, t ∈ (T̃ , T ],∫ T̃

t

A(t, s, x, y) ds+ Υ

∫ T

T̃

A(t, s, x, y) ds, t ∈ [0, T̃ ],

and that we can derive some PDE for A(t, s, x, y), but this would still have to be solved numerically and

then integrated up numerically.
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B.3 Optimality in computable artificial markets

The agent’s total time t wealth is the sum of tangible wealth and human capital, i.e., Wt+LtF (t, xt, yt). Due

to power utility, the indirect utility function is conjectured to have the form 1
1−γG(·)γ(Wt+LtF (t, xt, yt))

1−γ ,

where G depends on time and on variables driving shifts in investment opportunities (risk-free rate and risk

premia) as well as changes in relative prices of consumer goods. In our case, G therefore depends on xt, yt,

and the house price Ht. The relative good price Ht is expected to enter proportionally with a power (Kraft

and Munk 2011) so that G can be separated as k̃HkB(t, x, y) for appropriate constants k and k̃. These

considerations motivate the form of the indirect utility function given below. The optimal strategies then

follow from the first-order conditions to the associated Hamilton-Jacobi-Bellman (HJB) equation.

Theorem 1 In a computable artificial market the indirect utility is

J(t,W,H,L, x, y) =
1

1− γ
a1−γ

(
aRH

1− a

)(1−a)(1−γ)

B(t, x, y)γ (W + LF (t, x, y))
1−γ

, (24)

where F solves the PDE (23) and B solves the PDE (50) stated in the proof below. The optimal portfolio

weights are

ΠS =
1

γρ̂2
Hσ

2
S

(
µ′S(t, x, y) + χSx−

ρHSσS
σH

(
µ′H(t, x, y) + χHxx+ χHyy

)) W + LF

W

+

(
MxS

Bx
B

+MyS

By
B

)
W + LF

W
−
(
MLS(t) +MxS

Fx
F

+MyS

Fy
F

)
LF

W
, (25)

ΠH =
1

γρ̂2
Hσ

2
H

(
µ′H(t, x, y) + χHxx+ χHyy −

ρHSσH
σS

(
µ′S(t, x, y) + χSx

)) W + LF

W
+ k

W + LF

W

+

(
MxH

Bx
B

+MyH

By
B

)
W + LF

W
−
(
MLH(t) +MxH

Fx
F

+MyH

Fy
F

)
LF

W
, (26)

ΠL =
1

γ
λL(t, x, y)

W + LF

W
+ σL(t)

(
MxL

Bx
B

+MyL

By
B

)
W + LF

W

− σL(t)

(
ρ̂L +MxL

Fx
F

+MyL

Fy
F

)
LF

W
, (27)

Πx =
1

γ
λx(t, x, y)

W + LF

W
+ σx

(
ρ̂x
Bx
B

+Myx

By
B

)
W + LF

W
− σx

(
ρ̂x
Fx
F

+Myx

Fy
F

)
LF

W
, (28)

Πy =
1

γ
λy(t, x, y)

W + LF

W
+ σyρ̂y

By
B

W + LF

W
− σyρ̂y

Fy
F

LF

W
, (29)

where k = (1−a)(γ−1)
γ and where the functions and constants Mij were defined in the proof of Lemma 1. The

optimal consumption is

c = a
W + LF

B
, (30)

φC = (1− a)
W + LF

RHB
. (31)

Proof: First we set up the HJB equation, then we conjecture and verify a solution to it.
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Setting up the HJB equation. The wealth dynamics in the artificial market is similar to (7), but

adjusted because of the possibility to invest in the artificial asset with price dynamics (15) as well as the

modification of r, µ′S , and µ′H :

dWt =

(
Wt

[
r(t, x, y) + ΠSt(µ

′
S(t, x, y) + χSxt) + ΠHt(µ

′
H(t, x, y) + χHxxt + χHyyt)

+ ΠLtλL(t, x, y) + Πxtλx(t, x, y) + Πytλy(t, x, y)
]

+ (Lt − ct − φCtRHt)

)
dt

+Wt

[
(ΠStσS + ΠHtσHρHS) dBSt + ΠHtσH ρ̂H dBHt + ΠLt dBLt + Πxt dBxt + Πyt dByt

]
=
(
r(t, x, y)Wt + α>

t λt + Lt − φCtRHt − ct
)
dt+ α>

t Σ dBt,

where

αt =


αSt

αHt

αLt

 =



ΠStσSWt

ΠHtσHWt

ΠLtWt

ΠxtWt

ΠytWt


, λt =



(µ′S(t, x, y) + χSxt)/σS

(µ′H(t, x, y) + χHxxt + χHyyt)/σH

λL(t, x, y)

λx(t, x, y)

λy(t, x, y)


,

Bt =



BSt

BHt

BLt

Bxt

Byt


, Σ =



1 0 0 0 0

ρHS ρ̂H 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


.

Let Z = (H,L, x, y)> be the vector of state variables, which has the dynamics

dZt = µZ(t, Zt) dt+ ΣZ(t, Zt) dBt,

where

µZ(t, Zt) =


Ht[r(t, x, y) + µH(t, x, y) + χHxxt + χHyyt]

Lt[µL(t) + χ̄L(t)yt]

−κxxt
−κyyt

 ,

ΣZ(Zt) =


HtσHρHS HtσH ρ̂H 0 0 0

LtσL(t)ρLS LtσL(t)ρ̂LH LtσL(t)ρ̂L 0 0

σxρxS σxρ̂xH σxρ̂xL σxρ̂x 0

σyρyS σyρ̂yH σyρ̂yL σyρ̂yx σyρ̂y

 .
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The Hamilton-Jacobi-Bellman equation (HJB) associated with the problem can be written as

δJ = L1J + L2J + L3J, (32)

where

L1J = max
c,φC
{U(c, φC)− JW (c+HRφC)} ,

L2J = max
α

{
JWα

>λ+
1

2
JWWα

>ΣΣ>α+ α>ΣΣ>
ZJWZ

}
,

L3J =
∂J

∂t
+ JW (rW + L) + J>

Z µZ +
1

2
trace

(
JZZΣZΣ>

Z

)
.

Recall that J = J(t,W,H,L, x, y) = J(t,W,Z) so that

JZ =


JH

JL

Jx

Jy

 , JZZ =


JHH JHL JHx JHy

JHL JLL JLx JLy

JHx JLx Jxx Jxy

JHy JLy Jxy Jyy

 , JWZ =


JWH

JWL

JWx

JWy

 .

First, consider L1J . The first-order conditions are Uc(c
∗, φ∗C) = JW and Uφ(c∗, φ∗C) = RHJW . These

imply Uφ(c∗, φ∗C)/Uc(c
∗, φ∗C) = RH so that

φ∗C = c∗
(
aRH

1− a

)−1

.

We substitute that relation into Uc = JW and find

c∗ = J
−1/γ
W a1/γ

(
aRH

1− a

)k
, (33)

and hence

φ∗C = J
−1/γ
W a1/γ

(
aRH

1− a

)k−1

, (34)

where k = (1− a)(γ − 1)/γ. These maximizers lead to

L1J =
γ

1− γ
J
γ−1
γ

W a
1−γ
γ

(
aRH

1− a

)k
. (35)

Next, consider L2J . The first-order condition for α reads JWλ+ JWWΣΣ>α+ ΣΣ>
ZJWZ = 0 or

α = − JW
JWW

(ΣΣ>)−1λ− 1

JWW

(ΣΣ>)−1ΣΣ>
ZJWZ = − JW

JWW

(ΣΣ>)−1λ− 1

JWW

(ΣZΣ−1)>JWZ . (36)
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Substituting the optimal α back into L2J leads to

L2J = −1

2

J2
W

JWW

λ>(ΣΣ>)−1λ− JW
JWW

J>
WZΣZΣ−1λ− 1

2

1

JWW

J>
WZΣZΣ>

ZJWZ . (37)

The matrix products are

ΣΣ> =



1 ρHS 0 0 0

ρHS 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1


⇒ (ΣΣ>)−1 =

1

ρ̂2
H



1 −ρHS 0 0 0

−ρHS 1 0 0 0

0 0 ρ̂2
H 0 0

0 0 0 ρ̂2
H 0

0 0 0 0 ρ̂2
H


,

ΣZΣ−1 =


0 HσH 0 0 0

LMLSσS LMLHσH Lρ̂LσL 0 0

MxSσS MxHσH ρ̂xLσx ρ̂xσx 0

MySσS MyHσH ρ̂yLσy ρ̂yxσy ρ̂yσy

 , ΣZΣ>
Z =


H2σ2

H HLσHL HσHx HσHy

HLσHL L2σ2
L LσLx LσLy

HσHx LσLx σ2
x σxy

HσHy LσLy σxy σ2
y

 ,

where we have applied the covariance notation σab = ρabσaσb and constants defined in Appendix B.2.

Substitution of these matrix products into (36) gives

αS = − JW
JWW

1

σS ρ̂
2
H

(
µ′S(t, x, y) + χSx−

ρHSσS
σH

[µ′H(t, x, y) + χHxx+ χHyy]

)
− JWL

JWW

LMLS(t)σS −
JWx

JWW

MxSσS −
JWy

JWW

MySσS , (38)

αH = − JW
JWW

1

σH ρ̂
2
H

(
µ′H(t, x, y) + χHxx+ χHyy −

ρHSσH
σS

[µ′S(t, x, y) + χSx]

)
− JWH

JWW

HσH −
JWL

JWW

LMLH(t)σH −
JWx

JWW

MxHσH −
JWy

JWW

MyHσH , (39)

αL = − JW
JWW

λL(t, x, y)− JWL

JWW

Lρ̂LσL(t)− JWx

JWW

ρ̂xLσx −
JWy

JWW

ρ̂yLσy, (40)

αx = − JW
JWW

λx(t, x, y)− JWx

JWW

ρ̂xσx −
JWy

JWW

ρ̂yxσy, (41)

αy = − JW
JWW

λy(t, x, y)−
JWy

JWW

ρ̂yσy. (42)

Conjecture of the solution to the HJB equation. We conjecture

J(t,W,H,L, x, y) =
1

1− γ
G(t,H, x, y)γ (W + LF (t, x, y))

1−γ
. (43)

It turns out to be useful to express the derivatives of J in terms of J itself:

JW =
(1− γ)J

W + LF
, JWW = − γ(1− γ)J

(W + LF )2 ,
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JL = (1− γ)J
F

W + LF
, JLL = −γ(1− γ)J

F 2

(W + LF )2 ,

JH = γJ
GH
G
, JHH = γ(1− γ)J

[
1

1− γ
GHH
G
−
(
GH
G

)2
]
,

JWL = −γ(1− γ)J
F

(W + LF )2 , JWH = γ(1− γ)J
1

W + LF

GH
G
,

JHL = γ(1− γ)J
GH
G

F

W + LF
, Jx = (1− γ)J

[
γ

1− γ
Gx
G

+
LFx

W + LF

]
,

Jy = (1− γ)J

[
γ

1− γ
Gy
G

+
LFy

W + LF

]
, JWx = γ(1− γ)J

[
Gx
G

1

W + LF
− LFx

(W + LF )2

]
,

JWy = γ(1− γ)J

[
Gy
G

1

W + LF
−

LFy

(W + LF )2

]
, Jt =

(1− γ)J

W + LF
L
∂F

∂t
+ γJ

1

G

∂G

∂t
,

Jxx = (1− γ)J

[
γ

1− γ
Gxx
G
− γ

(
Gx
G

)2

+ 2γ
Gx
G

LFx
W + LF

− γ
(

LFx
W + LF

)2

+
LFxx

W + LF

]
,

Jyy = (1− γ)J

[
γ

1− γ
Gyy
G
− γ

(
Gy
G

)2

+ 2γ
Gy
G

LFy
W + LF

− γ
(

LFy
W + LF

)2

+
LFyy

W + LF

]
,

JHx = γ(1− γ)J

[
1

1− γ
GHx
G
− GxGH

G2 +
LFx

W + LF

GH
G

]
,

JHy = γ(1− γ)J

[
1

1− γ
GHy
G
−
GyGH

G2 +
LFy

W + LF

GH
G

]
,

JLx = (1− γ)J

[
γ
Gx
G

F

W + LF
+

Fx
W + LF

− γ LF Fx

(W + LF )2

]
,

JLy = (1− γ)J

[
γ
Gy
G

F

W + LF
+

Fy
W + LF

− γ
LF Fy

(W + LF )2

]
,

Jxy = (1− γ)J

[
γ

1− γ
Gxy
G
− γ

GxGy

G2 + γ
Gx
G

LFy
W + LF

+ γ
Gy
G

LFx
W + LF

+
LFxy

W + LF
− γ

L2FxFy

(W + LF )2

]
.

Next, we rewrite the terms L1J , L2J , L3J exploiting the conjecture for J . First, since

J

γ−1
γ

w = JwJ
−1/γ
w =

(1− γ)J

W + LF

{
Gγ [W + LF ]−γ

}−1/γ

= (1− γ)J
1

G
,

we get from (35) that

L1J = γJ
1

G
a

1−γ
γ

(
aRH

1− a

)k
.

Next, we have from (37) that

L2J = L2,1J + L2,2J + L2,3J,

36



where

L2,1J = −1

2

J2
W

JWW

λ>(ΣΣ>)−1λ =
1− γ

2γ
Jλ>(ΣΣ>)−1λ

=
1− γ

2γ
J

{(
µ′S(t, x, y) + χSxt

σS ρ̂H

)2

+

(
µ′H(t, x, y) + χHxxt + χHyyt

σH ρ̂H

)2

− 2ρHS
µ′S(t, x, y) + χSxt

σS ρ̂H

µ′H(t, x, y) + χHxxt + χHyyt
σH ρ̂H

+ λL(t, x, y)2 + λx(t, x, y)2 + λy(t, x, y)2

}

and

L2,2J = − JW
JWW

J>
WZΣZΣ−1λ =

1

γ
(W + LF )J>

WZΣZΣ−1λ

= (1− γ)J


GH
G

− F
W+LF

Gx
G −

LFx
W+LF

Gy
G −

LFy
W+LF



>
0 HσH 0 0 0

L`(t)σS LMLH(t)σH Lρ̂LσL(t) 0 0

MxSσS MxHσH ρ̂xLσx ρ̂xσx 0

MySσS MyHσH ρ̂yLσy ρ̂yxσy ρ̂yσy





µ
′
S(t,x,y)+χSxt

σS
µ
′
H(t,x,y)+χHxxt+χHyyt

σH

λL(t, x, y)

λx(t, x, y)

λy(t, x, y)


= (1− γ)J

{
HGH
G

(µ′H(t, x, y) + χHxxt + χHyyt) +
Gx
G

(
− (MxSχS +MxHχHx)xt −MxHχHyyt

−MxSµ
′
S(t, x, y)−MxHµ

′
H(t, x, y)− σx (ρ̂xLλL(t, x, y) + ρ̂xλx(t, x, y))

)
+
Gy
G

(
−
(
MySχS +MyHχHx

)
xt −MyHχHyyt

−MySµ
′
S(t, x, y)−MyHµ

′
H(t, x, y)− σy

(
ρ̂yLλL(t, x, y) + ρ̂yxλx(t, x, y) + ρ̂yλy(t, x, y)

))
− L

W + LF

[
F
(
− (MLS(t)χS +MLH(t)χHx)xt +

(
barχyL(t)−MLH(t)χHy

)
yt + µL(t)− r(t)

−MLS(t)µ′S(t, x, y) +MLH(t)µ′H(t, x, y)− σL(t)ρ̂LλL(t, x, y)
)

+ Fx

(
− (MxSχS +MxHχHx)xt −MxHχHyyt

−MxSµ
′
S(t, x, y)−MxHµ

′
H(t, x, y)− σx (ρ̂xLλL(t, x, y) + ρ̂xλx(t, x, y))

)
+ Fy

(
−
(
MySχS +MyHχHx

)
xt −MyHχHyyt −MySµ

′
S(t, x, y)−MyHµ

′
H(t, x, y)

− σy
(
ρ̂yLλL(t, x, y) + ρ̂yxλx(t, x, y) + ρ̂yλy(t, x, y)

))]}
,

and, furthermore,

L2,3J = −1

2

1

JWW

J>
WZΣZΣ>

ZJWZ
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=
1

2
γ(1− γ)J


GH
G

− F
W+LF

Gx
G −

LFx
W+LF

Gy
G −

LFy
W+LF



>
H2σ2

H HLσHL HσHx HσHy

HLσHL L2σ2
L LσLx LσLy

HσHx LσLx σ2
x σxy

HσHy LσLy σxy σ2
y




GH
G

− F
W+LF

Gx
G −

LFx
W+LF

Gy
G −

LFy
W+LF


= γ(1− γ)J

{
1

2
σ2
H

H2G2
H

G2 +
1

2
σ2
x

G2
x

G2 +
1

2
σ2
y

G2
y

G2 + σHx
HGHGx

G2 + σHy
HGHGy

G2 + σxy
GxGy

G2

− L

W + LF

[
HGH
G

(
σHLF + σHxFx + σHyFy

)
+
Gx
G

(
σLxF + σ2

xFx + σxyFy

)
+
Gy
G

(
σLyF + σxyFx + σ2

yFy

)]

+
L2

(W + LF )2

[
1

2
σ2
LF

2 +
1

2
σ2
xF

2
x +

1

2
σ2
yF

2
y + σLxFFx + σLyFFy + σxyFxFy

]}
.

Finally, we can rewrite L3J as

L3J = L3,1J + L3,2J,

where

L3,1J =
∂J

∂t
+ JW (r(t, x, y)W + L) + J>

Z µZ

= (1− γ)J

{
r(t, x, y) +

γ

1− γ

[
1

G

∂G

∂t
+
HGH
G

(
r(t, x, y) + µH(t, x, y) + χHxxt + χHyyt

)
− κxxt

Gx
G
− κyyt

Gy
G

]

+
L

W + LF

[
∂F

∂t
+ 1 + (µL(t) + χ̄L(t)yt − r(t, x, y))F − κxxtFx − κyytFy

]}
,

and

L3,2J =
1

2
trace

(
JZZΣZΣ>

Z

)
=

1

2
σ2
HH

2JHH +
1

2
σ2
LL

2JLL +
1

2
σ2
xJxx +

1

2
σ2
yJyy + σHLHLJHL + σHxHJHx

+ σHyHJHy + σLxLJLx + σLyLJLy + σxyJxy + σxzJxz + σyzJyz

= (1− γ)J

{
γ

1− γ

[
1

2
σ2
HH

2GHH
G

+
1

2
σ2
x

Gxx
G

+
1

2
σ2
y

Gyy
G
− 1− γ

2
σ2
HH

2G
2
H

G2 −
1− γ

2
σ2
x

G2
x

G2

− 1− γ
2

σ2
y

G2
y

G2 + σHxH
GHx
G

+ σHyH
GHy
G

+ σxy
Gxy
G

− (1− γ)σHxH
GHGx

G2 − (1− γ)σHyH
GHGy

G2 − (1− γ)σxy
GxGy

G2

]

+
L

W + LF

[
1

2
σ2
xFxx +

1

2
σ2
yFyy + σxyFxy + σLxFx + σLyFy
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+ γ

[
HGH
G

(
σHLF + σHxFx + σHyFy

)
+
Gx
G

(
σLxF + σ2

xFx + σxyFy

)
+
Gy
G

(
σLyF + σxyFx + σ2

yFy

)]]

− L2

(W + LF )2 γ

[
1

2
σ2
LF

2 +
1

2
σ2
xF

2
x +

1

2
σ2
yF

2
y + σLxFFx + σLyFFy + σxyFxFy

]}

By adding L2,3J and L3,2J numerous terms cancel so that we are left with

L2,3J + L3,2J = (1− γ)J

{
γ

1− γ

[
1

2
σ2
HH

2GHH
G

+
1

2
σ2
x

Gxx
G

+
1

2
σ2
y

Gyy
G

+ σHxH
GHx
G

+ σHyH
GHy
G

+ σxy
Gxy
G

]

+
L

W + LF

[
1

2
σ2
xFxx +

1

2
σ2
yFyy + σxyFxy + σLxFx + σLyFy

]}
.

If we further add L2,2J and L3,1J to this, all the terms multiplying L/(W + LF ) cancel because F satisfies

the PDE (23). In sum, we get

δJ = L1J + L2,1J + L2,2J + L2,3J + L3,1J + L3,2J

= γJ
1

G
a

1−γ
γ

(
aRH

1− a

)k
+ J

1− γ
2γ

[(
µ′S(t, x, y) + χSxt

σS ρ̂H

)2

+

(
µ′H(t, x, y) + χHxxt + χHyyt

σH ρ̂H

)2

− 2ρHS
µ′S(t, x, y) + χSxt

σS ρ̂H

µ′H(t, x, y) + χHxxt + χHyyt
σH ρ̂H

+ λL(t, x, y)2 + λx(t, x, y)2 + λy(t, x, y)2

]
+ (1− γ)J

1

G

{
r(t, x, y) +HGH

(
µ′H(t, x, y) + χHxxt + χHyyt

)
+
Gx
G

(
− (MxSχS +MxHχHx)xt −MxHχHyyt

−MxSµ
′
S(t, x, y)−MxHµ

′
H(t, x, y)− σx (ρ̂xLλL(t, x, y) + ρ̂xλx(t, x, y))

)
+
Gy
G

(
−
(
MySχS +MyHχHx

)
xt −MyHχHyyt

−MySµ
′
S(t, x, y)−MyHµ

′
H(t, x, y)− σy

(
ρ̂yLλL(t, x, y) + ρ̂yxλx(t, x, y) + ρ̂yλy(t, x, y)

))
+

γ

1− γ

[
1

2
σ2
HH

2GHH +
1

2
σ2
xGxx +

1

2
σ2
yGyy + σHxHGHx + σHyHGHy + σxyGxy

+
∂G

∂t
+HGH

(
r(t, x, y) + µH(t, x, y) + χHxxt + χHyyt

)
− κxxtGx − κyytGy

]}
.

Therefore, it follows that the HJB equation is satisfied if the G function solves the PDE

0 = k̃Hk +
∂G

∂t
+

1

2
σ2
HH

2GHH +
1

2
σ2
xGxx +

1

2
σ2
yGyy + σHxHGHx + σHyHGHy + σxyGxy

+HGH µ̄H(t, x, y) +Gxµ̄x(t, x, y) +Gyµ̄y(t, x, y)− r̄G(t, x, y)G,

(44)
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where k̃ = a
1−γ
γ

(
aR
1−a

)k
, and

−r̄G(t, x, y) =
γ − 1

γ
r(t, x, y) +

δ

γ
+
γ − 1

2γ2

[(
µ′S(t, x, y) + χSxt

σS ρ̂H

)2

+

(
µ′H(t, x, y) + χHxxt + χHyyt

σH ρ̂H

)2

− 2ρHS
µ′S(t, x, y) + χSxt

σS ρ̂H

µ′H(t, x, y) + χHxxt + χHyyt
σH ρ̂H

+ λL(t, x, y)2 + λx(t, x, y)2 + λy(t, x, y)2

]
,

µ̄H(t, x, y) = r(t, x, y)− γ−1
γ [R−m] +

1

γ

(
µH(t, x, y) + χHxx+ χHyy

)
,

µ̄x(t, x, y) = − (κx +MxSχS +MxHχHx)x−MxHχHyy −MxSµ
′
S(t, x, y)−MxHµ

′
H(t, x, y)

− σx (ρ̂xLλL(t, x, y) + ρ̂xλx(t, x, y)) ,

µ̄y(t, x, y) = −
(
MySχS +MyHχHx

)
x−

(
κy +MyHχHy

)
y −MySµ

′
S(t, x, y)−MyHµ

′
H(t, x, y)

− σy
(
ρ̂yLλL(t, x, y) + ρ̂yxλx(t, x, y) + ρ̂yλy(t, x, y)

)
.

The terminal condition is G(T,H, x, y) = 0 because of the no-bequest assumption.

Coming back to the optimal investment strategy, we first note that

− JW
JWW

=
1

γ
(W + LF ), − JWx

JWW

=
Gx
G

(W + LF )− LFx,

− JWL

JWW

= −F, −
JWy

JWW

=
Gy
G

(W + LF )− LFy,

− JWH

JWW

=
GH
G

(W + LF ).

By substituting these expressions into (38)-(42), we obtain

αS =
1

γ
(W + LF )

1

σS ρ̂
2
H

(
µ′S(t, x, y) + χSx−

ρHSσS
σH

[µ′H(t, x, y) + χHxx+ χHyy]

)
− FLMLS(t)σS

+

[
Gx
G

(W + LF )− LFx
]
MxSσS +

[
Gy
G

(W + LF )− LFy
]
MySσS , (45)

αH =
1

γ
(W + LF )

1

σH ρ̂
2
H

(
µ′H(t, x, y) + χHxx+ χHyy −

ρHSσH
σS

[µ′S(t, x, y) + χSx]

)
+
GH
G

(W + LF )HσH

− FLMLH(t)σH +

[
Gx
G

(W + LF )− LFx
]
MxHσH +

[
Gy
G

(W + LF )− LFy
]
MyHσH , (46)

αL =
1

γ
(W + LF )λL(t, x, y)− FLρ̂LσL(t) +

[
Gx
G

(W + LF )− LFx
]
ρ̂xLσx

+

[
Gy
G

(W + LF )− LFy
]
ρ̂yLσy, (47)

αx =
1

γ
(W + LF )λx(t, x, y) +

[
Gx
G

(W + LF )− LFx
]
ρ̂xσx +

[
Gy
G

(W + LF )− LFy
]
ρ̂yxσy, (48)

αy =
1

γ
(W + LF )λy(t, x, y) +

[
Gy
G

(W + LF )− LFy
]
ρ̂yσy. (49)
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Below we show that G(t,H, x, y) = k̃HkB(t, x, y) so that

Gx
G

=
Bx
B
,

Gy
G

=
By
B
,

HGH
G

= k.

Then (25)–(29) in the theorem follows since ΠS = αS/(σSW ), ΠH = αH/(σHW ), ΠL = αL/W , Πx = αx/W ,

and Πy = αy/W .

If we substitute the conjecture G(t,H, x, y) = k̃HkB(t, x, y) into the PDE (44) and dividing by k̃Hk, we

obtain

0 = 1 +
∂B

∂t
+

1

2
σ2
xBxx +

1

2
σ2
yByy + σxyBxy + µ̄xBx + µ̄yBy − r̄GB (50)

with terminal condition B(T, x, y) = 0. Because of the complicated form of the coefficient functions (in

particular r(t, x, y)), we solve the PDE (50) using standard finite difference techniques. 2

B.4 Upper bound on obtainable utility

The returns on the stock and house and the risk-free rate are at least as high in the artificial markets as in

the true market. Therefore, a feasible strategy in the true market leads to at least the same expected utility

in any of the artificial markets as in the true market. Since many other strategies are feasible in the artificial

market, the indirect utility there is always greater or equal the indirect utility in the true market. Karatzas,

Lehoczky, Shreve, and Xu (1991), Cvitanić and Karatzas (1992), and Cvitanić, Schachermayer, and Wang

(2001) show that, under certain technical conditions, the solution in the true market is equal to the solution

in the worst of all the artificial markets but, in complex models as our, it seems impossible to identify the

worst market.

Theorem 1 provides a closed-form solution in any “computable” artificial market. The worst among

these artificial markets defines an upper bound on the maximum expected utility in the true market. Each

computable artificial market is parameterized by the constants appearing in (18)-(22). For easy reference,

let Θ denote a set of such constants. We find the worst of the corresponding artificial markets by a standard

unconstrained numerical optimization over Θ. Let Θ̄ denote the parameter set for which the minimum is

obtained. Hence,

J̄(t,W,H,L, x, y) = J(t,W,H,L, x, y; Θ̄)

is the upper bound on the obtainable indirect utility in the true market (cf. Figure 3).

B.5 Promising feasible strategies for the true problem

We derive a promising strategy in the true market from the optimal strategies in the parameterized family

of artificial markets in the following way. For each parameter set Θ, we take the optimal strategy in the

corresponding artificial market and feasibilize it, i.e., transform it into a strategy which is feasible in the
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true market. Obviously, we disregard the investment in the artificial asset and focus on ΠS , ΠH and the

consumption processes c, φC .

In the artificial markets labor income is fully spanned and tangible wealth can be allowed to be tem-

porarily negative if balanced by human capital. We require tangible wealth to stay non-negative because

of the unhedgeable shocks that may bring income close to zero. We follow Bick, Kraft, and Munk (2013)

and multiply the human capital by a factor (1− e−ηWt), where η > 0 is a constant to be determined. This

is consistent with the intuition that future income has a smaller present value when current wealth Wt is

small. Define

F̃t = (1− e−ηWt)F (t, xt, yt).

Furthermore, we prune the optimal portfolios to make sure the constraints (10) are met. To sum up, the

feasible strategy derived from the artificial market with parameters Θ is determined from

ΠSt =
1

γρ̂2
Hσ

2
S

(
µ′S(t, x, y) + χSxt −

ρHSσS
σH

[µ′H(t, x, y) + χHxxt + χHyyt]

)
Wt + LtF̃t

Wt

(51)

+

(
MxS

Bx
B

+MyS

By
B

)
Wt + LtF̃t

Wt

−
(
MLS(t) +MxS

Fx
F

+MxH

Fy
F

)
LtF̃t
W

,

ΠHt =
1

γρ̂2
Hσ

2
H

(
µ′H(t, x, y) + χHxxt + χHyyt −

ρHSσH
σS

[µ′S(t, x, y) + χSxt]

)
Wt + LtF̃t

Wt

(52)

+ k
Wt + LtF̃t

Wt

+

(
MxH

Bx
B

+MyH

By
B

)
Wt + LtF̃t

Wt

−
(
MLH(t) +MxH

Fx
F

+MyH

Fy
F

)
LtF̃t
W

,

and

ct = a
Wt + LtF̃t
B(t, xt, yt)

, (53)

φCt = (1− a)
Wt + LtF̃t

RHtB(t, xt, yt)
, (54)

where we suppress the dependence of F , Fx, Fy, B, Bx, and By on t, x, y and the parameter set Θ. If necessary

to satisfy the portfolio constraints (10), we prune the portfolio weights ΠS ,ΠH as shown in Figure 4. After

these potential transformations, the residual wealth (positive or negative) constitutes the position in the

bank account. If financial wealth should equal zero at any point in time, the investment in the risky assets

is restricted to zero and consumption is set to fraction of current income, ct = ωYt and φCt = ωYt/(RHt),

where ω ∈ (0, 1/2). This ensures that the liquidity constraint is respected.

For any (Θ, η), we can approximate the expected utility J(t,W,H,L, x, y; Θ, η) generated with the above

strategy by Monte Carlo simulation of the wealth Wt and state variables Ht, Lt, xt, yt. Searching over (Θ, η),

we find the best of the feasible strategies. This is our candidate for a near-optimal consumption-investment

strategy in the true market. In Figure 3 this corresponds to the point marked Θ∗ to the left of the unknown

optimality point. Again, this search can be implemented by a standard unconstrained numerical optimization
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algorithm.

We can evaluate the performance of any admissible strategy (c, φC ,ΠS ,ΠH)—including our candi-

date defined above—in the following way. We compare the expected utility generated by the strategy,

Jc,φC ,ΠS ,ΠH (t,W,H,L, x, y), to the upper bound J̄(t,W,H,L, x, y) on the maximum utility. If the dis-

tance is small, the strategy is indeed near-optimal. More precisely, we can compute an upper bound

Loss = Lossc,φC ,ΠS ,ΠH (t,W,H,L, x, y) on the welfare loss suffered when following the specific strategy

(c, φC ,ΠS ,ΠH) by solving the equation

Jc,φC ,ΠS ,ΠH (t,W,H,L, x, y) = J̄(t,W [1− Loss], H, L[1− Loss], x, y). (55)

We can interpret Loss as an upper bound on the fraction of total wealth (current wealth plus current and

future income) that the individual is willing to sacrifice to get access to the unknown optimal strategy,

instead of following the strategy (c, φC ,ΠS ,ΠH). Theorem 1 implies

J̄(t,W [1− Loss], H, L[1− Loss], x, y) = J(t,W [1− Loss], H, L[1− Loss], x, y; Θ̄)

= (1− Loss)1−γJ(t,W,H,L, x, y; Θ̄),

so that the upper bound on the welfare loss becomes

Lossc,φC ,ΠS ,ΠH (t,W,H,L, x, y) = 1−

(
Jc,φC ,ΠS ,ΠH (t,W,H,L, x, y)

J(t,W,H,L, x, y; Θ̄)

) 1
1−γ

. (56)

B.6 Solution in special cases

To come: information on solution if x or y or both are ignored.

43



References

Ang, A. and G. Bekaert (2007). Stock Return Predictability: Is It There? Review of Financial

Studies 20(3), 651–707.

Barberis, N. (2000). Investing for the Long Run when Returns are Predictable. Journal of Fi-

nance 55(1), 225–264.

Bick, B., H. Kraft, and C. Munk (2013). Solving Constrained Consumption-Investment Problems

by Simulation of Artificial Market Strategies. Management Science 59(2), 485–503.

Boudoukh, J., R. Michaely, M. Richardson, and M. R. Roberts (2007). On the Importance of

Measuring Payout Yield: Implications for Empirical Asset Pricing. Journal of Finance 62(2),

877–916.

Bourassa, S. C., D. R. Haurin, J. L. Haurin, M. Hoesli, and J. Sun (2009). House Price Changes

and Idiosyncratic Risk: The Impact of Property Characteristics. Real Estate Economics 37(2),

259 – 278.

Brown, S., W. Goetzmann, and S. A. Ross (1995). Survival. Journal of Finance 50(3), 853–873.

Campbell, J. Y. (2006). Household Finance. Journal of Finance 61(4), 1553–1604.

Campbell, J. Y. and R. J. Shiller (1988). The Dividend-Price Ratio and Expectations of Future

Dividends and Discount Factors. Review of Financial Studies 1(3), 195–227.

Campbell, J. Y. and L. M. Viceira (1999). Consumption and Portfolio Decisions when Expected

Returns are Time Varying. Quarterly Journal of Economics 114(2), 433–495.

Case, K. E. and R. J. Shiller (1989). The Efficiency of the Market for Single-Family Homes.

American Economic Review 79(1), 125–137.

Case, K. E. and R. J. Shiller (1990). Forecasting Prices and Excess Returns in the Housing

Market. Real Estate Economics 18(3), 253–273.

Cocco, J. F. (2005). Portfolio Choice in the Presence of Housing. Review of Financial Stud-

ies 18(2), 535–567.

Cocco, J. F., F. J. Gomes, and P. J. Maenhout (2005). Consumption and Portfolio Choice over

the Life Cycle. Review of Financial Studies 18(2), 491–533.

Corradin, S., J. L. Fillat, and C. Vergara-Alert (2014). Optimal Portfolio Choice with Predictabil-

ity in House Prices and Transaction Costs. Review of Financial Studies 27(4), 823–880.

44



Cotter, J. and R. Roll (2015). A Comparative Anatomy of Residential REITs and Private

Real Estate Markets: Returns, Risks and Distributional Characteristics. Real Estate Eco-

nomics 43(1), 209–240.
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