Supporting Information for *Non-random network connectivity comes in pairs*

Felix Z. Hoffmann, Jochen Triesch

SI1

Solving

$$\mu = px + (1 - p)y$$ \hspace{0.5cm} (1)

for p gives

$$p = \frac{\mu - y}{x - y},$$ \hspace{0.5cm} (2)

which, plugged into

$$\varrho = \frac{px^2 + (1 - p)y^2}{\mu^2},$$ \hspace{0.5cm} (3)

yields

$$\varrho = \frac{\left(\frac{\mu - y}{x - y}\right)x^2 + \left(1 - \frac{\mu - y}{x - y}\right)y^2}{\mu^2},$$ \hspace{0.5cm} (4)

$$= \frac{\left(\frac{\mu - y}{x - y}\right)(x^2 - y^2) + y^2}{\mu^2},$$ \hspace{0.5cm} (5)

$$= \frac{(\mu - y)(x + y) + y^2}{\mu^2},$$ \hspace{0.5cm} (6)

$$= \frac{x + y}{\mu} - \frac{xy}{\mu^2}.\hspace{0.5cm} (7)$$

SI2

Solve

$$p = \frac{\mu - y}{x - y}$$ \hspace{0.5cm} (8)

for y and since $x \geq \mu$,

$$y = \frac{\mu - px}{1 - p} \leq \frac{\mu - p\mu}{1 - p} = \mu.$$ \hspace{0.5cm} (9)
Figure S1: Relative overrepresentation ϱ of bidirectional connections in networks with a fraction of pairs connected with a high probability x and the rest of the pairs connected with a low probability y. **Top** Overall connection probability in the network $\mu = 0.2$ **Bottom** $\mu = 0.5$