No. 2008/30

Financial Structure and the Impact of Monetary Policy on Asset Prices

Katrin Assenmacher-Wesche
and Stefan Gerlach
The Center for Financial Studies is a nonprofit research organization, supported by an association of more than 120 banks, insurance companies, industrial corporations and public institutions. Established in 1968 and closely affiliated with the University of Frankfurt, it provides a strong link between the financial community and academia.

The CFS Working Paper Series presents the result of scientific research on selected topics in the field of money, banking and finance. The authors were either participants in the Center’s Research Fellow Program or members of one of the Center’s Research Projects.

If you would like to know more about the Center for Financial Studies, please let us know of your interest.

Prof. Dr. Jan Pieter Krahnen

Prof. Volker Wieland, Ph.D.
CFS Working Paper No. 2008/30

Financial Structure and the Impact of Monetary Policy on Asset Prices*

Katrin Assenmacher-Wesche¹
and Stefan Gerlach²

September 10, 2008

Abstract:
We study the responses of residential property and equity prices, inflation and economic activity to monetary policy shocks in 17 countries, using data spanning 1986-2006, using single-country VARs and panel VARs in which we distinguish between groups of countries depending on their financial systems. The effect of monetary policy on property prices is about three times as large as its impact on GDP. Using monetary policy to guard against financial instability by offsetting asset-price movements thus has sizable effects on economic activity. While the financial structure influences the impact of policy on asset prices, its importance appears limited.

JEL Classification: C23, E52

Keywords: Asset Prices, Monetary Policy, Panel VAR.

* This is a much revised version of an earlier paper entitled “Ensuring Financial Stability: Financial Structure and the Impact of Monetary Policy on Asset Prices.” The views expressed are solely our own and are not necessarily shared by the SNB. We are grateful to seminar participants at the Banque de France, Swiss National Bank, Singapore Management University and the Hong Kong Institute for Monetary Research, an anonymous referee of the SNB Working Paper Series, Urs Birchler and Petra Gerlach for helpful comments.

1 Corresponding author: SNB, Börsenstrasse 15, Postfach 2800, CH-8022 Zürich, Switzerland, Tel +41 44 631 3824, email: Katrin.Assenmacher-Wesche@snb.ch

2 IMFS, Goethe University, and CFS, Grüneburgplatz 1 (Box H 12), 60629 Frankfurt/Main, Germany, email: Stefan.Gerlach@wiwi.uni-frankfurt.de
1. Introduction

There is much agreement that asset prices, in particular residential property prices, provide a crucial link through which adverse macroeconomic developments can cause financial instability.\footnote{The chapters in Hunter et al. (2003) provide an overview of the interlinkages between monetary policy, asset prices and financial stability.} Episodes of asset price booms are seen by many as raising the risk of a future sharp “correction” of prices, which could have immediate repercussions on the stability of financial institutions. Indeed, many observers have argued that property-price collapses have historically played an important role in episodes of financial instability at the level of individual financial institutions and the macro economy (e.g. Ahearne et al. 2005, Goodhart and Hofmann 2007).

Not surprisingly, this view has led to calls for central banks to react to movements in asset prices “over and beyond” what such changes imply for the path of aggregate demand and inflation (Borio and Lowe 2002, Cecchetti et al. 2000). Proponents of such a policy emphasise that episodes of financial instability risk depressing inflation and economic activity below their desired levels. Consequently, they argue, central banks that seek to stabilise the economy over a sufficiently long time horizon may need to react to current asset-price movements (Bean 2004, Ahearne et al. 2005). Importantly, this idea does not mean that asset prices should be targeted, only that central banks should be willing to tighten policy at the margin in order to slow down increases in asset prices that are viewed as being excessively rapid in order to reduce the likelihood of a future crash that could trigger financial instability and adverse macroeconomic outcomes.

While seemingly attractive, this proposed policy assumes that central banks are able to identify in real time whether asset prices are moving too fast or are out of line with fundamentals. Of course, it is by no means clear that they are better able to judge the appropriate level of asset prices and the risk of future sharp price declines than agents transacting in these markets.

Furthermore, the policy has implications for the speed by, and the extent to which, monetary policy impacts on the economy (Bean 2004, Bernanke 2002, Kohn 2006). First, changes in
policy-controlled interest rates must have stable and predictable effects on asset prices. Second, the effects of monetary policy on different asset prices, such as residential-property and equity prices, must be about as rapid, since stabilising one may otherwise lead to greater volatility of the other. Needless to say, if these criteria are not satisfied simultaneously, any attempts by central banks to offset asset-price movements may simply raise macroeconomic volatility, potentially increasing the risk of financial instability developing. Third, the size of interest rate movements required to mitigate asset price swings must not be so large as to cause economic activity and, in particular, inflation to deviate substantially from their desired levels since, if this were to be the case, the resulting macroeconomic cycles could lead the public to question the central bank’s commitment to price stability. Fourth, the effects of monetary policy on asset prices must be felt sufficiently rapidly so that a tightening of policy impacts on asset prices before any bubble would burst on its own (since policy should otherwise presumably be relaxed to offset the macroeconomic effects of the collapse of the bubble).²

Unfortunately, however, it is unclear whether monetary policy has predictable effects on asset prices and, if so, whether these effects occur at about the same time horizons for different asset prices, whether they are large relative to the effects of monetary policy on inflation and economic activity and whether they occur faster. While the “over and beyond” approach to monetary policy and asset prices is seemingly attractive, further work on the transmission mechanism of monetary policy and the role of asset prices is thus warranted. Instead of testing a specific theoretical proposition, we follow the research strategy of Goodhart and Hofmann (2008) which takes a VAR approach that uses minimal identifying assumption to study the relationship between monetary policy and asset prices. One attractive feature of this work is that it looks at a broad cross section of countries which experienced asset price movements of varying severity and at varying points in time.³ This avoids the bias that comes from looking largely or mainly at countries that have undergone particularly pronounced asset-price cycles.

² Bean (2004) and Kohn (2006) discuss the implications of transmission lags for the use of monetary policy in the face of asset price bubbles.

³ See also Goodhart and Hofmann (2007).
In this paper we attempt to shed light on the impact of monetary policy on residential-property and equity prices, inflation and output growth to monetary policy shocks for a panel of 17 OECD countries using quarterly data for the period 1986-2006. The analysis proceeds in three steps. Following Iacoviello (2002) and Giuliodori (2005), we first study the impact of monetary policy on the economy by fitting vector autoregressive models (VARs) for individual countries. Not surprisingly, the resulting estimates are imprecise, leaving considerable uncertainty about the quantitative effect of changes in interest rates on asset prices relative to their impact on economic activity and inflation, as would seem to be an important precondition for monetary policy to be used to mitigate asset price movements. To raise the precision of the estimates, we thus follow Goodhart and Hofmann (2008) and estimate a panel VAR (PVAR) incorporating real residential-property and real equity prices. Our results show that while monetary policy does have important effects on asset prices, those effects are not particularly large relative to those it has on inflation and output. This suggests that attempts to stabilise asset prices by using interest rate policy are likely to induce pronounced macroeconomic fluctuations.

However, while the panel estimates confirm that monetary policy has predictable effects on residential-property prices, by construction these estimates disregard all country-specific information. This is problematic because a number of authors have asserted that the transmission mechanism of monetary policy depends on the institutional characteristics of the financial system. In order to study the importance of institutional factors, we go on to split the sample of countries into two groups depending on their financial structure. We then estimate a panel VAR for each group and explore whether the impact of monetary policy on

4 Goodhart and Hofmann (2008) also study 17 countries, but use a somewhat longer sample which starts in 1973 and also investigate the importance of money and credit for asset prices. Moreover, they seek to distinguish between boom and non-boom periods. However, they estimate their panel VAR using the standard fixed-effect panel estimator which is likely to yield biased results for reasons we discuss below.

5 Sutton (2002) and Tsatsaronis and Zhu (2004) also estimate VARs incorporating residential property prices for a range of countries. The focus of their studies, however, is on which factors explain movements in residential property prices and not on whether monetary policy can be used to stabilize asset price movements.

6 The importance of financial structure of the economy is emphasized by so many authors that it is impossible to provide a full overview here. See, among others, Maclellan et al. (1998), Giuliodori (2005), Tsatsaronis and Zhu (2004), CGFS (2006) and Calza et al. (2007).
asset prices, inflation and output differs between the two groups. We use several measures proposed in the literature to capture differences in financial structure, including the importance of floating rate lending; whether mortgage equity withdrawal is possible; the loan-to-value ratio for new mortgages; the mortgage-debt-to-GDP ratio in the economy; the method used to value property; whether mortgages are securitised; and the share of owner occupied dwellings. Since the notion of a financial system is a multi-faceted concept and these measures each only capture one aspect, it is possible that they lead to an underestimate of the importance of institutional factors. We therefore end the study by using the mortgage market index recently proposed by the IMF (2008) to capture the joint impact of financial market characteristics on the monetary transmission mechanism. To preview briefly the results, we find that the financial structure does condition the responses of asset prices to monetary policy but also that the differences between country groups are less important than perhaps commonly thought.7

The paper is organised as follows. The next section contains a discussion of the data and Section 3 presents the results for the VARs estimated for individual countries. In Section 4 we first briefly discuss panel VARs before discussing the estimates. Section 5 focuses on the importance of financial structure and provides panel-VAR estimates when the countries are divided into two groups on the basis of financial structure. Finally, Section 6 concludes.

2. Data

The econometric analysis below is conducted on quarterly data on equity and residential property prices, consumer price indices (CPIs), real gross domestic product (GDP) and interest rates.8 Much of the interest in the behaviour and determination of asset prices stems from their role in episodes of financial instability. Since there is a natural tendency to focus on data from countries that have experienced pronounced asset-price swings, there is a risk of sample selection bias which can be mitigated by using data from a broad cross-section of countries. We therefore study 17 countries for which we could obtain both equity and residential property price data: Australia, Belgium, Canada, Denmark, Finland, France,

7 See Maclellan et al. (1998) for a dissenting opinion.
8 All results are obtained with the software RATS 7.0.
Germany, Ireland, Italy, Japan, the Netherlands, Norway, Spain, Sweden, Switzerland, the UK and the US.

The sample starts in 1986 in order to avoid the more turbulent, higher inflation period that ended in the first half of the 1980. Moreover, and as noted by Ahearne et al. (2005) and Girouard and Blöndal (2001), many countries deregulated their mortgage markets during the early to mid-1980s, suggesting that estimates relying on older data are unlikely to be representative for modern economies. The data set ends in 2006. Goodhart and Hofmann (2008) in their panel VAR analysis also study, as a part of their robustness analysis, a sub-sample spanning these years and find that this later period indeed differs from the earlier part of their sample (although their data definitions are somewhat different).

Residential property prices are from the data base of the Bank for International Settlements (BIS). Quarterly data over the whole sample period are available for Australia, Canada, Switzerland, Denmark, Finland, France, the Netherlands, Sweden, the UK and the US. For Belgium we link an older series for small and medium-sized houses to the residential property price series for all dwellings from 1988 on. For Spain we link the residential property prices of existing dwellings with those of owner-occupied homes in 2005. For Ireland and Norway we interpolate annual data with the Chow-Lin (1971) procedure, using a rent index and an index of residential construction cost as reference series, and link the resulting series to the BIS quarterly data that start in 1988 and 1991, respectively. The same interpolation procedure is applied to annual property price data for Germany and Italy. For Japan the semi-annual series on residential land prices is interpolated.

Figure 1 shows the resulting residential property price series. Interestingly, many economies experienced a sharp rise in residential property prices in the second half of the

9 For Australia, missing values for the first two quarters of 1986 were generated using the growth of residential construction cost.

10 Annual data for Norway are from Eitrheim and Erlandsen (2004).

11 Annual property price data for Italy are taken from Cannari et al. (2006).

12 In Japan, a market for old homes practically does not exist as houses are normally torn down after a few decades. As a consequence, land prices determine the value of housing, see the Economist (2008).

13 We note that despite the difference in data sources, the patterns are comparable to those reported in Tsatsaronis and Zhu (2004) and Ahearne et al. (2005).
1980s, in many cases associated with liberalisation and deregulation of the housing finance sector. Residential property prices were subsequently weak or fell in the 1990s, following the US recession in 1990-1991 and the episode of high interest rates in many European countries after the turmoil in the European exchange rate mechanism (ERM) in 1992-93 which was triggered by the adoption of tight monetary policy in Germany to offset the aggregate demand effects of German Reunification.

The figure indicates that following the collapse of the “bubble economy” in Japan around 1990, residential property prices fell continuously until the end of the sample. In Germany residential property prices started falling in 1994 and declined until 2006, vividly indicating the depth of the “German crisis.”

Before proceeding, it should be emphasised that data on residential property prices are not necessarily comparable across countries. The main differences concern the type of housing that is included (single family houses, flats or all types), whether existing dwellings or new dwellings are considered, whether prices are per dwelling or per square meter, and the region (urban, non-urban or both) where the data is collected. While price developments vary between types of housing reflecting supply and demand conditions in different market segments, the most noticeable differences arise with respect to the area where the data come from. Property price booms generally occur in metropolitan areas, and are often less pronounced if data for the whole country are considered. The impact of this, however, is difficult to assess since only few countries have series covering these different categories. As an example, Figure 2 shows the annual increase in nominal UK residential property prices for the whole country and the greater London area. While the prices in the latter area seem more volatile, the two series evolve in much the same way over time (their correlation is 0.82). The right-hand panel shows the annual increase in prices for single-family houses and flats in Switzerland. Again, the year-to-year changes differ somewhat but generally convey the same information (the correlation is 0.86). For our study we use whenever possible the broadest residential property price index available in order not to capture regional booms. Nevertheless, great care needs to be exercised when comparing property-price developments across countries.
Turning to the sources of the other data, the CPI (all items) and share price indices (all shares) are from the OECD Main Economic Indicators (MEI) data base. Real GDP data were taken from the BIS data base and supplemented with data from the International Financial Statistics (IFS) data base of the IMF.14 For Ireland annual GDP data before 1997 were interpolated with the Chow-Lin (1971) procedure using industrial production as the reference series. We use a three-month interbank rate for Denmark, Switzerland, Spain, Finland, France, Germany, Ireland, Italy, the Netherlands, Norway and the UK, a three-month Treasury bill rate for Belgium, Sweden and the US, and a three-month commercial paper rate for Australia, Canada and Japan.15 All interest rates are from the OECD’s MEI. For Finland and Denmark missing data for 1986 were replaced with data from the IFS (call money rate). For the euro-area countries we use the three-month EURIBOR rate after 1998. Except for interest rates and equity prices all data are seasonally adjusted.

3. VARs for individual economies

We start by estimating VAR models for individual countries, following the approach taken by Giuliodori (2005), Iacoviello (2002) and Neri (2004). We include five variables: the CPI (p), real GDP (y), the three-month interest rate (i), real residential property prices (rpp) and real stock prices (rsp), with the real variables being obtained using the CPI. Except for the interest rate, all variables are in logarithms. Before we turn to the econometric analysis it is useful to investigate the time-series characteristics of the data. Since we take a panel approach below, we perform panel unit root tests, using the test statistics suggested by Pedroni (1999).16 The results in Table 1 indicate that all variables are nonstationary in levels, but stationary in first differences.

14 For the Netherlands the IFS data apparently contain an error in 1998. We therefore used real GDP from the MEI data base.

15 To eliminate a large spike during the ERM crisis we regressed the three-month interest rate for Ireland on a dummy, which is unity in 1992Q4 and zero elsewhere, and used the fitted value in the analysis.

16 We also studied the time series properties of the data for the individual countries, which were generally compatible with the panel results discussed in the main text. However, given the sheer amount of test results, we refrain from commenting on them.
Next we test for cointegration between the variables. When using a common lag length of four (which is sufficient to eliminate any seasonal pattern in the residuals for quarterly data) for all countries, the existence of at least one cointegrating vector could not be rejected except in Japan, Sweden and the US. When using fewer lags, however, also for these countries the existence of cointegration could not be rejected. We therefore specify the VAR models in the level of the variables. Nevertheless, we neither impose the number of cointegrating relations on the systems nor do we attempt to impose overidentifying restrictions on the cointegrating vector.

For an individual country n, $n = 1, \ldots, N$, the reduced form of the VAR thus can be written as $Y_{n,t} = \mu_n + A_n(L)Y_{n,t} + \varepsilon_{n,t}$, where $Y_{n,t} = (p_{n,t}, y_{n,t}, i_{n,t}, rpp_{n,t}, rsp_{n,t})$, μ_n is a constant, $A_n(L)$ is a matrix polynomial in the lag operator and $\varepsilon_{n,t}$ is a vector of normally, identically distributed disturbances. For each country the number of lags included in the VAR is chosen by the Akaike information criterion, considering a maximum lag length of four.

To study the monetary transmission mechanism, we investigate the responses on the different variables to monetary policy shocks. To identify the shocks, we use a Choleski decomposition, with the variables ordered as above, which is standard in the monetary transmission literature (see Christiano et al. 1999). This triangular identification structure allows output and the price level to react only with a lag to monetary policy shocks, whereas property and equity prices may respond immediately. We thus assume that central banks react to current output growth and inflation when setting interest rates, but not to current property and equity prices.

17 Iacoviello (2002) argues that a long-run relation between GDP and real residential property prices should exist.

18 Of course, monetary policy is best characterised by the central bank’s systematic reactions to developments in the variables in the VAR, which are captured by the estimated coefficients. However, we are interested in the question of how asset prices react to a change in the interest rate, keeping the other variables constant. To address this question, we need to identify monetary policy shocks (see Christiano et al. 1999 or Walsh 2003, Chapter 1, for a discussion of these issues).

19 To identify the monetary policy shock it is sufficient to determine the position in the triangular ordering of the monetary policy instrument; the ordering of the variables in the groups before and after the interest rate does not matter.
While this last assumption may seem controversial in that few observers would doubt that central banks react to changes in asset prices since these influence aggregate demand and inflation pressures, barring exceptional circumstances one would not expect any reactions to be instantaneous but rather to occur if asset prices rise or fall for some time. By contrast, asset prices react immediately to changes in monetary policy. Thus, it seems sensible to attribute the contemporaneous correlation between interest rates and asset prices to reactions by the latter to the former rather than conversely. We have explored whether the results are sensitive to this assumption. Not surprisingly, for equity prices the ordering does matter but for residential property prices it does not. However, the alternative assumption that the contemporaneous correlation between innovations in interest rates and equity prices is due solely to reactions by monetary policy is not only implausible for the reasons mentioned, but also leads to counterintuitive results. For instance, equity prices start to increase after a contractionary monetary policy shock.\footnote{A rise in equity prices after a contractionary monetary policy shock is inconsistent with results obtained with structural identification assumptions relying on the long-run effects of monetary policy, see Lastrapes (1998).} It therefore seems appropriate to order the interest rate before the asset prices in the system.

Figure 3 shows the bootstrapped impulse responses to a monetary policy shock of 25 basis points in the single-country VARs.\footnote{The bootstrapped confidence bounds are obtained using the methodology proposed by Sims and Zha (1999) and are based on 1000 replications.} Since these models involve the estimation of a large number of parameters, impulse responses are imprecisely estimated. Many analysts therefore use plus/minus one standard-error (i.e., 68\%) confidence bands. We therefore do so too. However, the impulse responses arising from the panel VARs we estimate below are more precisely estimated since the data are pooled. To take that into account when conducting inference, we use plus/minus two standard-error (i.e., 95\%) confidence bands in this case. In order to permit comparison with the single country VARs, we show plus/minus one and plus/minus two standard-error wide bootstrapped confidence bands in all graphs. Given the large number of impulse responses generated by the estimation process, we focus on the general features of the results.
As a preliminary, note that the impulse responses are frequently statistically insignificant even when the 68% confidence bands are used. After a monetary policy shock the CPI falls, though in most countries it takes about 15 to 20 quarters before the maximum effect is felt. Nevertheless, in some countries the CPI rises in the short run, indicating the presence of a “price puzzle.”²² Because of the wide confidence bands, however, this effect is significant only in Australia, Switzerland and the UK. Real GDP declines after a monetary policy shock in all countries, and significantly so in about half of them. It is notable that GDP reacts much faster than the CPI to a monetary policy shock.

Of particular interest is the reaction of asset prices. Except for Germany and Spain, residential property prices fall in reaction to monetary policy shocks. Furthermore, the results appear to differ between countries: the fall of residential property prices is significantly different from zero even at the 95% level in Canada, Finland, the Netherlands, Norway, Sweden, Switzerland, the UK and the US. Moreover, while in some countries, (including Finland, the UK and the US) residential property prices respond immediately to a monetary policy shock, in others, (e.g., Belgium or Spain), the responses are much slower and more persistent. However, the confidence bands are wide and it is hard to tell whether the responses differ systematically across countries. The reaction of equity prices to monetary policy shocks is generally negative and often significant on impact but typically becomes insignificant after a few quarters.

It should be noted, as shown by Figure 3, that the typical path of the interest rate after an initial 25 basis-points increase differs widely across countries. One would expect a stronger reaction of the variables if the interest rate returns to its initial level slowly or even overshoots, as is the case for Australia, than when the reactions of the interest rate are short-lived, as in France or Ireland.²³ Since we are interested in gaining a broad understanding of the effects of monetary policy on the economy, we estimate a panel VAR that provides us

²² The price puzzle arises because central banks change interest rates in response to predicted future changes in inflation, that is, information that the econometrician does not incorporate in the analysis. See Walsh (Chapter 1, 2003) for a discussion.

²³ Furthermore, standard New-Keynesian models imply that the persistence in the reaction of output and inflation is higher when monetary policy reacts more strongly to deviations of output from baseline. We are grateful to an anonymous referee for drawing our attention to this point.
with the average response of real residential-property and equity prices to typical monetary policy shocks. This approach averages the country-specific effects. One reason this is helpful is that while the results for the single-country VARs are inconclusive and frequently insignificant, we are likely to obtain more precise estimates by exploiting the cross-sectional information in the data.

4. Panel VARs

There is a large literature on the estimation of panel regressions and the inconsistency that can arise in that context. Much of that literature deals with the bias of the fixed-effects estimator in dynamic homogeneous panels that results from the inclusion of lagged endogenous variables (Holtz-Eakin et al. 1988). This bias is particularly severe if the time dimension is small but can be overcome by using GMM or instrumental-variables estimators. Since our sample period is rather long, we are not overly concerned about this source of bias.

Unfortunately, even if the time dimension is large the standard fixed-effects estimator is inconsistent in dynamic panels if the coefficients on the lagged endogenous variables differ across groups, which is likely in our case as a consequence of divergent financial structures. The reason for this inconsistency is that restricting the slope coefficients to be the same across groups induces serial correlation in the residuals when the regressors are autocorrelated. This serial correlation does not vanish when instrumental variable estimation is applied (see Pesaran and Smith 1995). We therefore follow Pesaran and Smith’s recommendation and estimate the PVAR by the mean group estimator.24 This estimator assumes that the parameters vary cross-sectionally and provides a consistent estimate of the mean effects by averaging the coefficients across countries.

More formally, the panel VAR can be written as

\[Y_{n,t} = \mu_n + A_n(L)Y_{n,t-1} + \epsilon_{n,t}, \]

where \(Y_{n,t} \) is a vector containing the observations for the \(N \) countries, \(n = 1, \ldots, N \); \(\mu_n \) is a country-specific intercept and \(A_n(L) \) is a lag polynomial with the VAR coefficients. The disturbances, \(\epsilon_{n,t} \), have zero means and a country-specific variance, \(\sigma^2_n \). We assume that the coefficients in \(A_n(L) \) vary randomly across countries and that the typical element \(a_{n,t,j} \) in \(A_n(L) \) can be

24 The persistence is indeed greater if the PVAR is estimated by conventional fixed effects. Assenmacher-Wesche and Gerlach (2008b) provide a discussion of this issue.
written as \(a_{n,i,j}^p = a_{i,j}^p + \eta_{n,i,j}^p \), where \(n \) is the country index, \(p = 1, \ldots, P \), the lag order of the VAR and \(i, j = 1, \ldots K \) the number of variables in the VAR. Our interest is in the mean parameter value, \(a_{i,j}^p \).

Figure 4 shows the impulse responses to monetary policy shocks implied by the panel regression. Not surprisingly, the large increase in information that comes from using the panel approach generates impulse responses that typically are significantly different from zero at the 95% level.

Again, we consider the responses to a 25 basis point increase in the interest rate. After a monetary policy shock it takes six quarters before the price level starts to fall, with the effect becoming significant only after about two years. This slow response may be a consequence of some countries showing a “price puzzle” in their reaction to a monetary policy shock.\(^{25}\) Furthermore, the results indicate that output falls for about six quarters in response to the monetary policy shock before recovering slowly. Residential property prices reach their trough somewhat earlier after three quarters but take even longer to recover. By contrast, equity prices, which are forward-looking variables, fall immediately following the increase in interest rates and have returned to the original level by the time output and property prices have returned about half way to their initial levels.

These findings warrant several comments. First, the reactions of prices and output to the shocks are similar to those found in the literature based on single-country studies (see, e.g. Christiano et al. (1999) for the US and the VAR studies in Angeloni et al. (2003) for the euro area). Second, the responses of residential property prices lead those of real GDP by about three quarters. This suggests that changes in property prices influence GDP via their effects on wealth and consumption demand. Third, the width of the confidence bands indicates that the responses of residential property prices are, statistically, about as well defined as the impact on real economic activity. Fourth and most importantly, the point estimate shows that after about one year residential property prices have fallen about three times as much as the level of real GDP, that is, by 0.375% rather than by 0.125%. Taken at face value, this three-

\(^{25}\) While our results do not indicate the presence of a price puzzle, we nevertheless believe that the estimates underpredict the impact of monetary policy on the level of prices since we do not include indicators or predictors of future inflation in our VAR system.
to-one estimate suggests that while monetary policy could in principle be used to offset swings in residential property prices that are seen as causing a threat to financial stability, it would induce potentially large swings in real economic activity. For instance, to offset a 15% rise in residential property prices, which is not an unusually large increase by the standards of many recent property price booms, the central bank must be willing to depress real GDP by 5%, a substantial amount. Moreover, while the impact of monetary policy shocks on equity prices is about as large as the peak effect on residential property prices, the marked difference in timing implies that monetary policy cannot easily be used to target both.

Overall, the results in this section suggest that gearing monetary policy to asset prices is likely to generate pronounced swings in economic activity and to stabilise some asset prices at the costs of inducing more instability in others.

5. How important is financial structure?

One problem with the panel VAR estimates is that they mask any potential heterogeneity across the 17 countries in our sample. This is unfortunate since many authors have argued that the impact of monetary policy on the economy varies across countries depending on the financial structure of the economy (Cecchetti 1999, Ehrmann et al. 2003, Giuliodori 2005). Moreover, it is well documented that the financial structure differs significantly between the countries we consider (Maclennan et al. 1998; Calza et al. 2007). However, little quantitative evidence on the importance of these characteristics has been presented in the literature. One problem with doing so is the nature of the available data. Institutional characteristics change little over time, so that time series analysis with such data is precluded. Moreover, while there are several characteristics that might influence the effects of monetary policy on

26 See also Assenmacher-Wesche and Gerlach (2008a). Proponents of using monetary policy to mitigate swings in asset prices, such as Borio and Lowe (2002), do not seem concerned by the impact of such a policy on economic activity. By contrast, opponents, such as Kohn (2006), emphasise the effects on output and inflation. Interestingly, experimental evidence also shows that interest rate policy is not effective in dealing with asset price bubbles, see Becker et al. (2007).

27 An exception is Calza et al. (2007) who compute correlations between the peak effect of a monetary policy shock and mortgage market indicators. Of course, there is no lack of cross-country studies that find differences in monetary transmission and attribute these to differences in financial structure. However, the estimated impulse responses may differ for many other reasons, including the conduct of monetary policy and other differences in economic structure that are not taken into account. Here we investigate the effect of financial structure more directly.
financial stability, there is no agreement on which characteristics are most important and how best to measure these.

With these caveats in mind, we selected a number of potentially relevant criteria from the literature, divided the countries in two groups on the basis of these criteria and estimated a panel VAR for each group in order to assess the importance of financial structure.28 We emphasise that information on financial structure from different sources are not always comparable. One example is the loan-to-valuation (LTV) ratio, where some studies quote the maximum, while others refer to the average LTV ratio. In addition, judgement is required when grouping countries according to these criteria. Consider, for instance, the classification of countries as having fixed or flexible mortgage interest rates. While a majority of mortgages with an interest-rate adjustment at three months' notice certainly classifies as flexible, it is much more difficult to decide whether interest rates that are fixed between one and five years (e.g., Italy; see Calza et al. 2007) should be regarded as fixed or flexible. Any grouping of countries is therefore subjective and consequently disputable.

We deal with this problem in several ways. First, we analyse a broad range of indicators to ensure that we capture as many as possible aspects of the structure of mortgage financing. Second, for the quantitative characteristics, such as the LTV ratio, mortgage-debt-to-GDP ratio and owner-occupation rate, we do not include the value of the criterion as a variable in the regression but use a more robust approach by grouping the countries according to whether they are above or below the median value of the respective criterion. Our classification is thus robust to small changes in the criterion we use. For instance, as long as the countries with a high maximum LTV ratio tend to have also an average LTV ratio above the median country, our grouping will remain unaffected by whether we chose to rely on the maximum or the average LTV ratio. Third, we use the mortgage market index published by the IMF (2008) to assess the combined effect of the financial characteristics on the impact of monetary policy. One problem with these indices is that they pertain to a specific point in time and thus disregard the fact that financial structures tends to evolve over time. However, Goodhart and Hofmann (2008) argue that the relative position of countries may change little over time. If so, our approach of grouping the countries in two groups and estimating a

28 We let the lag length in the VARs be determined by the AIC.
separate PVAR for each may be robust to changes in financial structure that occurred in our
sample.

When interpreting the results, it is important to verify that the use of different criteria is not
leading to the same allocation of countries to the two groups. We therefore computed the
correlations between the different criteria and found that they are close to zero.29 With this as
a preliminary, we turn to a discussion of the seven characteristics in Table 2, their presumed
influence on the effects of monetary policy shocks and the results in Figure 5 to 12.

The first criterion we consider is the importance of floating rate financing. It is commonly
believed that in economies in which mortgage rates are tied to short-term interest rates,
changes in monetary policy has relatively large effects on residential property prices and
therefore on the economy, since the interest rates on all loans are reset at the same time. In
contrast, in the case of fixed rate lending, only new borrowers are affected by changes in
interest rates.30 It is therefore sometimes argued that fixed-rate mortgages are less risky than
floating-rate mortgages. However, an unexpected fall in the steady-state inflation rate
exposes fixed-rate borrowers to an increase in the real interest rate. This effect may have
been a factor contributing to the fall in residential property prices and the generally weak
economic performance in the 1990s in Germany and Japan, both of which rely
predominantly on fixed-rate financing.

In Figure 5 we present the results obtained when we distinguish between countries
depending on the prevalence of fixed- versus variable-rate mortgages. Since the reactions of
the interest rate and prices did not differ noticeably between any of the country groupings
and was essentially identical to that plotted in Figure 4, we do not present them. Also the
CPI reactions were quite similar across country groupings and we do not reproduce it in the
following figures. As one would expect, the effects of monetary policy on GDP and
residential property prices are large when variable-rate mortgages are prevalent.
Surprisingly, the reaction of equity prices to monetary policy is almost twice as large. In

29 The only significant correlation, 0.65, is that between mortgage equity withdrawal and the
mortgage-debt-to-GDP ratio. The other correlation coefficients lie between -0.03 and 0.44.

30 See Maclennan et al. (1998). Calza et al. (2007) present a model which implies that the sensitivity of
consumption to monetary policy shocks is higher with variable-rate mortgages.
addition the reaction in the fixed-rate group seems to be more persistent, which is compatible with the idea that in economies in which fixed-rate financing is important, higher short-term interest rates will only over time become embedded in mortgage interest rates and therefore impact on GDP and property prices with a delay.

The second feature we consider is the importance of housing equity withdrawal. If households are able to withdraw equity, one would expect them to do so in response to rising residential property prices. This would boost consumption spending and aggregate demand, and might further increase residential property prices. The process will also work in reverse: a tightening of monetary policy that triggers declines in residential property prices is likely to have a greater impact on residential property prices and GDP than if mortgage equity extraction is not possible.

Figure 6 shows that the ability to withdraw mortgage equity influences the timing, but less so the extent, of the reactions of GDP to monetary policy shocks. In economies where equity withdrawal is possible, GDP shows an immediate decline after a monetary policy shock, which is less significant and shorter-lived than the GDP decline in the other group. The reactions of the other variables to a monetary policy shock are essentially the same.

A third important characteristic of the financial system is the LTV ratio. A high LTV ratio means that households can relatively easily obtain financing to purchase property, suggesting that the effects of changes in interest rates are likely to be marked. Furthermore, interest rate increases may be more contractionary since households have less equity and thus may be more prone to default in conditions of economic hardship. Figure 7 shows that the reaction of property prices in the high-LTV group is slightly larger but also that the differences between both groups are negligible.

The fourth characteristic is the mortgage-debt-to-GDP ratio. Since data on the average LTV ratio are difficult to obtain and banks presumably apply different criteria to different borrowers, the ratio of mortgage debt to GDP provides an alternative measure of the responsiveness of the housing market to interest rate changes. Figure 8 shows that real GDP falls more quickly and for a longer period in reaction to monetary policy shocks in countries with high mortgage-debt-to-GDP ratio. Contrary to our expectation, however, the response
of residential property prices is larger in the group with the lower mortgage-debt-to GDP ratio.

The fifth characteristic is the valuation method that is used in different countries. If banks are required to value their assets at market prices, monetary policy will have a much stronger impact on bank's balance sheets and likely on variables like property prices and GDP (Adrian and Shin 2008). Furthermore, as in that case lending decisions will be based on the current, as opposed to the historical, valuation level, households’ ability to borrow will be more sensitive to current economic conditions and monetary policy. Thus, Tsatsaronis and Zhu (2004) hypothesise that residential property prices fall faster in economies in which properties are valued using their current market prices. According to Figure 9, however, there are no differences in the mean responses of residential property prices and GDP but the responses appear more precisely estimated in economies in which properties are valued using their current market prices.

The sixth characteristic we assess is whether it matters if mortgage loans are securitised. Tsatsaronis and Zhu (2004) conjecture that the prevalence of securitisation should reduce the sensitivity of residential property prices to monetary policy shocks since it allows banks to transfer the credit risk associated with mortgages to the capital market. Without securitisation the risk of credit crunches would therefore be commensurately larger, implying that the effects of monetary policy may be more pronounced in economies in which mortgage loans are not securitised. On the other hand, it has been argued that the increased reliance on capital markets for mortgage funding associated with securitisation implies stronger effects of monetary policy on the economy and on residential property prices (CGFS 2006). In particular, the subprime crisis has shown that the risk transfer associated with securitisation does not seem to function at the economy-wide level and that individual banks may underestimate the extent to which shocks are correlated.

Figure 10 suggests that residential property prices in countries in which securitisation is not common fall by more in response to monetary policy shocks than in countries in which securitisation plays an important role. This may be because if banks hold mortgages on their balance sheets, weak residential property prices impact on their willingness to lend. By
contrast, GDP falls by more in economies where securitisation is frequent; indicating that the fall in residential property prices impacts more on the overall economy in these countries.31

Finally, we consider whether the share of owner-occupied housing matters. With high owner-occupancy rates, the wealth effect of monetary policy should be important and one would expect a larger impact of monetary policy shocks on GDP (see Maclennan et al. 1998). On the other hand, landlords or institutional investors owning rental housing also will experience a wealth effect and the argument rests on their wealth effect being smaller than that for the owner occupiers. Figure 11 shows that, contrary to our hypothesis, the effect on real property prices is smaller if the share of owner-occupied housing is large. This can be the case when house owners do not regard their house as a liquid asset, or when the possibility of equity withdrawal does not exist.

Table 3 provides a summary of the results regarding the financial structure. The first column lists the criterion which determines the country split. The next six columns give the point estimate of the peak effect of monetary policy on GDP, and real residential property and equity prices in each of the country groups. The quarter in which this largest effect is observed is reported in parentheses. For instance, the first line indicates that in countries with variable mortgage rates, GDP tends to fall by 0.05 percent 6 quarters after an interest rate increases of 25 bp. With respect to financial structure we find that fixed or variable mortgage rates make the largest difference for the effects of monetary policy. By contrast, the LTV ratio, the mortgage-to-GDP ratio and the owner-occupancy rate do not seem to be important for the transmission of monetary policy. The most pronounced difference in the GDP response occurs when the prevalence of securitisation is used as criterion to sort countries into two groups. This indicates that, probably in combination with market-valuation rules, banks' balance sheets play a role in the transmission of monetary policy. Our results thus suggests that the findings for the US by Adrian and Shin (2008) may apply in a multi-country setting.

31 Adrian and Shin (2008) hypothesise that the combination of securitisation and market valuation affects the monetary transmission mechanism. In our setup, we are unable to test this hypothesis directly.
While we find a few differences in the transmission of monetary policy depending on the financial characteristics, in general financial structure does not seem to matter much for the impact of monetary policy on residential property prices and the economy more broadly. This may be either because we miss important characteristics that influence the responses to monetary policy shocks, such as the structure of the pension and the tax systems, or because the indicators used to group countries are poor. It may also be that the characteristics of the mortgage finance system interact with each other, and that their effect can only be detected when they are considered jointly. To explore whether the countries where the criteria generally suggest a large impact of monetary policy on residential property prices and economic activity indeed show a larger reaction to monetary policy shocks we use the mortgage market index calculated by the IMF (2008). This index is supposed to capture the degree of mortgage market development and flexibility. However, Figure 12 shows that the responses of residential property prices to monetary policy shocks do not seem to depend significantly on the criteria we investigated. A possible explanation is that some characteristics that make residential property prices more sensitive to monetary policy typically come together with other characteristics that have a partially offsetting effect. For instance, it may be that the ability to take a second mortgage dampens the responses of households in economies in which floating rate lending is prevalent. While the reaction of residential property prices seems not to depend strongly on the characteristics we investigated above, the reaction of equity prices and GDP are indeed larger and more persistent in countries in which we expect the monetary transmission mechanism to be stronger.

6. Conclusions

In this paper we have studied the impact of monetary policy stocks on inflation, output and asset prices, using VARs and panel VARs estimated on quarterly data spanning 1986 to 2006.

32 This is suggested by the fact that they vary considerably between studies.

33 Since Switzerland is missing from the IMF study, we construct the index for Switzerland following the description in IMF (2008), footnote 3. The resulting index value of 0.26 implies that Switzerland is in the country group with less flexible mortgage markets.
The analysis suggests several tentative conclusions regarding the ability of using monetary policy to “lean against” residential property price and stock price booms.

First, the panel VAR results show that monetary policy has large and predictable effects on residential property prices, and that these effects are roughly coincident with its effect on real economic activity. More precisely, 25 basis points increase in short-term interest rates depresses real GDP by about 0.125%, and real residential property prices by about three times as much, or 0.375%, after one or two years.

While these results suggest that monetary policy could potentially be used to slow down property price booms, the estimates imply that substantial interest rate increases would be necessary to do so and that these increases would depress real GDP considerably. For instance, a 250 basis point increase in interest rates would depress residential property prices by about 3.75% and real GDP by about 1.25%. Given that episodes of property price upswings have generally been associated with movements in prices of 15-20%, one is led to conclude that the cost of using monetary policy to slow down asset-price movements in order to reduce threats to financial stability might be large in terms of real output.

Of course, it is possible that the impact on real property prices might be larger relative to real GDP than the three-to-one ratio we estimate here. But even if they are much larger, say five-to-one, the impact on real economic activity of an attempt to depress residential property prices are nevertheless likely to be pronounced.

Second, the estimates also indicate that monetary policy shocks depress equity prices by about as much as they reduce residential property prices. However, equity prices decline immediately in this case and have returned to the initial level by the time residential property prices reach their through. As a consequence of this difference in timing, it is not possible to use monetary to stabilise both residential property and equity prices.

Third, the individual-country VAR estimates are highly imprecise. This may reflect an inherent shortcoming of VAR analysis: with a large number of parameters the estimates are necessarily subject to considerable uncertainty. If so, a central bank that is persuaded that policy can and should be used to influence asset prices could proceed despite the evidence to the contrary. Another interpretation, more plausible to us and compatible with the arguments of Kohn (2006), is that the impact of monetary policy on asset prices is in fact
highly uncertain, suggesting that central banks might wish to refrain from attempting to steer asset prices.

Fourth, our panel VAR analysis of the different subgroups of countries indicate that while the effects of monetary policy on residential property prices do appear influenced by the financial structure, the differences are not large. One caveat, however, is that changes in financial structure might have occurred at different points in time in the countries in the two groups, blurring the results. It is possible that better data on financial structure may lead us to have to revise this conclusion. But it is also possible that such data will lead us to conclude that that one aspect of financial structure that seems to increase the economy’s sensitivity to monetary policy may be partially offset by another, reducing the overall differences between economies.

Overall, we therefore interpret our results as suggesting that the proponents of using monetary policy to lean against asset-price fluctuations in order to ensure financial stability may have been too hasty to conclude that this is a sensible strategy.
References

Tables and Figures

Table 1. Panel unit root tests

<table>
<thead>
<tr>
<th></th>
<th>Level</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LLC</td>
<td>IPS</td>
</tr>
<tr>
<td>CPI</td>
<td>0.20</td>
<td>0.30</td>
</tr>
<tr>
<td>Real GDP</td>
<td>-0.93</td>
<td>-1.46</td>
</tr>
<tr>
<td>Interest rate</td>
<td>0.36</td>
<td>-0.17</td>
</tr>
<tr>
<td>Real property prices</td>
<td>0.80</td>
<td>1.31</td>
</tr>
<tr>
<td>Real equity prices</td>
<td>-1.24</td>
<td>-1.56</td>
</tr>
</tbody>
</table>

Note: LLC is the Levin, Lin and Chu (2002) test, IPS the Im, Pesaran and Shin (2003) test. Except for the interest rate, where we include a constant only, the tests for the levels include a constant and a trend and five lags, whereas the test for the differences include a constant and four lags. The test statistics are distributed as N(0,1). * denotes significance at the 5 percent level.
<table>
<thead>
<tr>
<th>Country</th>
<th>Interest rate adjustment</th>
<th>Mortgage equity withdrawal</th>
<th>Average loan-to-value ratio (%)</th>
<th>Mortgage–debt-to-GDP ratio (%)</th>
<th>Valuation method</th>
<th>Securitisation</th>
<th>Share of owner-occupied homes (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia</td>
<td>Variable</td>
<td>Yes</td>
<td>90-100</td>
<td>74</td>
<td>Market value</td>
<td>Yes</td>
<td>70</td>
</tr>
<tr>
<td>Belgium</td>
<td>Fixed</td>
<td>No</td>
<td>80-85</td>
<td>31</td>
<td>Market value</td>
<td>No</td>
<td>72</td>
</tr>
<tr>
<td>Canada</td>
<td>Fixed</td>
<td>Unused</td>
<td>70-80</td>
<td>43</td>
<td>Lending value</td>
<td>Yes</td>
<td>66</td>
</tr>
<tr>
<td>Denmark</td>
<td>Fixed</td>
<td>Yes</td>
<td>80</td>
<td>67</td>
<td>Market value</td>
<td>No</td>
<td>59</td>
</tr>
<tr>
<td>Finland</td>
<td>Variable</td>
<td>Yes</td>
<td>75-80</td>
<td>40</td>
<td>Market value</td>
<td>No</td>
<td>64</td>
</tr>
<tr>
<td>France</td>
<td>Fixed</td>
<td>No</td>
<td>80</td>
<td>26</td>
<td>Market value</td>
<td>No</td>
<td>56</td>
</tr>
<tr>
<td>Germany</td>
<td>Fixed</td>
<td>No</td>
<td>70</td>
<td>52</td>
<td>Lending value</td>
<td>No</td>
<td>42</td>
</tr>
<tr>
<td>Ireland</td>
<td>Variable</td>
<td>Yes</td>
<td>60-70</td>
<td>53</td>
<td>Market value</td>
<td>Yes</td>
<td>78</td>
</tr>
<tr>
<td>Italy</td>
<td>Fixed</td>
<td>No</td>
<td>50</td>
<td>15</td>
<td>Market value</td>
<td>No</td>
<td>80</td>
</tr>
<tr>
<td>Japan</td>
<td>Fixed</td>
<td>Yes</td>
<td>80</td>
<td>36</td>
<td>Market value</td>
<td>No</td>
<td>61</td>
</tr>
<tr>
<td>Netherlands</td>
<td>Fixed</td>
<td>Yes</td>
<td>112</td>
<td>111</td>
<td>Market value</td>
<td>Yes</td>
<td>53</td>
</tr>
<tr>
<td>Norway</td>
<td>Variable</td>
<td>Yes</td>
<td>70</td>
<td>63</td>
<td>Market value</td>
<td>No</td>
<td>77</td>
</tr>
<tr>
<td>Spain</td>
<td>Variable</td>
<td>Unused</td>
<td>80</td>
<td>46</td>
<td>Market value</td>
<td>Yes</td>
<td>85</td>
</tr>
<tr>
<td>Sweden</td>
<td>Variable</td>
<td>Yes</td>
<td>80-90</td>
<td>54</td>
<td>Market value</td>
<td>No</td>
<td>61</td>
</tr>
<tr>
<td>Switzerland</td>
<td>Variable</td>
<td>No</td>
<td>66</td>
<td>128</td>
<td>Lending value</td>
<td>No</td>
<td>36</td>
</tr>
<tr>
<td>UK</td>
<td>Variable</td>
<td>Yes</td>
<td>70</td>
<td>73</td>
<td>Market value</td>
<td>Yes</td>
<td>70</td>
</tr>
<tr>
<td>US</td>
<td>Fixed</td>
<td>Yes</td>
<td>80</td>
<td>69</td>
<td>Market value</td>
<td>Yes</td>
<td>69</td>
</tr>
</tbody>
</table>

Note: Columns (1), (2), (5) and (6) are from Tsatsaronis and Zhu (2004), columns (3), (4) and (7) are from Calza et al. (2007), with information for Norway and Sweden taken from Ahearne et al. (2005) and for Switzerland from CGFS (2006).
Table 3. Maximum effect of monetary policy shock

<table>
<thead>
<tr>
<th>Large effect expected</th>
<th>Small effect expected</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GDP</td>
</tr>
<tr>
<td>Variable/fixed mortgage rate</td>
<td>-0.05 (6)</td>
</tr>
<tr>
<td>Mortgage equity withdrawal</td>
<td>-0.05 (4)</td>
</tr>
<tr>
<td>High/low LTV ratio</td>
<td>-0.04 (4)</td>
</tr>
<tr>
<td>High/low mortgage debt/GDP ratio</td>
<td>-0.05 (3)</td>
</tr>
<tr>
<td>Market/mortgage lending valuation</td>
<td>-0.04 (6)</td>
</tr>
<tr>
<td>Securitisation</td>
<td>-0.07 (7)</td>
</tr>
<tr>
<td>High/low owner occupancy</td>
<td>-0.05 (8)</td>
</tr>
<tr>
<td>Mortgage market index</td>
<td>-0.04 (6)</td>
</tr>
</tbody>
</table>

The figures in parentheses indicate the quarter in which the maximum effect is attained.
Figure 1. Log real house prices (1986=100)
Figure 2. Annual property-price growth rates for subcategories

Great Britain

Switzerland

- all country
- greater London
- single-family houses
- flats
Figure 3. Impulse responses to a 25 basis points interest rate shock
Figure 3 (cont.): Impulse responses to a 25 basis points interest rate shock

Germany

Ireland

Italy

Japan

Netherlands

Norway
Figure 3 (cont.): Impulse responses to a 25 basis points interest rate shock

<table>
<thead>
<tr>
<th>Country</th>
<th>CPI</th>
<th>Real GDP</th>
<th>Interest rate</th>
<th>Real property prices</th>
<th>Real equity prices</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spain</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sweden</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Switzerland</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UK</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>US</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Impulse responses are the bootstrapped mean response, using the approach recommended by Sims and Zha (1999). Long dashes indicate two-standard-error, short dashes one-standard error confidence bands. Results are based on 1000 bootstrap replications.
Figure 4. Panel VAR

![Panel VAR](image)

Note: See note to Figure 3.

Figure 5. Panel VAR split with respect to mortgage rate

![Panel VAR split](image)

Note: See note to Figure 3. The country grouping is indicated in Table 2.
Figure 6. Panel VAR split with respect to mortgage equity withdrawal

Note: See note to Figure 3. The country grouping is indicated in Table 2.

Figure 7. Panel VAR split with respect to loan-to-value ratio

Note: See note to Figure 3. The country grouping is indicated in Table 2.
Figure 8. Panel VAR split with respect to mortgage-debt-to-GDP ratio

Note: See note to Figure 3. The country grouping is indicated in Table 2.

Figure 9. Panel VAR split with respect to valuation method

Note: See note to Figure 3. The country grouping is indicated in Table 2.
Figure 10. Panel VAR split with respect to securitisation.

Note: See note to Figure 3. The country grouping is indicated in Table 2.

Figure 11. Panel VAR split with respect to owner occupancy

Note: See note to Figure 3. The country grouping is indicated in Table 2.
Figure 12. Panel VAR split according mortgage market index

Note: See note to Figure 3. Source: World economic outlook (2008), own calculations. Countries in the first group include Australia, Canada, Denmark, Finland, the Netherlands, Norway, Sweden, the UK and the US; countries in the second group are Belgium, France, Germany, Ireland, Italy, Japan Spain, and Switzerland.
CFS Working Paper Series:

<table>
<thead>
<tr>
<th>No.</th>
<th>Author(s)</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008/29</td>
<td>Tobias J. Cwik, Gernot J. Müller, Maik H. Wolters</td>
<td>Does Trade Integration Alter Monetary Transmission?</td>
</tr>
<tr>
<td>2008/28</td>
<td>Nikolas Hautsch, Dieter Hess, Christoph Müller</td>
<td>Price Adjustment to News with Uncertain Precision</td>
</tr>
<tr>
<td>2008/27</td>
<td>Francis X. Diebold, Canlin Li, Vivian Z. Yue</td>
<td>Global Yield Curve Dynamics and Interactions: A Dynamic Nelson-Siegel Approach</td>
</tr>
<tr>
<td>2008/26</td>
<td>Francis X. Diebold, Kamil Yilmaz</td>
<td>Measuring Financial Asset Return and Volatility Spillovers, with Application to Global Equity Markets</td>
</tr>
<tr>
<td>2008/25</td>
<td>Günter W. Beck, Volker Wieland</td>
<td>Central Bank Misperceptions and the Role of Money in Interest Rate Rules</td>
</tr>
<tr>
<td>2008/24</td>
<td>Christos Koulovatianos, Carsten Schröder, Ulrich Schmidt</td>
<td>Confronting the Robinson Crusoe paradigm with household-size heterogeneity</td>
</tr>
<tr>
<td>2008/23</td>
<td>Jin Cao, Gerhard Illing</td>
<td>Endogenous Systemic Liquidity Risk</td>
</tr>
<tr>
<td>2008/21</td>
<td>Miriam Sperl</td>
<td>Quantifying the Efficiency of the Xetra LOB Market. A Detailed Recipe</td>
</tr>
<tr>
<td>2008/20</td>
<td>Maria Concetta Chiuri, Tullio Jappelli</td>
<td>Do the elderly reduce housing equity? An international comparison</td>
</tr>
</tbody>
</table>

Copies of working papers can be downloaded at http://www.ifk-cfs.de