Kultivierung von CD34⁺-Zellen aus Nabelschnurblut zur \textit{ex vivo} Expansion von Stamm- und Vorläuferzellen und Untersuchungen zu deren \textit{Homing}-Fähigkeiten

Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften

vorgelegt beim Fachbereich 14
Chemische und Pharmazeutische Wissenschaften
der Johann Wolfgang Goethe-Universität
in Frankfurt am Main

von
Tanja Roßmanith
aus Frankfurt am Main

Frankfurt am Main 2001
DF1
vom Fachbereich 14, Chemische und Pharmazeutische Wissenschaften
der Johann Wolfgang Goethe-Universität als Dissertation angenommen

Dekan: Prof. Dr. J. Engels

Gutachter: Prof. Dr. B. Ludwig
 Prof. Dr. D. Hoelzer

Datum der Disputation: 18. Oktober 2001
<table>
<thead>
<tr>
<th>1</th>
<th>ZUSAMMENFASSUNG ...</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>EINLEITUNG ..</td>
<td>9</td>
</tr>
<tr>
<td>2.1</td>
<td>Die Hämatopoese ...</td>
<td>9</td>
</tr>
<tr>
<td>2.2</td>
<td>Die Stammzelle ...</td>
<td>9</td>
</tr>
<tr>
<td>2.3</td>
<td>Assays zur Detektion der Stammzelle</td>
<td>11</td>
</tr>
<tr>
<td>2.4</td>
<td>Hämatopoetische Wachstumsfaktoren</td>
<td>12</td>
</tr>
<tr>
<td>2.5</td>
<td>Stammzellquellen ..</td>
<td>14</td>
</tr>
<tr>
<td>2.6</td>
<td>Allogene Stammzelltransplantationen aus Nabelschnurbluttransplantaten</td>
<td>15</td>
</tr>
<tr>
<td>2.7</td>
<td>Kultivierungsmethoden ...</td>
<td>16</td>
</tr>
<tr>
<td>2.8</td>
<td>Allogene Transplantationen mit expandiertem Nabelschnurblut</td>
<td>17</td>
</tr>
<tr>
<td>2.9</td>
<td>Homing und Engraftment von hämatopoetischen Zellen</td>
<td>17</td>
</tr>
<tr>
<td>2.10</td>
<td>Adhäsionsmoleküle ..</td>
<td>18</td>
</tr>
<tr>
<td>2.11</td>
<td>Chemokine ...</td>
<td>19</td>
</tr>
<tr>
<td>2.12</td>
<td>Die kleinen GTPasen der Rho-Proteinfamilie</td>
<td>20</td>
</tr>
<tr>
<td>2.13</td>
<td>Zielsetzung ..</td>
<td>22</td>
</tr>
<tr>
<td>3</td>
<td>MATERIAL UND METHODEN ..</td>
<td>23</td>
</tr>
<tr>
<td>3.1</td>
<td>Material ..</td>
<td>23</td>
</tr>
<tr>
<td>3.2</td>
<td>Antikörper, Enzyme, Zytokine und Chemokine</td>
<td>24</td>
</tr>
<tr>
<td>3.3</td>
<td>Chemokine und Zytokine ..</td>
<td>25</td>
</tr>
<tr>
<td>3.4</td>
<td>Zelllinien ...</td>
<td>26</td>
</tr>
</tbody>
</table>
3.5 Lösungen ...26
3.6 Medien ...27
3.7 Angesetzte Puffer oder Medien ..28
 § 7.1 Auftaupuffer mit DNAse I ..28
 § 7.2 Einfriermedium 1 ...28
 § 7.3 Einfriermedium 2 ...28
 § 7.4 FACS-Puffer ..28
 § 7.5 FACS-Fixierung ...28
 § 7.6 1 % Gelatine-Stocklösung ..28
 § 7.7 HBMEC-Medium ..29
 § 7.8 HL-60 Medium ..29
 § 7.9 MACS-Puffer ..29
 § 7.10 Medium für primäre Fibroblasten ..29
 § 7.11 Methylcellulose ...29
 § 7.12 M2-10B4-Selektionsmedium ...30
 § 7.13 Reaktormedium ...30
 § 7.14 Serumfreies Kulturmedium ..30
 § 7.15 Sl/Sl-Selektionsmedium ...30
 § 7.16 Sphäroidmedium ...30
 § 7.17 TF-1 Medium ..31
3.8 Methoden ..31
 § 8.1 Zellzahlbestimmung ..31
 § 8.2 Kultivierung von Zellen ...31
 § 8.3 Einfrieren von Zellen ...32
 § 8.4 Sequentielles Auftauen von CD34+ Zellen ...32
 § 8.5 FICOLL-Aufreinigung ...33
 § 8.6 Positivselektion von CD34+-Zellen über die MACS-Säule ...34
 § 8.7 Suspensionskultur ..35
 § 8.8 Auflösen von Kollagenträgern nach Kultivierung im Spinner ...35
 § 8.9 Durchflußzytometrie (FACS-Markierung) ...36
 § 8.10 Methylzellulose-Assay (colony-forming units (CFU)-Assay) ...37
 § 8.11 Langzeitkultur (LTC-IC) - Limiting Dilution Assay (LDA) ..38
 § 8.12 Darstellung der Expansionsdaten als relative Werte ..39
Inhaltsverzeichnis

3.8.13 Das NOD/SCID-Mausmodell ... 39
3.8.14 7-AAD-Analyse zur Apoptose-Messung .. 40
3.8.15 Erythrozyten-Lyse .. 41
3.8.16 Transwell-Assay nach Aiuti et al., [51] .. 41
3.8.17 Sphäroid-Protokoll .. 42
3.8.18 Zytokin-ELISA (von R&D Systems GmbH, Deutschland) 45

4 ERGEBNISSE ... 46

4.1 Optimierung der Expansion von Stammzellen aus Nabelschnurblut 46
 4.1.1 Zytokinaustestung ... 46
 4.1.2 Zytokinkonzentrationen ... 48
 4.1.3 Untersuchung des Einflusses der Reinheit auf Expansion von Stamm- und Progenitorzellen .. 49
 4.1.4 Kulturdauer ... 51
 4.1.5 Kultursysteme ... 52
 4.1.6 Zellkonzentration .. 55
 4.1.7 Austestung von Medien .. 56
 4.1.8 Zusammensetzung der expandierten Zellen ... 58

4.2 In vitro Untersuchung der Homing- und Migrationseigenschaften primärer Zellen und Zelllinien ... 59
 4.2.1 Charakterisierung des Sphäroid systems – ein System zur Messung der Fähigkeit der Zellen, sich durch Fibroblastenschichten zu bewegen 60
 4.2.2 Einfluß der Kultivierung auf das Migrationsverhalten 73

5 DISKUSSION ... 76

5.1 Die Zytokinkombination SCF, FL, TPO und IL-3 erweist sich als geeignet zur ex vivo Expansion ... 76

5.2 Die CD34- Selektion ist notwendig für eine optimale Expansion 78

5.3 Während der Kultivierung nimmt die Konzentration der Zytokine im unterschiedlichen Maße ab ... 79
5.4 Kulturdauern von mehr als 4 Tagen vermehren die Zellen ausreichend ohne Verlust der Repopulierungsfähigkeit ... 80

5.5 Das statische Kultursystem Teflonbeutel erweist sich anderen System gegenüber als überlegen .. 80

5.6 Die ex vivo Expansion gelingt unter Erhalt der Repopulierungsfähigkeit 82

5.7 Nicht alle Zellen zeigen die Fähigkeit zur Migration in das Sphäroid 83

5.8 Verschiedene Adhäsionsmarker haben unterschiedlichen Einfluß auf die Migration in das Sphäroid .. 84

5.9 Die Migration in das Sphäroid läßt sich Pertussis Toxin, aber nicht durch andere Inhibitoren verschiedener Signalwege hemmen .. 87

5.10 Die Inhibition der kleinen GTPasen hemmt die Migration 89

5.11 Expandierte Zellen zeigen unterschiedliches Verhalten in den verschiedenen Migrations- und Homing-Assays ... 90

6 ABKÜRZUNGEN ... 93

7 LITERATUR ... 95

8 DANKSAGUNGEN .. 107
1 Zusammenfassung

Mit der Kombination der auf primitive Stammzellen wirkenden Zytokine SCF, FL, TPO und IL-3 gelang eine gute und ausreichende Vermehrung der ontogenetisch unreifen und der determinierten Progenitorzellen nach Kultivierung der Zellen über 7 Tage. Das beim Einsatz

Durch die Kultivierung von hämatopoetischen Stammzellen aus Nabelschnurblut mit den Zytokinen SCF, FL, TPO und IL-3 gelang eine ausreichende Vermehrung von frühen und determinierten Progenitorzellen unter Erhalt ihrer Stammzelligfähigkeiten, so daß ein klinischer Einsatz möglich wird. Dabei ergab sich durch Untersuchung der Migrationsfähigkeit im Sphäroidmodell, daß beim *Homing* der Zellen die Aktivierung der kleinen GTPasen und eines Pertussis Toxin-sensitiven G-Proteins beteiligt sind.
2 Einleitung

2.1 Die Hämatopoese

Die Hämatopoese ist ein lebenslanger Prozeß, der über die Bildung hämatopoetischer Vorläuferzellen reife Blutzellen aus einem Pool pluripotenter, langzeitrepopulierender Stammzellen bereitstellt. Die Kurzlebigkeit vieler reifer Zellen erfordert einen Umsatz von täglich 10^{12} Blutzellen beim erwachsenen Menschen, was eine strenge Regulation durch stimulatorische und inhibitorische Wachstumsfaktoren (Zytokine) erfordert.

Die Hämatopoese findet beim Erwachsenen hauptsächlich im roten Knochenmark statt, also im Schädel, in den Rippen, im Becken und in den Epiphysen der Ober- und Unterschenkelknochen und in der Wirbelsäule. Das Knochenmark zeichnet sich durch für Ansiedlung, Proliferation und Ausreifung hämatopoetischer Zellen speziell geeignete Mikronischen, das Knochenmarkstroma, aus. Das Knochenmarkstroma besteht aus sieben verschiedenen Typen stromaler Zellen: Osteoblasten und Osteoklasten (knochenauf- und abbauende Zellen), Fettzellen, Bindegewebszellen (Fibroblasten), Knochenmarks- makrophagen, glatte Muskelzellen, sowie Gefäßendothelien [1, 2] und extrazelluläre Matrix. Die hämatopoetischen Zellen vermehren sich extravaskulär im Stroma und passieren erst nach Ausreifung die Wand der Knochenmarksgefäße (siehe Abb. 2.3.).

2.2 Die Stammzelle

Die hämatopoetischen Stammzellen besitzen drei wichtige Eigenschaften: sie haben extensive Selbstneuerungskapazitäten, ein breites Differenzierungspotential und bleiben lange Zeit im ruhenden Zustand. Diese Fähigkeiten verlieren sich allmählich im Zuge der Differenzierung zur hämatopoetischen Vorläuferzelle. Die Selbstneuerung der hämatopoetischen Stammzelle geschieht im Normalfall durch asymmetrische Teilung, d.h. ein Teil der Tochterzellen behält die Eigenschaften der Stammzelle, während andere in den Differenzierungsprozeß eintreten [3], der schließlich zur Bildung spezialisierter, nicht mehr teilungsfähiger Funktionszellen führt. Sowohl zufällige intrinsische molekulare Ereignisse als auch induzierende exogene Ereignisse, wie zum Beispiel der Stimulus durch hämatopoetische Wachstumsfaktoren, sichern das Überleben, stimulieren die Proliferation und bestimmen die Prägung der Zellen [4].

Die hämatopoetische Stammzelle scheint zudem eine hohe Plastizität zu besitzen, die sie dazu befähigt, reprogrammiert zu werden und so in nicht-hämatologische Linien, wie z. B. Muskelzellen auszudifferenzieren [5-7].
2.3 Assays zur Detektion der Stammzelle

Während sich ausgereifte Zellen schon anhand ihres optischen Erscheinungsbildes identifizieren lassen, unterscheiden sich Stamm- und Vorläuferzellen morphologisch nicht deutlich von Lymphozyten. Die Analyse bestimmter Glykoproteine auf der Oberfläche bietet eine Möglichkeit Vorläuferzellen zu phänotypisieren. So tragen die frühen und reiferen Vorläuferzellen den Oberflächenmarker CD34. Mit der Ausreifung und –differenzierung zu determinierten Zellen verlieren die Progenitorzellen diesen Marker. Durch die Analyse der Oberflächenmoleküle läßt sich jedoch keine Aussage über die biologische Funktionalität der Progenitoren machen. Zu diesem Zwecke werden biologische Assays herangezogen (Abb.2.2.).

Dagegen ist die frühe Vorläuferzelle oder Stammzelle funktionell definiert durch ihre Fähigkeit in das Knochenmark zu finden und dort lebenslang myeloide als auch lymphoide Zellen hervorzubringen (= Repopulation). Die Auswirkung von Wachstumsfaktoren und Kulturbedingungen auf die hämatopoetische Stammzelle wird mittels verschiedener Assays bestimmt, die auf der Fähigkeit der Stammzelle basieren, in der Langzeitkultur oder im

Die Auswertung der LTC und Quantifizierung der LTC-IC (longterm culture-initiating cells = LTC-IC) genannten Zellen, erfolgt dabei nach 6 bzw. 8 Wochen [8-10]. Die Detektion der repopulierungsfähigen Zellen (scid repopulating cells = SRC) durch die Quantifizierung des Anteils humaner hämatopoetischer Zellen in NOD/SCID-Mäusen geschieht 6 Wochen nach Injektion der humanen Zellen durch Tötung der Mäuse. Dabei wird die Fähigkeit der SRC zur Etablierung einer vollständigen humanen Hämatopoese durch Bestimmung sowohl humaner lymphoider als auch myeloider Vorläuferzellen in der Maus verifiziert [11-14].

2.4 Hämatopoetische Wachstumsfaktoren

In den letzten 30 Jahren wurden eine Reihe dieser Wachstumsfaktoren entdeckt, kloniert und rekombinant hergestellt. Viele der gefundenen Zytokine sind für die linienspezifische Ausdifferenzierung der Zellen (kolonienstimulierenden Faktoren (-CSF)) verantwortlich, wie Erythropoetin (EPO), das entscheidend bei der Ausreifung der myeloiden Zellen zu Erythrozyten beteiligt ist, sowie G-CSF oder GM-CSF, die für die Bildung der Granulozyten notwendig sind (Abb. 2.3.). Diese Faktoren wirken auf die determinierten hämatopoetischen Zellen. Anderen wird eine frühe Wirkung auf die primitiven Progenitorzellen zugewiesen. Es besteht somit eine Hierarchie der Faktoren, die auf hämatopoetische Zellen unterschiedlicher Reifungsstufen wirken. Da in dieser Arbeit die Expansion primitiver Progenitoren und Stammzellen untersucht wird, werden vorwiegend frühwirkende Faktoren beschrieben.

Einer der ersten für die primitiven hämatopoetischen Zellen wichtigen entdeckten Faktoren ist der stem cell factor, das SCF. SCF ist für die normale Hämatopoese unentbehrlich, da Mäuse,

Ein weiteres frühwirkendes Zytokin ist das Thrombopoetin, TPO. Es gilt primär als Regulator der Megakaryopoese, d.h. es stimuliert die Reifung der Megakaryozyten und unterstützt die
Bildung funktioneller Blutplättchen. Aber TPO hat außerdem eine wichtige Rolle in der Hämatopoese und übt weitreichende Effekte auf die primitiven hämatopoetischen Zellen aus. Sowohl murine als auch humane hämatopoetische Zellen engraften das Knochenmark deutlich besser, wenn sie den Rezeptor für TPO tragen. TPO veranlasst hämatopoetischen Zellen beschleunigt in den Zellzyklus einzutreten, unterstützt das Überleben und die Proliferation der Zellen [21, 22].

Weitere Faktoren der Hämatopoese sind IL-3 und IL-6. Beide gehören zur Familie der Interleukine. IL-3 wirkt ebenfalls direkt auf die frühen Progenitoren, während IL-6 besonders auf die determinierten Vorläuferzellen (CFU) wirkt [23, 24].

Neben den löslichen und membrangebundenen Faktoren wurde in der letzten Dekade besonders auch die Rolle der Interaktion hämatopoetischer Stammzellen mit dem Knochenmarkstroma über Adhäsionsrezeptoren hervorgehoben. Diese Rezeptoren sind verantwortlich für die Residenz der Stamm- und Vorläuferzellen im Knochenmark und für das Homing, d.h. das Finden und Einwandern dorthin. Adhäsionsmolekülen wird dabei eine Rolle in der Regulation des Zellverhaltens zugedacht: entweder durch Aktivierung intrazellulärer Signalwege oder durch die Modulation der Reaktion auf Wachstumsfaktoren [25].

2.5 Stammzellquellen

HLA-Merkmale nur eine ca. 80%ige Chance, einen HLA-identen Fremdspender zu finden [27]. Nur 40 % der Patienten, für die ein Spender gefunden wurde, erhalten tatsächlich ein Transplantat [28].

So wurde in den letzten 10 Jahren Nabelschnurblut (cord blood = CB) als eine alternative Quelle für allogene Stammzelltransplantationen bei Patienten mit fehlenden HLA-kompatiblen Spendern untersucht [29]. Die erste Transplantation mit Zellen aus Nabelschnurblut wurde 1988 von Gluckman et al. an einem Kind durchgeführt [30].

2.6 Allogene Stammzelltransplantationen aus Nabelschnurbluttransplantaten

Da die Anzahl von Zellen im Nabelschnurblut gering ist, waren der Hauptteil der mit Nabelschnurblut transplantierten Patienten Kinder mit einem durchschnittlichen Gewicht von 20 kg. Vorteile im Vergleich zur Knochenmarktransplantation (KMT) waren eine geringere GVHD-Rate, Nachteil die verlängerte Zeit bis zum Wiedereinsetzen der Neutrophilen- und Plättchenbildung im Vergleich zur allogenen KMT. [28, 31].

Es wurde berichtet, daß eine höhere Dosis an kernhaltigen Zellen einen positiven Einfluß auf das Wiedereinsetzen der Blutbildung hat [37]. So ist einer der prädiktiven Faktoren für das Überleben eine Dosis von mehr als $3,7 \times 10^7$ kernhaltiger Zellen (MNC) pro kg Körbergewicht. Daraus ergibt sich eine Limitierung für erwachsene Patienten, für die ein hinreichend großes Transplantat mit ausreichenden Zellzahlen oft nicht zur Verfügung steht. Ein Ansatz zur

2.7 Kultivierungsmethoden

Der Einsatz von stromahaltigen Kulturen bei der klinischen Anwendung ist kritisch zu beurteilen, da bei CB keine stromalen Zellen des Spenders zur Verfügung stehen. Man muß daher auf das Stroma eines Fremdspenders oder eine stromale Zelllinie ausweichen.

Im technisch einfacheren stromafreien Kultursystem entfällt dieses Problem, weswegen dieses System zur klinischen Anwendung vorzuziehen ist.

2.8 Allogene Transplantationen mit expandiertem Nabelschnurblut

2.9 Homing und Engraftment von hämatopoetischen Zellen

Obwohl seit mehr als 30 Jahren Stammzellen erfolgreich transplantiert werden, bleibt unklar wie die intravenös infundierten Stammzellen in das Mikroenvironment des Knochenmarks finden und dort einwandern (*Homing*). In Mausversuchen repopulieren nur etwa 10 % der infundierten Stammzellen das Knochenmark [42], der Rest verliert sich im Gefäßsystem. Das macht das *Homing* der Stammzellen zu einem höchst selektiven Prozess, der vermutlich durch spezielle *Homing*-Rezeptoren (wie zum Beispiel CXCR4) oder durch die Methode des selektiven Einfangens, der Zurückhaltung oder eines Überlebensvorteil der Stammzelle durch das Knochenmark vermittelt wird. *Homing* von hämatopoetischen Stammzellen kann definiert werden als die Fähigkeit der Zellen das Knochenmark selektiv zu suchen, mit ihm zu interagieren, um anschließend in ihm eine Nische zu finden und dort Hämatopoese zu initiieren [43].

Einleitung

2.10 Adhäsionsmoleküle

<table>
<thead>
<tr>
<th>Rezeptorfamilie</th>
<th>Rezeptor</th>
<th>Ligand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integrine</td>
<td>VLA-4</td>
<td>Fibronectin, VCAM-1</td>
</tr>
<tr>
<td></td>
<td>VLA-5</td>
<td>Fibronectin</td>
</tr>
<tr>
<td></td>
<td>VLA-6</td>
<td>Laminin</td>
</tr>
<tr>
<td></td>
<td>LFA-1</td>
<td>ICAM-1</td>
</tr>
<tr>
<td>Selektine</td>
<td>L-Selektin</td>
<td>CD34</td>
</tr>
<tr>
<td>Sialomucine</td>
<td>CD34</td>
<td>L-Selektin</td>
</tr>
<tr>
<td></td>
<td>CD164</td>
<td>nicht bekannt</td>
</tr>
<tr>
<td>andere</td>
<td>CD44</td>
<td>Hyaluronsäure, Kollagen, Fibronectin</td>
</tr>
</tbody>
</table>

Tabelle 2.1. Adhäsionsrezeptoren, die von hämatopoetischen Vorläuferzellen exprimiert werden, geordnet nach Familien, und ihre Liganden

Abbildung 2.4. Modell des selektiven Einwanderns von hämatopoetischen Stammzellen in das Knochenmark (Homing). Die Zellen werden durch Adhäsionsmoleküle an der Gefäßwand verlangsamt (A), heften sich an (B) und verlassen das Gefäß (C). Abschließend bewegen sie sich durch das Knochenmark, um eine passende Nische zu suchen (D). Der Stimulus zum Einwandern ins Knochenmark sind Chemokine, die von stromalen Knochenmarkszellen gebildet werden. Nach (Peled et al., 2000) [47]

Einige weitere wichtige Integrine, die von hämatopoetischen Vorläuferzellen exprimiert werden und ihre Liganden sind in Tabelle 2.1. aufgeführt. Integrinen fehlt, wie allen Adhäsionsrezeptoren, eine intrinsische Kinase-Aktivität, sie müssen somit andere Nichtrezeptor-Kinasen rekrutieren. Über diese kommt es zur Vernetzung mit verschiedenen Signalwegen, so auch mit dem Ras/Mitogen-aktivierte Proteinkinase (MAPK)-Signalweg, der die kleinen GTPasen mit einbezieht [25].

2.11 Chemokine

Die beschriebenen Rezeptor/Liganden Interaktionen sind trotz allem noch nicht ausreichend, um im Detail die Migration, das Homing und das Lodgement während der Hämatopoese zu beschreiben. Viele dieser Prozesse beruhen sicher auf der Koexpression oder Aktivierung von Adhäsionsrezeptoren und ihrer Liganden durch Zytokine, Chemokine und deren Rezeptoren. Chemokine sind Moleküle, die selektiv Leukozytenpopulationen anziehen und aktivieren können. Einige Chemokine werden konstitutiv exprimiert und haben eine Funktion in dem
physiologischen Durchstreifen und Homing der Leukozyten als auch der Stamm- und Vorläuferzellen [25]. Besonders beachtet ist dabei das Chemokin SDF-1 mit seinem Rezeptor CXCR4 (Abb. 2.4.).

2.12 Die kleinen GTPasen der Rho-Proteinfamilie

Bisher ist wenig bekannt über die Signalwege, welche die Zelle benötigt, um sich durch dreidimensionale Strukturen zu bewegen. Neben der Signalvermittlung in die Zelle und innerhalb der Zellen spielen die kleinen GTPasen der Rho-Familie eine wichtige Rolle bei der Mobilität von Zellen. Diese Proteine sind ubiquitär in allen Spezies exprimiert [63]. Wie alle GTPasen oszillieren sie zwischen einem inaktiven, GDP-bindenden und einem aktiven, GTP-bindenden Zustand (Abb. 2.5.). Ihre Regulation wird durch den gegensätzlichen Effekt von guanin nucleotide exchange factors (GEFs) und GTPase-activating proteins (GAPs) erreicht. Prototyp der Familie der kleinen GTPasen ist das Ras-Molekül [63, 64].
Die Rho-Familie besteht aus den kleinen GTPasen Cdc42, Rac und Rho, die als Schlüsselfiguren der Regulation des Aktinzytoskeletts und von adhäsiven Strukturen in Antwort auf extrinsische Signale gelten. So läßt sich durch die Aktivierung G-proteingekoppelter Rezeptoren, wie für Bradikinin oder Bombesin, je nach Aktivierung einer bestimmten kleinen GTPase spezifische zelluläre Strukturen ausbilden (Abb. 2.5.): Aktivierung des Rho-Proteins induziert die Bildung von Stressfasern, die Aktivierung von Rac die Formation von Lamellipodien und von Cdc42 die Ausbildung von Filopodien [65].

Proteaseaktivität könnte ein zusätzlicher Mechanismus sein, durch den GTPasen die extrazelluläre Matrixdegradation und Invasion modulieren [66].
2.13 Zielsetzung

3 Material und Methoden

3.1 Material

Brutschränke:
 - BBD 6220: Heraeus, BRD
 - CO₂-Auto-Zero: Heraeus, BRD

Einfrierboxen: Nalgene

FACScan: BD Becton Dickinson, USA

FACScalibur: BD Becton Dickinson, USA

Software für FACS-Analyse: PC Lysis, Win MDI, Cellquest

Laminarflow HeraSafe: Heraeus, BRD

Mikroskope:
 - Axiovert 25: Zeiss, BRD
 - CH2: Olympus, Japan
 - Labovert: Leitz, BRD

Pipettierhilfe: Hirschmann Laborgeräte, BRD

Spinner-Rührgerät Biosystem 4B: H+P Labortechnik GmbH, BRD

Vortexer: IKA Labortechnik, BRD

37° C-Wasserbad: GFL 1083

Zentrifugen:
 - Rotina 46R: Hettich, BRD
 - Megafüge 1.0R: Heraeus, BRD
 - Varifüge K: Heraeus, BRD

FACS-Cellwash: BD Becton Dickinson, USA

FACS-Röhrchen: Falcon, Becton Dickinson Labware, USA

FACS-Lysing Solution: BD Becton Dickinson, USA

Filteraufsatz, 0,22 µm Millex-GV: Millipore, Frankreich

Gewebekulturschalen (35/10 mm) Cellstar: Greiner Labortechnik, BRD

Kanüle 15Gx1,5’’ Neoject: Dispomed Witt oHG, BRD

Kollagenträger-unweighted collagen microspheres: Cellex Biosciences Inc., USA

Kryoröhrchen: Nalge Nunc International, Dänemark

12-Lochplatte, Costar, flat bottom: Corning Incorporated, USA
3 Material und Methoden

24-Lochplatte
96-Lochplatte, Cellstar, flat bottom
Neubauer Kammer
1 und 2 ml Einmalpipetten
5, 10 und 25 ml Einmalpipetten
15 und 50 ml Röhrchen
1 ml Luer Spritzen
5, 10, 20 ml-Spritzen
FEP Teflonbag VueLife, 7ml
6,5 mm Transwell, 5 µm Porengröße
Zellsieb 70µm
Zellkulturflaschen: 25, 75, 150 cm²

MACS-Säulen:
MS⁺ und VS⁻ Separation Columns
CD34 Progenitor Cell Isolation Kit
Filterchen, Steri-Dual

3.2 Antikörper, Enzyme, Zytokine und Chemokine

Humane Antikörper:
Anti-CD3
Anti-CD4
Anti-CD7 FITC-konjugiert
Anti-CD8
Anti-CD11a FITC-konjugiert
Anti-CD13
Anti-CD14 (MΦP9) FITC-konjugiert
Anti-CD15
Anti-CD19 (4G7) FITC-, PE- konjugiert
Anti-CD29 (MAR4) PE-konjugiert
Anti-CD33(WM53) Pe-konjugiert
Anti-CD34 (8G12) FITC-, PE-, PerCP-konjug.
Anti-CD38 (AT13/5) FITC-konjugiert
Anti-CD45 FITC-konjugiert

Corning Incorporated, USA
Greiner Labortechnik, BRD
Superior Marienfeld, BRD
Falcon, Becton Dickinson Labware, USA
Greiner Labortechnik, BRD
Falcon, Becton Dickinson Labware, USA
Dahlhausen, BRD
B.Braun Melsungen AG, BRD
Afc, USA bezogen durch: Cellgenix, BRD
Corning Incorporated, USA
Falcon, Becton Dickinson Labware, USA
IBS, Integra Biosciences,
Miltenyi Biotec, BRD
Miltenyi Biotec, BRD
Miltenyi Biotec, BRD
BD Becton Dickinson, USA
DAKO, Dänemark
BD Becton Dickinson, USA
3 Material und Methoden

Anti-CD45 PE-konjugiert BD Pharningen, USA
Anti-CD45 PerCP-konjugiert BD Becton Dickinson, USA
Anti-CD49d (9F10) PE-konjugiert BD Pharningen, USA
Anti-CD49e (IIA) PE-konjugiert BD Pharningen, USA
Anti-CD106 FITC-konjugiert Cymbus Biotechnology
Anti-CXCR3 (49801.111) FITC-konjugiert R&D Systems GmbH, BRD
Anti-CXCR3 (1C6) monoklonal BD Bioscience, USA
Anti-CXCR4 (Fusin, 12G5) PE-konjugiert BD Pharningen, USA
Anti-CXCR4 (12G5) monoklonal R&D Systems GmbH, BRD
Anti-IgG_1, FITC- oder PE-konjugiert BD Becton Dickinson, USA
Anti-IgG_1, monoklonal Immunotech S.A., Frankreich
Anti-VLA4 (2B4) monoklonal R&D Systems GmbH, BRD
Anti-VLA5 (JBS5) monoklonal Serotec, UK
Anti-LFA1 Serotec, UK
Anti-β_1-Integrin (3S3) Serotec, UK

Murine Antikörper:
Anti-CD45 (30-F11) PE-konjugiert BD Pharningen, USA
Anti-CD45Ro/B220 (RA3-6B2) FITC-konjugiert BD Pharningen, USA

ELISA-Kits:
Quantikine-ELISA Kits von FL, IL-3, SCF, TPO R&D Systems GmbH, BRD

3.3 Chemokine und Zytokine

Hum. EPO Boehringer Mannheim, BRD
Hum. b-FGF Cell Concepts GmbH, BRD
Hum. FL R&D Systems GmbH, BRD
Hum. GM-CSF Essex Pharma GmbH, BRD
Hum. IP-10 Cell Concepts GmbH, BRD
Hum. IL-3 Sandoz AG, BRD oder R&D Systems GmbH, BRD
Hum. IL-6 R&D Systems GmbH, BRD
Hum. MIG Cell Concepts GmbH, BRD
3 Material und Methoden

Hum. SCF R&D Systems GmbH, BRD
Hum. SDF-β R&D Systems GmbH, BRD
Hum. TPO R&D Systems GmbH, BRD
Hum. Anti-TGF-β R&D Systems GmbH, BRD
Hum. VEGF Cell Concepts GmbH, BRD

Enzyme:
DNAse I Boehringer Mannheim, BRD
Kollagenase GibCo BRL Lifetechnologies

3.4 Zelllinien

BA/F3 murine B-Vorläuferzelllinie, IL-3 abh.
BV-173 hum. B-Zelleukämie (CML, Ph+)
32D murine Knochenmarkzelllinie, Faktorabh.
HBMEC-60 humane Knochenmarksendothelzelllinie
HL-60 humane AML Zelllinie
K-562 humane CML Zelllinie (Ph+)
M2 10B4 murine Stromazelllinie
NK-92 humane natürliche Killerzelllinie
Nalm-6 hum. B-Zelleukämie (ALL, Ph-)
SL/SL murine Stromazelllinie, exprimiert humanes IL-3 und SCF
Sup-B15 hum. B-Zelleukämie (ALL, Ph+)
TF-1 humane Erythroleukämie
Tom-1 hum. B-Zelleukämie (ALL, Ph+)
U-937 humane Monozyten-Zelllinie

3.5 Lösungen

7-AAD (200 µg/ml) Sigma-Aldrich, BRD
Agarose „High Grade“ Eurogentec
Dextran 40 (Longasteril 40) Fresenius AG, Deutschland
DMSO Fluka Chemie GmbH, Schweiz
EDTA (Titriplex) Merck KG, BRD
Ethanol J.T. Baker, Niederlande
3 Material und Methoden

Ficoll (Biocoll Separation Solution) Biochrom AG, BRD
Formaldehyd Riedel de Haen GmbH, BRD
Gelatine BioRad, USA
Glutamin 200 MM GibCo BRL Lifetecnologies
Genistein Sigma-Aldrich, BRD
Geneticin 50 mg/ml GibCo BRL Lifetecnologies
Heparin-Natrium (Liquemin) Hoffmann-La Roche AG, Schweiz
Hepes 1 M GibCo BRL Lifetecnologies
Hydrocortison (Solu-Decortin) Merck, BRD
Hygromycin B Calbiochem, USA
Isopropanol J.T. Baker, Niederlande
LY 294002 Sigma-Aldrich, BRD
β-Mercaptoethanol 50 mM GibCo BRL Lifetecnologies
Natriumazid Riedel de Haen GmbH, BRD
Pertussis Toxin Calbiochem, USA
Penicillin/Streptomycin (10000 U/ml bzw. 10000 µg/ml) GibCo BRL Lifetecnologies
STI 571 Novartis, Schweiz
Trypanblau 0,4 % GibCo BRL Lifetecnologies
Trypsin/EDTA PAN Biotech, BRD
Türksche Lösung Merck, BRD
Tyrphostin AG 490 Sigma-Aldrich, BRD

Die im Abschnitt 4.2.1.10 verwendeten Toxine wurden freundlicherweise von der Arbeitsgruppe Klaus Aktories, Institut für Pharmakologie und Toxikologie der Albert-Ludwigs-Universität Freiburg zur Verfügung gestellt.

3.6 Medien

BSA (Fraktion V) Sigma-Aldrich, BRD
Cellgro SCGM Cellgenix, BRD
FCS Hyclone, Greiner Labortechnik, BRD
Humanes Frischplasma (Quarantäne AB) Blutspendedienst Hessen gGmbH
HS Serva, Greiner Labortechnik, BRD
IMDM Biochrom, BRD
Material und Methoden

M 199 (Earle’s Salze, Glutamin, 25 MM Hepes) GibCo BRL Lifetechnologies
Methocult GF H4434 StemCell Techn. Inc., Canada
PBS (Dulbecco’s) BioWhittaker, USA
RPMI GibCo BRL Lifetechnologies
StemSpan SF Expansionmedium StemCell Techn. Inc., Canada
StemAlpha α StemAlpha SARL, Frankreich
X-vivo 10 (mit Gentamycin und Phenolrot) BioWhittaker, USA

3.7 Angesetzte Puffer oder Medien

3.7.1 Auftaupuffer mit DNAse I
100ml RPMI 1640
200 U/ml DNAse I (sterilfiltrieren)
3 mM MgCl₂ (20 mM) => 150 µl
10 % Hyclone FCS

3.7.2 Einfriermedium 1
RPMI 1640
20 % FCS

3.7.3 Einfriermedium 2
RPMI 1640
20 % DMSO

3.7.4 FACS-Puffer
PBS (unsteril)
0,1% Natriumazid
1% FCS

3.7.5 FACS-Fixierung
PBS (unsteril)
2% Formaldehyd

3.7.6 1 % Gelatine-Stocklösung
5 g Gelatine auf 500 ml aqua dest., dann autoklavieren.
Einzusetzen als 0,1 %ige Lösung, 50 ml 1:10 mit aqua dest. verdünnen, dann autoklavieren
3.7.7 HBMEC-Medium

M 199
10 % humanes Frischplasma
10 % FCS
1 ng/ml bFGF
5 U/ml Heparin
1 % Glutamin
1 % Pen/Strep
100 µg/ml Geneticin (G418)

3.7.8 HL-60 Medium

RPMI 1640
10 % Hyclone FCS
auch einzusetzen bei der Kultivierung von:
Nalm-6, BV-173, Sup-B15, Tom-1

3.7.9 MACS-Puffer

PBS
0,5 % BSA
0,93 g EDTA (Triplex, in etwas PBS lösen, sterilfiltrieren)
1 % Pen/Strep

3.7.10 Medium für primäre Fibroblasten

RPMI 1640
15% Hyclone FCS
1% Glutamin
1% Pen/Strep

3.7.11 Methylcellulose

20 ml Methylcellulose (2,5 %)
12 ml FCS
1,5 µl EPO
400 µl G-CSF (300 µg/ml)
400 µl IL-3 (250 ng/µl)
400 µl GM-CSF (500 µg/ml)
Material und Methoden

400 µl Glutamin
400 µl β-Mercaptoethanol (5mM)
400 µl Pen/Strep
3 ml IMDM

3.7.12 M2-10B4-Selektionsmedium
500 ml RPMI 1640
10 % FCS
4 ml Geneticin
77,9 µl Hygromycin B
4 ml 1 M Hepes (filtriert)

3.7.13 Reaktormedium
IMDM
12,5 % FCS
12,5 % HS
1 % Glutamin
1 % Pen/Strep

3.7.14 Serumfreies Kulturmedium
X-vivo 10
1 % BSA
1 % Glutamin
2x10⁻⁶ mmol/ml Hydrocortison (Solu-Decortin)

3.7.15 Sl/Sl-Selektionsmedium
500 ml RPMI 1640
10 % FCS
8 ml Geneticin
162 µl Hygromycin B
8 ml 1 M Hepes (filtriert)

3.7.16 Sphäroidmedium
IMDM
10 % Hyclone FCS
3.7.17 TF-1 Medium

RPMI 1640
10 % Hyclone FCS
10 ng/ml GM-CSF
10 ng/ml IL-3

3.8 Methoden

3.8.1 Zellzahlbestimmung

Um den Anteil kernhaltiger Zellen zu bestimmen, wird die Zellsuspension mit Türk’scher Lösung angefärbt. Diese Lösung färbt Kerne schwarz, unterscheidet aber nicht zwischen lebendigen und toten Zellen.

Die Auszählung der Zellen erfolgt in der Neubauer-Kammer. Die Zellzahl pro ml ergibt sich wie folgt:

Gezählte Zellen : Anzahl der gezählten Kästchen * Verdünnungsfaktor * 1x10^4 = Zellen pro ml

3.8.2 Kultivierung von Zellen

3.8.2.1 Adhäsente Zellen

Für die Anzucht adhäsenter stromaler Zellen wird der Inhalt einer kryokonservierten Probe in einer Gewebekulturflasche inokuliert. Am folgenden Tag folgt ein Mediumwechsel, um die Zellen von dem restlichen DMSO zu befreien. Die Anzucht erfolgt mit IMDM/10% FCS, während die normale Stammhaltung unter Selektionsdruck mit Hygromycin B und Geneticin erfolgt. Die Kultivierung mit dem jeweiligen Selektionsmedium wird nach jedem dritten Splitten der Zellen durch Kultivierung in IMDM/10% FCS unterbrochen. Das Splitten (Verdünnen) erfolgt, sobald die Zellen einen konfluenten Layer bilden, da sie nicht
kontaktinhibiert sind, sondern sich gegenseitig überwachsen würden. Dazu erfolgt eine enzymatische Loslösung der Zellen mit Hilfe von 1 ml Trypsin für 5-10 min bei RT. Vor der Zugabe des Trypsins wird das Medium abgenommen und der Layer mit 10 ml PBS gewaschen. Haben die Zellen ihre Adhärenz verloren, werden sie in serumhaltigen Medium aufgenommen, um die Wirkung des Trypsins zu blockieren und in einem Verhältnis von 1:2 bis 1:5 in der alten oder in einer neuen Flasche verdünnt.

Die HBMEC-60 Zelllinie braucht zur Adhärenz gelatinebeschichtete Zellkulturflaschen. Vor dem Splitten wird eine neue Zellkulturflasche für 30 Minuten mit 10 ml einer 0,1%-igen sterilen Gelatinelösung beschichtet. Vor dem Inokulieren der beschichteten Flasche mit den trypsinierten Zellen wird die Gelatinelösung abgenommen und einmal mit 10 ml PBS gewaschen. Da die HBMEC-60 noch in einem gewissen Grade kontaktinhibiert sind, erfolgt das Splitten dieser Zellen bereits im subkonfluenten Zustand.

3.8.2.2 Suspensionszellen

Suspensionszellen werden je nach ihrer Verdopplungszeit alle 2 bis 3 Tage mit Medium verdünnt. Dazu wird entweder ein Teil der Zellen verworfen und mit frischen Medium aufgefüllt oder das Volumen durch Zugabe von frischem Medium erhöht. Die Konzentration von Suspensionszellen sollte je nach Zelllinie zwischen 5x10^5 und 1x10^6 Zellen pro ml liegen.

3.8.3 Einfrieren von Zellen

Pro 5x10^6 Zellen wird unter sterilen Bedingungen 0,5 ml kaltes Einfriermedium1 und direkt vor dem Einfrieren 0,5 ml Einfriermedium 2 zugegeben. Die Zellen werden in Kryotubes gefüllt. Diese werden in Einfrierboxen über Nacht in die –80° C-Truhe gegeben. Die mit Isopropanol gefüllten Boxen ermöglichen ein schonendes Einfrieren um 1° C pro Minute. Am nächsten Tag werden die Kryotubes in Tanks mit flüssigem Stickstoff geräumt und gelagert.

3.8.4 Sequentielles Auftauen von CD34+ Zellen

Die empfindlichen Stamm- und Progenitorzellen bedürfen eines behutsamen Auftauvorganges, bei dem sich die schädlichen Einflüsse von DMSO zum einen und die Änderung der Osmolarität im umgebenden Medium zum anderen die Waage halten. Deshalb wird den Zellen in minütlichen Abständen ein genau definiertes Volumen Medium zugesetzt,
so daß sich das DMSO möglichst schnell verdünnt, ohne die Zellen durch die Änderung der Osmolarität zu zerstören.

Das Röhrchen mit den kryokonservierten Zellen wird im 37° C-Wasserbad schnell aufgetaut bis nur noch ein kleines Eisbröckchen übrig ist. Die Zellen werden in ein 15-ml Röhrchen überführt und exakt minütlich folgende Volumina RPMI/10% FCS zugegeben:

<table>
<thead>
<tr>
<th>Minuten</th>
<th>Medium pro 1 ml Zellen</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100 µl</td>
</tr>
<tr>
<td>1</td>
<td>120 µl</td>
</tr>
<tr>
<td>2</td>
<td>150 µl</td>
</tr>
<tr>
<td>3</td>
<td>190 µl</td>
</tr>
<tr>
<td>4</td>
<td>260 µl</td>
</tr>
<tr>
<td>5</td>
<td>360 µl</td>
</tr>
<tr>
<td>6</td>
<td>520 µl</td>
</tr>
<tr>
<td>7</td>
<td>860 µl</td>
</tr>
<tr>
<td>8</td>
<td>1,69 ml</td>
</tr>
<tr>
<td>9</td>
<td>4,75 ml</td>
</tr>
</tbody>
</table>

Sind die Zellen in mehr als 1 ml eingefroren erhöhen sich die Volumina entsprechend dem Einfriervolumen.

3.8.5 FICOLL-Aufreinigung

Zur Isolierung der mononukleären Zellen aus Nabelschnurvenenblut wird das Vollblut über einen Dichtegradienten geschichtet. Dabei werden die Erythrozyten pelletiert und Granulozyten abgetrennt.

Es werden 15 ml Ficollsg. in 50 ml Falcon-Röhrchen vorgelegt und 20-25 ml mit PBS verdünntes Nabelschnurblut vorsichtig darübergeschichtet. Das Nabelschnurblut sollte mind. 1:1 mit PBS verdünnt werden, damit der Gradient nicht überladen wird. Anschließend erfolgt eine Zentrifugation über 20 min bei 1670 rpm (Varifuge K, Heraeus) ohne Bremsen. Der dünne mittlere Ring wird vorsichtig abpipettiert (MNC-Fraktion) und in ein neues Falcon-Röhrchen gegeben. Dabei können je zwei MNC-Fraktionen von einem Spender vereinigt werden. Zum Waschen werden die MNC auf 40 ml mit PBS aufgefüllt und für 10 min bei

Bei einer Zellzahl >10^8 Zellen wird der Überstand abgenommen, und die Zellen durch eine CD34-Positivselektion mittels MACS-Säulen aufgereinigt.

3.8.6 Positivselektion von CD34+-Zellen über die MACS-Säule

Die ficollisierten Zellen werden in 300 µl MACS-Puffer pro 10^8 Zellen aufgenommen und gut resuspendiert. Der Suspension werden 50 µl pro 10^8 Zellen Reagens A1 (Blockierungs-Lsg.) hinzugefügt, gemischt und direkt 50 µl pro 10^8 Zellen Reagens A2 (Antikörper-Lsg.) zugegeben. Das Zell-Antikörpergemisch wird 15 min bei 4° C inkubiert, anschließend mit MACS-Puffer auf 10 ml aufgefüllt und 10 min mit 1200 rpm (Megafuge 1.0R, Heraeus) bei RT zentrifugiert. Der Überstand wird komplett abgenommen. Das Pellet wird in 400 µl MACS-Puffer pro 10^8 Zellen resuspendiert und 50 µl pro 10^8 Zellen Reagens B1 zugegeben. Die Probe wird erneut für 15 min bei 4° C inkubiert. Die Zellen werden mit MACS-Puffer auf 10 ml aufgefüllt und anschließend 10 min mit 1200 rpm bei RT zentrifugiert. Das Pellet wird in 500 µl MACS-Puffer pro 10^8 Zellen aufgenommen und sehr gut resuspendiert. Die Zellen werden durch einen 30 µm Nylonfilter auf 15 ml Falcon-Röhrchen gegeben, um Zellbrocken abzusondern, welche die Säulen verstopfen könnten. Der Filter wird solange mit MACS-Puffer gespült, bis der Durchfluß klar ist. Währenddessen wird die Säule in den Adapter am Magneten gesetzt und mit 4 x 2 ml MACS-Puffer gespült. Das Eluat kann verworfen werden. Die gefilterte Zellsuspension wird in 2 ml-Portionen auf die Säule gegeben. Anschließend
wird die Säule 3 mal mit 2 ml MACS-Puffer gewaschen. Das Eluat wird verworfen oder als Negativfraktion aufbewahrt. Zur Eluation wird die Säule aus dem Magneten genommen, auf neues 15 ml Falcon-Röhrchen gesetzt und die selektionierten Zellen mit 3 x 2 ml MACS-Puffer ausgespült, indem sie mit dem Stempel durch die Säule gepresst werden.

Zur Erhöhung der Reinheit werden die Zellen über eine zweite kleinere MACS-Säule gegeben. Dann wird jedoch nur mit je 500 µl MACS-Puffer gewaschen und mit 4 mal 500 µl MACS-Puffer eluiert.

3.8.7 Suspensionskultur

Die Expansion der Zellen erfolgt in der Regel in 12-Lochplatten mit 2 ml pro Vertiefung oder in 7 ml-Teflonbeuteln. Die Konzentration der Zellen beträgt, wenn nicht anders beschrieben 1x10⁴ Zellen pro Vertiefung (in der 12-Lochplatte) oder 1x10⁴ Zellen pro ml (im Beutel oder anderen Kultursystemen).

Für das Standardprotokoll wird zu einem bestimmten Volumen X-vivo 10 Medium, wenn nicht anders beschrieben, 1% BSA, 1% Glutamin und Zytokine in den folgenden Konzentrationen zugegeben: SCF, FL je 50 ng/ml, TPO 20 ng/ml und IL-3 10 ng/ml. Nach der Zugabe der Zytokine wird das Medium mit einem Spritzenvorsatzfilter filtriert. Die Expansion erfolgt im Brutschrank bei 37° C und 5% CO₂. Sowohl die frischen unukultivierten Zellen als auch die expandierten Zellen werden in verschiedenen Assays untersucht. Die Auswertung der expandierten Zellen wird in Verhältnis gesetzt zu den Werten der frischen Zellen, und so die Vermehrung der verschiedenen detektierten Zellpopulationen berechnet.

3.8.8 Auflösen von Kollagenträgern nach Kultivierung im Spinner

Um die Zellen, die auf den Kollagenträgern im Spinner kultiviert wurden, quantifizieren und analysieren zu können, müssen die Träger mit Kollagenase verdaut werden.

Die Träger werden mit einer Pipette aus dem Spinner gesaugt, in ein Falcon-Röhrchen überführt und anschließend mit PBS gespült, um das FCS auszuwaschen. Nachdem die Träger im Falcon-Röhrchen abgesunken sind, werden 500 µl der in PBS-gelösten Kollagenase (2mg/ml) und 500 µl PBS zugegeben, um eine Kollagenase-Konzentration von 1mg/ml zu
erhalten. Die Träger werden für 15 min bei 37° C mit dem Enzym inkubiert, um eine optimale enzymatische Verdaunung zu erreichen. Anschließend wird die Probe auf Eis gestellt und bei 4° C für 5 min bei 1200 rpm (Rotina 46R, Hettich) zentrifugiert. Zum Einsatz der Zellen in die verschiedenen biologischen Assays, zur Quantifizierung und Analyse in der Durchflußzytometrie, wird das Pellet anschließend in PBS aufgenommen.

3.8.9 Durchflußzytometrie (FACS-Markierung)

Die FACS-Analyse ermöglicht nicht nur die Unterscheidung zwischen dem Vorliegen und der Abwesenheit eines Oberflächenmarkers, sondern macht auch das Abschätzen des Expressionsgrades auf der Zelle möglich, da die Intensität der emittierten Fluoreszenz der Zahl der durch markierten Antikörper gebundenen Moleküle direkt proportional ist.

Für jede Markierung werden mindestens 2,5x10⁴ Zellen eingesetzt. Die Zellen werden auf FACS-Röhrchen verteilt und mit 1 – 2 ml FACS-Puffer gewaschen. Das Serum im Puffer verhindert zum einen die Bindung der Antikörper an der Plastikwand des Gefäßes, zum anderen die unspezifische Bindung an die Zellen und vermindert deren Autofluoreszenz. Die Zellen werden 5 min bei 1500 rpm (Megafuge 1.0R, Heraeus) pelletiert, der Überstand abgegossen und das Röhrchen auf einem Tuch trockengetupft. Pro Markierung werden 5 µl markierter Antikörper zugegeben und gut durchmischt. Es folgt die Inkubation für mind. 15 min bei 4° C im Dunkeln. Um überschüssigen Antikörper auszuwaschen, werden die Proben
mit 2 ml FACS-Puffer aufgefüllt, gut durchmischt und für 5 min bei 1500 rpm (Megafuge 1.0R, Heraeus) zentrifugiert. Der Überstand wird dekantiert und die Probe entsprechend ihrer Zellzahl in 250 bis 500 µl FACS-Fixierung aufgenommen. Die fixierten Zellen sind bis maximal 2 Wochen im Kühlshrank lagerbar. Die Messung der Probe erfolgt am FACScan von Becton-Dickinson.

3.8.10 Methylzellulose-Assay (colony-forming units (CFU)-Assay)

3 Material und Methoden

erthroid = BFU-E) und Kolonien, die Zellen beider Gruppen enthalten (CFU-GEMM oder CFU-Mix).

3.8.11 Langzeitkultur (LTC-IC) - Limiting Dilution Assay (LDA)

Das LTC-IC-Assay ist eine genormte Kultivierungsbedingung, unter der sehr frühe Progenitoren überleben, weiter ausdifferenzierte jedoch absterben. Als LTC-IC (long-term culture-initiating cells) werden die frühen Progenitoren bezeichnet, welche die Fähigkeit besitzen, nach mindestens 5 Wochen Kokultur auf einer Schicht aus Stromazellen klonogene Zellen (CFU) zu generieren [8]. Die detektierten LTC-IC sind nah verwandt, wenn nicht sogar überlappend mit der repopulierenden Stammzelle, die mit dem NOD/SCID-Mausmodell detektiert wird [67]. Das LTC-IC-Assay ist somit die Methode, mit der man die frühen Stammzellen in vitro funktionell am besten erfassen kann [9, 10].

Für die Langzeitkultur werden je 6000 Zellen der murinen Stromazelllinie SL/SL und M2-10B4 pro Vertiefung in eine 96-Lochplatte ausplattiert jeweils in 50 µl Reaktormedium. Dabei wird die äußere Reihe der 96-Lochplatte freigelassen und später mit Wasser befüllt. Es ergeben sich also 6 übereinanderliegende Reihen mit je 10 Vertiefungen. Pro Zelllinie werden pro Platte 6 ml Reaktormedium mit 36.000 Zellen benötigt. Die Stromazellen werden vor dem Ausplattieren mit 80 Gray bestrahlt, um sie im Wachstum zu arretieren. Die Platte wird für mindestens 1 Stunde und maximal 7 Tage im Brutschrank bei 37° C und 5% CO₂ inkubiert, so daß die Zellen adhärent werden können.

Die Platte wird nun im Brutschrank bei 37° C und 5% CO₂ inkubiert. Wöchentlich einmal erfolgt ein halber Mediumwechsel, bei dem 100 µl des überstehenden Mediums vorsichtig entnommen werden, und dasselbe Volumen frischen Mediums zugefügt wird. Nach 6 Wochen wird das Medium vollständig entnommen. Dazu wird die Platte 10 min bei 1000 rpm (Rotina 46R, Hettich) zentrifugiert. Durch Schräghalten der Platte kann das Medium vollständig entfernt werden, ohne Zellen mit abzunehmen. Die Vertiefungen mit
3 Material und Methoden

Zellen werden nun mit 200 µl Methylzellulose überschichtet und für 2 Wochen im Brutschrank inkubiert. Nach 12 bis 14 Tagen erfolgt die Auswertung. Jede Vertiefung, in der mindestens eine Kolonie zu identifizieren ist, wie sie im CFU-Assay beschrieben ist, wird als positiv gewertet, andernfalls wird sie als negativ angesehen. Aufgrund der unterschiedlichen Zelldichten kann so eine quantitative Aussage über die Zahl der LTC-IC gemacht werden [9, 10].

3.8.12 Darstellung der Expansionsdaten als relative Werte

3.8.13 Das NOD/SCID-Mausmodell

Die immundefiziente Mäuse müssen unter sterilen Bedingungen (sterile Nahrung und Wasser) gehalten werden. Durch sublethale Bestrahlung wird Raum geschaffen für die Xenotransplantation der humanen hämatopoetischen Zellen. Nach 6 Wochen werden die Oberschenkelknochen und Blut der Maus entnommen, darin der Anteil humaner Zellen im FACS bestimmt, und so die Repopulierungsfähigkeit der transplantierten Zellen analysiert.

Die Versuche mit NOD/SCID-Mäusen fanden im Tierstall der Asta Medica statt unter Mithilfe von Andreas Westhoff. Die Mäuse werden 3 Stunden vor Transplantation mit 1 Gray
sublethal bestrahlt. Durch die Bestrahlung wird die Zahl der Makrophagen verringert, welche die Maus trotz ihrer genetischen Immundefizienz noch besitzt. Vor Infusion der Zielzellen in die Schwanzvene werden der Maus 5x10⁶ Rattenfibroblasten transplantiert. Diese produzieren humanes IL-3, das ein besseres Engraftment der humanen Zellen im murinen Knochenmark ermöglicht, ohne die murine Hämatopoese zu beeinträchtigen [68].

Zu 200 bis 300 µl Probe werden 10 µl Antikörper pipettiert. Es folgt eine Inkubation für 30 min im Dunkeln bei RT. Durch Zugabe von 2 ml Lysis-Lösung und einer weiteren Inkubation von maximal 10 min im Dunkeln bei RT werden die vorhandenen Erythrozyten lysiert (Abschnitt 3.8.15.). Anschließend werden die Proben für 5 Minuten bei RT mit 1300 rpm (Megafuge 1.0R, Heraeus) zentrifugiert und mit 2 ml FACS-Puffer gewaschen. Nach erneuter Zentrifugation bei 1300 rpm für 5 Minuten werden die Zellen in 200-400 µl FACS-Puffer aufgenommen und sofort gemessen.

Die Messung erfolgt am FACScalibur der Firma Maingen. Es werden mindestens 20.000 Ereignisse gemessen. Die Auswertung erfolgt mit der CellQuest-Software.

3.8.14 7-AAD-Analyse zur Apoptose-Messung

Zur Bestimmung des Anteils apoptotischer Zellen werden 2,5 bis 5x10⁵ Zellen in 1 ml FACS-Puffer aufgenommen und bei 1500 rpm (Megafuge 1.0R, Heraeus) für 5 min zentrifugiert. Der Überstand wird abgegossen und das FACS-Röhrchen auf einem Tuch trockengetupft. Das
Pellet wird in 180 µl FACS-Puffer aufgenommen und 7-AAD-Stocklösung im Verhältnis 1:10 zugegeben. Die Zellen inkubieren 20 min bei RT im Dunkeln und werden anschließend sofort am FACS-Gerät gemessen. Dabei wird 7-AAD im dritten Fluoreszenzkanal (FL-3) detektiert.

3.8.15 Erythrozyten-Lyse

Anders als bei der FACS-Markierung ohne Lyse werden hier pro Probe je 20 µl Antikörper zugegeben und die Probe 15 min lichtgeschützt bei RT inkubiert. Anschließend wird 2 ml Lysis-Lösung zugeben und erneut 10 min lichtgeschützt inkubiert. Die Zellen werden für 5 min bei 1300 rpm (Megafuge 1.0R, Heraeus) pelletiert. Der Überstand wird vorsichtig dekantiert. Anschließend werden die Zellen in 2 ml FACS-Puffer gewaschen und für 5 min bei 1300 rpm zentrifugiert. Vor der Messung werden die Zellen entsprechend ihrer Zellzahl in 250 bis 500 µl FACS-Puffer oder –Fixierung aufgenommen

3.8.16 Transwell-Assay nach Aiuti et al., [51]

In die untere Kammer des Transwell werden 0,6 ml HBMEC-Medium gegeben und das Transwell eingesetzt. Zur Etablierung des konfluenten Endothellayers werden 2×10^4 Endothelzellen in 100 µl HBMEC-Medium auf den Transwellfilter (5 µm Porengröße) gegeben und mindestens 2 und höchstens 3 Tage bei 5% CO$_2$ und 37°C kultiviert.

Um den Einfluß des Serums auf die Transmigration zu reduzieren, wird direkt vor Beginn des Assays der Filter vorsichtig in eine neue Kammer überführt, der Überstand abgenommen, und 100 µl serumfreies Medium zum Spülen auf den Filter gegeben. In eine neue Kammer werden 0,6 ml serumfreies Medium und Chemokin (125ng/ml SDF-1) gegeben. Das serumfreie Medium wird vom Filter abgenommen und dieser auf die neue Kammer gesetzt. In die obere Kammer auf den Filter werden $1,5 \times 10^5$ CD34+-Zellen in 100 µl serumfreies Medium gegeben. Nach 3,5 Stunden wird die obere Kammer abgenommen und die Zellen in der unteren Kammer gezählt.

3.8.17 Sphäroid-Protokoll

Sphäroide sind dreidimensionale kugelige Zellaggregate (Abb. 4.15., Abschnitt 4.2.1.), die bisher hauptsächlich in der Untersuchung solider Tumoren zum Einsatz kamen [71, 72]. Damit die verwendeten Stromafibroblastenzellen sich zu diesen Aggregaten zusammenfinden, müssen die Vertiefungen der 96-Lochplatte mit Agarose ausgekleidet werden und die Zellen für mindestens 48 Stunden unberührt bleiben. Pro Vertiefung bildet sich ein Sphäroid.

3.8.17.1 Auskleiden mit Agarose

1%ige Agarose-Lösung wird in der Mikrowelle erhitzt und je 50 µl in die Vertiefungen verteilt. Die Agarose wird durch Aufklopfen der Platten über den ganzen Boden verteilt und zieht sich auch die Wände hoch. Die Platten werden ohne Deckel zum Trocknen stehengelassen.
3.8.17.2 Fibroblasten (M2 10B4)

Die Stromazellen sollten in ihrer Wachstumsphase verwendet werden, d.h. sie sollten nicht ganz konfluent sein, bevor sie abgelöst werden, um Sphäroide zu bilden. Zu viele tote Zellen behindern die Kokultur mit den hämatopoetischen Zellen.

Die Zellen werden trypsiniert und gezählt. Pro Vertiefung und Sphäroid werden $2,5 \times 10^4$ Stromazellen in 200 µl IMDM/10 % FCS eingesetzt. Pro 96-Lochplatte werden demnach $2,5 \times 10^6$ Zellen in 20 ml Medium benötigt. Die Zellsuspension wird vorsichtig in die Vertiefungen pipettiert und 4 Tage im Brutschrank inkubiert.

3.8.17.3 Zellenzugabe

Nach 4 Tagen haben sich mit dem Auge sichtbare Zellaggregate gebildet. Es werden nur solche Vertiefungen für Experimente verwendet, in denen sich ein einziges Sphäroid befindet. Vor der Zugabe der Zellen, die in die Sphäroide einwandern sollen, werden 100 µl abgenommen. 1×10^4 der zu testenden Zellen werden pro Vertiefung und Sphäroid in 100 µl IMDM/10% FCS aufgenommen und vorsichtig zu den Sphäroiden gegeben.

Die Sphäroide werden nach 6, 12, 24 oder 48 Stunden oder später aufgelöst und im FACS analysiert.

3.8.17.4 Ernten für FACS

Vor der FACS-Markierung werden die Zellen über einen Filter (70 µm) gegeben, so daß eine Einzelzellsuspension entsteht und größere Zellaggregate zurückgehalten werden, die das FACS-Gerät verstopfen könnten.

Anschließend folgt eine FACS-Markierung (Abschnitt 3.8.9.) mit anti-IgG₁ (PE und FITC) als Kontrolle und einen zellspezifischen Antikörper. Wichtig für die Auswertung ist, daß die Zielzelle lediglich mit einer Farbe markiert wird, da andernfalls die Abgrenzung von Stromazellen, die eine starke Eigenfluoreszenz besitzen, schwerfällt.

3.8.17.5 Einbetten von Sphäroiden zum Einfrieren

Sphäroide werden, um Gefrierschnitte anzufertigen und sie anschließend immunhistologisch zu färben, in Einfriermedium eingebettet.

3.8.18 Zytokin-ELISA (von R&D Systems GmbH, Deutschland)

Mit der ELISA-Methode soll die Konzentration von Zytokinen in Mediumüberständen verschiedener Versuche bestimmt werden.

Die Überstände werden durch Zentrifugation für 10 min bei 1200 rpm von den Zellen getrennt und bis zur Verwendung im ELISA bei –80° C gelagert. Im ELISA wurden Verdünnungen (1:2 bis 1:20) für die Überstände von verschiedenen Kulturdauern hergestellt, da zu Beginn der Kultur die Zytokine sicherlich noch in höheren Konzentrationen vorliegen als zu einem späteren Zeitpunkt und durch Verdünnung eine Farbreaktion im meßbaren Bereich gewährleistet werden soll.

Die Durchführung der Quantikin-ELISAs erfolgt nach der Anleitung der Firma R&D Systems GmbH, Deutschland.
4 Ergebnisse

4.1 Optimierung der Expansion von Stammzellen aus Nabelschnurblut

4.1.1 Zytokinaustestung

In Abb. 4.1. sind Zytokinkombinationen dargestellt, die die besten Expansionsergebnisse hervorbrachten. Die Werte sind als relative Expansionswerte dargestellt. In jedem Experiment wird der Bedingung, die die höchsten Vermehrungen hervorbrachte die Eins zugeordnet und die Expansionsdaten der anderen Bedingungen in diesem Versuch relativ zu diesem Wert dargestellt. Damit lassen sich spenderabhängige Variationen ausgleichen.
Als Basiscocktail wurde eine Kombination von Zytokinen, SCF, FL und TPO gewählt, deren Wirkung auf die primitiven Zellen bekannt ist. Mit dieser Kombination ließ sich eine Vermehrung der CD34⁺-Zellen um das 9,3fache erreichen. Der Expansionsfaktor für die determinierten Progenitoren (CFU) betrug 9,1 und für die primitiven Progenitoren (LTC-IC) 12,6. Es zeigte sich, daß die Zugabe des Antikörpers Anti-TGFβ gegen das inhibitorische Zytokin TGFβ zu einem Basiscocktail aus SCF, FL und TPO keinen positiven Einfluß auf die Expansion der Vorläufer- und Stammzellen hat. Mit Zugabe von IL-6 ließ sich eine verbesserte Expansion der Gesamtzellen, sowie der CFU und CD34⁺-Zellen beobachten. Doch die frühen Vorläuferzellen, die LTC-IC, wurden im Vergleich zum Basiscocktail weniger gut expandiert. Lediglich die Zugabe von IL-3 zu dem Zytokinmix aus SCF, FL und TPO ermöglichte ein verstärkte Vermehrung aller hier getesteten Zellpopulationen (CD34⁺-Zellen 20,9fach, CFU 18,1fach und LTC-IC 16,3fach) .

Die besten Zytokinkombinationen (SCF, TPO, FL mit und ohne IL-3) wurden in NOD/SCID-Mausversuchen (Abb. 4.10.) gegeneinander verglichen. Es zeigte sich, daß nach Expansion der Zellen in Anwesenheit von IL-3 ein Engraftment ähnlich dem Engraftment frischer unmanipulierter Zellen erreicht wurde. Das heißt nicht nur, daß die ex vivo Expansion der CD34⁺-Zellen aus Nabelschnurblut nicht zum Verlust der Repopulierungsfähigkeit dieser Zellen führt, sondern auch, daß die Zugabe von IL-3 ins Medium nicht zur Verringerung des Engraftment führt.
4.1.2 Zytokinkonzentrationen

Wie Abb. 4.2. zeigt, unterschied sich die Verbrauchskinetik der Zytokine SCF und FL zum einen und TPO und IL-3 zum anderen. Während TPO und IL-3 bereits nach 4 Tagen im Überstand fast nicht mehr detektierbar waren, ließen sich von SCF und FL nach 7 Tagen noch 60 % ihrer Ausgangskonzentration nachweisen. Um den Einfluß des Verbrauchs durch die Zellen auf die Konzentrationsabnahme zu bestimmen, wurde Kulturmedium über 7 Tage bei 37° C gehalten und anschließend die Konzentration der Zytokine bestimmt. Da FL nach 7 Tagen bei 37° C noch zu 90% vorhanden war, ist hier für die Abnahme des Zytokins während der Kulturierung der Verbrauch durch die Zellen die Ursache. SCF dagegen war nach 7 Tagen vollständig zerfallen und ließ sich im ELISA nicht mehr nachweisen. Hier scheinen die Zellen SCF in einem gewissen Maße zu produzieren. Sowohl IL-3 als auch TPO zerfielen in 7 Tagen bei 37° C vollständig. Die Konzentrationsabnahme der Zytokine in Kultur kann also neben dem Verbrauch durch Zellen zum Teil durch den Zerfall bei 37° C bedingt sein.

Abbildung 4.2. Zytokinkonzentrationen des Überstandes einer Suspensionskultur über 4, 7 und 14 Tage mit den Zytokinen SCF, FL, TPO und IL-3, n=3
Da die Anwesenheit von TPO in Kultur für unabdingbar zum Erhalt der primitiven Zellen gehalten wird [24, 73] wurde überprüft, ob die Erhöhung der Ausgangskonzentration von 20 ng/ml auf 40 bzw. 80 ng/ml einen positiven Einfluß auf die Vermehrung der CD34+-Zellen hat.

Die relativen Expansionsdaten (Abb. 4.3.) zeigten, daß durch die Erhöhung der Ausgangskonzentration auf 40 bzw. 80 ng/ml sich die Expansion der Gesamtzellzahl und der CD34+-Zellen geringfügig erhöhen ließ, die Zahl der reifen und unreifen Progenitoren (CFU bzw. LTC-IC) sich aber eher verringerten. Die Konzentration von 20 ng/ml ist also für die verlässliche Vermehrung der Stamm- und Vorläuferzellen im getesteten Bereich ausreichend.

4.1.3 Untersuchung des Einflusses der Reinheit auf Expansion von Stamm- und Progenitorzellen

Wie bereits in einigen Veröffentlichungen beschrieben, hat die Reinheit der CD34-positiven Ausgangspopulation Einfluß auf eine erfolgreiche Expansion von Stamm- und Vorläuferzellen [74-76].

Um die geeignete Ausgangspopulation zur Expansion zu finden, wurden unaufgereinigte mononukleäre Zellen (MNC) aus Nabelschnurblut CD34+- selektionierten Zellen gegenübergestellt. Die Auswertung erfolgte anhand der Bestimmung der Vermehrung der Gesamtzellzahl und der CFU. Hierbei zeigte sich, daß die Selektion unabdingbar war, sowohl für die Vermehrung der Gesamtzellen als auch der CFU (Abb. 4.4.).
Die Reinheit der selektionierten CD34⁺-Zellen schwankte je nach Einsatz von einer bzw. zwei Säulen zur Selektion zwischen 50 bzw. 90%. In Abb. 4.5. ist der Einfluß der Reinheit auf die Vermehrung der Gesamtzellen und der frühen und reiferen Vorläuferzellen dargestellt.

Es zeigte sich, daß sowohl für die Vermehrung der Gesamtzellen, als auch der reiferen (CFU) und der unreiferen Vorläuferzellen (LTC-IC) unter den Standardbedingungen mit SCF, FL, TPO und IL-3 eine reinere Ausgangspopulation Vorteile brachte. Lediglich die Vermehrung der CD34⁺-Zellen war unabhängig von der Reinheit der Population vor der Kultur.
4.1.4 Kulturdauer

Die Dauer der Kultivierung von Stamm- und Vorläuferzellen sollte zum einen eine ausreichende Vermehrung der Progenitoren garantieren, ohne zum Verlust der Stammzelle zu führen, zum anderen für die klinische Anwendung praktikabel bleiben. Ziel war es, eine Kultivierungsduer zu finden, die innerhalb kürzester Zeit die besten Expansionsdaten liefert. Daher wurden in den Experimenten Kulturdauern von 4 bis maximal 14 Tage getestet (Abb. 4.6.).

Dabei zeigte sich, daß erst mit einer Kultivierungsduer von 7 Tagen eine ausreichende Vermehrung der CD34+-Vorläuferzellen und der LTC-IC (16fach bzw. 10fach) erlangt wurde. Aus einer Kultivierung über 4 Tagen resultierte lediglich eine 8fache Vermehrung der Gesamtzellzahl und eine 9fache Expansion der CD34+-Vorläuferzellen. Obwohl sich durch eine Verlängerung der Kultivierung auf 14 Tage eine weitere Steigerung der Gesamtzellzahl und der Expansion der CD34+- und der frühen Vorläuferzellen (LTC-IC) erreichen ließ (250fach, 72fach und 30fach), scheint eine Kultivierung über einen derart langen Zeitraum unpraktikabel und riskant. Der Anteil toter und apoptotischer Zellen nahm von Tag 7 auf Tag 10 deutlich zu. So waren im 7-AAD-Assay, mit dem im Durchflußzytometer lebende und apoptotische Zellen unterschieden werden können, nach 7 Tagen Kultur lediglich 6 % der Zellen apoptotisch oder tot, während nach 10 Tagen Kultur annähernd dreimal mehr Zellen (15,6 %) apoptotisch oder tot waren.
4.1.5 Kultursysteme

Nach Festlegung des Zytokincocktails und einer geeigneten Kulturdauer folgte die Austestung verschiedener Kultursysteme zur optimalen Vermehrung der Transplantate. Zur klinischen Anwendung der Expansion von Stamm- und Vorläuferzellen aus Nabelschnurblut müssten die Zellen im großen Maßstab unter GMP-tauglichen, d.h. in sterilen und idealerweise geschlossenen Systemen kultiviert werden. Ziel war es demnach, ein Kultursystem zu finden, das unter diesen Bedingungen eine für die Anwendung ausreichende Vermehrung der frühen und determinierten Progenitorzellen möglich macht. Getestet wurden gerührte Kultursysteme (Spinner), die eine gleichmäßige Versorgung der Zellen mit Medium, d.h. Nährstoffen gewährleisten sollten und handelsübliche Systeme, wie Zellkulturflaschen und Kulturbeutel. Die Experimente verglichen serumfreie und serumhaltigen Medien, wobei Kulturbedingungen ohne tierisches Serum bevorzugt wurden, da nur diese die Anwendung in der Klinik möglich machen. Es zeigte sich außerdem, daß die Kultivierung unter serumhaltigen Bedingungen zu einer Erhöhung der Gesamtzellzahl (110 zu 32fach) und der CFU (30 zu 20fach) führte, jedoch die Expansion der unreiferen Progenitoren (LTC-IC) stark reduziert war (5fach zu 1,5fach, siehe Abb. 4.7.).

Unter physiologischen Bedingungen bieten Nischen im Knochenmark Stamm- und Vorläuferzellen des Schutzes durch die Möglichkeit der Anheftung. Im gerührten System wurden deshalb poröse Kollagenträger getestet, die diese Nischen imitieren sollten (Abb. 4.8.). Die Anheftung an die Träger und die Vermehrung der Zellen gelang allerdings nur in Anwesenheit von FCS im Medium. Da Kälberserum zur Anwendung in der Klinik nicht geeignet ist, wurde die Kultivierung mit Kollagenträgern nicht weiterverfolgt.
Um Aussagen über die verschiedenen Kultursysteme zu machen, wurde die 12-Lochplatte als Vergleichsystem herangezogen, da von diesem System ausreichende und verläßliche Expansionsdaten vorlagen.

Beim Vergleich der verschiedenen Kultursysteme zeigte sich (Abb. 4.9.), daß sich neben der 12-Lochplatte, durch Kultivierung der Zellen im Teflonbeutel und Teflonspinner eine ausreichende Expansion der Stamm- und Vorläuferzellen erreichen ließen, während die T-Kulturflasche und der Glasspinner erheblich geringere Vermehrung der LTC-IC aufwiesen.

Die Kultursysteme Teflonbeutel und Teflonspinner wurden aufgrund ihrer guten Expansionsergebnisse im NOD/SCID-Mausmodell getestet (Abb. 4.10.).

Es ließen sich mit den expandierten Zellen alle Mäuse engraft. Es zeigte sich deutlich, daß das Engraftment der im Beutel kultivierten Zellen deutlich besser war als der im Teflonspinner kultivierten Zellen. Die im Beutel unter Zugabe von IL-3 expandierten Zellen erreichen mit 45 % einen Anteil im murinen Knochenmark, der dem Anteil nach der Transplantation unexpandierter Zellen (48%) vergleichbar war. Die im Spinner unter Zugabe von IL-3 expandierten Zellen erreichten 6 Wochen nach Transplantation nur einen Anteil von 23 % im murinen Knochenmark. Hier wurde der Unterschied im Engraftment der Zellen deutlich, ob sie mit dem Basiscocktail aus SCF, FL und TPO kultiviert wurden, oder ob die Expansion unter Zugabe von IL-3 erfolgte. Das Engraftment der Ersteren erreichte nur etwa 60% des Anteils humaner Zellen nach Transplantation der mit IL-3-kultivierten Zellen.
4.1.6 Zellkonzentration

Durch die Wahl des Beutels als Kultursystem im klinischen Einsatz musste für dieses System die Zellkonzentration festgelegt werden. Die Vorversuche in der 12-Lochplatte waren mit einer Konzentration von 1×10^4 Zellen pro Vertiefung in 2 ml durchgeführt worden. Dies diente als Richtwert für die folgenden Versuche im Beutel mit Zellkonzentrationen von 5×10^3, 1×10^4, 5×10^4, 1×10^5 und 2×10^5 Zellen pro ml (Abb. 4.11.). Durch Erhöhung der Zellkonzentration pro ml Medium ließen sich die Zellen im Beutel weniger gut vermehren. So reduzierte sich die relative Zellvermehrung von 0.92 bei einer Konzentration von 5×10^3 auf 0.55 bei 1×10^5 oder 0.11 bei 2×10^5 Zellen pro ml. Ähnliches galt für die Vermehrung der CFU und der CD34+-Vorläuferzellen, wobei hier zwei Werte abweichen. So war die relative CFU-Vermehrung bei 5×10^3 Zellen/ml mit 0,28 deutlich geringer als bei den anderen Konzentrationen, so daß sich hier der Trend nur an den nachfolgenden höheren Konzentrationen ablesen ließ. Doch hier nahm die relative Vermehrung der CFU von 0,57 bei 1×10^4 Zellen/ml auf 0,06 bei 2×10^5 Zellen/ml ab. Ebenfalls deutlich abweichend war der hohe relative Expansionswert der CD34+-Zellen von 0,99 bei einer Konzentration von 1×10^5 Zellen/ml. Dieser Wert wird jedoch außerachtgelassen da er in einem einzelnen Versuch ermittelt wurde und damit wenig Aussagekraft besitzt.

Abbildung 4.11. Relative Expansionsdaten der Suspensionskulturen über 7 Tage, die mit unterschiedlichen CB-CD34+-Zellkonzentrationen pro ml an Tag 0 inkubiert wurden. Die Kultivierung erfolgte unter serumfreien Bedingungen im Beutel mit SCF, FL, TPO und IL-3, n = 2-9
Ähnlich wie bei der Wahl des geeigneten Kultursystems spielen auch bei der Auswahl der Zellkonzentration nicht nur die besten Expansionsergebnisse eine Rolle, sondern auch die Praktikabilität in der klinischen Anwendbarkeit. Aus diesen Gründen wurde eine Konzentration von 5×10^4 Zellen pro ml für die Anwendung festgelegt. Mit dieser Konzentration liegen die relativen Ergebnisse durchschnittlich bei 0,56 (Zellvermehrung) bis 0,49 (Vermehrung der CFU- und CD34-positiven Zellen).

4.1.7 Austestung von Medien

Das in den Vorversuchen verwendete Medium X-vivo 10 kann für die klinische Anwendung nicht genutzt werden, da immer 1% BSA zugesetzt werden mußte. Vor der Expansion der Nabelschnurblutzellen zur nachfolgenden Transplantation im Menschen mußte deshalb ein Medium gefunden werden, das die klinische Anwendung zuläßt.

4.1.8 Zusammensetzung der expandierten Zellen

Die Ausgangszellpopulation bestand im Durchschnitt aus über 90% CD34⁺-Zellen. Davon exprimierten 18,6 % nicht das CD38-Antigen und werden deswegen einer unreiferen Fraktion zugerechnet. Etwas mehr als ein Drittel der CD34⁺-Zellen war außerdem CXCR4-positiv, trug den Rezeptor für das Chemokin SDF-1, das für das Homing der Zellen ins Knochenmark wichtig ist [55].

Durch die Expansion der CD34⁺-Zellen aus Nabelschnurblut veränderte sich die Zusammensetzung der Zellpopulation (Tab. 4.1.).

<table>
<thead>
<tr>
<th>CD34⁺-ZELLEN</th>
<th>CD34⁺/CD38⁻</th>
<th>CD34⁺/CXCR4⁻</th>
<th>CXCR4⁺</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tag 0</td>
<td>91,9 % ± 6,8</td>
<td>18,6 % ± 8,9</td>
<td>36,2 % ± 24,4</td>
</tr>
<tr>
<td>Tag 7</td>
<td>33,6 % ± 12,0</td>
<td>25,6 % ± 12,3</td>
<td>4,91 % ± 3,6</td>
</tr>
</tbody>
</table>

Tab. 4.1. Anteil markierter Zellen bei frischen unmanipulierten Zellen und nach 7 Tagen Expansion mit serumfreiem Medium unter Zugabe von SCF, FL, TPO und IL-3, n = 15-25

4.2 In vitro Untersuchung der Homing- und Migrationseigenschaften primärer Zellen und Zelllinien

Sphäroid, charakterisiert werden, das Zellen auf ihre Fähigkeit zur Wanderung durch stromale Fibroblastenzellen untersucht.

4.2.1 Charakterisierung des Sphäroidsystems – ein System zur Messung der Fähigkeit der Zellen, sich durch Fibroblastenschichten zu bewegen

Das hier verwendete Sphäroid besteht aus murinen Stromazellen, die sich durch die Kultivierung in einer mit Agarose ausgekleideten Vertiefung (Abschnitt 3.17.) zu einer dreidimensionalen kugeligen Struktur zusammenlagern (Abb. 4.16.). Das Sphäroid wurde bisher vor allem als Tumor- oder Metastasierungsmodell eingesetzt [71, 77]. Dabei erfolgte die Auswertung der Sphäroide durch enzymatische Auflösen der dreidimensionalen Struktur und Quantifizierung der gewanderten Zellen mit Hilfe der Durchflußzytometrie (Abschnitt 3.17.).

Primäre CD34⁺-CB-Zellen zeigten die Fähigkeit in diese Struktur einzuwandern. Da diese Migrationsfähigkeit ähnlich dem Lodgement der hämatopoetischen Zellen in das Knochenmark scheint, sollte dieses Sphäroidsysten charakterisiert werden. Das Sphäroid wurde in dieser Form vorher noch nicht beschrieben und somit als Migrationsmodell etabliert werden. Es sollten also die Mechanismen aufgeklärt werden, die für die Fähigkeit der hämatopoetischen Vorläuferzellen zur Bewegung im Sphäroid, respektive Knochenmark, verantwortlich sind.

4.2.1.1 Migrationsfähigkeit der CD34⁺-Progenitorzelllinie TF-1

Primäre CB-Zellen haben die Fähigkeit, in das dreidimensionale Sphäroidsystem zu migrieren, aber auch andere humane Progenitorzelllinie, wie die TF-1 Zellen besitzen diese Fähigkeit. Die TF-1 Zellen sind ebenfalls CD34-positiv und müssen
wachstumsfaktorabhängig kultiviert werden. Sie gilt als Progenitorzelllinie da sie durch Zugabe von Faktoren in der Lage ist in verschiedene Linien auszudifferenzieren. Die TF-1 Zelllinie zeigte eine doppelt so große Fähigkeit, sich in das Sphäroid zu bewegen (Abb. 4.16.) und war damit ein gutes Modell für die Untersuchung zur Migrationsfähigkeit von Progenitorzellen ins Sphäroid, da nicht immer ausreichend primäre Zellen zur Verfügung standen.

4.2.1.2 Kinetik der Einwanderung

Durch das Bestimmen des Anteils der eingewanderten CD34⁺-CB-Zellen am Sphäroid zu verschiedenen Zeitpunkten (Abb. 4.17.) konnte die Kinetik für die Einwanderung bestimmt werden.

Abbildung 4.16. Vergleich der Migration in das Sphäroid nach 24 und 48 Stunden von primären CB-Zellen und der CD34⁺ Zelllinie TF-1. n = 14

Abbildung 4.17. Bestimmung des Anteils gewanderter CD34⁺-CB-Zellen am Sphäroid nach sechs, 12, 24 und 48 Stunden. n = 3
Wie die Kinetik mit TF-1-Zellen über eine längere Zeitdauer ergab (Abb. 4.18.), wurde nach 72 Stunden eine Sättigung des Sphäroids mit über 50 % TF-1 Zellen erreicht. Nach 96 Stunden Migration nahm der Anteil der gewanderten Zellen etwas ab. Längere Migrationsdauern ließen sich nicht zuverlässig untersuchen, da die Zellen des Sphäroids nekrotisch wurden und sich damit die Bedingungen für die migrierenden Zellen stark änderten.

4.2.1.3 Untersuchung zur Proliferation der migrierten Zellen im Sphäroid

Wie in Abb. 4.19. gezeigt, veränderte sich der Anteil der eingewanderten Zellen bei den umgesetzten Sphäroiden kaum, während er bei den standardmäßig kultivierten Sphäroiden sich fast vervierfachte. In der Waschfraktion der umgesetzten Zellen fanden sich zu keinem Zeitpunkt Zellen, d.h. die Zellen verließen das Sphäroid nicht wieder. Die Zellen im Sphäroid
4 Ergebnisse
teilten sich offenbar nicht. Die Einwanderung in das Sphäroid erfolgt über einen längeren Zeitraum und ist nicht durch die Proliferation der Zellen im Inneren erklärbar.

4.2.1.4 Einfluß der Zellkonzentration auf das Einwandern
Um die Aufnahmekapazität des Sphäroids zu testen, wurden neben der üblichen Konzentration von 1\(\times 10^4\) Zielzellen pro Sphäroid verschiedene andere Zellkonzentrationen getestet. Die Auflösung der Sphäroide erfolgte nach 48 Stunden.

Abbildung 4.19. Bestimmung des Anteils eingewanderter TF-1 Zellen nach 6, 12, 24, 48, 72 und 96 Stunden, n = 2-15

Abbildung 4.20. Einfluß verschiedener TF-1 Zellkonzentration auf die Migration gemessen nach 48 Stunden, n = 1-2
Wie Abb. 4.20. zeigt, wurde bei einer Konzentration von 2,5x10^4 Zellen ein maximaler Anteil von 48 % Zellen pro Sphäroid erreicht. Höhere Zellkonzentrationen erbrachten keinen größeren Anteil eingewanderter Zellen im Sphäroid, sondern eine Verringerung des Anteils eingewanderter Zellen am Sphäroid. Ab einer Konzentration von 5x10^3 Zellen war mit ca. 40% gewanderter Zellen die Kapazitätsgrenze des Sphäroids erreicht.

4.2.1.5 Abhängigkeit der Migration von einem Konzentrationsgradienten

Um auszuschließen, daß die wachstumsfaktorenabhängigen TF-1 Zellen lediglich dem Konzentrationsgradienten der humanen Zytokine IL-3 und GM-CSF folgen, die sie zur Proliferation benötigen und von der Stromazelle produziert werden, wurde die Bildung eines Gradienten durch Zugabe derselben Zytokine in das Medium verhindert.

Da sich keine Änderung im Migrationsverhalten der TF-1 in das Sphäroid durch Zugabe von Zytokinen ins Außenmedium ergab (Abb. 4.21.), konnte ein Einfluß ausgeschlossen werden.

Wie bereits beschrieben, vermitteln SDF-1 über seinen Rezeptor CXCR4 und IP-10 sowie MIG über ihren Rezeptor CXCR3 die Migration hämatopoetischer Zellen. Durch die Aufhebung eines möglichen Konzentrationsgradienten sollte der Einfluß dieser Chemokine auf die Migration der hämatopoetischer Zellen ins Sphäroid überprüft werden.

Wie Abb. 4.22. zeigt, war der Effekt auf die Migration von TF-1 ins Sphäroid durch die Zugabe der Chemokine ins Außenmedium sehr gering, so daß ein Konzentrationsgradient der Chemokine SDF-1, MIG und IP-10 keine große Rolle bei der Migration von hämatopoetischen Vorläuferzellen in das Sphäroid zu spielen scheint.

![Abbildung 4.21. Effekt auf die Migration von TF-1 Zellen durch die Zugabe von IL-3 und GM-CSF in das Außenmedium der Sphäroide. Anteil der migrierten Zellen nach 24 bzw 48 Stunden Migration.](image-url)
Ein Nachweis der Chemokine im Medium nach 24 bzw. 48 Stunden erfolgte nicht, so daß ein Einfluß der Chemokindegradation nicht ausgeschlossen werden kann.

4.2.1.6 Austesten verschiedener Zelllinien

Um das Modell der Sphäroide weiter charakterisieren zu können, sollte untersucht werden, welche Zelleigenschaften für die Migration in das Sphäroid wichtig sind. Dazu sollte durch Austesten verschiedener Zelllinien ein Hinweis darauf erlangt werden, welche Eigenschaften zur Migration notwendig sind.

Abbildung 4.23. Migrationsverhalten verschiedener Zelllinien dargestellt als Anteil migrierter Zellen (blau) und Anteil Sphäroidzellen (orange). Zum Vergleich ist der Anteil migrierter primärer CB-Zellen und TF-1 Zellen gezeigt. n = 2-19
Sowohl die primären CB-CD34⁺-Zellen als auch die CD34⁺-Progenitorzelllinie TF-1 sind in der Lage, in das Sphäroid zu migrieren. Es wurden weiterhin Zelllinien getestet (Abb. 4.23.), die von Leukämien stammen, die das Bcr-abl Gen tragen (Philadelphia (Ph)+) und Zelllinien, die Bcr-abl negativ sind. Hier zeigte sich, daß die Anwesenheit von Bcr-abl mit dem Fehlen der Fähigkeit zur Migration der Zellen in das Sphäroid korrelierte. So fanden sich die Bcr-abl-positiven Zelllinien Sup-B15, Tom-1, BV-173 und K-562 nur zu einem Anteil von weniger als 10 % in den Sphäroiden. Dagegen migrierten die Bcr-abl-negativen Zelllinien Nalm-6 und HL-60 im hohen Maße (71,4 % bzw. 32,3 %) und waren damit den Standardwerten von CB und TF-1 (20,7 % bzw. 35,6 %) vergleichbar.

Abbildung 4.24. Vergleich des Migrationsverhaltens von Wildtyp Zelllinien und Zelllinien, die mit bcr-abl transfiziert wurden. n = 2

Das Einbringen des Bcr-abl-Gens in die U-937 und in die BA/F3 brachte keine Veränderung im Migrationsverhalten der Linie. Lediglich bei der Vorläuferzelllinie 32D migrierten die
Zellen mit dem transfizierten Bcr-abl-Gen etwa viermal besser (20,7 %) als die Wildtypzellen (5,8 %). Dies zeigte, daß Bcr-abl die Migrationsfähigkeit der Zellen nicht inhibiert.

Die zur Verfügung stehenden primären MNC von AML-Patienten (Ph-) wanderten mit einem Anteil von 38,2 % (AML) in das Sphäroid. Die primären MNC von ALL-Patienten (Ph+) wanderten erst nach Kultivierung für 24 Stunden, dann aber zu einem Anteil von 16,3 % in das Sphäroid.

4.2.1.7 Charakterisierung der Zelllinien und primären Zellen nach Adhäsionsmarkern

Da das Bcr-abl-Gen sich nicht als der ausschlaggebende Faktor für die Migrationsfähigkeit von hämatopoetischen Zellen ins Sphäroid erwies, stellte sich die Frage nach anderen Zelleigenschaften, die für diese Fähigkeit eine Rolle spielen könnten. Dazu wurde die unterschiedliche Ausstattung an Zelloberflächenproteinen untersucht. Verschiedene Adhäsionsmoleküle, wie die Chemokinrezeptoren CXCR4 und CXCR3 sowie Integrine (VLA-4, VLA-5 und LFA-1), werden als wichtig für Homing und Migration beschrieben [25, 44]. Die Expressionsmuster der Zelllinien für diese Oberflächenproteine wurden mit Hilfe der Durchflußzytometrie bestimmt (Tab. 4.2.)

<table>
<thead>
<tr>
<th></th>
<th>CB</th>
<th>TF1</th>
<th>NALM6</th>
<th>HL60</th>
<th>AML</th>
<th>ALL</th>
<th>BV173</th>
<th>K562</th>
<th>NK92</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bcr-abl</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Oberflächenproteine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD45</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>(+)</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>CD34</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CD19</td>
<td>-</td>
<td>+</td>
<td></td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD117</td>
<td>+</td>
<td>+</td>
<td>(+)</td>
<td>-</td>
<td>+</td>
<td></td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemokinrezeptoren</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CXCR3</td>
<td>+</td>
<td>(+)</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>(+)</td>
<td>(+)</td>
<td>+</td>
</tr>
<tr>
<td>CXCR4</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Adhäsionsproteine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD49d (VLA-4)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>CD49e (VLA-5)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD11a (LFA-1)</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>(+)</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>CD29 (β-Integrin)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD54 (ICAM)</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>CD106 (VCAM-1)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Migration in %</td>
<td>20,7</td>
<td>35,6</td>
<td>71,4</td>
<td>32,3</td>
<td>38,2</td>
<td>11,0</td>
<td>1,9</td>
<td>9,6</td>
<td>1,7</td>
</tr>
</tbody>
</table>

Tabelle 4.2: Analyse verschiedener primärer Zellen und Zelllinien in der Durchflußzytometrie auf die Expression von bestimmten Oberflächenmarkern, Rezeptoren und Adhäsionsmolekülen. + bedeutet Expression, - bedeutet keine messbare Expression des untersuchten Proteins. (+) = keine konsistente Expression.
Es ließ sich kein Expressionsmuster von Oberflächenmarkern erkennen, das mit der Migrationsfähigkeit der Zellen korrelierte.

Ähnliches zeigt sich auch für den Chemokinrezeptor CXCR3: So befindet sich der Rezeptor für IP-10 und MIG nicht auf migrierende Zellen, wie Nalm-6 und HL-60, aber nichtmigrierende Zellen, wie NK92, tragen ihn auf der Oberfläche.

4.2.1.8 Blockierung verschiedener Chemokinrezeptoren und Adhäsionsmoleküle

Die Blockierung der Oberflächenproteine bei stimulierten CD34+-Zellen aus CB ist in Abb. 4.25. gezeigt. Es war kein Effekt auf die Migration der Zellen durch Blockierung von CXCR4 zu sehen. Einen leicht stimulatorischer Effekt auf die Migration (Anteil von 30,6 % der Kontrollzellen im Sphäroid zu 37,7 % der VLA-4 blockierten Zellen) schien die Zugabe von Anti-VLA4 zu haben, während die Blockierung von CXCR3 nach 24 Stunden Migration
einen leichten inhibitorischen Effekt hatte (Reduktion des Anteils migrierter Zellen im Sphäroid um ein Viertel), der nach 48 Stunden Migration nicht mehr erkennbar war. Ein ähnliches Bild (Abb.4.26.) zeigte sich bei der Blockierung der Oberflächenmoleküle von TF-1 Zellen. Hier hatte die Blockierung sowohl des Integris VLA-4 als auch der Chemokinrezeptoren CXCR3 und CXCR4 keine Auswirkung auf die Migrationsfähigkeit der Zellen. Mit
spezifischer Blockierung wanderten die Zellen im gleichen Maße wie die Kontrollzellen. Der Effekt nach 48 Stunden war dem nach 24 Stunden vergleichbar.

4.2.1.9 Inhibition verschiedener Signalwege der Zelle

Wie in Abb. 4.27. zu sehen ist, hatte LY294002 keinen deutlichen inhibitorischen Effekt auf die Migration in das Sphäroid, so daß man davon ausgehen kann, daß bei dem Einwandern die PI-3 Kinase keinen Einfluß hat. Auch die mehr oder minder spezifische Hemmung der Proteintyrosinkinasen im Signalweg der Zellen hatte nur geringe Auswirkungen auf die Migrationsfähigkeit der TF-1. So erreichte man durch Zugabe von Genistein oder Tyrphostin im Mitteln nur eine Hemmung um 20 %. Die Inhibition der abl-, c-kit und PDGF-Kinase durch STI571 verringerte die Migration der Zellen im Vergleich zur Kontrolle nicht.

Abbildung 4.27. Einfluß verschiedener Inhibitoren der Signaltransduktion auf das Migrationsverhalten von TF-1 Zellen. Dargestellt ist die relative Migration im Vergleich zur Kontrolle, TF-1 Zellen ohne Inhibitoren, n = 4
4 Ergebnisse

Lediglich durch die Hemmung der G-Proteine durch das Pertussis Toxin wurde eine weitgehende Inhibition der Migration der Zellen erreicht. Der Prozeß der Migration von hämatopoetischen Zellen in das Sphäroid geschieht also unter Beteiligung eines trimeren G-Proteins.

4.2.1.10 Inhibition der kleinen GTPasen

Neben der Signalvermittlung in die Zelle und innerhalb der Zellen, die im oberen Abschnitt untersucht wurde, spielen die kleinen GTPasen der Rho-Familie eine wichtige Rolle bei der Motilität von Zellen (Abschnitt 2.12., Abb. 2.5.). Die Mitglieder der Familie, Rho, Rac und Cdc42 regulieren die Organisation von Actin-Filamenten [63, 66].

<table>
<thead>
<tr>
<th>HEMMUNG DER GTPASE</th>
<th>RAC</th>
<th>RHO A</th>
<th>CDC 42</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toxin B</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Fusionstoxin (FT)</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Lethal Toxin (LT)</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Tabelle 4.3. Spezifische Hemmung (+) der kleinen GTPasen durch Toxine von Clostridien.

Um den Einfluß der Rho-Familie auf die Migration von hämatopoetischen Zellen in das Sphäroid zu untersuchen, wurden verschiedene Toxine zur Inhibition der kleinen GTPasen eingesetzt. Das Toxin B aus Clostridium difficile inhibiert die GTPasen RhoA, Rac und Cdc42 durch Glykosylierung des G-Proteins, während das Lethaltoxin (LT) aus Clostridium sordellii durch Glykosylierung spezifisch Ras und Rac, jedoch nicht Rho hemmt. Das Fusionstoxin (FT) bestehend aus dem Toxin C3 des Clostridium limosum und der C2I-Einheit von Clostridium botulinum kann mit Hilfe eines Carriers C2II aus Clostridium botulinum die Zellmembran passieren und in den Zellen spezifisch die Rho-GTPase durch ADP-Ribosylierung hemmen [78].

Der Einsatz der Toxine hatte deutliche Effekte auf die Einwanderung der TF-1 in das Sphäroid (Abb. 4.28.). Die Hemmung der kleinen GTPasen Rho, Rac und Cdc42 durch Toxin B verhinderte die Migration der Zellen über 24 und 48 Stunden vollständig. Auch LT und FT hatten einen deutlichen, wenn auch nicht vollständigen inhibitorischen Effekt. Nach 24 Stunden war der Anteil der gewanderten Zellen am Sphäroid um zwei Drittel geringer als der Anteil der Kontrolle. Auch nach 48 Stunden Migration war der Anteil der gewanderten Zellen um 30 % (im Falle des FT) oder 55 % (LT) geringer als der Anteil der gewanderten Kontrollzellen. Bei der Migration von TF-1 in das Sphäroid handelt es sich also um einen

Eine Kombination von Pertussis Toxin und FT sollte Aufschluß darüber geben, ob sich durch die Inhibition von G-Proteinen im Signaltransduktionsweg und die Hemmung der kleinen GTPase Rho A die Migration der Zellen in das Sphäroid verstärkt verhindern läßt und so die Frage geklärt werden, ob die beiden Komponenten der Migration sich additiv oder synergistisch verhalten.

Abbildung 4.28. Einfluß der Inhibition der kleinen GTPasen auf die Migration von TF-1 Zellen über 24 bzw 48 Stunden. Toxin B und Lethaltoxin wurden mit 100 ng/ml eingesetzt, Fusionstoxin/Carrier mit 1000 ng/ml. Die Migration ist relativ zur Kontrolle dargestellt, n = 2-3

Abbildung 4.29. Einfluß der Kombination aus Pertussis Toxin und Fusionstoxin auf die Migration von TF-1 über 12 Stunden. Migration ist relativ zur Kontrolle dargestellt. PT wurde in einer Konzentration von 100 ng/ml eingesetzt, Fusionstoxin/Carrier mit 1000 ng/ml.
Abb. 4.29. zeigt, daß sich die Hemmung der Migration durch eine Kombination aus der Inhibition der G-Proteine durch Pertussis Toxin und der Inhibition von Rho A (FT) noch zu 75 % verstärken ließ. Doch wurde keine vollständige Inhibition der Migration erreicht. Die beiden verschiedenen Komponenten der Migration wirken additiv zueinander jedoch nicht synergistisch.

4.2.2 Einfluß der Kultivierung auf das Migrationsverhalten

Durch Kultivierung werden die Zellen verschiedenen Stimuli von Wachstumsfaktoren und Zytokinen ausgesetzt. Die Eigenschaften der Zelle verändern sich, und auch die Migrationsfähigkeit kann sich ändern.

4.2.2.1 Wanderung von expandierten CD34+-Zellen im Transmigrationsassay

Auch bei primären Zellen ließ sich während der Kultivierung eine Veränderung in der Migrationsfähigkeit der Zellen erkennen. So wanderten frische CD34+-CB-Zellen im Transwell-Assay schlechter (Abb. 4.30.) als die über 7 Tage kultivierten CD34+-Zellen. Das Transwell-Assay imitiert die Funktion der Knochenmarkendothelzellen in vivo, indem es die selektive transendotheliale Migration von Progenitoren demonstriert [48], die beim Homing der Zellen notwendig ist (Einleitung 2.9., Abb. 2.4. A).

Für dieses Assay wird auf eine mikroporöse Membran ein konfluenter Layer aus humanen Knochenmarkendothelzellen (HBMEC) aufgebracht. Die Membran unterteilt das System in eine untere und eine obere Kammer (Abschnitt 3.16.) Durch Zugabe von chemotaktischen Stimuli in die untere Kammer, kann die Migrationsfähigkeit von Zellen aus der oberen...
Kammer durch die Endothelzellschicht in die untere Kammer bestimmt werden. Als chemotaktischer Stimulus wurde das Chemokin SDF-1 gewählt.

4.2.2.2 Vergleich der Migrationsfähigkeit expandierter CD34⁺-Nabelschnurblutzellen in den verschiedenen Migrations- und Engraftment-Assays, Transwell, Sphäroid und NOD/SCID-Maus

Mit Dauer der Kultivierung die CD34⁺-Zellen gewannen diese im verstärkten Maße die Fähigkeit in das Sphäroid (Abb. 4.31.) und durch die Endothelschicht des Transwell-Assays zu migrieren. Nach zwei Tagen Kultivierung wurde ein Plateau von über 45 % migrierten Zellen im Sphäroid und über 25 % transmigrierten Zellen im Transwell-Assay erreicht. Im Transwell-Assay ließ sich durch Kultivierung der Zellen für 10 Tage noch mal eine Steigerung des Anteils migrierender Zellen um die Hälfte auf 45 % transmigrierter Zellen erreichen.

Abbildung 4.32. Veränderung der Expression der Adhäsionsmarker VLA-4, VLA-5 und LFA auf CD3-Zellen im Verlaufe der Kultur über 7 Tage mit SCF, FL, TPO und IL-3. n = 1-4
5 Diskussion

5.1 Die Zytokinkombination SCF, FL, TPO und IL-3 erweist sich als geeignet zur \textit{ex vivo} Expansion

Es zeigte sich, daß sich mit einer Kombination von SCF, FL, TPO und IL-3 die frühen (CD34\(^{+}\)-Zellen und LTC-IC) und determinierten Vorläuferzellen (CFU) ohne Verlust der Repopulierungsfähigkeit optimal expandieren lassen [79].

Da die Zytokine SCF, TPO und FL als unverzichtbar für die Kultivierung primitiver hämatopoetischer Zellen gelten [24, 80-83], wurde diese Kombination als Basiscocktail für die \textit{ex vivo} Expansion gewählt. Durch den Zusatz weiterer Zytokine wurde eine Steigerung der Amplifikation vor allem der primitiven hämatopoetischen Zellen aus CB erhofft.

IL-6 wird im murinen System als stimulierend für die Produktion von CFU angesehen. In dem hier vorgestellten humanen System aus CD34\(^{+}\)-CB-Zellen werden durch die Zugabe von IL-6 CFU ebenfalls stärker vermehrt als mit dem Basiscocktail aus SCF, FL und TPO. Ein positiver Effekt auf die Vermehrung der LTC-IC war jedoch nicht zu erkennen. Auch Petzer \textit{et al.} beschreiben bei der Zugabe von IL-6 zu einem Cocktail aus SCF, FL und IL-3 eine verstärkte Amplifikation von CFU aus KM-Zellen, sehen aber keinen Einfluß auf die Expansion der LTC-IC [24]. Mit dem Einsatz von löslichem IL-6-Rezeptor zusätzlich zu IL-6 und der damit verbundenen Aktivierung des gp130 Rezeptors wurde ein Synergismus mit FL und SCF und darausfolgende Amplifikation der NOD/SCID-repopulierenden Zellen aus CD34\(^{+}\)-Zellen aus CB beschrieben [84].

Es besteht Unklarheit, ob IL-3 in vitro einen vorteilhaften oder schädlichen Effekt auf die Stamm- oder Vorläuferzelle ausübt. In primitiven murinen hämatopoetischen Zellen mit lympho-myeloidem Potential beeinträchtigt IL-3 die Selbsterneuerungskapazität dieser Zellen und blockiert die Zytokin-stimulierte Generation von lymphoiden Vorläuferzellen [87, 88]. Andererseits gilt IL-3 als einziger Faktor, der alleine in der Lage ist, CFU zu vermehren [24], während weder FL noch TPO alleine die Expansion dieser Vorläuferzellen unterstützen können.

Die Daten dieser Arbeit zeigen nach 7 Tagen Kultur mit dem Basiscocktail aus SCF, FL und TPO einen proportionalen Anstieg der CD34⁺-Zellen sowie der primitiven (LTC-IC) und determinierten (CFU) Vorläuferzellen. Die Zugabe von IL-3 verstärkt die Proliferation aller analysierter Zellpopulationen. Wie für die Vermehrung der CD34⁺-Zellen zeigt sich auch für die primitiven CD34⁺CD38⁻ und die CXCR4⁺-Zellpopulationen, daß deren prozentualer Anteil an den Gesamtzellen abnimmt. Durch die verstärkte Vermehrung aller Zellen resultiert mit IL-3 dennoch eine Nettoexpansion dieser Zellpopulationen [79].

Ob es sich dabei um eine Vermehrung der unreifen CD34⁺CD38⁻-Zellen handelt, oder ob wir nur eine Herunterregulierung des Oberflächenmarkers CD38 sehen, bleibt ungewiss. Es wird beschrieben, daß das CD38-Antigen von CD38⁺-Zellen bei serumfreier Kultivierung verloren geht, ohne daß diese Zellen als primitive Progenitoren angesehen werden sollten und es so zu Fehleinschätzungen zur Expansion der CD38⁻-Zellen kommt [89, 90].

In den in dieser Arbeit durchgeführten Versuchen konnte beim Vergleich der unmanipulierten und der mit den Zytokinen SCF, FL, TPO und IL-3 kultivierten Zellen keine Abnahme der *in vivo* Repopulierungsfähigkeit festgestellt werden. Dagegen finden sich nach Transplantation der Zellen, die ohne die Zugabe von IL-3 kultiviert wurden, etwas weniger humane Zellen im murinen Knochenmark.

5.2 *Die CD34- Selektion ist notwendig für eine optimale Expansion*

5.3 Während der Kultivierung nimmt die Konzentration der Zytokine im unterschiedlichen Maße ab

Bei der Kultivierung von CD34+-Nabelschnurblutzellen werden demnach Zytokine ins Medium sezerniert. So erklärt sich, daß sich SCF trotz seines raschen Zerfalls bei 37° C bis zum Ende der Kultivierung im Medium nachweisen läßt. TPO dagegen läßt sich schon nach kürzester Zeit nicht mehr im Medium detektieren. Der Konzentrationsabfall des Zytokins wird also neben dem Zerfall bei 37° C noch im großen Maße durch den Verbrauch durch die proliferierenden Zellen bestimmt. Zandstra et al. schreiben dazu, daß genau der Zelltyp, dessen maximale Proliferation in vitro auf der Stimulation durch die höchste Konzentration bestimmter Zytokine beruht, auch die größte Kapazität besitzt, genau diese Zytokine aus dem Medium zu entfernen [107].

Zeiteinheit gebunden werden, für die Expansion einer bestimmten Reifungsstufe der hämatopoetischen Zellen wichtig ist [107, 109].

5.4 Kulturdauern von mehr als 4 Tagen vermehren die Zellen ausreichend ohne Verlust der Repopulierungsfähigkeit

5.5 Das statische Kultursystem Teflonbeutel erweist sich anderen System gegenüber als überlegen

So würde die Expansion eines normalen CB-Transplantates von 5×10^6 CD34⁺-Zellen im optimalen Konzentrationsbereich von 5×10^3 Zellen pro ml das Ansetzen von einem Liter Medium und den Einsatz von mehreren Milligramm Zytokinen bedeuten.

5.6 Die ex vivo Expansion gelingt unter Erhalt der Repopulierungsfähigkeit

Die optimalen Bedingungen zur Expansion von CD34⁺-Zellen unter Erhaltung der Stammzelleigenschaften wurden abschließend im Repopulierungsassay, dem NOD/SCID-Mausmodell, überprüft. Dabei erwies die *ex vivo* Expansion von CD34⁺-CB-Zellen mit einem Zytokincocktail aus 50 ng/ml SCF und FL sowie 20 ng/ml TPO und 10 ng/ml IL-3 in einer Suspensionskultur als geeignet, um diese Zellen ohne Verlust der Repopulierungsfähigkeit zu expandieren.

Die Kultivierung erfolgt mit einem GMP-tauglichen Medium, Cellgro SCGM in einem statischen Kultursystem, dem Teflonbeutel, über sieben Tage. Unter diesen Bedingungen lassen sich die Gesamtzellzahl, sowie die determinierten (CFU) und frühen (CD34⁺-Zellen und LTC-IC) Vorläuferzellen vermehren, ohne daß diese Zellen ihre Fähigkeit verlieren, das Knochenmark zu besiedeln, dort anzuwachsen, zu proliferieren und ein neues hämatopoetisches System zu etablieren, wie sich durch die Anwesenheit von lymphoiden und myeloiden humanen Zellen im murinen Knochenmark nachweisen ließ.
5.7 Nicht alle Zellen zeigen die Fähigkeit zur Migration in das Sphäroid

Das vergleichbare in vivo-System, die Maus, ist dagegen sehr komplex. Die verschiedenen Mechanismen und Schritte des Homingprozesses lassen sich im Einzelnen nicht gut beobachten und voneinander trennen. Außerdem ist der Zeitraum bis zur Analyse mit 6 Wochen sehr lange, so daß nicht zwischen Homing per se und Proliferation und/oder Differenzierung unterschieden werden kann. Das Sphäroidmodell bietet sich weiter an zur Untersuchung der Migration, da man im Unterschied zum Mausmodell die zu untersuchende
Zellpopulation genau bestimmen kann und damit den Einfluß von akzessorischen Zellen ausschließen kann.

Neben den primären CD34⁺-CB-Zellen wandern die Zelllinie TF-1 und weitere hämatopoetische Zelllinien. Leukämische Zelllinien allerdings, die das Onkogen Bcr-abl tragen, sind nicht in der Lage, in das Sphäroid zu migrieren.

Bei der Untersuchung von murinen 32D Zellen, die mit Bcr-abl transfiziert wurden, wiesen überraschenderweise die transformierten Zellen ein größeres Migrationspotential auf als die Wildtypzellen. Da die Zellen allerdings unter Wachstumsfaktorentzug kultiviert wurden, um die transformierten Zellen zu selektionieren, und der Einfluß von Zytokinen auf die Migration beträchtlich ist [124-127], muß der Einfluß dieses Entzuges auf die Wanderungsfähigkeit der Zellen erst noch untersucht werden. Die Stimulation von Bcr-abl-positiven Zellen, wie die primären MNC einer Ph⁺ ALL, mit Zytokinen kann die mangelnde Migrationsfähigkeit der Zellen ebenfalls überwinden.

5.8 Verschiedene Adhäsionsmarker haben unterschiedlichen Einfluß auf die Migration in das Sphäroid

Bisher ist wenig über die Mechanismen bekannt, welche die intravenös infundierten Stammzellen dazu anleiten, in das Knochenmark zu finden und dort anzuwachsen. Den Adhäsionsmolekülen wird eine wichtige Rolle bei der Zurückhaltung der Stamm- und
Progenitorzellen im Knochenmark zugedacht. Sie gelten zudem als essentiell für das *Homing* der hämatopoetischen Stamm- und Vorläuferzellen in ihre Nischen [25]. Bisher wurde allerdings noch kein Adhäsionsrezeptor oder -ligand gefunden, der ausschließlich auf Progenitor- oder Stammzellen oder in Knochenmarknischen exprimiert wird [25]. Um die Mechanismen zu entschlüsseln, die für die Migration der Zellen in das Sphäroid nötig sind, wurden in erster Linie Adhäsionsmarker und Faktoren untersucht, die bereits als essentiell für das *Homing* beschrieben wurden.

Die chemotaktische Wirkung der Liganden von CXCR3 wurde desgleichen bereits kontrovers diskutiert. So migrieren GM-CSF-stimulierte CD34⁺-CB-Zellen im Transwell-Assay auf den

Um eine mangelnde Expression der verantwortlichen Adhäsionsmoleküle als Grund für die fehlende Inhibition auszuschließen, wurde deren Vorhandensein in der Durchflußzytometrie bestimmt und anders als Seoh et al., die erst nach 4 Tagen Expansion eine Hochregulierung der Expression von VLA-4 auf den CD34⁺-CB-Zellen sehen [131], exprimieren mehr als 95% der in dieser Arbeit untersuchten CD34⁺-Zellen aus CB von Beginn an VLA-4. Auch die untersuchten TF-1 Zellen sind in hohem Maße VLA-4 positiv.

β₁-Integrine können in unterschiedlichen Affinitätszuständen vorliegen [2], womit der mangelnde Einfluß von VLA-4 bei der Migration in das Sphäroid erklärt werden könnte. So ist beschrieben, daß β₁-Integrine bei CD34⁺-TF-1 Zellen in einem Zustand geringer Affinität exprimiert sind und erst durch IL-3, SCF oder GM-CSF in einen Zustand hoher Affinität versetzt werden. [125]. Da TF-1 Zellen wachstumsfaktorabhängig mit IL-3 und GM-CSF kultiviert werden, sollten sich die β₁-Integrine somit vor der Zugabe zum Sphäroid in einem Zustand hoher Affinität befinden.
Durch den fehlenden inhibitorischen Effekt von blockierenden Antikörpern gegen VLA-4 auf die Migration von CD34⁺-CB- und TF-1 Zellen erscheint die Beteiligung von VLA-4 an der Migration der Zellen in das Sphäroid unwahrscheinlich.

5.9 Die Migration in das Sphäroid läßt sich Pertussis Toxin, aber nicht durch anderen Inhibitoren verschiedener Signalwege hemmen

Um Aufschluß über die intrazellulären Signalwege zu erhalten, die für die Migration in das Sphäroid von Bedeutung sind, wurden Inhibitoren gegen Eckpunkte verschiedener Signalwege eingesetzt. Ausgehend von der relativ gut untersuchten Signalkette des
5.10 Die Inhibition der kleinen GTPasen hemmt die Migration

Bisherige Untersuchungen zum Signalweg der Rho-GTPasen beschreiben außerdem eine Verbindung dieser Proteine mit G-Proteingekoppelten Rezeptoren [63], was einen Zusammenhang mit dem inhibitorischen Effekt von Pertussis Toxin herstellt, bei dem eine Beteiligung von G-Proteinen an der Migration in das Sphäroid festgestellt wurde. So läßt sich
auch der additive Effekt der gleichzeitigen Gabe von Pertussis Toxin und Fusiontoxin erklären.

5.11 Expandierte Zellen zeigen unterschiedliches Verhalten in den verschiedenen Migrations- und Homing-Assays

Was kann für das mangelnde Engraftment der Zellen in die NOD/SCID-Maus nach Kultivierung der Zellen für 1 oder 2 Tage verantwortlich gemacht werden? Die Zellzahl ändert sich in den ersten beiden Tagen der Kultivierung kaum. Der Unterschied in der Engraftmentfähigkeit liegt also in den durch Kultivierung der Zellen veränderten Eigenschaften der Zellen.

Ein weiter Faktor für die erhöhte Migrationsfähigkeit kann die Zusammensetzung und die Art der zugegebenen Zytokine sein. Für die Mobilisierung von hämatopoetischen Progenitorzellen durch die Gabe von Anti-VLA-4 oder Anti-VCAM-1 ist die Anwesenheit von funktionstüchtigem SCF und seinem Rezeptor, den e-kit-Rezeptor wichtig [127]. Dies kann als Hinweis für die Notwendigkeit des SCF-Signalweges in der Chemokinese der Zellen gesehen werden, da SCF die Aktivität von β₁-Integrinen regulieren kann [126]. Zum anderen können hämatopoetische Progenitoren über die Bindung von IL-3 oder SCF an die Heparansulfatproteoglycanen der Extrazellulärmatrix gebunden werden [139]. Letztlich läßt sich nicht genau bestimmen, was die Zellen dazu veranlasst, nach Kultivierung für einen oder zwei Tage ihre Repopulierungskapazität zu verlieren.

Das Sphäroidmodell läßt eine VLA-4/VCAM-1 abhängige Migration von CD34⁺-hämatopoetischen Zellen zu, die durch Pertussis Toxin hemmbar ist. Wiesmann et al. beschreiben eine mangelnde Inhibition des Engraftment von CD34⁺-Zellen durch das Pertussis Toxin in das murine Knochenmark, sehen aber eine Verhinderung des Milzengraftment [135]. Andere Gruppen haben bereits gesehen, daß anders als das Engraftment von Knochenmark der Prozeß der Migration von hämatopoetischen Zellen in die
<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>7-AAD</td>
<td>7-Aminoactinomycin</td>
</tr>
<tr>
<td>Abb.</td>
<td>Abbildung</td>
</tr>
<tr>
<td>ALL</td>
<td>Akute Lymphatische Leukämie</td>
</tr>
<tr>
<td>AML</td>
<td>Akute Myeloische Leukämie</td>
</tr>
<tr>
<td>BFU-E</td>
<td>Burst-forming unit erythroid</td>
</tr>
<tr>
<td>BSA</td>
<td>Bovine serum albumin</td>
</tr>
<tr>
<td>CB</td>
<td>Cord blood = Nabelschnurblut</td>
</tr>
<tr>
<td>CFU</td>
<td>Colony-forming units</td>
</tr>
<tr>
<td>CFU-GEMM</td>
<td>CFU-granulocyte erythroid megacaryocyte macrophage</td>
</tr>
<tr>
<td>CFU-GM</td>
<td>Colony-forming unit granulocyte-macrophage</td>
</tr>
<tr>
<td>CML</td>
<td>Chronisch-Myeloische Leukämie</td>
</tr>
<tr>
<td>CSF</td>
<td>Colony-stimulating factor</td>
</tr>
<tr>
<td>FACS</td>
<td>Fluorescence activated cell sorting</td>
</tr>
<tr>
<td>FCS</td>
<td>Fetal calf serum</td>
</tr>
<tr>
<td>FITC</td>
<td>Fluorescein</td>
</tr>
<tr>
<td>FL</td>
<td>Flt-3 receptor ligand</td>
</tr>
<tr>
<td>FT</td>
<td>Fusiontoxin</td>
</tr>
<tr>
<td>G-CSF</td>
<td>Granulocyte-colony stimulating factor</td>
</tr>
<tr>
<td>GMP</td>
<td>Good manufacturing practice</td>
</tr>
<tr>
<td>GVHD</td>
<td>Graft versus host disease = Transplantat-gegen-Wirt-Reaktion</td>
</tr>
<tr>
<td>HBMEC</td>
<td>Human bone marrow endothelial cells</td>
</tr>
<tr>
<td>ICAM-1</td>
<td>Intracellular cell adhesion molecule-1</td>
</tr>
<tr>
<td>IL-3</td>
<td>Interleukin 3</td>
</tr>
<tr>
<td>IL-6</td>
<td>Interleukin 6</td>
</tr>
<tr>
<td>IP-10</td>
<td>Interferon (\gamma)-inducible protein 10</td>
</tr>
<tr>
<td>KM</td>
<td>Knochenmark</td>
</tr>
<tr>
<td>KMT</td>
<td>Knochenmarktransplantation</td>
</tr>
<tr>
<td>LFA-1</td>
<td>Lymphocyte function associated antigen-1</td>
</tr>
<tr>
<td>Lsg.</td>
<td>Lösung</td>
</tr>
<tr>
<td>LT</td>
<td>Lethal Toxin</td>
</tr>
<tr>
<td>LTC-IC</td>
<td>Longterm culture-initiating cells</td>
</tr>
<tr>
<td>MACS</td>
<td>Magnetic separation columns</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Deutscher Begriff</td>
</tr>
<tr>
<td>-----------</td>
<td>------------------</td>
</tr>
<tr>
<td>max.</td>
<td>maximal</td>
</tr>
<tr>
<td>MIG</td>
<td>Monokine induced by interferon γ</td>
</tr>
<tr>
<td>min</td>
<td>Minuten</td>
</tr>
<tr>
<td>mind.</td>
<td>mindestens</td>
</tr>
<tr>
<td>MNC</td>
<td>Mononucleare cells = Mononukleäre Zellen</td>
</tr>
<tr>
<td>NK</td>
<td>Natürliche Killerzellen</td>
</tr>
<tr>
<td>NOD/SCID</td>
<td>Nonobese diabetic/severe combined immune defiency</td>
</tr>
<tr>
<td>PB</td>
<td>Peripheres Blut</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate buffered saline</td>
</tr>
<tr>
<td>PE</td>
<td>Phycoerythin</td>
</tr>
<tr>
<td>PerCP</td>
<td>Peridinin Chlorophyll Protein</td>
</tr>
<tr>
<td>PT</td>
<td>Pertussis Toxin</td>
</tr>
<tr>
<td>RT</td>
<td>Raumtemperatur</td>
</tr>
<tr>
<td>SCF</td>
<td>Stem cell factor</td>
</tr>
<tr>
<td>SDF-1</td>
<td>Stromal derived factor-1</td>
</tr>
<tr>
<td>STI</td>
<td>Signaltransduktionsinhibitor</td>
</tr>
<tr>
<td>Tab.</td>
<td>Tabelle</td>
</tr>
<tr>
<td>TGF-β</td>
<td>Transforming growth factor-β</td>
</tr>
<tr>
<td>TPO</td>
<td>Thrombopoetin</td>
</tr>
<tr>
<td>VCAM-1</td>
<td>Vascular cell adhesion molecule-1</td>
</tr>
<tr>
<td>VLA-4</td>
<td>Very late activation antigen-4</td>
</tr>
<tr>
<td>VLA-5</td>
<td>Very late activation antigen-5</td>
</tr>
</tbody>
</table>

7 Literatur

90. Dorrell, C., et al., Expansion of human cord blood CD34+CD38- cells in ex vivo culture during retroviral transduction without corresponding increase in SRC

136. Wang, J.F., I.W. Park, and J.E. Groopman, Stromal cell-derived factor-1alpha stimulates tyrosine phosphorylation of multiple focal adhesion proteins and induces

8 Danksagungen

Herrn Professor Dr. D. Hoelzer danke ich für die Unterstützung dieser Arbeit und das stete Interesse.

Herrn Professor Dr. B. Ludwig danke ich für die Vertretung der Arbeit vor dem Fachbereich und für die immer freundliche und hilfsbereite Unterstützung.

Herr Dr. O.G. Ottmann hat mich stets sehr gut angeleitet und mir viel Eigenständigkeit ermöglicht. Die kritische Durchsicht meiner Arbeit hat mir sehr geholfen und ich danke für die Zeit und Mühe damit.

Vielen Dank an Manuela, die so rasch gelernt, mich tatkräftig unterstützt hat und nun das Labor der Stammzellgruppe aufrecht erhält.

Reinhard Henschler danke ich für das Teilen seiner weitreichenden Kenntnisse in der Stammzellbiologie und seine begeisternden Ideen zu jedem Thema.

Ich danke allen Mitarbeitern der Labore besonders i40 und i44, aber auch i33, i45 und i50 für die tolle Zusammenarbeit und Hilfe bei experimentellen Fragen. Mir hat die Arbeit mit euch, ebenso wie die Pausen im Aufenthaltsraum, immer viel Spaß gemacht.

Ich danke Silke für die kritische und schnelle Durchsicht meiner Arbeit und für die schöne Studienzeit mit ihr, die wir beide dieses Jahr nun beenden werden.

Daas Thomaschen hat mich immer liebevoll unterstützt und an mich geglaubt, auch wenn ich ihm das schlecht gedankt habe.

Meiner Familie danke ich für die langjährige motivierende Unterstützung, besonders meiner Schwester Eva, die immer für mich da ist und mich gerade in der letzten Phase immer angespornt hat.

Lebenslauf

Name: Tanja Roßmanith
Geburtsort: Frankfurt am Main
Familienstand: ledig
Anschrift: Adlerflychtstr. 5
60318 Frankfurt
Telefon: 069 – 4 69 18 57
E-Mail: Rossmanith@em.uni-frankfurt.de

Schulbildung:
1976-1980 Schwarzburgschule, Grundschule in Frankfurt am Main
1980-1989 Musterschule, Gymnasium in Frankfurt am Main
Abiturnote: 1,8

Hochschulstudium:
1990-1992 Grundstudium Biologie an der J.W. Goethe-Universität Frankfurt
Vordiplom in Biologie
1992-1997 Studium der Biochemie und der Biophysikalischen Chemie an der
J.W. Goethe-Universität Frankfurt bei Prof. Dr. H. Fasold,
Nebenfach Pharmakologie
Abschluß als Diplom-Biochemikerin mit der Note sehr gut
Diplomarbeit: „Optimierung der Klonierung und Expression von Fv-Fragmenten“
am Max-Planck-Institut für Biophysik, Frankfurt am Main unter
Anleitung von Prof. Dr. H. Michel

Promotion:
Juli 1998 Beginn der Promotion im Universitätsklinikum Frankfurt,
Medizinischen Klinik III, Abteilung Hämatologie und Onkologie unter
Anleitung von Prof. Dr. D. Hoelzer

Thema: „Kultivierung von CD34⁺-Zellen aus Nabelschnurblut zur ex vivo
Expansion von Stamm- und Vorläuferzellen und Untersuchungen zu
deren Homing-Fähigkeiten“
Veröffentlichungen:

Abstracts und Poster:
Ex vivo expansion of cord blood CD34+ cells: comparison of a spinner system and teflon bag. Tanja Roßmanith, Gesine Bug, Bernd Schröder, Dieter Hoelzer, Oliver G. Ottmann, DGHO Jena 1999

Effect of recombinant IL-3 on ex vivo expansion of human cord blood analysed in the NOD/SCID mice model system. Tanja Roßmanith, Bernd Schröder, Gesine Bug, Dieter Hoelzer, Oliver G. Ottmann, ESH, Paris 2000

CD34+ cell selection from frozen cord blood by clinimacs and expansion under GMP-suitable conditions. Tanja Roßmanith, Peter Müller, Gesine Bug, Dieter Hoelzer, Oliver G. Ottmann, Bernd Schröder, DGHO Graz 2000

IL-3 supports the repopulating function of ex vivo expanded human cord blood cells transplanted in NOD/SCID mice. Gesine Bug, Tanja Roßmanith, Bernd Schröder, Peter Müller, Dieter Hoelzer, Oliver G. Ottmann, EHA Birmingham 2000
Cytokines and Rho family small GTPases control migration of hematopoietic progenitor cells into bone marrow stromal cell spheroids: a novel 3-D homing model. Gesine Bug, Tanja Roßmanith, Reinhard Henschler, Bernd Schröder, Leoni Kunz-Schughart, Manuela Kampffmann, Dieter Hoelzer, Oliver G. Ottmann, EHA Frankfurt 2001