Dow, Rory A., Chee Yen Choong & Yong Foo Ng

Records of Odonata from Perlis, Malaysia in August 2015, with a checklist of species recorded from the state

published 10.11.2016
The International Dragonfly Fund (IDF) is a scientific society founded in 1996 for the improvement of odonatological knowledge and the protection of species. Internet: http://www.dragonflyfund.org/

This series intends to contribute to the knowledge of the regional Odonata fauna of the Southeastern Asian and Pacific regions to facilitate cost-efficient and rapid dissemination of faunistic data.

Southeast Asia or Southeastern Asia is a subregion of Asia, consisting of the countries that are geo-graphically south of China, east of India, west of New Guinea and north of Australia. Southeast Asia consists of two geographic regions: Mainland Southeast Asia (Indochina) and Maritime Southeast Asia.

Pacific Islands comprise of Micronesian, Melanesian and Polynesian Islands.

Editorial Work: Martin Schorr and Rory Dow
Layout: Martin Schorr
IDF-home page: Holger Hunger
Printing: Colour Connection GmbH, Frankfurt
Impressum: Publisher: International Dragonfly Fund e.V., Schulstr. 7B, 54314 Zerf, Germany. E-mail: oestlap@online.de
Responsible editor: Martin Schorr

Cover picture: Onychothemis testacea
Photographer: Chee Yen Choong
Records of Odonata from Perlis, Malaysia in August 2015, with a checklist of species recorded from the state

Rory A. Dow¹, Chee Yen Choong² & Yong Foo Ng²

¹Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, The Netherlands
E-mail: rory.dow230@yahoo.co.uk
²Centre for Insect Systematics, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
E-mail: cychoong@ukm.edu.my

Abstract
The results of a short collecting trip to Perlis in the north-west of Peninsular Malaysia are reported. Eighty three species were collected, at least 61 of these are new records for the state, and three species are recorded from Malaysia for the first time: Euphaea masoni Selys, 1879, Archibasis oscillans (Selys, 1877) and Paracercion calamorum (Ris, 1916). A checklist of the Odonata recorded from Perlis is given in an appendix.

Bahasa Melayu Abstract
Hasil daripada kerja lapangan ke negeri Perlis yang terletak di barat laut Semenanjung Malaysia dilaporkan di sini. Sebanyak 83 spesies telah dikumpul, dan sekurang-kurang 61 spesies merupakan rekod baru bagi negeri Perlis. Tiga daripadanya merupakan rekod baru bagi Malaysia: Euphaea masoni Selys, 1879, Archibasis oscillans (Selys, 1877) and Paracercion calamorum (Ris, 1916). Satu senarai semakan Odonata bagi negeri Perlis disediakan dalam lampiran.

Key words: Malaysia, Perlis state, new records, Euphaea masoni, Archibasis oscillans, Paracercion calamorum

Introduction
Perlis, in the north-west of Peninsular Malaysia on the border with Thailand, is the northernmost state of Malaysia, and the smallest. Figure 1 shows the location of Perlis in Peninsular Malaysia. It is also one of the least studied states for Odonata. We are aware of records of Odonata from Perlis in: Che Salmah et al. (2005), Fraser (1942), Furtado (1974), Laidlaw (1931), Orr (2008) and Seehausen & Dow (2016); however it is possible that there are additional relevant publications in the Malaysian literature of which we are unaware. These papers contain records of only 21 identified species and a further eight taxa identified only to genus (one from the Platystictidae, six from the Gomphiidae and one from the Macromiidae).
In August 2015 we made a short trip to Perlis, staying in Perlis State Park at Wang Kelian, near to the border with Thailand in the extreme north of the state. Collecting was carried out on 25-29 August. At the time of our visit it was unsafe to go far into
the forest in the part of the state park where we were staying because of concerns that murderous people smugglers (for instance see www.bbc.co.uk/news/world-asia-32863514) were still operating in the area, so our activities there were limited. However we were able to sample at some other locations in the north of the state, and made numerous new records for Perlis, and some for Malaysia. The first two authors collected Odonata, the third Thysanoptera. The odonatological results of the trip are presented here.

Odonata recorded in August 2015

Locations
The sampling locations are indicated in Fig. 2.
1. Streams at Perlis State Park at Wang Kelian (6.69944°N, 100.19772°E).
2. Other habitats at Perlis State Park at Wang Kelian.
3. Small stream and freshwater swamp forest at the base of limestone near to the entrance to Perlis State Park (6.69535°N, 100.19149°E).
4. Largely open stream near Kampung Wang Kelian, running past the ponds listed under 5 below.
5. Ponds near Kampung Wang Kelian (6.68318°N, 100.18838°E), and roadside drains in same area.
6. Rice fields at Kampung Wang Kelian (6.67414°N, 100.1823°E). Only sampled late in the day after visits to other sites.
7. Meranti Lake and out/in flow streams at same altitude, plus swampy areas in adjacent forest (6.64783°N, 100.1791°E). A large lake formed by long ceased mining activities, surrounded by forest and an abandoned resort.
8. Stream flowing out from Meranti Lake at lower altitudes (coordinates at car park adjacent to stream: 6.65219°N, 100.18573°E), and amongst limestone on trail up to lake.
9. Stream crossed by road to Meranti Lake just inside Hutan Simpan Tasik Meranti (coordinates someway upstream: 6.65763°N, 100.18399°E). Mostly running through forest, with some open areas and agricultural areas.
10. Miscellaneous habitats just inside and outside Hutan Simpan Tasik Meranti.
11. Streams and marshy areas in rubber at Hutan Simpan Mata Ayer (6.66042°N, 100.22799°E).

Odonata collected
First records from Perlis are indicated by a *, first records for Malaysia by a **. The first two authors’ names are abbreviated as RAD and CYC. ♀+♂ indicates a pair in tandem.
Zygoptera

Lestidae

Lestes praecellens Lieftinck, 1937*

This seems to be a very local and uncommon species, the only other published record from Peninsular Malaysia of which we are aware is that in Hämäläinen (2000). Fig. 3 shows a male from location 3.

2 – ♂, 26.viii, RAD. 3 – 2 ♂♂, 25.viii, CYC; 3 ♂♂, 25.viii, RAD; ♂, 26.viii, RAD.

Figure 3. Lestes praecellens male, photograph by C. Y. Choong, taken at location 3.

Lestes praemorsus decipiens Kirby, 1894*

5 – 6 ♂♂, 25.viii, RAD; 3 ♂♂, ♀, 26.viii, CYC.

Orolestes wallacei (Kirby, 1889)*

3 – ♂, 25.viii, CYC; ♂, 25.viii, RAD.

Platystictidae

Drepanosticta sharpi (Laidlaw, 1907)*

1 – 2 ♂♂, 26.viii, CYC; 2 ♂♂, ♀, 26.viii, RAD. 8 – 2 ♂♂, 27.viii, RAD. 9 – 4 ♂♂, 2 ♂, 29.viii, CYC; 3 ♂♂, 29.viii, RAD.
Protosticta species
These specimens belong to the same species group as *P. curiosa* Fraser, 1934 and *P. foersteri* Laidlaw, 1902, both recorded from peninsular Malaysia, but since one is extremely teneral and the other is female, they cannot be reliably identified to species at this time.

1 – ♂ (teneral), 26.viii, RAD. 8 – ♀, 27.viii, RAD.

Calopterygidae
Neurobasis chinensis (Linnaeus, 1758)*

4 – 2 ♂♂, 25.viii, CYC; 2 ♂♂, ♀, 25.viii, RAD. 7 – 2 ♂♂, 27.viii, CYC. 9 – ♂, 29.viii, RAD.

11 – ♂, 28.viii, CYC.

Vestalis amethystina Lieftinck, 1965*

1 – 3 ♂♂, 26.viii, RAD.

Vestalis amoena Hagen in Selys, 1853

Vestalis gracilis (Rambur, 1842)*

Chlorocyphidae

Aristocypha fenestrella (Rambur, 1842)

1 – ♂, 26.viii, CYC; ♂, 26.viii, RAD.

Figure 4. *Libellago stigmatizans* male, photograph by C.Y. Choong.
Heliocypha biforata (Selys, 1859)*

Libellago lineata (Burmeister, 1839)*

4 – 2 ♂♂, 25.viii, CYC; 4 ♂♂, ♂, 25.viii, RAD.

Libellago stigmatizans (Selys, 1869)*

Fig. 4 shows a male.

8 – 2 ♂♂, 27.viii, RAD. 9 – ♂, 29.viii, CYC; ♂, 29.viii, RAD.

Devadattidae

Devadatta argyoides (Selys, 1859)*

1 – 2 ♂♂, 26.viii, CYC; 2 ♂♂, 26.viii, RAD.

Euphaeidae

Dysphaea dimidiata Selys, 1853

1 – ♂, 26.viii, RAD. 9 – ♂, 29.viii, CYC; 2 ♂♂, 29.viii, RAD.

Euphaea impar Selys, 1859*

1 – ♂, 26.viii, RAD.

Figure 5. Euphaea masoni male, photograph by C.Y. Choong, taken in Perlis.
Euphaea masoni Selys, 1879**
This species had not been recorded in Peninsular Malaysia before this, but its presence in the north of Malaysia is not surprising, given its known distribution in Thailand. Fig. 5 shows a male from Perlis.

8 – 5♂♂; 27.vii, CYC; 3♂; 27.vii, RAD. 9 – 2♂♂; 29.vii, CYC; 7♂♂. 29.vii, RAD.

Euphaea ochracea Selys, 1859
1 – ♂; 26.viii, CYC; 3♂♂; 26.viii, RAD. 7 – ♂; 27.viii, CYC. 9 – ♂; 29.viii, RAD.

Philosinidae
Rhinagrion viridatum Fraser, 1938*
Kalkman & Villanueva (2011) revised the genus Rhinagrion Calvert, 1913 and removed R. viridatum from the synonymy of R. mima (Karsch, 1891). Based on known records, Kalkman & Villanueva (2011) gave the distribution of R. mima as Myanmar, Sumatra and Thailand, and that of R. viridatum as Myanmar, Peninsular Malaysia, Thailand and Vietnam, noting that “the distribution of R. mima is strange; it occurs in two areas broadly separated by an area where R. viridatum occurs”. Kosterin (2014: 26–28) already commented on problems with delimiting mainland R. mima from R. viridatum. Even within peninsular Malaysia considerable variation occurs in the abdominal markings of R. viridatum; some specimens collected in Perlis come close to R. mima as defined by Kalkman & Villanueva (2011). It seems quite possible that R. viridatum is a synonym of R. mima after all, or that only one species (R. viridatum) occurs in mainland Asia, but that the Sumatran species is separate.

7 – 3♂♂; 2♂; 27.vii, CYC; 2♂♂; 27.viii, RAD. 9 – ♂; 29.vii, CYC; ♂; 29.viii, RAD. 11 – ♂; 28.viii, CYC; 3♂♂; 28.viii, RAD.

Figure 6. Coeliccia albi-cauda male, photograph by C.Y. Choong.
Platycnemididae

Coeliccia albicauda (Förster in Laidlaw, 1907)*

Fig. 6 shows a male.

2 – ♂, 25.viii, RAD. 3 – 2 ♀♂, 26.viii, CYC; ♀, 26.viii, RAD. 7 – ♂, 27.viii, RAD.

Coeliccia didyma (Selys, 1863)*

1 – ♂, 26.viii, RAD.

Copera marginipes (Rambur, 1842)*

Copera vittata (Selys, 1863)

Indocnemis orang? (Förster in Laidlaw, 1907)*

Male specimens were found at water containing cavities in rocks in karst terrain, one of these cavities was in a rock in a stream, another beside a steep trail well away from flowing water. The males are unusual in having extremely reduced markings on the dorsum of the synthorax: in one short, narrow antehumeral stripes are present on the anterior part, with a small patch present at the other end, in another these marking are reduced to an even shorter anterior stripe, and in the third (that from the trail-side rock cavity) they are even further reduced to small approximately tear drop shaped patches adjacent to the mesostigmal plates. However these specimens are structurally identical to typical *I. orang*. They might represent a separate species, but the differences in markings could also be an example of phenotypic plasticity, possibly the result of the limestone habitats. Asahina (1997) illustrates *I. orang* from Cuc Phuong, also a karst area, in Vietnam with dorsal synthoracic markings reduced to narrow antehumeral stripes; Tom Kompier (personal communication 26 September 2016) has found specimens of the kind that Asahina illustrated at Cuc Phuong, but nowhere else in Vietnam, even though "In Vietnam "normal" orang is common and widespread".

8 – ♂, 27.viii, RAD. 9 – ♀, 29.viii, CYC; 2 ♀♂, 29.viii, RAD.

Prodasineura humeralis (Selys, 1860)

Prodasineura laidlawii (Förster in Laidlaw, 1907)

1 – 2 ♂♂, 26.viii, CYC; 6 ♀♂, 26.viii, RAD. 7 – ♂, 27.viii, CYC; 4 ♂♂, 27.viii, RAD. 9 – 2 ♀♂, 2 ♀♂, 29.viii, RAD.

Coenagrionidae

Agriocnemis femina (Brauer, 1868)*

6 – ♀, 27.viii, CYC; ♂, 27.viii, RAD; ♂, 29.viii, CYC; ♂, 29.viii, RAD.
Agriocnemis pygmaea (Rambur, 1842)*
7 – 2 ♂, 27.viii, CYC.

Archibasis oscillans (Selys, 1877)**
Another species that had not been recorded from Peninsular Malaysia until now, but its presence could have been predicted based on its known occurrence in Sumatra and Thailand. It was abundant in vegetation around parts of the margin of the Meranti Lake.
7 – 3 ♂, 27.viii, CYC; 9 ♂, 27.viii, RAD.

Archibasis viola Lief tinck, 1949*
3 – 2 ♂, 25.viii, CYC. 11 – ♂, 28.viii, CYC.

Argiocnemis rubescens rubeola Selys, 1877*

Ceriagrion cerinorubellum (Brauer, 1865)*
6 – ♀, 29.viii, RAD.

Ceriagrion chaoui Schmidt, 1964*
5 – ♂, 25.viii, RAD.

Ischnura senegalensis (Rambur, 1842)*
10 – ♂, 26.viii, CYC.

Mortonagrion aborensis (Laidlaw, 1914)*
7 – ♀, 27.viii, RAD.

Figure 7. Paracercion calamorum male, photograph by C.Y. Choong, taken at location 5.
Paracercion calamorum (Ris, 1916) **
There are no published records of this species from Malaysia, but there is an unpublished record from Langkawi made in 2011 (R. Ngiam, personal communication). The specimens from Perlis seem to agree best with Fraser's taxon dyeri (Coenagrion dyeri Fraser, 1919), usually treated as a synonym or subspecies of P. calamorum in recent years. Specimens from Perlis were identified on the basis of the male anal appendages; they differ somewhat in general appearance from specimens from, for instance, Hong Kong. They also differed in behaviour from that recorded from Hong Kong, males perching almost horizontally, clinging onto stems of emergent vegetation fairly low above the water surface, rather than “flat on horizontal vegetation” as occurs in Hong Kong (Wilson 2004). Fig. 7 shows a male from location 5.

5 – 7 ♂, 25.viii, CYC; 8 ♂♂, 25.viii, RAD.

Pseudagrion australasieae Selys, 1876 *

5 – 2 ♂♂, 25.viii, CYC; 7 ♂♂, ♀, 25.viii, RAD. 6 – 2 ♂♂, 29.viii, RAD.

Pseudagrion microcephalum (Rambur, 1842) *

7 – 3 ♂♂, 27.viii, RAD.

Pseudagrion pruinosum (Burmeister, 1839) *

4 – 2 ♂♂, 25.viii, RAD. 9 – 2 ♂♂, 29.viii, CYC; ♂, 29.viii, RAD.

Pseudagrion rubriceps Selys, 1876 *

7 – 2 ♂♂, 28.viii, CYC.

Anisoptera

Aeshnidae

Gynacantha basiguttata Selys, 1882 *

Gomphidae

Burmagomphus williamsoni Förster, 1914 *

9 – ♂, 29.viii, CYC; ♂, 29.viii, RAD.

Gomphidia abbotti Williamson, 1907 *

Figure 8 shows a male.

9 – ♂, 29.viii, RAD.

Ictinogomphus decoratus melanops Selys, 1857 *

5 – ♂, 25.viii, CYC; 3 ♂♂, 25.viii, RAD. 7 – ♂, 27.viii, RAD.

Macroagomphus parallelogramma (Burmeister, 1839) *
9 – ♂, 29.viii, CYC; ♂, 29.viii, RAD. 11 – ♂, 28.viii, RAD.

Macrogomphus thoracicus McLachlan, 1884*

10 – ♀, 26.viii, CYC.

Megalogomphus sumatranus (Krüger, 1899)*

9 – ♂, 29.viii, CYC; 2 ♂♂, 29.viii, RAD.

Microgomphus chelifer Selys, 1858*

9 – ♀, 29.viii, CYC.

Macromiidae

Macromia callisto Laidlaw, 1902*

A single female, readily identifiable amongst species known to occur in peninsular Malaysia by its small size and structure of its vulvar scale (see Lieftinck 1971: 25). *Macromia callisto* is very similar to *M. calliope* Ris, 1916 known from China, Laos and Vietnam; their relationship may need to be re-examined.

9 – ♀, 29.viii, RAD.
Libellulidae

Acisoma panorpoides Rambur, 1842*
 6 – ♀, 29.viii, RAD.

Agrionoptera insignis (Rambur, 1842)*
 3 – ♂; 25.viii, RAD. 10 – ♂; 26.viii, CYC.

Brachydiplax chalybea Brauer, 1868*
 5 – ♂; 25.viii, RAD.

Figure 9. Brachydiplax farinosa A male, photograph by C.Y. Choong.

Brachydiplax farinosa Krüger, 1902 A*

Two species are currently being treated under this name: a common species that can
be found in habitats such as open ponds in peninsular Malaysia and Thailand, and
a more specialised, slightly larger on average, species that is found in freshwater
swamp forest in peninsular Malaysia and Borneo. Aside from size and habitat diffe-
rences there are subtle morphological differences between the two, and they are
well separated in the molecular barcoding marker COI (Naturalis unpublished data).
We also have material of the swamp species from Pahang and Selangor. The pond
species does not appear to occur in Borneo, so that all Bornean records refer to the
swamp species. There are also records of Brachydiplax farinosa from Burma (e.g. Ris
1910), Vietnam (e.g. Asahina 1969), Laos (e.g. Yokoi 1999), Cambodia (e.g. Kosterin
2014) and China (e.g. Wilson 2005); we will not attempt to determine to which species
such records really refer here. The type of B. farinosa is from Sumatra and is presum-
ably now with much of the rest of Krüger’s Sumatran types in a collection in Poland;
it is entirely possible that both taxa occur in Sumatra, and the type must be examined
to determine which of the two is the true B. farinosa. However the other species may
already have a name. Brachydiplax pruinosa Laidlaw, 1902, type series from Kuala
Aring in Kelantan (Laidlaw 1902: 67), was synonymised with B. farinosa by Ris (1910: 361),
apparently without viewing the types of either species. Brachydiplax sollarti Lieftinck,
1953, apparently only known from the holotype from Sumatra (Lieftinck 1953: 262–264),
should also be considered. Here we designate the pond species as A and the swamp
species as B. A male of species A is shown in Fig. 9.

5 – ♂, 25.viii, CYC; 3 ♀, ♀, 25.viii, RAD.

Figure 10. Brachydiplax farinosa B male, photograph by C.Y. Choong.

Brachydiplax farinosa Krüger, 1902 B*
See under the previous species. A male from Selangor is shown in Fig. 10.

3 – ♂, 25.viii, RAD.

Camacinia gigantea (Brauer, 1867)*

5 – ♂, 25.viii, CYC.

Cratilla lineata (Brauer, 1878)*

7 – ♂, ♀, 27.viii, CYC. 10 – ♂, ♀, 29.viii, RAD.

Crocothemis servilia (Drury, 1770)

5 – ♀, 25.viii, CYC, 2 ♂♂, 25.viii, RAD. 6 – ♂, 27.viii, RAD. 7 – ♂, 27.viii, CYC.

Diplacodes nebulosa (Fabricius, 1793)

6 – 2 ♂♂, 29.viii, RAD.
Figure 11. *Lathrecista asiatica* male, photograph by C.Y. Choong.

Figure 12. *Onychothemis testacea* male, photograph by C.Y. Choong.

Diplacodes trivialis (Rambur, 1842)

6 – ♂, 27.viii, CYC; ♀, 27.viii, RAD.

7 – ♂, 27.viii, CYC; ♀, 27.viii, RAD.

Indothemis limbata (Selys, 1891)*

5 – 4 ♂♂, 25.viii, RAD.
Lathrecista asiatica (Fabricius, 1798)*
Fig. 11 shows a male.
5 - ♀, 25.viii, CYC; 2 ♂♂. 2 ♀♀, 25.viii, RAD. 7 - ♂, 27.viii, RAD. 10 - ♂, 26.viii, CYC. 11 - ♂, 28.viii, CYC.

Lyriothemis biappendiculata (Selys, 1878)*
2 - ♂♀, 26.viii, RAD.

Neurothemis fluctuans (Fabricius, 1793)
3 - ♂, 25.viii, CYC. 5 - ♂, 25.viii, RAD.

Neurothemis fulvia (Drury, 1773)
5 - ♂♀, 25.viii, CYC; 4 ♂♂, 25.viii, RAD.

Neurothemis fulla (Drury, 1773)
5 - ♂, 28.viii, CYC. 6 - ♀, 28.viii, CYC.

Onychothemis testacea Laidlaw, 1902*
Fig. 12 shows a male.
9 - ♂, 29.viii, CYC.

Orchithemis pulcherrima Brauer, 1878*
3 - ♂, 26.viii, RAD.

Orthetrum chrysis (Selys, 1891)*
5 - ♂♂, 25.viii, RAD.

Orthetrum sabina (Drury, 1770)
5 - ♂, 25.viii, RAD. 7 - ♂, 27.viii, CYC. 9 - ♀, 29.viii, RAD. 11 - ♂, 28.viii, RAD.

Orthetrum testaceum (Burmeister, 1839)*
5 - ♂, 25.viii, RAD.

Pantala flavescens (Fabricius, 1798)
6 - ♂♂, 28.viii, CYC.

Potamarcha congener (Rambur, 1842)
5 - ♂♂, 25.viii, RAD; ♂♂, 25.viii, CYC. 6 - ♂, 29.viii, RAD.

Pseudothemis jorina Förster, 1904*
5 - ♂, 25.viii, RAD. 7 - ♂, 27.viii, RAD.

Rhodothemis rufa (Rambur, 1842)*
11 - ♀, 28.viii, RAD.

Rhyothemis phyllis (Sulzer, 1776)*
5 - ♂♂, 25.viii, CYC.
Tetrathemis irregularis hyalina Kirby, 1889*
2 – ♂, 26.viii, RAD. 3 – 2 ♀♀, 25.viii, RAD. 11 – ♂, 28.viii, RAD.

Tetrathemis platyptera Selys, 1878*
3 – ♂, 26.viii, RAD. 7 – ♂, 27.viii, CYC. 11 – 2 ♀♀, 28.viii, CYC; ♂, 28.viii, RAD.

Tramea transmarina euryale (Selys, 1878)*
5 – 2 ♀♀, 25.viii, CYC; 3 ♂♂, 25.viii, RAD.

Trithemis aurora (Burmeister, 1839)*
5 – ♂, 25.viii, RAD. 7 – ♂, 27.viii, RAD. 10 – ♂, 26.viii, CYC.

Trithemis pallidinervis (Kirby, 1889)
6 – ♂, 28.viii, CYC.

Tholymis tillarga (Fabricius, 1798)*
7 – ♀, 27.viii, CYC.

Urothemis signata insignata (Rambur, 1842)*
Fig. 13 shows a male.
5 – ♂, 25.viii, CYC; 2 ♀♀, 25.viii, RAD.

Zygonyx iris Selys, 1869
1 – 2 ♀♀, 26.viii, RAD.

Figure 13. Urothemis signata insignata male, photograph by C.Y. Choong.
Discussion
Despite the short duration of our trip to Perlis, we were able to collect 83 species in the state. Three of these were new records for Malaysia: Euphaea masoni, Archibasis oscillans and Paracercion calamorum. Of these, at least Euphaea masoni and Archibasis oscillans could have reasonably been predicted to occur in Peninsular Malaysia based on their previously known distributions, and it is perhaps surprising that they had not been recorded already. It is particularly striking that of the 83 species collected, no less than 61 appear to be new records for Perlis (although possibly there are records in the Malaysian or maybe Japanese literature that we are not aware of), indicating just how poorly known the Odonata of the state are. With the new records, 91 species have been recorded in Perlis; a check list is provided in an appendix.

Acknowledgments
Jabatan Perhutanan Negeri Perlis granted permission for us to sample Odonata in Perlis State Park and various Forest Reserves in the state. Tom Kompier provided information about Indocnemis orang in Vietnam. Robin Ngiam kindly allowed us to mention his record of Paracercion calamorum from Langkawi.

References

Appendix: Checklist of Odonata recorded from Perlis

Where the first record from Perlis is not in this publication, a citation to the first record is made in square parenthesis after the species name.

Zygoptera
Lestidae
Lestes praecellens Lieftinck, 1937
Lestes praemorsus decipiens Kirby, 1894
Orolestes wallacei (Kirby, 1889)

Platystictidae
Drepanosticta sharpi (Laidlaw, 1907)
Protosticta species [Che Salmah et al. 2005]

Calopterygidae
Neurobasis chinensis (Linnaeus, 1758)
Vestalis amethystina Lieftinck, 1965
Vestalis amoena Hagen in Selys, 1853 [Che Salmah et al. 2005]
Vestalis gracilis (Rambur, 1842)

Chlorocyphidae
Aristocypha fenestrella (Rambur, 1842) [Che Salmah et al. 2005]
Heliocypha biforata (Selys, 1859)
Libellago lineata (Burmeister, 1839)
Libellago stigmatizans (Selys, 1869)

Devadattidae
Devadatta argyoides (Selys, 1859)

Euphaeidae
Dysphaea dimidiata Selys, 1853 [Che Salmah et al. 2005]
Euphaea impar Selys, 1859
Euphaea masoni Selys, 1879
Euphaea ochracea Selys, 1859 [Che Salmah et al. 2005]

Philosinidae
Rhinagrion viridatum Fraser, 1938
Platycnemididae
Coeliccia albicauda (Förster in Laidlaw, 1907)
Coeliccia didyma (Selys, 1863)
Copera marginipes (Rambur, 1842)
Copera vittata (Selys, 1863) [Furtado 1974]
Indocnemis orang? (Förster in Laidlaw, 1907)
Prodasineura humeralis (Selys, 1860) [Che Salmah et al. 2005, as P. autumnalis (Fraser, 1922)]
Prodasineura laidlawii (Förster in Laidlaw, 1907) [Fraser 1942]

Coenagrionidae
Agriocnemis femina (Brauer, 1868)
[Che Salmah et al. 2005 list an Agriocnemis species from a grassy area beside a small stream, this could be any of A. femina, A. minima, A. nana or A. pygmaea; we list the record under A. femina because it is the most commonly recorded Agriocnemis in Peninsular Malaysia]
Agriocnemis pygmaea (Rambur, 1842)
Archibasis oscillans (Selys, 1877)
Archibasis viola Lief tinck, 1949
Argiocnemis rubescens rubeola Selys, 1877
Ceriagrion cerinorubellum (Brauer, 1865)
Ceriagrion chao Schmidt, 1964
Ischnura senegalensis (Rambur, 1842)
Mortonagrion aborense (Laidlaw, 1914)
Paracercion calamorum (Ris, 1916)
Pseudagrion australasiae Selys, 1876
Pseudagrion microcephalum (Rambur, 1842)
Pseudagrion pruinosum (Burmeister, 1839)
Pseudagrion rubriceps Selys, 1876

Anisoptera
Aeshnidae
Gynacantha basiguttata Selys, 1882
Heliaeschna simplicia (Karsch, 1891) [Orr 2008]

Gomphidae
Acrogomphus species [Che Salmah et al. 2005]
Burmagomphus williamsoni Förster, 1914
Gomphidia abbotti Williamson, 1907
Heliogomphus species [Che Salmah et al. 2005]
Ictinogomphus decoratus melaeonops Selys, 1857
Lamelligomphus? species [Che Salmah et al. 2005]
Macrogomphus parallelogramma (Burmeister, 1839)
 [Che Salmah et al. 2005 list one or more Macrogomphus species on the basis of
 larval records; it is not possible to say which species these records refer to.]
Macrogomphus thoracicus McLachlan, 1884
Megalogomphus sumatranus (Krüger, 1899)
Microgomphus chelier Selys, 1858
Ophiogomphus? species
 [Che Salmah et. al 2005. Larval record, Ophiogomphus is a northern genus never
 recorded in Peninsular Malaysia; it is likely that this record refers to some other
 genus.]
Stylogomphus? species [Che Salmah et al. 2005]

Macromiidae
Macromia callisto Laidlaw, 1902 [Che Salmah et al. 2005 list one or more Macromia
species on the basis of larval records; it is not possible to say in any of these is M. callisto.]

Synthemistidae
Macromidia genialis Laidlaw, 1923 [Che Salmah et al. 2005]

Libellulidae
Acisoma panorpoides Rambur, 1842
Agrionoptera insignis (Rambur, 1842)
Brachydiplax chalybea Brauer, 1868
Brachydiplax farinosa Krüger, 1902 A
Brachydiplax farinosa Krüger, 1902 B
Brachythemis contaminata (Fabricius, 1793) [Che Salmah et al. 2005]
Camacinia gigantea (Brauer, 1867)
Cratilla lineata (Brauer, 1878)
Crocothemis servilia (Drury, 1770) [Fraser 1942]
Diplacodes nebulosa (Fabricius, 1793) [Che Salmah et al. 2005]
Diplacodes trivialis (Rambur, 1842) [Che Salmah et al. 2005]
Indothemis limbata (Selys, 1891)
Lathrecista asiatica (Fabricius, 1798)
Lyrothemis biappendiculata (Selys, 1878)
Neurothemis fluctuans (Fabricius, 1793) [Seehausen & Dow 2016]
Neurothemis fulvia (Drury, 1773) [Fraser 1942]
Neurothemis fullia (Drury, 1773) [Che Salmah et al. 2005]
Onychothemis testacea Laidlaw, 1902
Orchithemis pulcherrima Brauer, 1878
Orthetrum chrysis (Selys, 1891)
Orthetrum sabina (Drury, 1770) [Che Salmah et al. 2005]
Orthetrum testaceum (Burmeister, 1839)
Pantala flavescens [Che Salmah et al 2005]
Potamarcha congener (Rambur, 1842) [Fraser 1942]
Pseudothemis jorina Förster, 1904
Rhodothemis rufa (Rambur, 1842)
Rhyothemis phyllis (Sulzer, 1776)
Tetratheremis irregularis hyalina Kirby, 1889
Tetratheremis platyptera Selys, 1878
Tholymis tillarga (Fabricius, 1798)
Tramea transmarina euryale (Selys, 1878)
Trithemis aurora (Burmeister, 1839)
Trithemis pallidinervis (Kirby, 1889) [Laidlaw 1931]
Urothemis signata insignata (Rambur, 1842)
Zygonyx iris Selys, 1869 [Che Salmah et al. 2005]
INSTRUCTION TO AUTHORS

Faunistic studies of South-East Asian and Pacific islands Odonata is a journal of the International Dragonfly Fund (IDF). It is referred to as the journal in the remainder of these instructions. Transfer of copyright to IDF is considered to have taken place implicitly once a paper has been published in the journal.

The journal publishes original papers only. By original is meant papers that: a) have not been published elsewhere before, and b) the scientific results of the paper have not been published in their entirety under a different title and/or with different wording elsewhere. The republishing of any part of a paper published in the journal must be negotiated with the Editorial Board and can only proceed after mutual agreement.

Papers reporting studies financially supported by the IDF will be reviewed with priority, however, authors working with Odonata from the focal area (as defined on the back page of the front cover) are encouraged to submit their manuscripts even if they have not received any funds from IDF.

Manuscripts submitted to the journal should preferably be in English; alternatively German or French will also be accepted. Every manuscript should be checked by a native speaker of the language in which it is written; if it is not possible for the authors to arrange this, they must inform the Editorial Board on submission of the paper. Authors are encouraged, if possible, to include a version of the abstract in the primary language of the country in which their study was made.

Authors can choose the best way for them to submit their manuscripts between these options: a) via e-mail to the publisher, or b) on a CD, DVD or any other IBM-compatible device. Manuscripts should be prepared in Microsoft Word for Windows.

While preparing the manuscript authors should consider that, although the journal gives some freedom in the style and arrangements of the sections, the editors would like to see the following clearly defined sections: Title (with authors names, physical and e-mail addresses), Abstract, Introduction, Material & Methods, Results, Discussion, Acknowledgments and References. This is a widely used scheme by scientists that everyone should be familiar with. No further instructions are given here, but every author should check the style of the journal.

Authors are advised to avoid any formatting of the text. The manuscripts will be stylised according to the font type and size adopted by the journal. However, check for: a) all species names must be given in italic, b) the authority and year of publication are required on the first appearance of a species name in the text, but not thereafter, and c) citations and reference list must be arranged following the format below.

Reference cited in the text should read as follows: Tillyard (1924), (Tillyard 1924), Swezey & Williams (1942).

The reference list should be prepared according to the following standard:
Tillyard, R., 1924. The dragonflies (Order Odonata) of Fiji, with special reference to a collection made by Mr. H.W. Simmonds, F.E.S., on the Island of Viti Levu, Transactions of the Entomological Society London 1923 III-IV: 305-346.

Citations of internet sources should include the date of access.

The manuscript should end with a list of captions to the figures and tables. The latter should be submitted separately from the text preferably as graphics made using one of the Microsoft Office products or as a high resolution picture saved as a .jpg, .tif or .ps file. Pictures should be at least 11 cm wide and with a minimum 300 dpi resolution, better 360 dpi. Line drawings and graphics could have 1200 dpi for better details. If you compose many pictures to one figure, please submit the original files as well. Please leave some space in the upper left corner of each picture, to insert a letter (a, b, c,...) later. Hand-made drawings should be scanned and submitted electronically. Printed figures sent by the post could be damaged, in which case authors will be asked to resubmit them.

Manuscripts not arranged according to these instructions may also be accepted, but in that case their publication will be delayed until the journal’s standards are achieved.