Kristallstrukturbestimmung organischer Verbindungen mittels Röntgenbeugungsmethoden: Vergleich, Grenzen und Kombination

Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften

vorgelegt dem Fachbereich Biochemie, Chemie und Pharmazie
der Johann Wolfgang Goethe-Universität, Frankfurt am Main

von Carina Schlesinger
aus Fürth, Bayern

Frankfurt am Main 2021
dem Fachbereich Biochemie, Chemie und Pharmazie der Johann Wolfgang Goethe-Universität
als Dissertation vorgelegt.

Dekan: Prof. Dr. Clemens Glaubitz

1. Gutachter: Prof. Dr. Martin U. Schmidt
2. Gutachter: Prof. Dr. Martin Grininger

Datum der Disputation: 27.10. 2021
Inhalt

Abbildungsverzeichnis .. vi
Tabellenverzeichnis .. v
Abkürzungs- und Symbolverzeichnis .. viii
Anmerkungen .. x
1. Einleitung .. 1
2. Theoretische Grundlagen .. 3
 2.1 Kristallstrukturbestimmung aus Röntgenpulverbeugungsdaten 3
 2.1.1 Grundlagen der Röntgenbeugung .. 4
 2.1.2 Indizierung ... 5
 2.1.3 Strukturlösung .. 5
 2.1.4 Strukturverfeinerung: Rietveld-Methode .. 8
 2.2 Paaarverteilungsfunktion .. 10
 2.3 Kraftfeldrechnungen und Gitterenergieminimierung .. 14
3. Bestimmung von Kristallstrukturen aus Röntgenpulverdaten 16
 3.1 Kristallstrukturbestimmung nach Lehrbuch ohne Komplikationen: Carmustin 17
 3.2 Ausloten der Grenzen der Strukturbestimmung aus Pulverdaten 21
 3.2.1 Herausfordernde Kristallstrukturlösungen mit $Z' = 2$: Zwei pharmazeutische Salze 21
 3.2.2 Neue Methode zur Bestimmung der absoluten Konfiguration pharmazeutischer
 Wirkstoffe durch Pulverdiffraktometrie .. 31
4. Kombination von Methoden zur Kristallstrukturbestimmung aus
 Röntgenpulverdaten ... 36
 4.1 Neues Programm FIDEL, kombiniert mit Rietveld-Verfeinerung und PDF-Analyse: 4,11-
 Difluorchinacridon ... 36
 4.2 Bestimmung der Fehlordnung durch Kombination von Rietveld-Verfeinerung,
 Gitterenergieminimierung, Elektronenbeugung und PDF Analyse:
 Monomethylchinacridon ... 44
8.3 Eigenanteil an den Veröffentlichungen ... 90

11. Eidesstattliche Erklärung .. 93
Abbildungsverzeichnis

Abbildung 2-1: Schematische Übersicht der unterschiedlichen Bereiche eines Röntgenpulverdiagramms... 5
Abbildung 2-2: Darstellung der Schritte bei einer PDF-Berechnung anhand von Monomethylchinacridon... 12
Abbildung 2-3: Schematische Übersicht der unterschiedlichen Bereiche einer Paarverteilungsfunktion ... 12
Abbildung 3-1: Schematische Formel von Carmustin... 17
Abbildung 3-2: Rietveld-Plot der Verfeinerung von Carmustin .. 19
Abbildung 3-3: Kristallstruktur von Carmustin .. 20
Abbildung 3-4: Vereinfachte Strukturformeln der beiden pharmazeutischen Salze: Lamivudin-Camphersulfonat (LC) und Aminogluthethimid-Camphersulfonat-Hemihydrat (AC) .. 23
Abbildung 3-5: Drei verschiedene Strukturlösungen von LC ... 26
Abbildung 3-6: Rietveld-Verfeinerung von LC .. 26
Abbildung 3-7: Rietveld-Verfeinerung von AC .. 29
Abbildung 3-8: Kristallstruktur von AC ... 29
Abbildung 3-9: Strukturformeln der verwendeten chiralen pharmazeutischen Wirkstoffe und chiralen Salzbildner .. 32
Abbildung 4-1: Röntgenpulverdiagramm der α-Phase von 4,11-Difluorchinacridon mit Strichformel.. 37
Abbildung 4-2: Darstellung der Packungsmuster der Strukturmodelle A-D von DFC 39
Abbildung 4-3: Rietveld-Diagramme der Strukturmodelle A-D von DFC 42
Abbildung 4-4: Vereinfachte Strukturformel von 2-Monomethylchinacridon 44
Abbildung 4-5: Ungünstiges Strukturmodell der Lokalstruktur von MMC 46
Abbildung 4-6: Repräsentatives Strukturmodell zur Beschreibung der Fehlordnung von MMC. 46
Abbildung 4-7: PDF-Plot von MMC.. 47
Abbildung 5-1: Schema eines PDF-Globalfits .. 52
Abbildung 5-2: Vergleich von zwei berechneten PDF-Kurven der gleichen Kristallstruktur 56
Abbildung 5-3: PDF des Polymorphes IV von Barbitursäure mit inserierter Strukturformel 62
Abbildung 5-4: Die drei besten gefunden Strukturbilder des PDF-Global-Fits 68
Abbildung 5-5: PDF-Kurven der besten gefunden Strukturbilder des PDF-Global-Fits 72
Tabellenverzeichnis

Tabelle 3-1: Kristallographische Daten von Carmustin... 18
Tabelle 3-2: Kristallographische Daten der Kristallstrukturen von LC und AC. 24
Tabelle 3-3: Ergebnisse der Rietveld-Verfeinerung... 34
Tabelle 4-1: Gitterparameter der 4 Strukturmodelle von DFC aus dem FIDEL-Globalfit. 39
Tabelle 4-2: Ergebnisse der automatischen Rietveld-Verfeinerung mittels FIDEL, der manuellen
Rietveld-Verfeinerung und der Anpassung an die PDF.. 40
Tabelle 4-3: Kristallographische Daten der α-Phase von DFC (entsprechend Strukturmodell A) aus
der Rietveld-Verfeinerung. ... 43
Tabelle 4-4: Kristallographische Daten von MMC... 48
Tabelle 5-1: Suchraum-Set-up des PDF-Globalfits für Barbitursäure.. 64
Tabelle 5-2: Evaluation der Anzahl an Strukturkandidaten in den untersuchten Raumgruppen
nach jedem Aussortierungsschritt. .. 66
Tabelle 5-3: Die besten Strukturmodelle nach dem SA-Fit an die experimentelle PDF................. 67
Tabelle 5-4: Gitterparameter der Strukturkandidaten nach der benutzerkontrollierten
Verfeinerung. ... 68
Abkürzungs- und Symbolverzeichnis

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>θ</td>
<td>Glanzwinkel</td>
</tr>
<tr>
<td>Φ_x, Φ_y, Φ_z</td>
<td>Molekülorientierung in x-, y-, z-Richtung</td>
</tr>
<tr>
<td>λ</td>
<td>Wellenlänge</td>
</tr>
<tr>
<td>$a, b, c, \alpha, \beta, \gamma$</td>
<td>Gitterparameter</td>
</tr>
<tr>
<td>ρ</td>
<td>Dichte</td>
</tr>
<tr>
<td>σ</td>
<td>Standardabweichung</td>
</tr>
<tr>
<td>AC</td>
<td>Aminogluthethimid-Camphersulfonat</td>
</tr>
<tr>
<td>BG</td>
<td>Untergrund</td>
</tr>
<tr>
<td>c_{12}</td>
<td>Kreuzkorrelationsfunktion</td>
</tr>
<tr>
<td>d</td>
<td>Netzebenenabstand</td>
</tr>
<tr>
<td>D</td>
<td>Anzahl an Datenpunkten</td>
</tr>
<tr>
<td>DFC</td>
<td>4,11-Difluorchinacridon</td>
</tr>
<tr>
<td>E</td>
<td>Energie</td>
</tr>
<tr>
<td>FQ</td>
<td>Flurbiprofen-Chinin</td>
</tr>
<tr>
<td>$f(Q)$</td>
<td>Atomformfaktor</td>
</tr>
<tr>
<td>$F(Q)$</td>
<td>reduzierte totale Struktur-Streufunktion</td>
</tr>
<tr>
<td>l</td>
<td>Länge</td>
</tr>
<tr>
<td>GOF</td>
<td>Goodness of Fit</td>
</tr>
<tr>
<td>$G(r)$</td>
<td>PDF, Wahrscheinlichkeit</td>
</tr>
<tr>
<td>I_c</td>
<td>kohärenten Intensität</td>
</tr>
<tr>
<td>I_{BG}</td>
<td>Intensität der Hintergrundstreuung</td>
</tr>
<tr>
<td>I_{ic}</td>
<td>inkohärenten Intensität</td>
</tr>
<tr>
<td>I_{exp}</td>
<td>gemessene Intensität</td>
</tr>
<tr>
<td>I_m</td>
<td>Intensität der Mehrfachstreuung</td>
</tr>
<tr>
<td>Symbol</td>
<td>Definition</td>
</tr>
<tr>
<td>--------</td>
<td>------------</td>
</tr>
<tr>
<td>LC</td>
<td>Lamivudin-Camphersulfonat</td>
</tr>
<tr>
<td>MM</td>
<td>Molekülmechanik</td>
</tr>
<tr>
<td>MMC</td>
<td>Monomethylchinacridon</td>
</tr>
<tr>
<td>N</td>
<td>Anzahl der Atome</td>
</tr>
<tr>
<td>n</td>
<td>Beugungsordnung</td>
</tr>
<tr>
<td>P</td>
<td>Parameteranzahl</td>
</tr>
<tr>
<td>PDF</td>
<td>Paarverteilungsfunktion</td>
</tr>
<tr>
<td>Q</td>
<td>Streuvektor</td>
</tr>
<tr>
<td>QM</td>
<td>Quantenmechanik</td>
</tr>
<tr>
<td>r</td>
<td>Radius, Abstand</td>
</tr>
<tr>
<td>R_{\exp, p, w_p}</td>
<td>erwarteter, Profil-, gewichteter Profil-R-Wert</td>
</tr>
<tr>
<td>R'_{\exp, p, w_p}</td>
<td>untergrundkorrigierter erwarteter, Profil-, gewichteter Profil-R-Wert</td>
</tr>
<tr>
<td>$R_{w_p}^{PDF}$</td>
<td>gewichteter Profil-R-Wert der PDF-Anpassung</td>
</tr>
<tr>
<td>S_{12}^{PDF}</td>
<td>Ähnlichkeitsindex</td>
</tr>
<tr>
<td>SA</td>
<td>$simulated$ annealing</td>
</tr>
<tr>
<td>SDPD</td>
<td>Strukturbestimmung aus Röntgenpulverdaten</td>
</tr>
<tr>
<td>$S(Q)$</td>
<td>totale Struktur-Streufunktion</td>
</tr>
<tr>
<td>$w(a)$</td>
<td>Dreiecksfunktion des Abstandes a</td>
</tr>
<tr>
<td>w_i</td>
<td>Gewichtung am Punkt i</td>
</tr>
<tr>
<td>x, y, z</td>
<td>Fraktionelle Koordinaten</td>
</tr>
<tr>
<td>$y_{\text{calc}, i}$</td>
<td>berechnete Intensität am Punkt i</td>
</tr>
<tr>
<td>$y_{\text{obs}, i}$</td>
<td>beobachtete Intensität am Punkt i</td>
</tr>
<tr>
<td>Z</td>
<td>Anzahl der Moleküle in der Elementarzelle</td>
</tr>
<tr>
<td>Z'</td>
<td>Anzahl der Moleküle in der asymmetrischen Einheit</td>
</tr>
</tbody>
</table>
Anmerkungen

Teile der abgebildeten Veröffentlichung unter Kapitel 8.4 wurden bereits veröffentlicht, ersichtlich an der jeweiligen Literaturangabe.

Bei Literaturangaben der Form [CS (Zahl)] handelt es sich um eigene Publikationen, die dementsprechend als solche separat im Literaturverzeichnis gekennzeichnet wurden.

Der Farbcode bei Abbildungen nach Elementen entspricht den Vorgaben der Cambridge Structural Database (CSD). Für die in dieser Arbeit vorkommenden Elemente bedeutet dies: Stickstoffatom (blau), Kohlenstoffatom (dunkelgrau), Schwefelatom (gelb), Wasserstoffatom (hellgrau), Fluoratom (hellgrün), Chloratom (grün), Sauerstoffatom (rot).
1. Einleitung

Ziel dieser Arbeit ist es, die Wichtigkeit der SDPD aufzuzeigen, allerdings auch ihre Grenzen darzustellen, sowie Perspektiven oder neue Methoden zur Erweiterung dieser zu finden. Zudem soll im Rahmen dieser Doktorarbeit eine neue Methode zur Bestimmung der Lokalstruktur
2. Theoretische Grundlagen

Im folgenden Kapitel werden die Methoden, welche im Rahmen dieser Forschungsarbeit verwendet wurden, kurz vorgestellt: Beginnend mit der Kristallstrukturbestimmung aus Röntgenpulverdaten, gefolgt von der Analyse der Parverteilungsfunktion (PDF). Abschließend wird ein kurzer Einblick in eine kraftfeldbasierte Gitterenergieminimierung gegeben.

2.1 Kristallstrukturbestimmung aus Röntgenpulverbeugungsdaten

Die genaue Kenntnis der Kristallstruktur ist essenziell, um physikalische und chemische Eigenschaften, wie beispielsweise Löslichkeit, Stabilität, Magnetismus etc. zu verstehen oder diese gezielt zu beeinflussen.\cite{8-10,22} Verlässliche Kristallstrukturbestimmungen werden aus Einkristallstrukturanalysen mittels Röntgenbeugung erhalten. Voraussetzung für diese Methode ist ein Einkristall ausreichender Größe (mindesten 10-100 μm) und Qualität (keine oder wenigstens eine beschreibbare Verzwilligung, geeignete Morphologie, keine Einschlüsse).\cite{11} Die Züchtung von Einkristallen ist jedoch nicht immer möglich, beispielsweise bei organischen Pigmenten aufgrund ihrer schlechten Löslichkeit\cite{23}, oder eine Einkristallzüchtung kann sehr zeitaufwendig sein\cite{24}. Darüber hinaus ist eine Einkristallzüchtung oftmals keine Option, wenn zu wenig Substanz vorhanden ist, wie es bei \textit{Research Candidates}\cite{25} in der Medikamentenforschung oft der Fall ist. Oder da die Kristallstruktur der (Anwendungs-)Pulverform von Interesse ist, wie bei Arzneistoffen, die als Pulver, Injektion oder Tablette verabreicht werden\cite{12,26} oder wie es bei pharmazeutischen Formulierungen aus einem 3D Drucker der Fall sein kann\cite{27}. Hierbei kann die Kristallstruktur des Pulvers von der Einkristallstruktur abweichen. Die Methode der Wahl zur Strukturbestimmung ist hierbei die Pulverdiffraktometrie: Unter anderem liefert diese die Kristallstruktur der Verbindungen aus Pulverproben mittels Neutronen-\cite{28} oder (in seltenen Fällen) Elektronenstrahlung\cite{29}. Die am häufigsten verwendete Strahlung zur Kristallstrukturbestimmung aus Pulverproben ist allerdings die Röntgenstrahlung.\cite{17}

2.1.1 Grundlagen der Röntgenbeugung

Ein Röntgenstrahl der Wellenlänge λ wird an den Netzebenen eines Kristalls gebeugt, wenn die Größenordnung der Wellenlänge dem Netzebenenabstand entspricht. Hierbei entstehen zwei Arten von kohärenter elastischer Streuung: Zum einen die Bragg Streuung und zum anderen die elastische diffuse Streuung. Die Bragg-Streuung wird durch die Bragg-Gleichung beschrieben (1.1):^{[30]}

$$n\lambda = 2dsin\theta$$

Hierbei ist d der Netzebenenabstand und θ der ein- und ausfallende Winkel des Röntgenstrahls. Der Beugungsordnung n kann in den meisten Experimenten als 1 angenommen werden. Der gebeugte Röntgenstrahl wird detektiert.

Abbildung 2-1: Schematische Übersicht der unterschiedlichen Bereiche eines Röntgenpulverdiagramms und der darin erhaltenen physikalischen Bedeutung und/oder Information, nach Vorbild von Dinnebier & Billinge[31].

2.1.2 Indizierung

2.1.3 Strukturlösung

Bei der Strukturlösung erhält man aus den Reflexintensitäten des Röntgenpulverbeugungsdiagramms die Atompositionen innerhalb der Elementarzelle. Hierfür unterscheidet man
hauptsächlich zwischen zwei Vorgehensweisen: Strukturlösung im reziproken Raum, wie zum Beispiel direkte Methoden[40], Patterson-Methode[41], oder der Strukturlösung im direkten (kristallinen) Raum, bspw. Gitterenergieminimierung[42] oder simulated annealing (SA)[43].

Der SA-Ansatz für SDPD erreicht seine Grenzen, wenn die zu bestimmende Kristallstruktur eine zu große Anzahl an symmetrieunabhängigen Molekülen in der asymmetrischen Einheit \((Z' \geq 2)\) und/ oder flexible Moleküle mit großer Atomanzahl aufweist.[44, 45] Hierbei ist der Informationsgehalt des Pulverdiagramms zu gering zur Bestimmung aller benötigten Parameter (intramolekulare Freiheitsgrade, Molekülposition, Molekülorientierung).

Eine Strukturlösung nach der hier vorgestellten Methode ist nur zielführend, sofern das Pulverdiagramm indizierbar ist oder sinnvolle Gitterparameter, z. B. aus isotypen Verbindungen, gefunden werden können. Nach eigener Erfahrung scheint die Indizierung in 70% der Fälle bei organischen Molekülen. Die Gründe hierfür sind zahlreich: Zu den zwei häufigsten zählt einerseits, dass die vermessene Probe mit chemischen Fremdphasen verunreinigt ist (Zwischen- oder Abbauprodukte) oder nicht phasenrein ist (mehrere Polymorphe).[18] Der zweithäufigste Grund bei organischen Verbindungen sind Kristallite mit mangelnder Qualität: Zu klein \((\leq 50 \text{ nm})\), mit starker Vorzugsorientierung oder Kristallbaufehlern. In beiden Fällen ist es ratsam, die Probe aufzureinigen und umzukristallisieren, um phasenreine Kristallite mit ausreichender Qualität zu
erhalten. Bei einigen organischen Verbindungen ist dies aufgrund geringer Löslichkeit oder Instabilität eine Herausforderung und nicht immer möglich.

Um dennoch die Gitterparameter für eine Strukturlösung aus einem nicht indizierbaren Pulverdiagramm zu bestimmen, bieten sich folgende Möglichkeiten an:

- eine Kristallstrukturvorhersage basierend auf quantenchemischen oder Kraftfeld-basierten Rechnungen. Die Pulverdiagramme der resultierenden Strukturmodellen werden anschließend mit dem experimentellen Diagramm verglichen. Der hohe Zeitaufwand und große benötigte Computerrechenkapazität sind Nachteile dieses Vorgehens.[46,47]

- eine ab initio Strukturlösung: Eine große Anzahl an Startmodellen mit zufälligen Gitterparametern, zufälligen Molekülpositionen und -orientierungen und deren paralleler Optimierung auf das experimentelle Pulverdiagramm. Auch hier ist der vergleichsweise hohe Zeitaufwand und die große benötigte Computerrechenkapazität nachteilig.

Ein geeignetes Programm für den letztgenannten Punkt ist FIDEL[51] (Fit with deviating lattice parameters). Der implementierte „Globalfit‘ ähnelt der Strukturlösung im realen Raum (siehe simulated annealing), jedoch werden zusätzlich die Werte der Gitterparameter zufällig erzeugt. Als Input werden lediglich das Pulverdiagramm und die Molekülstruktur benötigt. Um die korrekten Raumgruppe zu ermitteln, wird die Raumgruppenstatistik von Pidcock et al.[52] herangezogen: Über 90% der organischen Verbindungen kristallisieren in 11 Raumgruppen. Unter Einbeziehung der Molekülsymmetrie (z.B. Inversionszentrum) kann sich die Anzahl an möglichen Raumgruppen reduzieren und die Wahrscheinlichkeit für einzelne Raumgruppen erhöhen (z.B. chirale Verbindungen kristallisieren nur in chiralen Raumgruppen).[53,54] Die Schritte des FIDEL-Globalfit sind automatisiert und lassen sich folgendermaßen zusammenfassen:\(^{[50]}\):

1) Erzeugung einer großen Anzahl an Zufallsstrukturen in den häufigsten Raumgruppen\(^{[52]}\) (über 1 Millionen Strukturen)
2) Simulation eines Pulverdiagrammes jeder Zufallsstruktur und Vergleich mit dem experimentellen Pulverdiagramm
3) Anpassung des simulierten Pulverdiagramms an das experimentelle Pulverdiagramm durch gleichzeitige Veränderung von Gitterparametern, Molekülposition, Molekülorientierung und intramolekularen Freiheitsgraden einer Zufallsstruktur
4) Ranking der angepassten Zufallsstrukturen nach einem Ähnlichkeitsindex, basierend auf der Kreuzkorrelationsfunktion

5) Automatische Rietveld-Verfeinerung, siehe Kapitel 2.1.4 (~ 100 besten Strukturen)

2.1.4 Strukturverfeinerung: Rietveld-Methode

Das gefundene Strukturmodell aus der Strukturlösung bietet meist nur eine grobe Anpassung an das experimentelle Pulverdiagramm und wird anschließend verfeinert. Der geläufige Name „Rietveld-Methode“ wurde nach Einem der Erfinder, Hugo Rietveld, benannt. In der Rietveld-Methode wird durch eine Least-squares-Verfeinerung des Strukturmodells die bestmögliche Anpassung des simulierten Pulverdiagramms an das experimentelle Pulverdiagramm erzielt.\[55\]

Um die Qualität einer Rietveld-Verfeinerung zu beurteilen, betrachtet man die statistischen Übereinstimmungsfaktoren von berechneten und experimentellen Beugungsdiagrammen, die sogenannten \(R \)-Werte. Hierbei wird unterschieden zwischen dem erwarteten \(R \)-Wert \(R_{\exp} \) (1.2), dem Profil-\(R \)-Wert \(R_{p} \) (1.3) und dem gewichteten Profil-\(R \)-Wert \(R_{wp} \) (1.4) der Gewichtung \(w_{i} \) (abhängig von der Standardabweichung \(\sigma \) der beobachteten Intensitäten (1.5)). Diese werden unter Einbeziehung der beobachteten Intensitäten \(y_{obs,i} \) und der berechneten Intensitäten \(y_{calc,i} \) am Punkt \(i \), der Anzahl an Datenpunkten \(D \) und der Anzahl an Parametern \(P \) berechnet.\[56\]

\[
R_{\exp} = \frac{D - P}{\sqrt{\sum_{i=1}^{N} w_{i} y_{obs,i}^{2}}} \]

(1.2)

$$R'_{exp} = \sqrt{\frac{D - P}{\sum_{i=1}^{N} w_i (y_{obs,i} - y_{calc,i})^2}}$$

Der *Goodness of fit (GOF)*-Wert setzt den erwarteten und den gewichteten Profil-R-Wert in ein Verhältnis (1.7). Ein GOF-Wert von 1 entspricht somit der idealen Rietveld-Verfeinerung, bei der sich experimentelles und simuliertes Pulverdiagramm entsprechen.

$$GOF = \frac{R_{wp}}{R_{exp}}$$

Anhand folgender drei Kriterien kann meist von einer erfolgreich verfeinerten Kristallstruktur und somit von einer erfolgreichen Kristallstrukturbestimmung ausgegangen werden:[57]

1) Akzeptable Werte der Gütekriterien, entsprechend kleine R-Werte.
2) Glatte Differenzkurve zwischen experimentellen und simulierten Beugungsdaten.
2.2 Paarverteilungsfunktion

In den letzten 20 Jahren entwickelte sich die Paarverteilungsfunktion (PDF) zu der mächtigsten Methode, um die bevorzugte Anordnung von benachbarten Atomen oder Moleküle (Lokalstruktur) in fehlgeordneten, schlecht kristallinen, nanokristallinen und amorphen Proben zu untersuchen.\[^{[19]}\] Obwohl die PDF Analyse seit 100 Jahren bekannt ist, um anorganische Gläser und Flüssigkeiten zu studieren, erlebt die Methode derzeit einen enormen Aufschwung.\[^{[58]}\] Der Grund hierfür ist der Wunsch, die Kristallstruktur in Nanobereich zu verstehen und somit zunehmend rationale Strategien zur Verbesserung der Materialeigenschaften abzuleiten, besonders im Hinblick auf die Rolle der Struktur-Eigenschaft-Beziehungen. Dieser Trend liegt begründet an der zunehmenden Entwicklung von technischen und strukturell designen Materialien mit wachsender Komplexität, wie metallorganische Gerüstverbindungen (MOF)\[^{[59]}\], Katalysatoren, Pharmazeutika\[^{[60]}\], Batterien\[^{[61]}\] oder Speichermedien\[^{[62]}\]. Diese fortgeschrittenen funktionalen Materialien weisen Fehlordnungen\[^{[63]}\], wie Punktdenke oder verzerrte Nahordnung auf, zeigen Oberflächeneffekte, Heterogenität oder unterschiedliche Morphologie.\[^{[19,64]}\] Die Lokalstruktur dieser komplexen, aperiodischen Strukturen unterscheidet sich mitunter fundamental von der (durchschnittlichen) Kristallstruktur. Dementsprechend wird in der Materialchemie eine verlässliche Methode zur Untersuchung der Lokalstruktur benötigt. Dies ist die Stärke der PDF, welche die Wahrscheinlichkeit $G(r)$ angibt, zwei Atome in einem Abstand r zu finden. Die PDF wird durch eine Fouriertransformation der gesamten gestreuten Intensitäten des Diffraktogramms berechnet und zählt somit zu den total scattering Methoden.\[^{[65]}\] Die Stärke zur Lokalstrukturbestimmung der PDF in Kombination mit dem wachsenden Fortschritt der kristallographischen Techniken\[^{[66]}\], Software\[^{[67,68]}\] und des Equipments, führte zu der zunehmenden Popularität und Anwendung der PDF Methode.

Um eine PDF zu erhalten, muss zunächst ein sorgfältig gemessenes Pulverdiagramm über einen großen 2θ-Winkelbereich mit möglichst hochenergetischer Strahlung (z.B. Synchrotronstrahlung mit einer Energie von 60-75 keV), aufgenommen werden. Die erhaltenen Daten werden nach Gleichung (1.8) in den Streuvektorbereich Q überführt.

\[
Q = \frac{4\pi \sin \theta}{\lambda} \tag{1.8}
\]

Die gemessene Intensität I_{exp} der Probe setzt sich aus der kohärenten Intensität I_c, der inkohärenten Intensität I_{ic}, der Intensität der Mehrfachstreuung innerhalb der Probe I_m und der Hintergrundstreuung I_{BG} zusammen (1.9).\[^{[16]}\]
\[I_{\text{exp}}(Q) = I_c(Q) + I_{ic}(Q) + I_m(Q) + I_{BG}(Q) \] \hfill (1.9)

Um eine adäquate Untergrundkorrektur durchzuführen wird der leere Probenhalter (z. B. eine Glas- oder Kaptonkapillare) unter den gleichen Messbedingungen wie die zu untersuchende Probe vermessen. Dieses \(I_{BG}(Q) \) wird von der gemessen Probenintensität mit einer geeigneten Skalierung abgezogen. Mithilfe geeigneter Software, wie beispielsweise PDFgetX3\[67\] werden unter anderem die Absorption, Polarisation und Mehrfachstreuung \(I_m \) korrigiert, um \(I_c \) zu extrahieren, welche die strukturellen Informationen beinhaltet.\[16\]

Die erhaltene kohärente Intensität \(I_c(Q) \) wird durch Gleichung (1.10) unter Verwendung des quadrierten Atomformfaktors \(\langle f^2(Q) \rangle \) in die dimensionslose totale Struktur-Streufunktion \(S(Q) \) überführt, normiert auf das Quadrat des durchschnittlichen atomaren Formfaktors \(\langle f(Q) \rangle^2 \).\[16,67\]

\[S(Q) = \frac{I_c(Q) - \langle f^2(Q) \rangle}{\langle f(Q) \rangle^2} + 1 \] \hfill (1.10)

Die reduzierte totale Struktur-Streufunktion \(F(Q) \) wird berechnet durch (1.11):\[16\]

\[F(Q) = Q[S(Q) - 1] \] \hfill (1.11)

Über eine Fouriertransformation des maximalen Streubereich von \(Q_{\text{min}} \) bis \(Q_{\text{max}} \) wird die PDF \(G(r) \) erhalten (1.12). Der maximale Streubereich \(Q_{\text{max,inst}} \) ist instrumentell limitiert. Der maximal mögliche Streuvektor \(Q_{\text{max}} \) gibt die Qualität der PDF an. Der \(Q_{\text{max,inst}} \) des experimentellen Setups wird auf einen kleineren \(Q_{\text{max}} \)-Wert reduziert, um das Untergrundrauschen im hohen \(Q \)-Bereich und Artefakte aus der Fouriertransformation zu minimieren.\[19\]

\[G(r) = \frac{2}{\pi} \int_{Q_{\text{min}}}^{Q_{\text{max}}} F(Q) \sin(Qr) dQ \] \hfill (1.12)

Die Daten der einzelnen Schritte zur Berechnung der PDF sind in Abbildung 2-2 exemplarisch dargestellt. Ein Auszug der enthaltenen Information der betrachteten Bereiche der PDF wird in Abbildung 2-3 aufgeführt.
Abbildung 2-2: Darstellung der Schritte bei einer PDF-Berechnung anhand von Monomethylchinacridon mit einem \(Q_{\text{max}} \)-Wert von 15,14 Å\(^{-1} \) (Siehe Kapitel 4.2); Von oben nach unten:
1) Untergrundkorrigiertes Pulverdiagramm \(I(Q) \); 2) Totale Struktur-Streufunktion \(S(Q) \); 3) Normalisierte reduzierte totale Struktur-Streufunktion \(F(Q) \); 4) Paarverteilungsfunktion \(G(r) \).

Abbildung 2-3: Schematische Übersicht der unterschiedlichen Bereiche einer Paarverteilungsfunktion (PDF) und der darin erhaltenen physikalischen Bedeutung und/oder Information.

Die häufigste Methode strukturelle Informationen aus der PDF zu erhalten, ist der Vergleich mit oder die Anpassung einer simulierten PDF-Kurve eines Strukturmodells an die experimentelle PDF.
nach Gleichung (1.13) unter Einbeziehung der Streukraft \(f_i, f_j \) der Atome \(i, j \), der Dirac delta Funktion \(\delta \) und der atomaren Dichte \(\rho_0 \), sowie der Dichtefunktion \(\rho(r) \) des Abstandes \(r \).[16]

\[
G(r) = 4\pi r [\rho(r) - \rho_0] = \frac{1}{Nr} \sum_i \sum_{j \neq i} \left[\frac{f_i f_j}{(Q)} \right]^2 \delta(r - r_{ij}) - 4\pi r \rho_0
\] (1.13)

Qualitative und quantitative Phasenanalyse von amorphen und nanokristallinen Proben ist analog zu einem Pulverdiagramm möglich.[69] Die Übereinstimmung der berechneten PDF \(G_{\text{calc}}(r_i) \) eines Strukturmodells an die experimentelle PDF \(G_{\text{obs}}(r_i) \) wird ähnlich der Rietveld-Verfeinerung durch den gewichteten Profil-R-Wert der PDF \(R_{\text{wp}}^{PDF} \) nach Gleichung (1.14) mit dem geschätzten statistischen Fehler jedes Datenpunktes auf Niveau der Standardabweichung \(\sigma(G_{\text{obs}}(r_i)) \) ausgedrückt.[16]

\[
R_{\text{wp}}^{PDF} = \sqrt{\frac{\sum_{i=1}^{N} \frac{1}{\sigma(G_{\text{obs}}(r_i))} (G_{\text{obs}}(r_i) - G_{\text{calc}}(r_i))^2}{\sum_{i=1}^{N} \frac{1}{\sigma(G_{\text{obs}}(r_i))} G_{\text{obs}}^2(r_i)}}
\] (1.14)

Gleichung (1.13) beschreibt zudem, dass die Signalverbreiterung mit wachsendem Abstand \(r \) zunimmt, aber der atomare Auslenkungsparameter nicht zwischen Atompaaren innerhalb eines Moleküls und zwischen benachbarten Molekülen unterschiedet.[70] Für anorganische Verbindungen ist dies eine adäquate PDF-Berechnung, jedoch nicht für organische Strukturen. Für organische Verbindungen ist die PDF-Berechnung aufgrund der unterschiedlichen inter- und intramolekularen Bindungsverhältnisse aufwendiger als bei anorganischen Verbindungen: Kovalente Bindungen führen zu korrelierten Bewegungen der Atome, entsprechend einer korrelierten Schwingung der Atome innerhalb eines Moleküls. Dies zeigt sich in der PDF in scharfen Signalen mit geringer Halbwertsbreite (full width half maximum, FWHM). Schwache intermolekulare Wechselwirkungen, wie van-der-Waals-Wechselwirkungen, sorgen für schwach zusammenhängende Bewegungen der Moleküle zueinander. Hieraus resultieren in der PDF-Kurve breite Signale mit größerer FWHM.[71] Um die unterschiedlichen FWHM zu simulieren, ist die Berechnung eines inter- \((B_{\text{inter}}) \) und eines intramolekularen \((B_{\text{intra}}) \) Auslenkungsparameters nötig.[70]

Für die PDF-Berechnung aus einem Strukturmodell steht eine wachsende Zahl an diversen Programmen wie PDFgui,[72] DiffPy-CMI,[73] TOPAS,[37] oder DISCUS[74] zur Verfügung. Die Verwendung von \(B_{\text{inter}} \) und \(B_{\text{intra}} \) ist bereits in TOPAS implementiert.
2.3 Kraftfeldrechnungen und Gitterenergieminimierung

Molecular modelling wird in zwei Methodenbereiche unterteilt: Zum einen die klassische Molekülmechanik (MM, Kraftfeld-Methoden wie bspw. Dreiding\(^{[75]}\)) und zum anderen die Quantenmechanik (QM, z.B. *ab initio*, Dichtefunktionaltheorie, semiempirische Ansätze \(^{[76]}\)). Der empirische Kraftfeld-Ansatz bietet einen Geschwindigkeitsvorteil und eignet sich besonders für Systeme mit einer großen Anzahl an Molekülen, beziehungsweise Atomen. Allerdings bietet er dafür nur eine mittlere Genauigkeit, die stark von der Eignung des Kraftfelds für den Untersuchungsgegenstand abhängig ist.\(^{[77]}\) Dieser Geschwindigkeitsvorteil von MM resultiert daraus, dass Elektronen nicht explizit, sondern die elektronische Energie als empirisch parametrisierte Funktion der Kernkoordinaten betrachtet werden. QM Methoden hingegen betrachten die Lösung der elektronischen Schrödinger-Gleichung. Dadurch zeichnen QM Methoden sich durch hohe Genauigkeit aus, benötigen aber lange Rechenzeiten.\(^{[78,79]}\) Eine Kombination aus QM und MM kann die Stärken der beiden Methoden vereinigen.\(^{[80]}\)

Kraftfelder dienen der Berechnung intramolekularer Energiebeiträge, mit Hilfe parametrisierter Terme, die eine Abweichung von Bindungslängen und -winkeln von einem lokalen Minimum widerspiegeln. Ergänzt werden diese durch intermolekulare Energiebeiträge, basierend auf parametrisierten Termen von relevanten physikalischen Zusammenhängen (z. B. abstandsabhängige Anziehung zwischen ungleichnamigen Ionenladungen).\(^{[42]}\) Demnach bestimmt die jeweilige empirisch ermittelte Parametrisierung, für welche Verbindungen oder Verbindungsklassen ein Kraftfeld geeignet ist: Beispielsweise ist das AMBER\(^{[81]}\)-Kraftfeld für die Berechnung von Proteinen und Aminosäuren geeignet, aber das MOME\(^{[82]}\)C-Kraftfeld zur Betrachtung von Metallkoordination. Je mehr Systeme von einem Kraftfeld, z. B. Universal-Kraftfeld\(^{[83]}\) abgedeckt werden, desto ungenauer werden die Berechnungen.\(^{[78]}\) Für organische Kristallstrukturen hat sich das DREIDING\(^{[75]}\)-Kraftfeld bewährt. Hierbei setzt sich die berechnete gesamte Energie \(E_{\text{ges}}\) des betrachteten Systems aus bindenden Wechselwirkungen \(E_{\text{val}}\) und nicht-bindenden Wechselwirkungen \(E_{\text{nb}}\) zusammen (1.15).

\[
E_{\text{ges}} = E_{\text{val}} + E_{\text{nb}}
\]

\(\text{(1.15)}\)
Die Energie der bindenden Wechselwirkungen E_{val} (1.16) wird aus der Summe der Teilennergiebeiträge der Bindungswinkel E_A, Bindungslängen E_B, Torsionswinkel E_T und des Inversionwinkels E_i berechnet.

$$E_{\text{val}} = E_A + E_B + E_T + E_i$$ (1.16)

Der nichtbindende Energiebetrag E_{nb} (1.17) ergibt sich aus den Energien für die van-der-Waals-Wechselwirkungen E_{vdW}, die Coulomb-Wechselwirkungen E_Q und die Wasserstoffbrückenbindungen E_{Hb}.

$$E_{\text{nb}} = E_{vdW} + E_Q + E_{Hb}$$ (1.17)

$$E_{LA} = \frac{E_c}{Z} - E_g$$ (1.18)

Die Anwendungsmöglichkeiten der Gitterenergieberechnung sind vielseitig: Als eigenständige Methode oder als Teil der Strukturlösung, Strukturverfeinerung oder zur Validierung von gelösten Strukturen. Um das thermodynamisch stablste Polymorph zu identifizieren, werden die E_{LA} von unterschiedlichen Kristallstrukturen oder Strukturmodellen einer Verbindung miteinander verglichen.[86] Eine Strukturlösung im Rahmen der Kristallstrukturvorhersage berechnet und optimiert ebenfalls die E_{LA}.[87]
3. Bestimmung von Kristallstrukturen aus Röntgenpulverdaten

Die Kristallstrukturbestimmung aus Röntgenpulverdaten erfolgt idealerweise an einer gut kristallinen Probe, gemäß dem in 2.1 beschriebenen Verlauf. Der pharmazeutische Wirkstoff Carmustin (Kapitel 3.1) stellte sich als solch ein Lehrbuchbeispiel dar, bei welchem eine Kristallstrukturbestimmung, angefangen von der Messung über die Indizierung bis zu einer verfeinerten Struktur, problemlos möglich war. Carmustin ist hierbei ein Paradebeispiel der erfolgreichen Kristallstrukturbestimmung aus Pulverbeugungsdaten und verdeutlicht den Wert dieser Methode.

Zudem kann bei SDPD, im Gegensatz zur Einkristallstrukturanalyse, bisher nicht zwischen Enantiomeren einer reinen chiralen Substanz unterschieden werden. Der Verlust der Dreidimensionalität bei Aufnahme eines Röntgenbeugungsdiagram sorgt dafür, dass alle Reflexe eines Netzebenenabstandes auf denselben Beugungsring projiziert werden. Im Rahmen dieser Arbeit wurde eine Methode entwickelt (Kapitel 3.2.2) um Enantiomere korrekt aus Pulverbeugungsdaten zu bestimmen. Das Enantiomer wird mit einer bekannten chiralen Säure oder Base in ein Diastereomer überführt. Die absolute Konformation einer chiralen Substanz kann identifiziert werden durch Bestimmung des Diastereomers. Mittels dieser Umsetzung kann diese bisherige Grenze der SDPD verschoben werden.
3.1 Kristallstrukturbestimmung nach Lehrbuch ohne Komplikationen:

Carmustin

Carmustin (1,3-Bis-2-chloethy1-1-nitrosoharnstoff, \(\text{C}_5\text{H}_9\text{Cl}_2\text{N}_3\text{O}_2 \)) ist ein zytostatisch wirkender Arzneistoff zur Behandlung von Tumoren, insbesondere Glioblastomen. Allerdings ruft es aufgrund seiner zyto-, pulmo-, hepato- und nephrotoxischen Wirkung starke Nebenwirkungen hervor und findet daher hauptsächlich in der Therapie schwerwiegender Krankheitsverläufe Einsatz.\(^{[89]}\) Die Applikation dieses Wirkstoffs erfolgt per Injektion in alkoholischer Lösung mit Natriumchlorid und Dextrose als Additiven.\(^{[90]}\) Carmustin ist schlecht wasserlöslich und der Schmelzpunkt liegt bei 31 °C: Bereits bei Raumtemperatur beginnt Carmustin zu schmelzen und liegt als zähflüssiges Öl vor, daher ist eine Züchtung von Einkristallen äußerst schwierig.

Tabelle 3-1: Kristallographische Daten von Carmustin.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Werte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formel</td>
<td>C₅H₉Cl₂N₃O₂</td>
</tr>
<tr>
<td>M /g·mol⁻¹</td>
<td>214,05</td>
</tr>
<tr>
<td>Kristallsystem</td>
<td>Orthorhombisch</td>
</tr>
<tr>
<td>Raumgruppe (Nr.)</td>
<td>P 2₁ 2₁ 2₁ (19)</td>
</tr>
<tr>
<td>T /K</td>
<td>153 278</td>
</tr>
<tr>
<td>CCDC-Code</td>
<td>2059041 2070329</td>
</tr>
<tr>
<td>a /Å</td>
<td>19,6935(2) 19,8522(2)</td>
</tr>
<tr>
<td>b /Å</td>
<td>9,8338(14) 9,8843(15)</td>
</tr>
<tr>
<td>c /Å</td>
<td>4,63542(6) 4,69793(6)</td>
</tr>
<tr>
<td>α /°</td>
<td>90 90</td>
</tr>
<tr>
<td>β /°</td>
<td>90 90</td>
</tr>
<tr>
<td>γ /°</td>
<td>90 90</td>
</tr>
<tr>
<td>V /Å³</td>
<td>897,71(2) 921,85(2)</td>
</tr>
<tr>
<td>Z; Z’</td>
<td>4; 1</td>
</tr>
<tr>
<td>Dcalc /Mg·m⁻³</td>
<td>1,584 1,542</td>
</tr>
<tr>
<td>Strahlung</td>
<td>Cu-Kα₁</td>
</tr>
<tr>
<td>λ /Å</td>
<td>1,5406</td>
</tr>
<tr>
<td>2θ-Bereich /°</td>
<td>3-99</td>
</tr>
<tr>
<td>GOF</td>
<td>1,069 1,053</td>
</tr>
<tr>
<td>Rᵖ /%</td>
<td>10,550 13,106</td>
</tr>
<tr>
<td>Rwp /%</td>
<td>10,229 11,476</td>
</tr>
<tr>
<td>Rexp /%</td>
<td>9,567 10,901</td>
</tr>
</tbody>
</table>

Abbildung 3-2: Rietveld-Plot der Verfeinerung von Carmustin: a) Daten bei -120 °C aufgenommen b) Daten bei 5°C aufgenommen; experimentelles Pulverdiagramm (schwarze Punkte), berechnetes Pulverdiagramm (rote Linie), Differenzkurve (blaue Linie, unten), Reflexpositionen (graue senkrechte Striche).
Abbildung 3-3: Kristallstruktur von Carmustin; a) Blick entlang [0 0 1]; Wasserstoffbrückenbindungen (blau, gestrichelt); b) Blick entlang [0 1 0].

3.2 Ausloten der Grenzen der Strukturbestimmung aus Pulverdaten

SDPD ist eine verlässliche Methode zur Kristallstrukturbestimmung, hat jedoch auch ihre Anwendungsgrenzen. Die Methode kann nicht erfolgreich angewendet werden, wenn das aufgenommene Röntgenbeugungsdiagramm von mangelnder Qualität ist, durch beispielsweise einem zu kleinen Winkelbereich, zu kurze Messzeiten oder geringe Auflösung. Zudem scheitert SDPD auf klassischem Weg, wenn der erste Schritt, die Indizierung, fehlschlägt\(^{18}\): Beispielsweise bei Vorkommen von Fremdphasen oder Vorliegen eines Phasengemisches. Zu schlechte und kleine Kristallite erschweren oftmals ebenfalls eine problemlose SDPD.

In den beiden folgenden Kapitel werden speziell zwei Grenzen der SDPD betrachtet: Zum einen ist eine erfolgreiche Strukturlösung bei zu vielen und zu flexiblen Molekülen in der asymmetrischen Einheit selten erfolgreich. Hier werden zwei pharmazeutische Salze aufgezeigt, die trotz hoher Anzahl an Freiheitsgraden mittels simulated annealing gelöst werden konnten.

Zum anderen wird eine neue Methode entwickelt, um die bisherige Grenze, dass eine Enantiomerenbestimmung aus Pulverdaten nicht möglich ist, außer Kraft zu setzen.

3.2.1 Herausfordernde Kristallstrukturlösungen mit \(Z' = 2\): Zwei pharmazeutische Salze

Bei organischen Verbindungen scheitert eine erfolgreiche Kristallstrukturbestimmung meist an der Indizierung\(^{18}\): Schlechte Kristallinität führt zu breiten überlagernden Reflexen, oftmals mit hohem Untergrund, sodass circa 70 % aller Pulverdiagramme nicht eindeutig indizierbar sind. Sofern jedoch eine sinnvolle Indizierung erhalten wurde, ist die Strukturlösung und -verfeinerung in 98-99 % der Fälle durchführbar. Bei den beiden pharmazeutischen Salzen Lamivudin-Camphersulfonat (LC) und Aminogluthethimid-Camphersulfonat (AC) (Abbildung 3-4) war die Indizierung problemlos möglich, die Strukturlösung stellte jedoch eine Herausforderung dar. Eine der gängigsten Methoden zur Strukturlösung ist die Realraummethode. Diese gerät jedoch an ihre rechnerische Belastungsgrenze, wenn die Summe der Freiheitsgrade aus molekularer Rotation und Translation, sowie intramolekulare Freiheitsgrade, 20 übersteigt\(^{44,95}\). Durch deutliche Erhöhung der Rechenkapazität kann SDPD bei einem gut kristallinen Pulverdiagramm auch bei mehr als 20 Parametern zielführend sein: Beispielsweise durch eine verbesserte multi-core
Auslastung (MDASH[^96]), *distributing computing Systeme (GDASH[^97]) oder unter Verwendung von Cloud-Speicherung (CDASH[^98]).

Sowohl bei LC, als auch bei AC lieferte die Indizierung mit DICVOL jeweils eine monokline Zelle in $P 2_1$ mit zwei Formeleinheiten in der asymmetrischen Einheit ($Z' = 2$). Bei einem 1:1-Salz entspricht $Z' = 2$ vier symmetrieunabhängigen Molekülen. Demzufolge ergeben sich für die Molekülpositionen und die -orientierung bereits $4 \times 3 + 4 \times 3 = 24$ Freiheitsgrade. In $P 2_1$ ist die y-Koordinate des Ursprungs unabhängig, hierdurch reduziert sich die Anzahl an Freiheitsgraden auf 23. Hinzu kommen noch die intramolekularen Freiheitsgrade: In LC hat sowohl das Kation als auch das Anion je zwei nicht-vernachlässigbare Torsionswinkel (Torsionswinkel dargestellt als Pfeile in Abbildung 3-4). LC hat demzufolge insgesamt $23 + 4 \times 2 = 31$ Freiheitsgrade. Eine Differenz-Thermoanalyse zeigte, dass es sich bei AC um ein Hemihydrat handelt. Somit ergibt sich für die Freiheitsgrade der Translation: 2×3 der beiden Anionen, 2×3 der beiden Kationen und 1×3 für das Wasser gleich 14 Freiheitsgrade in $P 2_1$. Für die Freiheitsgrade der Rotation mit 5×3 erhöht sich die Gesamtzahl der Freiheitsgrade auf 29. Betrachtet man die intramolekularen Freiheitsgrade mit jeweils zwei pro Anion und zwei pro Kation beläuft sich die Gesamtzahl der Freiheitsgrade auf 37. Trotz dieser enormen Anzahl an Freiheitsgraden von 31 für LC und 37 für AC, konnte die Strukturlösung durch einige Näherungen und Einschränkungen erfolgreich mittels der *simulated annealing*-Methode des Programms DASH und anschließender Rietveld-Verfeinerung bestimmt werden. Die Kristallstrukturbestimmung war in beiden Fällen durchführbar, ohne auf leistungsfähigere Computer-Hardware oder Cloud-Speicherungssystem zurückzugreifen (siehe MDASH[^96], CDASH[^98], GDASH[^97]). Die kristallographischen Daten von LC und AC finden sich in Tabelle 3-2.
Abbildung 3-4: Vereinfachte Darstellung der beiden pharmazeutischen Salze: Lamivudin-Camphersulfonat (LC) und Aminogluthethimid-Camphersulfonat-Hemihydrat (AC); die Pfeile verdeutlichen die intramolekularen Freiheitsgrade.
Tabelle 3-2: Kristallographische Daten der Kristallstrukturen von LC und AC.

<table>
<thead>
<tr>
<th></th>
<th>LC</th>
<th>AC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formel</td>
<td>(\text{C}8\text{H}{12}\text{N}3\text{O}3\text{S}^+ \text{C}{10}\text{H}{15}\text{O}_4\text{S}^-)</td>
<td>(\text{C}{13}\text{H}{17}\text{N}2\text{O}2^+ \text{C}{10}\text{H}{15}\text{O}_4\text{S}^-)</td>
</tr>
<tr>
<td>Summenformel</td>
<td>(\text{C}{18}\text{H}{27}\text{N}_3\text{O}_7\text{S})</td>
<td>(\text{C}{23}\text{H}{33}\text{N}_2\text{O}_6.5\text{S})</td>
</tr>
<tr>
<td>CCDC-Code</td>
<td>1812942</td>
<td>1812941</td>
</tr>
<tr>
<td>M /g·mol(^{-1})</td>
<td>461,34</td>
<td>473,57</td>
</tr>
<tr>
<td>Kristallsystem</td>
<td>Monoklin</td>
<td>Monoklin</td>
</tr>
<tr>
<td>Raumgruppe (Nr.)</td>
<td>(P 2_1 (4))</td>
<td>(P 2_1 (4))</td>
</tr>
<tr>
<td>a /Å</td>
<td>24,1840(4)</td>
<td>6,99192(7)</td>
</tr>
<tr>
<td>b /Å</td>
<td>6,93942(10)</td>
<td>33,9372(3)</td>
</tr>
<tr>
<td>c /Å</td>
<td>12,40609(15)</td>
<td>10,06152(8)</td>
</tr>
<tr>
<td>α /°</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>β /°</td>
<td>99,7462(17)</td>
<td>9,52(10)</td>
</tr>
<tr>
<td>γ /°</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>V /Å(^3)</td>
<td>2051,97(5)</td>
<td>2350,1(3)</td>
</tr>
<tr>
<td>Z; Z’</td>
<td>4; 2</td>
<td>4; 2</td>
</tr>
<tr>
<td>(D_{\text{calc}})/\text{Mg}·\text{m} (^{-3})</td>
<td>1,495</td>
<td>1,338</td>
</tr>
<tr>
<td>T /K</td>
<td>153</td>
<td>294</td>
</tr>
<tr>
<td>Strahlung</td>
<td>Cu-K(\alpha_1)</td>
<td>Cu-K(\alpha_1)</td>
</tr>
<tr>
<td>λ /Å</td>
<td>1,5406</td>
<td>1,5406</td>
</tr>
<tr>
<td>2θ-Bereich /°</td>
<td>3-80</td>
<td>3-80</td>
</tr>
<tr>
<td>(R_p)/%</td>
<td>3,88</td>
<td>1,90</td>
</tr>
<tr>
<td>(R_{wp})/%</td>
<td>5,13</td>
<td>2,51</td>
</tr>
<tr>
<td>(R_{\text{exp}})/%</td>
<td>3,50</td>
<td>1,80</td>
</tr>
<tr>
<td>GOF</td>
<td>1,47</td>
<td>1,40</td>
</tr>
<tr>
<td>(R'_p)/%</td>
<td>11,71</td>
<td>6,12</td>
</tr>
<tr>
<td>(R'_{wp})/%</td>
<td>12,38</td>
<td>7,03</td>
</tr>
<tr>
<td>(R'_{\text{exp}})/%</td>
<td>8,43</td>
<td>5,04</td>
</tr>
</tbody>
</table>
3.2.1.1 Strukturlösung und -verfeinerung von Lamivudin-Camphersulfonat

Obwohl die korrekte Kristallpackung in nur 4 % der Fälle gefunden wurde, was für eine schlechte Reproduzierbarkeit spricht, zeigt sich, dass mit heutigen Rechenleistungen die bisherige Grenze einer erfolgreichen Strukturlösung mit 20 - 25 Freiheitsgraden, überschritten werden kann.
Abbildung 3-5: Drei verschiedene Strukturlösungen (blau, schwarz rot) von LC \((P 2_1, Z = 4, Z' = 2)\): Die Position und Orientierung des Lamivudinkations stimmt überein, während die Orientierung eines der beiden symmetrieunabhängigen Camphersulfonatanions variiert. Blick entlang \([0 1 0]\); Zur übersichtlichen Darstellung sind Wasserstoffatome nicht gezeigt.

Abbildung 3-6: Rietveld-Verfeinerung von LC (entsprechend dem blauen Strukturmodell in Abbildung 3-5); experimentelles Pulverdiagramm (schwarze Punkte), berechnetes Pulverdiagramm (rote Linie), Differenzkurve (blaue Linie, unten), Reflexpositionen (graue senkrechte Striche).
3.2.1.2 Strukturlösung von Aminogluthethimid-Camphersulfonat

Obwohl zwischenzeitlich die Kristallstruktur von AC aus Einkristalldaten gelöst werden konnte, stellte sich weiterhin die Frage, warum die Strukturlösung selbst bei 23 Freiheitsgraden scheiterte. Durch eine intensive Fehleranalyse konnten mögliche Fehlerquellen systematisch ausgeschlossen werden und die Ursache der fehlerhaften Strukturlösung mit freundlicher Unterstützung und im Austausch mit J. van de Streek identifiziert werden: Die Extraktion der integrierten Intensitäten und deren Korrelation war fehlerhaft.

Abbildung 3-7: Rietveld-Verfeinerung von AC; experimentelles Pulverdiagramm (schwarze Punkte), berechnetes Pulverdiagramm (rote Linie), Differenzkurve (blaue Linie, unten), Reflexpositionen (graue senkrechte Striche).

Abbildung 3-8: Kristallstruktur von AC; Einkristallstruktur (blau), Beispiel einer Strukturlösung aus dem Programm DASH (schwarz) ohne Beachtung des Wassermoleküls, Rietveld-verfeinerte Struktur (rot). Blick entlang [1 0 0].

Am Beispiel von AC konnte gezeigt werden wie mächtig die Strukturlösung mittels simulated annealing Ansatzes ist und dass ein mögliches Scheitern der Strukturlösung nicht unbedingt auf
die Methode selbst zurückzuführen ist. Darüber hinaus konnte anhand von zwei Beispielen (AC und LC) bewiesen werden, dass eine erfolgreiche Strukturlösung auch mit über 30 Freiheitsgraden reproduzierbar möglich ist. Die in kristallographischen Kreisen weitläufige Meinung, dass eine Strukturlösung nur bei maximal 25 Freiheitsgraden möglich ist, gilt somit als überholt. [100]
3.2.2 Neue Methode zur Bestimmung der absoluten Konfiguration pharmazeutischer Wirkstoffe durch Pulverdiffraktometrie

Die absolute Konfiguration einer Verbindung lässt sich mittels Einkristallstrukturanalyse bestimmen.\[101\] Dies setzt allerdings die aufwendige und langwierige Züchtung von ausreichend guten Einkristallen voraus. Besonders bei neueren pharmazeutischen Wirkstoffen (\textit{active pharmaceutical ingredient}, API) gestaltet sich die Züchtung von guten Einkristallen aufgrund ihrer geringen Löslichkeiten und hohen Molekulmasse herausfordernd.\[12,14\] Die Stereochemie muss jedoch bereits in einem frühen Stadium der Arzneimittelentwicklung bekannt sein\[102\], da die Bioverfügbarkeit oder medikamentöse Wirksamkeit äußerst stereoselektiv ist.\[103\] Ein Enantiomer eines API kann gegen eine bestimmte Krankheit wirken, während hingegen - im schlimmsten Fall - das andere Enantiomer des gleichen API toxisch ist.\[104\]

Enantiomere können in einem Röntgenpulverbeugungsdiagramm nicht voneinander unterschieden werden, eine direkte Strukturbestimmung aus Pulverdaten ist damit nicht möglich. Das Friedel’sche Gesetz besagt, dass die Intensität \(I \) der Netzebenen, beschrieben durch die Miller'schen Indices \(h, k \) und \(l \) nicht von den Reflexen der Netzebene mit den Indices \(-h, -k \) und \(-l \) unterschieden werden kann.\[101,106\] Diastereomere hingegen zeigen generell unterschiedliche Beugungsdiagramme. Daher war die Überlegung, den chiralen API in eine diastereomere Verbindung zu überführen. Da die meisten API eine Säure- oder Basengruppe besitzen, können diese mit einer entsprechenden Base oder Säure zu Salzen umgesetzt werden. Sofern die basischen oder sauren Salzbildner chiral sind, wird ein diastereomeres Salz erhalten. Durch SDPD wird die Kristallstruktur des Salzes mit den relativen Konfigurationen des API und des Salzbildners erhalten. Durch die genaue Kenntnis der absoluten Konfiguration des chiralen Salzbildners, lässt sich die absolute Konfiguration des API bestimmen. Der Erfolg und die Validierung dieser neuen Methode wurde in dieser Arbeit anhand von drei pharmazeutischen Salzen untersucht: Die basischen API (2RS5)-Lamivudin (L) und (R)-Aminogluthethimid (A) wurden mit dem sauren chiralen Salzbildner (R)-Camphersulfonsäure (C) umgesetzt, um LC und AC zu erhalten. Der saure
Wirkstoff (R)-Flurbiprofen (F) wurde mit dem basischen Salzbildner (R)-Chinin (Quinine, Q) zu FQ umgesetzt (Abbildung 3-9).

<table>
<thead>
<tr>
<th>Saure Wirkstoffe:</th>
<th>Basische Wirkstoffe:</th>
</tr>
</thead>
<tbody>
<tr>
<td>-Flurbiprofen</td>
<td>-Aminoglutethimid</td>
</tr>
<tr>
<td>-Chinin</td>
<td>-Lamivudin</td>
</tr>
</tbody>
</table>

Abb. 3-9: Strukturformeln der verwendeten chiralen pharmazeutischen Wirkstoffe und chiralen Salzbildner. Das in dieser Studie untersuchte chirale Kohlenstoffatom ist jeweils mit einem Stern gekennzeichnet. Weitere chirale Zentren wurden ggf. vernachlässigt.

Von allen erhaltenen Salzen wurde ein Röntgenbeugungsdiagramm aufgenommen, welches in allen drei Fällen (LC, AC, FQ) erfolgreich indiziert wurde. Für die Strukturlösung mittels Realraummethode wurden für jedes Salz jeweils zwei Strukturlösungsdurchläufe durchgeführt. Die Konfiguration des chiralen Salzbildners wurde in beiden Ansätzen vorgegeben; für den API wurden beide Enantiomere verwendet: Eine Strukturlösung erfolgte mit der richtigen Konfiguration des API und die zweite Strukturlösung mit der falschen Konfiguration des API.

Die Strukturlösung von FQ war problemlos möglich, sowohl mit dem ‚richtigen‘ Enantiomer, als auch mit dem ‚falschen‘ Enantiomer von F.

32

Bei AC und LC zeigten sich deutlich bessere R-Werte für das richtige Enantiomer, die R-Werte von FQ sind nahezu gleich oder sogar geringfügig schlechter. Für eine eindeutige Identifizierung des korrekten Enantiomers wurden weitere Kriterien untersucht und somit weitere Verfeinerungsstrategien entwickelt:

1) Konfigurationsfreigabe: Welches Enantiomer des API wird erhalten, wenn bei der Rietveld-Verfeinerung keine Sollwerte (Restraints) für Bindungslängen und -winkel am chiralen Kohlenstoffatom vorgegeben werden (Kriterium 1).

2) Fehlordnungsmodell: Ein fehlgeordnetes Modell mit zu verfeinernden Besetzungsfaktoren für das ‚richtige’ und das ‚falsche’ Enantiomer innerhalb einer Rietveld-Verfeinerung (Kriterium 2).

<table>
<thead>
<tr>
<th>Salz</th>
<th>R_{wp} / % (richtiges / falsches Enantiomer)</th>
<th>Kriterium 1 Konfigurationsfreigabe</th>
<th>Kriterium 2 Fehlordnungsmode</th>
<th>Kriterium 3 Geometriebetrachtung: z-Werte (richtiges / falsches Enantiomer)</th>
<th>Kriterium 4 Freiverfeinerung: RMSCD / Å (richtiges / falsches Enantiomer)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FQ</td>
<td>3,889 / 3,860 (R)-F (richtig)</td>
<td>0,920(7) / 0,080(7)</td>
<td>3,082 / 3,166</td>
<td>0,217 / 0,179</td>
<td></td>
</tr>
<tr>
<td>AC</td>
<td>2,513 / 3,847 (R)-A (richtig)</td>
<td>0,976(3) / 0,024(3)</td>
<td>1,030 / 1,847</td>
<td>0,055 / 0,176</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3,492 / 3,843 (richtig)</td>
<td>0,824(7) / 0,176(7)</td>
<td>2,162</td>
<td>0,219</td>
<td></td>
</tr>
<tr>
<td>LC</td>
<td>5,132 / 6,417 (2R5S)-L (richtig)</td>
<td>0,901(3) / 0,099(3)</td>
<td>2,266</td>
<td>0,241</td>
<td></td>
</tr>
</tbody>
</table>

Kriterium 1 und Kriterium 2 lieferten bei den drei Salzen am zuverlässigsten das richtige Enantiomer und sollten für zukünftige Untersuchungen bevorzugt verwendet werden. Details können [CS03] und [CS04], sowie deren Supporting Information entnommen werden. Diese neue Methode zeigt, dass über eine chirale Salzbildung die absolute Konfiguration aus Röntgenpulverdaten zuverlässig und eindeutig bestimmt werden kann. Ihr Vorteil gegenüber der Stereochemiebestimmung aus Einkristalldaten liegt an dem geringen Substanzeinsatz von nur wenigen Mikrogramm.

einer chiralen Co-Substanz denkbar. Dies erweitert die potenziellen Einsatzgebiete dieser Methode. Auch ist eine Substitution mit einem Substituenten bekannter Chiralität zu erwägen (z.B. [108]).

Sofern eine SDPD möglich ist, entsprechend einer erfolgreichen Indizierung und Strukturlösung, kann mittels eines diastereomeren Co-Formers die absolute Konfiguration anhand der R-Werte der Rietveld-Verfeinerung, sowie Kriterium 1 und 2 eindeutig bestimmt werden.
4. Kombination von Methoden zur Kristallstrukturbestimmung aus Röntgenpulverdaten

4.1 Neues Programm FIDEL, kombiniert mit Rietveld-Verfeinerung und PDF-Analyse: 4,11-Difluorchinacridon

Im Rahmen dieser Arbeit konnte die Kristallstruktur der α-Phase von DFC aus Röntgenpulverdaten erfolgreich gelöst werden. Im Röntgenpulverdiagramm von DFC sind nur ~ 18 Reflexe erkennbar (Abbildung 4-1). Eine sinnvolle Indizierung war nicht möglich, da für diese mindestens 20-30 scharfe und möglichst separierte bzw. möglichst wenig überlagernde Reflexe nötig werden. Ohne vorherige Indizierung wurde ein Globalfit mit dem Programm FIDEL durchgeführt, nach der unter Kapitel 2.1.3 beschriebenen Vorgehensweise. Es wurden 21 159 231 Zufallsstrukturen in den neun, nach Häufigkeitsüberlegungen ausgewählten Raumgruppen P \(\bar{1}\), P 1, P 2\(\text{\textasciitilde}\), C 2/m, P 2\(\text{\textasciitilde}\)/c (\(Z^* =0.5\)), P 2\(\text{\textasciitilde}\)/c (\(Z^* = 1\)), C 2/c, P 2\(\text{\textasciitilde}\)2\(\text{\textasciitilde}\)2\(\text{\textasciitilde}\) und P bca erzeugt. Nach einer groben automatischen
Anpassung an das experimentelle Pulverdiagramm konnte mithilfe des Ähnlichkeitsindexes diese Anzahl auf 13 794 Strukturkandidaten reduziert werden. Weitere automatisierte Feinoptimierungen und Evaluationen dieser Strukturen reduzierten die Anzahl an möglichen Strukturen auf 400 potenzielle Kristallstrukturlösungen.

Abbildung 4-1: Röntgenpulverdiagramm der α-Phase von 4,11-Difluorchinacridon mit Strichformel.

Eine anschließende, benutzerkontrollierte Rietveld-Verfeinerung sollte zwischen den gefundenen fünf Strukturlösungen aus dem FIDEL-Globalfit diskriminieren und die korrekte durchschnittliche Kristallstruktur von DFC identifizieren. Zudem diente die manuelle Rietveld-Verfeinerung der Verbesserung der Optimierungssequenz der automatisierten Rietveld-Verfeinerung, um die Methode des Globalfits des Programms FIDEL weiter zu verbessern und bei zukünftigen, ähnlichen...
Problemen (mehrere Strukturmodelle unterschiedlicher Packungsmuster liefern vergleichbar gute Anpassungen an das experimentelle Pulverdiagramm) zu unterscheiden. Das Ziel - nur eine korrekte Kristallstruktur aus dem FIDEL-Globalfit eines nicht indizierbaren Pulverdiagramms zu erhalten - konnte hierbei weiter vorangetrieben werden.

Neben der Rietveld-Verfeinerung wurden die PDF-Analyse und die Gitterenergieminimierung als weitere Methoden hinzugezogen, um eine eindeutige Diskriminierung der gefundenen Strukturmodelle zu gewährleisten. Die ausgewählten Methoden stellen aufgrund ihrer unterschiedlichen Stärken eine hervorragende Kombination für die Fragestellung dar: Die Rietveld-Verfeinerung sagt aus, welches gemittelte Strukturmodell am ehesten die Kristallstruktur beschreibt, während die PDF-Analyse die bevorzugte Nahordnung der benachbarten DFC-Moleküle liefert. In Einbeziehung der Gitterenergie, ergibt sich eine Beschreibung ob die experimentellen Strukturen energetisch sinnvoll sind.

Tabelle 4-1: Gitterparameter der vier Strukturmodelle von DFC aus dem FIDEL-Globalfit.

<table>
<thead>
<tr>
<th>Struktur</th>
<th>Raumgruppe</th>
<th>Z; Z'</th>
<th>a / Å</th>
<th>b / Å</th>
<th>c / Å</th>
<th>α / °</th>
<th>β / °</th>
<th>γ / °</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>P 2₁/c</td>
<td>4; 1</td>
<td>13,687</td>
<td>3,770</td>
<td>28,687</td>
<td>90</td>
<td>104,54</td>
<td>90</td>
</tr>
<tr>
<td>B</td>
<td>P 2₁/c</td>
<td>2; 0,5</td>
<td>14,391</td>
<td>3,763</td>
<td>13,603</td>
<td>90</td>
<td>105,33</td>
<td>90</td>
</tr>
<tr>
<td>C</td>
<td>P 1̅</td>
<td>1; 0,5</td>
<td>3,896</td>
<td>7,043</td>
<td>14,201</td>
<td>102,26</td>
<td>86,80</td>
<td>105,06</td>
</tr>
<tr>
<td>D</td>
<td>P 2₁/c</td>
<td>4; 1</td>
<td>14,148</td>
<td>3,764</td>
<td>27,144</td>
<td>90</td>
<td>101,66</td>
<td>90</td>
</tr>
</tbody>
</table>

Abbildung 4-2: Darstellung der Packungsmuster der Strukturmodelle A-D von DFC; Modell A Blick entlang [1 0 0]; Modell B Blick entlang [0 0 1]; Modell C Blick entlang [0 1 0]; Modell D Blick entlang [0 0 1].

Für die PDF-Analyse mussten die vorhandene Strukturmodelle geringfügig modifiziert werden: Um die inter- und intramolekularen Auslenkungsparameter bei der PDF-Berechnung adäquat zu berechnen, muss ein ganzes Molekül in der asymmetrischen Einheit \((Z' = 1)\) vorliegen. Dementsprechend wurden Modell B und C in der jeweiligen Untergruppe an die PDF angepasst: Bei Modell B in \(P\ 2_1\) mit \(Z' = 1\) und Modell C in \(P\ 1\) mit \(Z' = 1\). Analog zur Rietveld-Verfeinerung wiesen alle vier Modelle akzeptable Gütekriterien bei der PDF-Anpassung auf.

Die Ergebnisse der manuellen und der automatisierten Rietveld-Verfeinerung, die PDF-Anpassung, sowie der Gitterenergieminimierung mit Kraftfeldmethoden sind in Tabelle 4-2 aufgeführt.

Tabelle 4-2: Ergebnisse der automatischen Rietveld-Verfeinerung mittels FIDEL, der benutzerkontrollierten Rietveld-Verfeinerung, der Anpassung an die PDF und der Gitterenergieminimierung.

<table>
<thead>
<tr>
<th>Struktur</th>
<th>Automatische Rietveld-Verfeinerung</th>
<th>Manuelle Rietveld-Verfeinerung</th>
<th>PDF-Anpassung</th>
<th>Gitterenergieminimierung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rang</td>
<td>(R_{wp}/%)</td>
<td>Rang</td>
<td>(R_{wp}^{PDF}/%)</td>
<td>Rang (\Delta E/\text{kal/mol})</td>
</tr>
<tr>
<td>A</td>
<td>2</td>
<td>1</td>
<td>1 28,10</td>
<td>1 0,00</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>2</td>
<td>2 28,07</td>
<td>1 0,00</td>
</tr>
<tr>
<td>C</td>
<td>3</td>
<td>4</td>
<td>3 28,09</td>
<td>2 +1,35</td>
</tr>
<tr>
<td>D</td>
<td>4</td>
<td>3</td>
<td>4 29,01</td>
<td>3 +1,70</td>
</tr>
</tbody>
</table>

Nach den R-Werten ist Model A die günstigste Strukturbeschreibung von DFC, jedoch sind die R-Werte von Model B nur geringfügig höher. Eine genaue Betrachtung der Rietveld-Plots liefert den gleichen Trend. Bei Model A und Model B handelt es sich um adäquate Beschreibungen der durchschnittlichen Kristallstruktur und eine eindeutige Unterscheidung zwischen diesen beiden Modellen kann nicht getroffen werden. Allerdings muss beachtet werden, dass die R-Werte von Model A und Model B nicht direkt miteinander verglichen werden können. Model A mit \(Z' = 1\) weist niedrigere Gütekriterien auf, aufgrund der doppelt so großen Anzahl an verfeinerten Strukturparametern (Atomkoordinaten) im Gegensatz zu Model B mit \(Z' = 0,5\).

Beide Strukturmodelle weisen eine Jägerzaun-Struktur in P \(2_1/c\) auf. Dies scheint ein repräsentatives Packungsmuster der durchschnittlichen Kristallstruktur von DFC zu sein.
Bei Anpassung der Strukturmodelle an die PDF erwiesen sich die Modelle A-C als eine günstige Beschreibung der Lokalstruktur. Die optimierten Strukturmodelle sind chemisch sinnvoll und weisen die maximal mögliche Anzahl an Wasserstoffbrückenbindungen auf.

Die PDF-Anpassung zeigt die Lokalstruktur der Verbindung auf, während hingegen die Rietveld-Verfeinerung die durchschnittliche Kristallstruktur liefert. Besonders bei Fehlordnung oder schlechtkristallinen Proben kann die durchschnittliche Kristallstruktur von der lokalen Anordnung der Moleküle abweichen. Im Fall von DFC scheint sowohl das Jägerzaunpackungsmuster (Modell A und B), als auch die Schichtstruktur (Model C) eine adäquate Beschreibung der Lokalstruktur zu sein.

Jede Methode für sich selbst genommen (Rietveld-Verfeinerung, PDF-Analyse und Gitterenergie-minimierung) favorisiert nicht eindeutig eins der vier Strukturmodelle von DFC. In Kombination
der Methoden zeichnet sich ein Gesamtbild ab und ein deutlicher Trend zu Model A und Model B ist deutlich. Da es sich bei Model A und Model B um äquivalente Kristallstrukturmodelle handelt, wird gemäß kristallographischer Norm das höher symmetrische Modell B als geeigneter Strukturrepräsentant von DFC bestimmt (Tabelle 4-3). [CS06]

Tabelle 4-3: Kristallographische Daten der α-Phase von DFC (entsprechend Strukturmodell B) aus der Rietveld-Verfeinerung.

<table>
<thead>
<tr>
<th>DFC</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Formel</td>
<td>C_{20}H_{10}N_{2}O_{2}F_{2}</td>
</tr>
<tr>
<td>M /g·mol^{-1}</td>
<td>348,32</td>
</tr>
<tr>
<td>Kristallsystem</td>
<td>Monoklin</td>
</tr>
<tr>
<td>Raumgruppe (Nr.)</td>
<td>P 2_{1}/c (14)</td>
</tr>
<tr>
<td>a /Å</td>
<td>14,2172(15)</td>
</tr>
<tr>
<td>b /Å</td>
<td>3,76778(16)</td>
</tr>
<tr>
<td>c /Å</td>
<td>13,7038(13)</td>
</tr>
<tr>
<td>α /°</td>
<td>90</td>
</tr>
<tr>
<td>β /°</td>
<td>102,504(12)</td>
</tr>
<tr>
<td>γ /°</td>
<td>90</td>
</tr>
<tr>
<td>V /Å³</td>
<td>716,67(11)</td>
</tr>
<tr>
<td>Z; Z'</td>
<td>2; 0,5</td>
</tr>
<tr>
<td>D_{calc} /Mg·m^{-3}</td>
<td>1,611</td>
</tr>
<tr>
<td>T /K</td>
<td>294</td>
</tr>
<tr>
<td>Strahlung</td>
<td>Cu-Kα₁</td>
</tr>
<tr>
<td>λ /Å</td>
<td>1,5406</td>
</tr>
<tr>
<td>2θ–Bereich /°</td>
<td>4-79,99</td>
</tr>
<tr>
<td>R_{P} /%</td>
<td>4,915</td>
</tr>
<tr>
<td>R_{wp} /%</td>
<td>6,759</td>
</tr>
<tr>
<td>R_{exp} /%</td>
<td>1,280</td>
</tr>
<tr>
<td>GOF</td>
<td>5,279</td>
</tr>
<tr>
<td>R'_{P} /%</td>
<td>10,926</td>
</tr>
<tr>
<td>R'_{wp} /%</td>
<td>12,249</td>
</tr>
<tr>
<td>R'_{exp} /%</td>
<td>2,320</td>
</tr>
</tbody>
</table>
4.2 Bestimmung der Fehlordnung durch Kombination von Rietveld-Verfeinerung, Gitterenergieminimierung, Elektronenbeugung und PDF Analyse: Monomethylchinacridon

Die Kristallstruktur des organischen Violett-Pigments *Pigment Red 192*, 2-Monomethylchinacridon, C₂₁H₁₄N₂O₂ (MMC)¹⁰⁹ konnte erfolgreich aus Röntgenpulverdaten gelöst werden. Die resultierende Durchschnittskristallstruktur führte zu einem Molekül auf dem Inversionszentrum in der Raumgruppe *P* 1 mit Z = 1 mit den Gitterparametern *a* = 3,8256(3) Å, *b* = 6,5084(8) Å, *c* = 15,214(8) Å, α = 89,52(2)*°*, β = 91,94(4)*°* und γ = 101,22(5)*°*. Da MMC selbst nicht inversionssymmetrisch ist (Abbildung 4-4) wurde die Durchschnittsstruktur als fehlorien beschrieben, mit einer Methylgruppe die gegen ein Wasserstoffatom mit jeweils einer Besetzung von 50% fehlorien ist (CSD-Code 1968407, Abbildung 4-4: H an Kohlenstoffatom C9 gegen CH₃ an Kohlenstoffatom C2). In diesem Fall entsprechend einer Kopf-Schwanz-Orientierungsfehlordnung.

Abbildung 4-4: Vereinfachte Strukturformel von 2-Monomethylchinacridion.

Da die Fehlordnung einen entscheidenden Einfluss auf physikalische Eigenschaften haben kann, im Falle von Pigmenten unter anderem auf die Farbigkeit, Lichtechtheit oder Löslichkeit im Anwendungsmedium, wurde die Fehlordnung, sowie die Lokalstruktur von MMC genauer untersucht. Diverse geordnete Kristallstrukturmodelle zur Beschreibung der möglichen Fehlordnung wurden aufgebaut und mittels Rietveld-Methode, PDF-Analyse und Gitterenergieminimierung analysiert. Eine genaue Beschreibung der untersuchten, ausgeordneten Fehlordnungsmodelle findet sich in [CS07]. Analog zu den vorherigen Kapitel 4.1 stellen die drei ausgewählten Methoden aufgrund ihrer unterschiedlichen Stärken eine
hervorragende Kombination für die Fragestellung der möglichen Fehlordnung von MMC dar. Die Rietveld-Verfeinerung zeigt die durchschnittliche Kristallstruktur, sowie potenzielle Überstrukturen. Die PDF-Analyse liefert die Lokalstruktur und die Gitterenergieminimierung bestätigt, ob die energetisch günstigste Struktur der experimentell beobachteten Fehlordnungen entspricht.

Diese Ergebnisse konnten durch Elektronenbeugung bestätigt werden: Die Kristallite zeigten eine starke Verzwilligung und Stapelfehlordnung, sichtbar durch leichte diffuse Streuung.
Abbildung 4-5: Ungünstiges Strukturmodell der Lokalstruktur von MMC: Die Methylgruppen sind innerhalb einer Kette in b-Richtung (entlang den Wasserstoffbrückennetzwerks) alternierend und in einer Schicht, entsprechend entlang c, in die gleiche Richtung angeordnet; es entstehen Löcher (gelb) und sterische Hinderung (rote Halbkreise); Blick entlang [1 0 0].

Abbildung 4-6: Repräsentatives Strukturmodell zur Beschreibung der Fehlordnung von MMC: Alternierende Anordnung der Methylgruppe innerhalb einer Kette, zwischen zwei Ketten zu benachbarten MMC-Molekülen gleichartig orientiert (Methylgruppe zu Methylgruppe oder Wasserstoffatom zu Wasserstoffatom an 2-Position), Blick entlang [1 0 0].
Abbildung 4-7: PDF-Plot von MMC des unter 4-6 abgebildeten Strukturmodells mit einem R_{wp}^{PDF}-Wert von 34,05%; experimentelle PDF (schwarz), berechnete PDF (rot), Differenzkurve (blau); $Q_{max} = 15,14 \ \text{Å}$.

G(r)

$r/ \ \text{Å}$
Tabelle 4-4: Kristallographische Daten der durchschnittlichen Kristallstruktur von MMC mit einer Fehlordnungsbesetzung der Methylgruppen vs. Wasserstoffatom von 50% aus der Rietveld-Verfeinerung und dem besten Motiv der Lokalstruktur aus der Anpassung an die PDF; (die mit * markierten Werte entstammen der Rietveld-Verfeinerung der Lokalstruktur an das Röntgenpulverdiagramm der Raumtemperaturmessung, vergleichbar mit den R-Werten der durchschnittlichen Kristallstruktur)

<table>
<thead>
<tr>
<th></th>
<th>Durchschnittliche Kristallstruktur</th>
<th>Lokalstruktur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formel</td>
<td>C_{21}H_{14}N_{2}O_{2}</td>
<td></td>
</tr>
<tr>
<td>CCDC-Code</td>
<td>1968407</td>
<td>1967011</td>
</tr>
<tr>
<td>M /g·mol⁻¹</td>
<td>326,36</td>
<td></td>
</tr>
<tr>
<td>Raumsystem</td>
<td>Triklin</td>
<td>Triklin</td>
</tr>
<tr>
<td>Raumgruppe (Nr.)</td>
<td>P 1 (2)</td>
<td>P 1 (2)</td>
</tr>
<tr>
<td>a /Å</td>
<td>3,82563(22)</td>
<td>3,828(5)</td>
</tr>
<tr>
<td>b /Å</td>
<td>6,50848(20)</td>
<td>12,850(15)</td>
</tr>
<tr>
<td>c /Å</td>
<td>15,21480(51)</td>
<td>16,294(17)</td>
</tr>
<tr>
<td>α /°</td>
<td>89,5220(77)</td>
<td>111,78(12)</td>
</tr>
<tr>
<td>β /°</td>
<td>91,9447(85)</td>
<td>87,66(16)</td>
</tr>
<tr>
<td>γ /°</td>
<td>101,2255(54)</td>
<td>83,93(16)</td>
</tr>
<tr>
<td>V /Å³</td>
<td>371,371(28)</td>
<td>737,2(17)</td>
</tr>
<tr>
<td>Z; Z'</td>
<td>1; 0,5</td>
<td>2; 1</td>
</tr>
<tr>
<td>D_{calc} /Mg·m⁻³</td>
<td>1,459</td>
<td>1,470</td>
</tr>
<tr>
<td>T /K</td>
<td>293</td>
<td>100</td>
</tr>
<tr>
<td>Strahlung</td>
<td>Cu-Kα₁</td>
<td>Synchrotron</td>
</tr>
<tr>
<td>λ /Å</td>
<td>1,5406</td>
<td></td>
</tr>
<tr>
<td>R_p /%</td>
<td>2,898</td>
<td>2,772*</td>
</tr>
<tr>
<td>R_wp /%</td>
<td>3,889</td>
<td>3,706*</td>
</tr>
<tr>
<td>R_exp /%</td>
<td>3,655</td>
<td>3,640*</td>
</tr>
<tr>
<td>GOF</td>
<td>1,061</td>
<td>1,018*</td>
</tr>
<tr>
<td>R_p' /%</td>
<td>13,025</td>
<td>12,112*</td>
</tr>
<tr>
<td>R_wp' /%</td>
<td>11,401</td>
<td>10,748*</td>
</tr>
<tr>
<td>R_exp' /%</td>
<td>10,746</td>
<td>10,557*</td>
</tr>
<tr>
<td>R_{PDF} /%</td>
<td>-</td>
<td>34,05</td>
</tr>
</tbody>
</table>
5. Methodenentwicklung zur Kristallstrukturbestimmung
organischer Verbindungen durch Anpassung an die PDF

In diesem Kapitel wird die neue entwickelte, automatisierte Methode PDF-Globalfit vorgestellt, um die Lokalstruktur organischer Verbindungen durch Anpassung an die PDF von Anfang an zu bestimmen, ohne vorherige Kenntnis von Gitterparametern oder Raumgruppe.

5.1 Strukturlösung ohne vorherige Indizierung durch Anpassung an die PDF: PDF-Globalfit

Für die neue Methode ,PDF-Globalfit‘ zur ab initio Kristallstrukturbestimmung durch Anpassung an die PDF, werden lediglich die Molekülstruktur und die PDF-Kurve als Eingabedaten benötigt. Der PDF-Globalfit ist durch eine Erweiterung des kommerziellen Programms FIDEL implementiert\[51\]. Der generelle Ablauf des PDF-Globalfits wird vorgestellt, anschließend wird auf die nötigen Voruntersuchungen zur Realisierung dieser neuen Methode eingegangen, bevor die Details der automatisierten Strukturlösung und Strukturverfeinerung folgen. Der Erfolg der Methode wird anhand des Beispiels der Barbitursäure (Polymorph IV) demonstriert und diskutiert (Kapitel 5.2).

5.1.1 Allgemeiner Ablauf des PDF-Globalfits

Der generelle Ablauf des PDF-Globalfits ist schematisch in Abbildung 5-1 gezeigt. Zur Vorbereitung des PDF-Globalfits wird als Input lediglich die sorgfältig berechnete PDF, sowie die Molekülstruktur benötigt.

Die Strukturlösung erfolgt nach einem globalen Optimierungs-Ansatz ausgehend von Zufallsstrukturen in ausgewählten Raumgruppen. Eine vorherige Indizierung ist nicht nötig. Nach einem Monte-Carlo-Ansatz generiert FIDEL Zufallsstrukturen innerhalb des benutzerdefinierten Suchraumes: Zufällige Werte für die Gitterparameter \(a\), \(b\), \(c\), \(\alpha\), \(\beta\), \(\gamma\), die Molekülposition \(x_m, y_m, z_m\) und für die Molekülorientierung \(\Phi_x, \Phi_y, \Phi_z\), sowie für vorhandene intramolekulare Freiheitsgrade. Nur Zufallsstrukturen ohne Molekülüberlagerung werden weiter beachtet.

Der PDF-Globalfit ist in fünf Schritte unterteilt: Die generierten Zufallsstrukturen (Schritt 1) werden einer zweistufigen Strukturlösung unterzogen. Dem Vergleich der simulierten PDF der Zufallsstruktur mit der experimentellen PDF (Schritt 2) folgt die Anpassung des Strukturmodells an die experimentelle PDF (Schritt 3).
Im Schritt 2 wird aus der Zufallsstruktur eine PDF-Kurve simuliert und mit der experimentellen PDF verglichen. Die Ähnlichkeit zwischen simulierter und experimenteller PDF wird mit Hilfe des Ähnlichkeitsindexes S^{PDF}_{12} durch Anwendung der Kreuzkorrelationsfunktion[119] berechnet. Die Zufallsstrukturen werden entsprechend ihrem Ähnlichkeitsindex sortiert (der höchste Wert entspricht hierbei der größten Ähnlichkeit). Alle qualifizierten Zufallsstrukturen, welche den geforderten Grenzwert ($S^{PDF}_{12} \geq S^{PDF}_{12,\text{Grenzwert}}$; z.B. ≥ 0.8) nicht erreichen, werden verworfen. Die vielversprechenden Strukturkandidaten werden an die experimentelle PDF in einer fünfstufigen Optimierungssequenz angepasst (Schritt 3): Ausgehend von jeder Zufallsstruktur werden in einem eingeschränkten simulated annealing-(SA)-Ansatz[120] Werte für Gitterparameter, Molekülposition und Orientierung nochmals zufällig erzeugt. Der SA-Fit wird von dem Programm TOPAS[37] durchgeführt, überwacht und kontrolliert durch FIDEL mit einem automatisierten FIDEL-TOPAS-Aufruf. Nur die Strukturmodelle, welche den geforderten R^{PDF}_{wp}-Grenzwert erzielen oder unterschreiten ($R^{PDF}_{wp} \leq R^{PDF}_{wp,\text{Grenzwert}}$; z.B. ≤ 35%), werden in einer Strukturverfeinerung weiter an die experimentelle PDF angepasst (Schritt 4). Sollten aus dem Global-PDF-Fit mehrere unterschiedliche Strukturkandidaten eine vergleichbar gute Anpassung an die PDF-Daten liefern kann der Global-PDF-Fit durch eine anschließende, benutzerkontrollierte Verfeinerung ergänzt werden (Schritt 5).
Abbildung 5-1: Schema eines PDF-Globalfits mit dem Programm FIDEL. Die Strukturlösung ist bereits vollständig automatisiert durch FIDEL möglich; die Raute signalisiert jeweils einen Auswahlprozess: Kriterium erfüllt: Ja (J), andernfalls Nein (N). Ein rotes x symbolisiert das Verwerfen der aktuellen Struktur. Die eingekreisten Zahlen definieren die Schritte 1-5 des PDF-Globalfits.
5.1.2 Voruntersuchungen

Vor Realisierung des PDF-Globalfits mussten diverse Voruntersuchungen erfolgen: Die Parameter für die adäquate Simulation der PDF aus einem Strukturmodell mit dem Programm TOPAS mussten bestimmt werden (Teil von Schritt 2), sowie ein geeignetes Kriterium für die Evaluation und das Ranking der Strukturmodelle (Auswahlprozess nach Schritt 2). Zudem musste eine geeignete Optimierungssequenz für die automatisierte Strukturlösung (Schritt 3) und die automatisierte Strukturverfeinerung (Schritt 4) durch Anpassung an die PDF mit dem Programm TOPAS entwickelt werden. Auch die Fragen, wie groß der Einfangradius der Gitterparameter, der Moleküllage und -orientierung des in TOPAS implementierten Algorithmus des *simulated annealing* ist, mussten geklärt werden (Teil der Strukturlösung von Schritt 3). Hierfür wurden jeweils organische Testsubstanzen geringer atomarer Masse mit bekannter Kristallstruktur verwendet: Naphthalin[121], Allopurinol[122], 2,9-Dimethylchinacridon[123], Paracetamol[124] und Barbitursäure[125]. Die gefundenen Lösungen der aufgeführten Fragen werden kurz vorgestellt:

- Simulation der PDF aus einem Strukturmodell mittels TOPAS

Die Simulation der PDF-Kurve aus einem Strukturmodell erfolgt anhand von Gleichung 1.13 (Kapitel 2.2). Zur Simulation benötigt TOPAS neben den Angaben der Gitterparametern, der Raumgruppe und der fraktionellen Atomkoordinaten (erhalten aus der Zufallsstruktur), sinnvolle Werte für die Dämpfung (Abnahme der Signalintensität mit zunehmenden Radii), sowie die inter- und intramolekularen Auslenkungsparameter B_{inter} und B_{intra}. Welche Werte sollten für die zur Simulation nötigen Parameter sinnvollerweise vorgegeben werden, um eine geeignete PDF-Kurve aus einem Strukturmodell zu simulieren?

Die Dämpfung setzt sich aus instrumentellen und probenspezifischen Faktoren zusammen. Die instrumentelle Dämpfung kann durch eine Referenzsubstanz mit bekannter Kristallstruktur ermittelt werden, welche unter exakt den gleichen Messbedingungen vermessen wurden. Die Kristallitgröße trägt zu dem probenspezifischen Teil der Dämpfung bei. Diverse Test zeigten für den Fall, dass die Kristallitgröße (z.B. 100 Å) deutlich größer ist als der Bereich der simulierten PDF (0-30 Å), der probenspezifische Anteil der Dämpfung in erster Näherung vernachlässigbar ist. Die Dämpfung wird in diesen Fällen hauptsächlich durch den instrumentellen Anteil bestimmt, der mit Hilfe einer Referenzsubstanz ermittelt werden kann.

Der intramolekulare Auslenkungsparameter B_{intra} kann durch Berechnung der PDF aus einem Einzelmolekül erhalten werden. Anhand der Testverbindungen konnte ein Verhältnis von B_{intra} zu B_{inter} von 1 zu ~3-4 ermittelt werden. Durch diesen einfachen Zusammenhang kann aus B_{intra} ein
sinnvoller Wert für B_{inter} gemäß $B_{\text{inter}} = 3 \times B_{\text{intra}}$ berechnet werden. Das Verhältnis von B_{intra} zu B_{inter} ist systemabhängig. Basierend auf den untersuchten Testverbindungen liefert das dargestellte Verhältnis eine gute Näherung für sinnvolle PDF-Simulationen von kristallinen Systemen planarer organischer Moleküle mit geringer Molekülmasse.

- Untersuchung der Effizienz des in TOPAS implementierten *simulated annealing* Strukturlösungsalgorithmus bei PDF-Analysen

- Kriterium für den Vergleich von simulierter PDF mit experimenteller PDF: Ähnlichkeitsindex S_{12}^{PDF}
Um die Vielzahl an simulierten PDF mit der experimentellen PDF vergleichen zu können und entsprechend für weitere Schritte abzulehnen oder beizubehalten, muss ein geeignetes Evaluationskriterium gefunden werden. Auf Basis des Evaluationskriteriums sollen die Zufallsstrukturen sinnvoll sortiert und damit qualifiziert werden können.

Abbildung 5-2: Vergleich von zwei berechneten PDF-Kurven (rot, schwarz) der gleichen Kristallstruktur mit unterschiedlicher Skalierung und unterschiedlichem Nullpunkt (entsprechend dem Startwert); Visuell ist eine deutliche Übereinstimmung trotz Verschiebung der Signale und unterschiedlichen Skalierungen erkennbar. Der Punkt-zu-Punkt-Vergleich ohne vorherige Anpassung der PDF-Daten aneinander (Differenzkurve blau) würde keine Übereinstimmung erkennen lassen.

Für derartige Fälle hat sich der von de Gelder[119] entwickelte Ähnlichkeitsindex (similarity measure) etabliert, welcher bereits in FIDEL für den Vergleich von Pulverbeugungsdiagrammen implementiert wurde[51]. Der Ähnlichkeitsindex eignet sich bei dem Vergleich, der Evaluation und dem Clustering von Röntgenpulverdiagrammen unterschiedlicher Verbindungen oder von simulierten Pulverdiagrammen. Der generalisierte Ähnlichkeitsindex S_{12} basiert auf den Auto- und Kreuzkorrelationen von zwei zu vergleichenden Diagrammen. Es werden die Datenpunkte innerhalb eines definierten Nachbarschaftsbereiches korreliert. Dieses Konzept des Ähnlichkeitsindexes wurde auf den Vergleich zweier PDF-Kurven übertragen. c_{12}^{PDF}, das normierte Integral einer gewichteten Kreuzkorrelationsfunktion der beiden PDF-Diagramme $G_1(r)$ und $G_2(r)$ am jeweiligen Punkt r ist gegeben durch Gleichung (5.19) mit den Abstand s der beiden Datenpunkte der zu vergleichenden PDF.

$$c_{12}^{PDF} = \int w^T(s) \left[\int G_1^{LT}(r)G_2^{LT}(r+s)dr \right] ds$$ (5.19)

Die Korrelation von Datenpunkten ist eingeschränkt auf einen definierten Nachbarschaftsbereich der Breite $\pm l$ durch Einführung einer gewichteten Dreiecksfunktion $w^T(s)$ (5.20).

$$w^T(s) = \begin{cases} \frac{1 - |s|}{l}, & |s| < l \\ 0, & |s| \geq l \end{cases}$$ (5.20)
Der Ähnlichkeitsindex S_{12}^{PDF} berechnet sich gemäß Gleichung (5.21) aus dem Integral der gewichteten Kreuzkorrelationen $c_{12}^{w,PDF}$ zweier PDFs, normiert mit dem Integral der jeweiligen gewichteten Autokorrelationsfunktion, $c_{11}^{w,PDF}$, welche analog zu Gleichung 5.19 definiert sind. S_{12}^{PDF} quantifiziert die Übereinstimmung zweier PDF-Kurven mit einem Wert zwischen 0 und 1. Ein Wert von 1 bedeutet, dass die PDF-Kurven identisch sind.

$$S_{12}^{PDF} = \frac{c_{12}^{w,PDF}}{\sqrt{c_{11}^{w,PDF} c_{22}^{w,PDF}}}$$ \hspace{1cm} (5.21)

Die mathematische Grundlage eines Integrals impliziert, dass nur Flächen einer Kurve zwischen zwei Punkte vergleichbar sind, welche nicht die x-Achse schneiden. Andernfalls wurde sich das positive Integral (Fläche oberhalb der x-Achse) mit dem negativen Integral (Fläche unterhalb der x-Achse) bei gleichem Betrag aufheben. Da die PDF-Kurve per Definition auf eine durchschnittliche Aufenthaltswahrscheinlichkeit von Null normiert wurde, kann die Berechnung des Ähnlichkeitsindexes nicht direkt erfolgen. Eine lineare Transformation der PDF-Kurven ausschließlich in den positiven y-Werte-Bereich (entsprechend nur positive Wahrscheinlichkeiten $G(r)$), löst diese Problematik. Diese linear transformierten PDF-Kurven sind mit dem Akronym LT der entsprechenden PDF $G_1^{LT}(r)$ gekennzeichnet (siehe Gleichung 5.19). Weitere tiefgreifende mathematische Erläuterungen, Details zur Implementierung in FIDEL und Anwendungsbeispiele finden sich in [CS08] und [CS09].

Durch Anwendung des Ähnlichkeitsindexes auf den Vergleich zweier PDF-Kurven bei organischen Verbindungen erwies sich der Nachbarschaftsbereich der Breite l zwischen 0,5 bis 0,6 Å als optimal.

Anhand der aufgeführten Voruntersuchungen konnte die Methode des PDF-Globalfits realisiert und einige etwaige Probleme bereits von Beginn an umgangen werden.

5.1.3 Vorbereitung: Suchraum-Setup

ausgewählten Raumgruppe wird eine große Anzahl an Zufallsstrukturen generiert, mit zufälligen Werten für Gitterparameter, Molekülposition \(x_m, y_m, z_m \) und Molekülorientierung \(\Phi_x, \Phi_y, \Phi_z \), sowie für vorhandene intramolekulare Freiheitsgrade. Die vorgegebenen Gitterparameterbereiche basieren auf der Molekülgröße\(^{[53]} \) und sind beschränkt durch die jeweiligen Symmetrieoperationen der betrachteten Raumgruppe. Die Molekülposition und -orientierung der Zufallsstrukturen ist uneingeschränkt, allerdings werden Zufallsstrukturen, die chemisch unsinnige intermolekulare Abstände aufweisen, wie eine Molekülüberlagerung, verworfen. Des Weiteren ist das mögliche Zellvolumen eingeschränkt, um beispielsweise unrealistische Lücken im Kristall oder zu nahe intermolekulare Kontakte zu vermeiden. Sinnvolle Bereiche für das Zellvolumen können durch Inkrementsysteme, wie das Hofman-Inkrementsystem\(^{[126]} \) oder durch bekannte Kristallstrukturen von isomorphen Verbindungen, Polymorphen oder Derivaten, extrahiert aus geeigneten Datenbanken\(^{[2]} \), abgeschätzt werden.

5.1.4 Details der Strukturlösung

Die Strukturlösung ist unterteilt in: 1) Der Vergleich der experimentellen PDF mit der simulierten PDF der Zufallsstruktur (Schritt 2) und 2) SA-Fit der Strukturkandidaten an die experimentellen Daten (Schritt 3).

Nach diesen beiden Schritten wird die große Zahl an Zufallsstrukturen jeder Raumgruppe ausgeschrieben, bevor die Anzahl auf vielversprechende Strukturkandidaten reduziert wird. Unggeeignete Zufallsstrukturen werden durch Anwendung von geforderten Grenzwerten aussortiert: Im ersten Schritt handelt es sich um den \(S_{12}^{PDF} \)-Wert, im zweiten Schritt erfolgt die Ablehnung anhand des \(R_{wp}^{PDF} \)-Werts.

In Schritt 2 des PDF-Globalfits wird ausgehend von der erzeugten Zufallsstruktur eine PDF-Kurve nach Gleichung 1.13 (Kapitel 2.2) simuliert. Die Simulation kann sowohl mit dem Programm TOPAS\(^{[37]} \), automatisch aufgerufen von FIDEL, oder mit der in FIDEL implementierten libdiffpy Bibliothek von Diffpy-CMI \(^{[127]} \) erfolgen. Jede dieser simulierten PDF-Kurven wird mit der experimentellen PDF-Kurve verglichen. Die Ähnlichkeit der beiden Kurven wird mit dem Ähnlichkeitsindex \(S_{12}^{PDF} \) nach Gleichung 5.21 (Kapitel 5.1.2) von FIDEL berechnet und entsprechend ihres \(S_{12}^{PDF} \)-Wertes sortiert. Alle Strukturen deren Wert unter dem geforderten \(S_{12,Grenzwert}^{PDF} \) liegen, werden verworfen. Der \(S_{12,Grenzwert}^{PDF} \) ist ein benutzerdefinierter Wert, welcher in Abhängigkeit der untersuchten Fragestellung variieren kann.
Vielversprechende Kandidaten, die den geforderten Grenzwert \(S^\text{PDF}_{12} \) erzielt haben, werden einer nachfolgenden, robusten vierstufigen Anpassung an die experimentellen Daten unterzogen (Schritt 3). Die Anpassung erfolgt basierend auf der SA-Methode des Programmes TOPAS (SA-Fit).

Der SA-Fit wird von FIDEL gesteuert und durch einen automatischen Programmaufruf von TOPAS überwacht. Eine robuste vierstufige Sequenz zur Anpassung an die experimentellen PDF-Daten wurde entwickelt: Der Nullpunkt der PDF, sowie der Skalierungsfaktor werden in jedem Schritt angepasst. Zuerst werden \(B_{\text{intra}}, B_{\text{inter}}, \text{Dämpfung}, \text{Molekülposition} x_m, y_m, z_m \) und Molekülorientierung \(\Phi_x, \Phi_y, \Phi_z \) gefittet. Anschließend werden die angepassten Werte fixiert und die Gitterparameter im eingeschränkten Bereich (z. B. ± 5 %) angepasst. Bei dem dritten Anpassungsschritt findet eine gleichzeitige Anpassung von \(x_m, y_m, z_m, \Phi_x, \Phi_y, \Phi_z \) und den Gitterparametern statt. Im letzten Schritt werden alle genannten Variablen simultan an die experimentellen PDF-Daten gefittet. Die gefitteten Strukturkandidaten werden mittels FiDEL nach ihrem \(R^\text{PDF}_{\text{WP}} \)-Wert (siehe Gleichung 1.14, Kapitel 2.2) sortiert. Diese einzelnen Schritte der Strukturlösung sind automatisiert und werden von FIDEL, durch einen automatischen FiDEL-TOPAS-Aufruf, gesteuert.

Wie bereits unter Kapitel 5.1.2 aufgezeigt ist TOPAS sehr effizient in der Bestimmung von Molekülposition und Orientierung, sofern annähernd korrekten Gitterparameter vorgegeben sind. Andererseits ist die Robustheit gegenüber abweichenden Gitterparametern die Stärke von FIDEL. Durch diese hierarchische Suchstrategie des Globalfits von FIDEL in Kombination mit dem Programm TOPAS werden die Stärken der beiden Programme vereint.
5.1.5 Details der Strukturverfeinerung

Die Strukturkandidaten, welche den benutzerdefinierten $R_{\text{wp, Grenzwert}}^{\text{PDF}}$-Werte unterschreiten, werden an die experimentelle PDF mittels TOPAS automatisiert angepasst (Schritt 4). Zunächst werden simultan die Gitterparameter, der Skalierungsfaktor, der Nullpunkt, die Dämpfung, sowie B_{intra} und B_{inter} verfeinert. Anschließend werden x_m, y_m, z_m und Φ_x, Φ_y, Φ_z verfeinert. Die Molekülstruktur kann hierbei als starrer Körper mittels z-Matrix oder mit Sollwerten für Bindungen, Winkel und planaren Gruppen beschrieben werden.

Sollten mehrere unterschiedliche Strukturkandidaten eine vielversprechende Anpassung an die experimentellen Daten nach dem PDF-Global-Fit-Durchlauf liefern, kann anschließend eine benutzerkontrollierte Verfeinerung erfolgen (Schritt 5). Die Auswahl an möglichen Kandidaten hierfür sollte durch den erfahrenen Benutzer erfolgen, anhand möglicher Auswahlkriterien wie dem $R_{\text{wp, PDF}}^{\text{PDF}}$-Wert, der Differenzkurve zwischen berechneter und experimenteller PDF, dem Wasserstoffbrückennetzwerk und der Kristallpackung.
5.2 Validierung und Testung des Globalfits: Barbitursäure als Beispiel

Barbitursäure (C₄H₄N₂O₃, Abbildung 5-3) unterliegt der Keto-Enol-Tautomerie und bildet unterschiedliche Polymorphe aus. Bei Raumtemperatur erwies sich das Enol-Tautomer im Polymorph IV als thermodynamisch stabile Festkörperform. Die Kristallstruktur dieses Polymorphes wurde aus Röntgenpulverbeugungs-, Neutronenpulverbeugungs-\(^{[125]}\), sowie aus Einkristallröntgenbeugungsdaten\(^{[128]}\) gelöst. Barbitursäure kristallisiert in *P* 2₁/n mit *Z* = 4 in einer Elementarzelle mit den Gitterparametern \(a = 11,87614(6) \text{ Å}, \ b = 8,91533(4) \text{ Å}, \ c = 4,83457(3) \text{ Å}\) und \(\beta = 95,0854(4)°\).\(^{[125]}\) Für eine bessere Vergleichbarkeit wurde diese Elementarzelle in die Standardaufstellung in die Raumgruppe *P* 2₁/c mit den Gitterparametern \(a = 4,83457 \text{ Ä}, \ b = 8,91533 \text{ Å}, \ c = 12,4192 \text{ Å}\) und \(\beta = 107,729°\) transformiert. Die durch den PDF-Globalfit erzeugten Strukturmodelle von Barbitursäure werden mit dieser transformierten Zelle verglichen.
5.2.1 Setup des PDF-Globalfits

- **Input**

Als Input wird die experimentelle PDF und die Molekülstruktur benötigt. Für die experimentelle PDF wurde bei 300 K ein Pulverbeugungsdiagramm an der Synchrotron Beamline X17A der National Synchrotron Light Source in Brookhaven bei einer Wellenlänge von $\lambda = 0,1839 \text{ Å}$ aufgenommen (experimentelle Details siehe Anhang). Hieraus wurde die PDF mit dem Programm PDFgetX3\cite{67} mit einem Q_{max}-Wert von 21,9 Å\(^{-1}\) berechnet (Abbildung 5-3). Die Molekülstruktur wurde aus einer QM-Rechnung auf B3LYP/6-31G* Niveau mit dem Programm Gaussian\cite{110} berechnet und als starrer Körper mittels z-Matrix definiert.

- Parameter des Suchraumes für die Zufallsstrukturerzeugung

Anschließend werden sinnvolle Einschränkungen bei der Zufallsstrukturerzeugung (Schritt 1) gewählt (Tabelle 5-1):

1) Mögliche Raumgruppen ausgewählt

2) die Bereiche für die Gitterparameter gewählt
3) sinnvolle Bereiche für das Zellvolumen definiert

Zu 1): Die Punktgruppe von Barbitursäure wird als C_s angenommen. Die zu untersuchenden Raumgruppen wurden auf Grundlage der Raumgruppenstatistik dieser Molekülssymmetrie von Pidcock et al.$^{[52]}$ ausgewählt. Für Testzwecke und zur Einsparung von Computerrechenzeit wurde nur in den zwei häufigsten Raumgruppen $P 2_1/c$ und $P \bar{1}$ gerechnet, welche jedoch statistisch über 75 % der möglichen Kristallaufbauten abdecken. Darüber hinaus wurde als Negativbeispiel in der statistisch eher unwahrscheinlichen Raumgruppe $P 1$ gerechnet, welche aufgrund fehlender Symmetrieoperationen (lediglich die Identität ist vorhanden) im Hinblick auf die nötige Rechenleistung die herausforderndste Raumgruppe ist. Zudem decken die ausgewählten Raumgruppen als Untergruppen diverse höher symmetrische Raumgruppen (Obergruppen) ab. Beispielsweise werden bei Berechnungen in $P 1, Z = 1$ auch Strukturen in $P m, Z = 1$ und $C m, Z = 2$ erfasst, sowie bei Berechnungen in $P 2_1/c, Z = 4$ unter anderem Strukturen der Raumgruppen $P nma, Z = 4$ und $P 2_1/m, Z = 2$.

Tabelle 5-1: Suchraum-Setup des PDF-Globalfits für Barbitursäure. Die getroffenen Einschränkungen der Zufallsstruktur erzeugung in den ausgewählten Raumgruppen \(P 1 \), \(P \bar{1} \) und \(P 2_1/c \), sowie der vorgegebene Bereich des Zellvolumens.

<table>
<thead>
<tr>
<th>(Z')</th>
<th>(P 1)</th>
<th>(P 2_1/c)</th>
<th>(P \bar{1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einschränkung der Zufallsstruktur erzeugung</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\alpha_{\text{min}} / \text{Å})</td>
<td>3,0</td>
<td>3,0</td>
<td>3,0</td>
</tr>
<tr>
<td>(\alpha_{\text{max}} / \text{Å})</td>
<td>8,5</td>
<td>17,1</td>
<td>17,1</td>
</tr>
<tr>
<td>(\beta_{\text{min}} / \text{Å})</td>
<td>3,0</td>
<td>3,0</td>
<td>3,0</td>
</tr>
<tr>
<td>(\beta_{\text{max}} / \text{Å})</td>
<td>8,5</td>
<td>34,1</td>
<td>17,1</td>
</tr>
<tr>
<td>(\gamma_{\text{min}} / \text{Å})</td>
<td>3,0</td>
<td>3,0</td>
<td>3,0</td>
</tr>
<tr>
<td>(\gamma_{\text{max}} / \text{Å})</td>
<td>8,5</td>
<td>34,1</td>
<td>17,1</td>
</tr>
<tr>
<td>(\alpha_{\text{min}} / \degree)</td>
<td>90</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>(\alpha_{\text{max}} / \degree)</td>
<td>120</td>
<td>90</td>
<td>120</td>
</tr>
<tr>
<td>(\beta_{\text{min}} / \degree)</td>
<td>90</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>(\beta_{\text{max}} / \degree)</td>
<td>120</td>
<td>120</td>
<td>120</td>
</tr>
<tr>
<td>(\gamma_{\text{min}} / \degree)</td>
<td>60</td>
<td>90</td>
<td>60</td>
</tr>
<tr>
<td>(\gamma_{\text{max}} / \degree)</td>
<td>120</td>
<td>90</td>
<td>120</td>
</tr>
</tbody>
</table>

Einschränkung der Zellvolumenbereiches

| \(V_{\text{min}} / \text{Å}^3 \) | 114 | 458 | 227 |
| \(V_{\text{max}} / \text{Å}^3 \) | 154 | 561 | 307 |

- Simulation der PDF-Kurve

Um eine Vergleichbarkeit der simulierten PDF-Kurven der Zufallsstrukturen im Schritt 2 des PDF-Globalfits zu gewährleisten, müssen zu Beginn die benötigten Werte für die PDF-Simulation vorgegeben werden. Die Werte der Gitterparameter, Molekularorientierung und Molekülposition liefert die Zufallsstruktur. Die Dämpfung und die inter- und intramolekularen Auslenkungsparameter müssen für alle Simulationen jedoch fest vorgegeben werden. Für die instrumentelle Dämpfung wurde der Wert 48,0 \(\text{Å}^2 \) festgesetzt, ermittelt anhand einer Referenzstruktur. Anhand der Simulation der PDF eines Einzelmoleküls von Barbitursäure wurde für \(B_{\text{intra}} \) ein Wert von 0,16 \(\text{Å}^2 \) bestimmt. Gemäß dem Verhältnis von \(B_{\text{intra}} \) zu \(B_{\text{inter}} \) ergibt sich ein \(B_{\text{inter}} \)-Wert von 0,48 \(\text{Å}^2 \). Der r-Vergleichsbereich von simulierter und experimenteller PDF ist \(1 – 20 \text{Å} \).
Grenzwert-Kriterien zur Ablehnung von Strukturkandidaten

Der geforderte Ähnlichkeitsindex S_{12}^{PDF} in Schritt 2 bestimmt, ob eine Zufallsstruktur weiter als potenzieller Strukturkandidat an die experimentelle PDF angepasst oder verworfen wird. Bei Barbitursäure wurde dieser auf $S_{12}^{\text{PDF}} = 0,985$ festgelegt, bei einem Maximalabstand der Datenpunkte zweier PDF von $l = 0,53 \text{ Å}$. Diverse Vortest zeigten, dass diese Werte ein optimales Suchergebnis liefern, um möglichst viele potenziell „gute“ Strukturmodelle weiter zu verfolgen und dennoch nicht die Speicherkapazitäten des Computers zu überlasten. Der Bereich der zu vergleichenden PDF wurde auf $1 - 20 \text{ Å}$ festgesetzt. Die Anzahl an erzeugten Zufallsstrukturen wurde auf 100 000 je Raumgruppe festgesetzt.¹

Der zweite Ablehnungsschritt erfolgt in der Strukturlösung nach dem SA-Fit durch den R_{wp}^{PDF}-Wert (Schritt 3 des PDF-Globalfits). Dieser Grenzwert wurde auf 35 % festgesetzt, da erfahrungsgemäß bei Anpassung organischer Kristallstrukturen an die PDF bei einem R_{wp}^{PDF}-Wert unter 30 % die Beschreibung der Lokalstruktur als korrekt angenommen werden kann.

5.2.2 Ergebnisse und Diskussion

In den drei untersuchten Raumgruppen wurden jeweils 100 000 Zufallsstrukturen erzeugt (Schritt 1). Die Anzahl der Strukturkandidaten, welche den geforderten Ähnlichkeitsindex erreichten (Schritt 2), unterscheiden sich stark, abhängig von der betrachteten Raumgruppe (Tabelle 5-2): In $P 2_1/c$ erreichten 439 Zufallsstrukturen einen S_{12}^{PDF}-Wert über 0,985, in der triklinen Raumgruppe $P 1$ hingegen keine. Die drei besten qualifizierten Zufallsstrukturen in $P 1$ weisen einen S_{12}^{PDF}-Wert von 0,9810, 0,9799, beziehungsweise 0,9798 auf. Diese Werte liegen deutlich niedriger als in den beiden anderen untersuchten Raumgruppen. Dementsprechend wird kein Strukturmodell der Raumgruppe $P 1$ weiter in der Strukturlösung des PDF-Globalfits betrachtet. Hieraus lässt sich schließen, dass eine Schichtstruktur mit paralleler Molekulanordnung, welches in diesem Fall das einzig mögliche Packungsmuster in $P 1$ ist, kein bevorzugtes lokales Packungsmuster von Barbitursäure ist. Bei visueller Inspektion der besten Strukturkandidaten aller untersuchten Raumgruppen zeigt sich, dass eine Zick-Zack Anordnung der Moleküle häufiger auftritt als ein anderes Packungsmuster, wie z. B. eine Schichtstruktur.

Nach dem SA-Fit der Strukturlösung zeigt sich bei einem Vergleich der R_{wp}^{PDF}-Werte (Schritt 3), dass diese in der untersuchten Raumgruppe $P\ 2_1/c$ tendenziell kleiner sind, als jene der Strukturkandidaten in $P\bar{1}$ (Tabelle 5-3). Der kleinste R_{wp}^{PDF}-Wert von 26,6 % ist deutlich kleiner als die Übrigen. Die Gitterparameter der korrespondierenden Struktur sind bereits in guter Übereinstimmung mit den publizierten Daten der Barbitursäure. Selbst die Molekülposition bei dieser Struktur konnte schon in der Strukturlösung korrekt bestimmt werden, während die Molekülorientierung noch deutliche Abweichungen von der korrekten Kristallstruktur zeigte.

Die Varianz der Gitterparameter untereinander ist nach dem SA-Fit von Schritt 3 bereits deutlich geringer als nach dem Vergleich (Schritt 2). Die Gitterparameter zeigen einen deutlichen Trend zu einer kleinen a-Achse (3,4 – 7,5 Å) und einer größeren c-Achse (11,5 – 13,5 Å).

Alle Strukturen in $P\ 2_1/c$ weisen die richtige Zick-Zack-Anordnung der Moleküle auf, jedoch zeigen alle Strukturkandidaten zu nahe intermolekulare Kontakte bei einem zu kleinen Zellvolumen.

Diese elf Strukturkandidaten des SA-Fits wurden der nachfolgenden Strukturverfeinerung gegen die experimentellen PDF-Daten unterzogen, in einem Anpassungsbereich von 1-30 Å (Schritt 4). Der einheitlichen Verfeinerung folgte eine benutzerkontrollierte, individuelle Verfeinerung der Strukturmodelle (Schritt 5).

Nach der Verfeinerung weisen drei Strukturen (Modell 1, 2, 3) einen geringen R_{wp}^{PDF}-Wert um 20 % auf (Tabelle 5-4). Die Gitterparameter sind in hervorragender Übereinstimmung mit den publizierten Pulverdaten125. Die resultierenden Strukturen sind chemisch sinnvoll ohne Lücken in der Kristallpackung, dicht gepackt mit einem sinnvollen, dreidimensionalen Wasserstoffbrückennetzwerk.
Tabelle 5-3: Die besten Strukturmodelle nach dem SA-Fit (Schritt 3) an die experimentelle PDF mit dem Ausschlusskriterium $R_{wp}^{PDF} \leq 35\%$ (5 Modelle in $P \, 2_1/c$ und 6 in $P \, \bar{1}$). Die Strukturmodelle sind entsprechend ihrer Zufallsgenerierung zur eindeutigen Zuordnbarkeit durchnummeriert (Nr.). Die Modelle wurden auf die Standardaufstellung transformiert, um eine bessere Vergleichbarkeit zu gewährleisten.

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Raumgruppe</th>
<th>$R_{wp}^{PDF}/%$</th>
<th>V/\AA^3</th>
<th>a/\AA</th>
<th>b/\AA</th>
<th>c/\AA</th>
<th>α/\degree</th>
<th>β/\degree</th>
<th>γ/\degree</th>
</tr>
</thead>
<tbody>
<tr>
<td>54845</td>
<td>$P , 2_1/c$</td>
<td>26,603</td>
<td>508,33</td>
<td>4,9460</td>
<td>8,9646</td>
<td>12,0907</td>
<td>90</td>
<td>108,527</td>
<td>90</td>
</tr>
<tr>
<td>54100</td>
<td>$P , 2_1/c$</td>
<td>31,317</td>
<td>449,46</td>
<td>6,8661</td>
<td>5,6619</td>
<td>11,8345</td>
<td>90</td>
<td>102,340</td>
<td>90</td>
</tr>
<tr>
<td>81533</td>
<td>$P , 2_1/c$</td>
<td>31,857</td>
<td>498,82</td>
<td>7,5264</td>
<td>5,0621</td>
<td>13,5931</td>
<td>90</td>
<td>105,581</td>
<td>90</td>
</tr>
<tr>
<td>4150</td>
<td>$P , \bar{1}$</td>
<td>32,315</td>
<td>230,65</td>
<td>4,0937</td>
<td>4,9067</td>
<td>11,6193</td>
<td>94,177</td>
<td>88,769</td>
<td>97,750</td>
</tr>
<tr>
<td>76224</td>
<td>$P , 2_1/c$</td>
<td>32,962</td>
<td>490,84</td>
<td>4,0256</td>
<td>6,0210</td>
<td>20,5214</td>
<td>90</td>
<td>99,331</td>
<td>90</td>
</tr>
<tr>
<td>54062</td>
<td>$P , \bar{1}$</td>
<td>33,614</td>
<td>231,80</td>
<td>3,3653</td>
<td>6,0213</td>
<td>11,5356</td>
<td>95,017</td>
<td>95,211</td>
<td>90,957</td>
</tr>
<tr>
<td>68229</td>
<td>$P , \bar{1}$</td>
<td>33,727</td>
<td>243,66</td>
<td>4,0585</td>
<td>4,9878</td>
<td>12,2882</td>
<td>98,708</td>
<td>90,295</td>
<td>97,621</td>
</tr>
<tr>
<td>51118</td>
<td>$P , \bar{1}$</td>
<td>34,002</td>
<td>220,70</td>
<td>3,4546</td>
<td>5,6754</td>
<td>11,7294</td>
<td>98,876</td>
<td>91,947</td>
<td>103,134</td>
</tr>
<tr>
<td>86558</td>
<td>$P , 2_1/c$</td>
<td>34,097</td>
<td>480,24</td>
<td>6,9655</td>
<td>11,8597</td>
<td>5,9876</td>
<td>90</td>
<td>103,892</td>
<td>90</td>
</tr>
<tr>
<td>15782</td>
<td>$P , \bar{1}$</td>
<td>34,252</td>
<td>244,00</td>
<td>4,0438</td>
<td>5,0017</td>
<td>12,2898</td>
<td>82,221</td>
<td>89,913</td>
<td>82,205</td>
</tr>
<tr>
<td>19486</td>
<td>$P , \bar{1}$</td>
<td>34,625</td>
<td>230,04</td>
<td>3,9995</td>
<td>4,9812</td>
<td>11,7673</td>
<td>94,753</td>
<td>95,834</td>
<td>97,585</td>
</tr>
</tbody>
</table>

Tabelle 5-4: Gitterparameter der Strukturkandidaten nach der benutzerkontrollierten Verfeinerung (Schritt 5) im Vergleich mit der publizierten Struktur (pbl.) von Barbitursäure.

<table>
<thead>
<tr>
<th>Modell</th>
<th>Raum-Gruppe</th>
<th>S_{12}^{PDF}</th>
<th>R_{wp}^{PDF}</th>
<th>R_{wp}</th>
<th>a /Å</th>
<th>b /Å</th>
<th>c /Å</th>
<th>β°</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$P \ 2_{1}/c$, 4</td>
<td>0,98616</td>
<td>31,857</td>
<td>19,57</td>
<td>4,8439(16)</td>
<td>8,929(3)</td>
<td>12,423(3)</td>
<td>107,634(19)</td>
</tr>
<tr>
<td>2</td>
<td>$P \ 2_{1}/c$, 4</td>
<td>0,98695</td>
<td>32,962</td>
<td>19,68</td>
<td>4,8439(15)</td>
<td>8,929(3)</td>
<td>12,429(3)</td>
<td>107,627(19)</td>
</tr>
<tr>
<td>3</td>
<td>$P \ 2_{1}/c$, 4</td>
<td>0,98678</td>
<td>26,603</td>
<td>20,12</td>
<td>4,8405(15)</td>
<td>8,931(3)</td>
<td>12,417(4)</td>
<td>107,662(2)</td>
</tr>
<tr>
<td>pbl.</td>
<td>$P \ 2_{1}/c$, 4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4,83457</td>
<td>8,91533</td>
<td>12,4192</td>
<td>107,729</td>
</tr>
</tbody>
</table>

Abbildung 5-4: Die drei besten gefundenen Strukturkandidaten des PDF-Global-Fits nach Schritt 5 (Modell 1 rot; Modell 2 schwarz, Modell 3 gelb) im Vergleich zu der publizierten Struktur (blau). Blickrichtung entlang der a-Achse.
Abbildung 5-5: PDF Kurven von Modell 1 (1), Modell 2 (2) und Modell 3 (3). Experimentelle PDF (schwarz), simulierte PDF (rot), Differenzkurve (blau).

Der Anwendbarkeit des PDF-Globalfits konnte erfolgreich anhand des Testbeispiels Barbitursäure aufgezeigt werden. Ausgehend von insgesamt nur 300 000 Zufallsstrukturen in drei Raumgruppen, konnte die korrekte Kristallstruktur dreimal gefunden werden. Dies ist das erste Mal, dass die Lokalstruktur einer organischen Verbindung durch Anpassung an die PDF gelöst wurde, ohne Input oder Vorgabe der Gitterparametern oder Raumgruppe.

Die Berechnungen des PDF-Globalfits wurden auf einem Standard-Desktop PC durchgeführt mit einem 64 bit Windows Betriebssystem, ausgestattet mit einem Intel Core i7-3770 Prozessor und 32 GB RAM Arbeitsspeicher. Die Zufallsstrukturerzeugung (Schritt 1) und der Vergleich mit den experimentellen PDF Daten (Schritt 2) dauert je Raumgruppe circa eine Woche, die Strukturlösung (Schritt 3), als geschwindigkeitsbestimmender Schritt dauert circa 3 Wochen je Raumgruppe. Die Strukturverfeinerung (Schritt 4 und Schritt 5) benötigt nochmals circa 1 Woche Arbeitszeit.

Diese neue, fast vollständig automatisierte Methode ist sehr vielversprechend. Dennoch handelt es sich bei Barbitursäure um ein gut kristallines, kleines organisches Molekül ohne intramolekulare Freiheitsgrade. Weitere Testbeispiele müssen die Methode erfolgreich validieren, bevor der PDF-Globalfit problemlos anwendbar ist bzw. eventuell vermarktet werden kann. Die Methode muss für ihr ursprünglich beabsichtigtes Anwendungsgebiet getestet werden: Die Kristallstruktur-
bestimmung nanokristalliner oder schlecht kristalliner organische Moleküle. Zudem muss die Optimierung intramolekularer Freiheitgrade in FIDEL validiert werden, um Kristallstrukturen flexiblerer Moleküle bestimmen zu können. Zudem muss die benötigte Rechenzeit optimiert werden, um diese Methode effizienter und benutzerfreundlicher zu gestalten.

Darüber hinaus wäre bei optimierter Rechenzeit die Kristallstrukturbestimmung von Molekülen mit größerer Atomanzahl und/oder von Mehrkomponentensystemen wie Solvaten, Hydraten, Salzen oder Cokristallen zu ermöglichen. Eine detaillierte Diskussion findet sich in [CS10]. Dennoch konnten entscheidende Erfolge in der Entwicklung der Strukturbestimmung organischer Moleküle durch Anpassung an die PDF ohne vorheriges Indizieren erzielt werden: Die Lokalstrukturbestimmung aus nicht indizierbaren Pulverdiagrammen ist 'in Reichweite'.
6. Zusammenfassung

Ziel dieser Doktorarbeit war es, die Bedeutung der Kristallstrukturbestimmung aus Pulverdaten (SDPD) herauszuarbeiten und etwaige Grenzen durch neue Methodenentwicklungen zu erweitern, insbesondere bei Analyse der Paarverteilungsfunktion (PDF).

Die Effizienz der SDPD konnte anhand der erfolgreich gelösten Kristallstruktur von Carmustin (1,3-Bis-2-chlorethyl-1-nitrosoharnstoff, C₁₉H₁₀Cl₂N₃O₂) aufgezeigt werden. ([CS01]

Mittels SDPD kann die absolute Konfiguration chiraler Verbindungen nicht direkt bestimmt werden. Durch Kristallisation der zu bestimmenden chiralen Verbindung mit einem chiralen Gegenion bekannter Konformation in einer simplen Säure-Base-Reaktion zu einem diastereomeren Salz und nachfolgender SDPD konnte eine neue Methode entwickelt werden, um die Konfigurationsbestimmung aus Pulverdaten zu ermöglichen. Diese Methode wurde anhand der drei pharmazeutischen Salze (R)-Flurbiprofen-(R)-Chinin (FQ), (2RS)-Lamivudin-(R)-Camphersulfonat (LC) und (R)-Aminogluthethimid-(R)-Camphersulfonat (AC) aufgezeigt: In allen drei Fällen konnte die korrekte Konfiguration des pharmazeutischen Wirkstoffs mit den hierfür entwickelten Kriterien erfolgreich bestimmt werden. ([CS03, CS04]

Durch Kombination der klassischen SDPD mit neuen methodischen Ansätzen konnten die Kristallstrukturen der schlecht kristallinen organischen Pigmente 2-Monomethylchinacridon (MMC, C₂₁H₁₄N₂O₂) und 4,11-Difluorchinacridon (DFC, C₂₀H₁₀N₂O₂F₂) bestimmt werden, obwohl aufgrund ihrer geringen Kristallqualität keine sinnvolle Indizierung möglich war.

Für die Kristallstrukturbestimmung von DFC lieferte der neu entwickelte Global-Fit des Programms FIDEL mögliche Strukturmodelle mit ähnlich guter Übereinstimmung an das experimentelle
Pulverdiagramm. Die Rietveld-Verfeinerung der Strukturmodelle in Kombination mit der Anpassung der Kristallstruktur an die PDF-Daten und kraftfeldbasierter Gitterenergieminimierung konnte einen geeigneten Strukturrepräsentanten von DFC liefern. [CS05, CS06]

Im Fall von MMC war eine Kombination der Methoden von Rietveld-Verfeinerung, Verfeinerung an die PDF-Daten und Gitterenergieminimierung zielführend zur Bestimmung der Orientierungs-Fehlordnung von MMC im Kristall. MMC ist hierbei die erste organische Verbindung, deren Fehlordnung durch Anpassung an die PDF bestimmt werden konnte. [CS07]

7. Literatur

7.1 Eigene Veröffentlichungen

7.2 Literaturverzeichnis

[38] Stoe & Cie, WinXPow, Darmstadt 2005.

8. Anhang

8.1 Experimentelles Vorgehen

8.1.1 Carmustin

Experimentelle Details zu Kapitel 3.1 Kristallstrukturbestimmung nach Lehrbuch ohne Komplikationen: Carmustin

Kristallisation

Die Probe wurde von SigmaAldrich kommerziell erworben und ohne weitere Aufreinigung verwendet.

Röntgenbeugungsdiagramm

Die Probe wurde in einer Glaskapillare mit 0,7 mm Durchmesser überführt und im Haus auf einem STOE-STADI-P Diffraktometer in Transmissionsgeometrie bei -120°C und bei 5°C vermessen. Ein gebogener Ge (111) Monochromator lieferte die verwendete Cu-Kα1-Strahlung (λ = 1,5406 Å). Ein 2θ Bereich von 3,00° – 99,99° mit einer Schrittweite von 0,01° mit einem linearen positionssensitiven Detektor resultierte in 9600 Datenpunkten. Datenaufnahme und Reduktion erfolgte mit der Software WinXPow.

Strukturbestimmung

8.1.2 Lamivudin-Camphersulfonat (LC)

Experimentelle Details zu Kapitel 3.2.1 Herausfordernde Kristallstrukturlösung mit Z' = 2: Zwei Pharmazeutische Salze und 3.2.2 Neue Methode zur Bestimmung der absoluten Konfiguration pharmazeutischer Wirkstoffe durch Pulverdiffraktometrie.
Kristallisation

Die Ausgangsmaterialien wurden von SigmaAldrich ohne weitere Aufreinigung verwendet. Die vereinigte Lösung aus 30 mg Lamivudin in 6 mL Wasser und 31 mg Champfersulfonat in 3,1 mL Wasser verdampften bei Raumtemperatur und Raumdruck. Die Kristallisation wurde von Lukas Tapmeyer durchgeführt.

Röntgenbeugungsdiagramm

Die Proben wurden in Glaskapillaren mit 0,7 mm Durchmesser überführt und im Haus auf einem STOE-STADI-P Diffraktometer in Transmissionsgeometrie bei -120°C vermessen. Ein gebogener Ge (111) Monochromator lieferte die verwendete Cu-K$_{\alpha1}$-Strahlung ($\lambda = 1,5406$ Å). Ein 2θ Bereich von 2,00° – 79,99° mit einer Schrittweite von 0,01° wurde vermessen. Der lineare ortsempfindliche Detektor detektierte jeweils 7800 Datenpunkte. Datenaufnahme und Reduktion erfolgte mit der Software WinXPow.

Strukturbestimmung

8.1.3 Aminogluthethimid-Camphersulfonat (AC)

Experimentelle Details zu Kapitel 3.2.1 Herausfordernde Kristallstrukturlösung mit $Z' = 2$: Zwei Pharmazeutische Salze und 3.2.2 Neue Methode zur Bestimmung der absoluten Konfiguration pharmazeutischer Wirkstoffe durch Pulverdiffraktometrie.

Kristallisation

Die Ausgangsmaterialien wurden von SigmaAldrich ohne weitere Aufreinigung verwendet. In einer Verdampfungskristallisation von 30 mg Aminogluthethimid in 3 mL Aceton und 30 mg Camphersulfonat in 6 mL Aceton wurde das weiße Pulver AC erhalten.

Der Einkristall von AC wurde aus den vereinigten Lösungen von 30 mg Aminogluthethimid in 3 mL Dichlormethan und 30 mg Camphersulfonat in 15 mL Dichlormethan durch eine
Verdampfungskristallisation erhalten. Das Kristallisationsexperiment wurde von Lukas Tapmeyer durchgeführt.

Röntgenbeugungsdiagramm

Die Proben wurden in Glaskapillaren mit 0,7 mm Durchmesser überführt und im Haus auf einem STOE-STADI-P Diffraktometer in Transmissionsgeometrie bei 25°C vermessen. Ein gebogener Ge (111) Monochromator lieferte die verwendete Cu-Kα1 -Strahlung (λ = 1,5406 Å). Ein 2θ Bereich von 2,00° – 79,99° mit einer Schrittweite von 0,01° wurde vermessen. Der lineare ortsempfindliche Detektor detektierte jeweils 7800 Datenpunkte. Datenaufnahme und Reduktion erfolgte mit der Software WinXPow.

Strukturbestimmung aus Röntgenpulverdaten

Einkristallstrukturanalyse

Ein Einkristall der Größe 0,32×0,27×0,13 mm³ wurde bei $-100°C$ auf einem STOE IPDS II Diffraktometer mit einer Genix Mikrofocus Röhre mit Spiegeloptik unter Verwendung von MoKα Strahlung (λ = 0,71073 Å) vermessen. Die Messdaten wurden mit dem Programm X-AREA bearbeitet.

8.1.4 Flurbiprofen-Chinin (FQ)

Experimentelle Details zu Kapitel 3.2.2 Neue Methode zur Bestimmung der absoluten Konfiguration pharmazeutischer Wirkstoffe durch Pulverdiffraktometrie.

Kristallisation

Die Ausgangsmaterialien wurden von SigmaAldrich ohne weitere Aufreinigung verwendet. 30 mg von Flurbiprofen gelöst in 20 mL Ether wurden vereinigt mit der Lösung aus 43 mg Chinin gelöst in 20 mL Ether. Das Lösemittel verdamfte bei Raumdruck und -temperatur. Die Kristallisation wurde von Lukas Tapmeyer durchgeführt.

Röntgenbeugungsdiagramm

Die Proben wurden in Glaskapillaren mit 0,7 mm Durchmesser überführt und im Haus auf einem STOE-STADI-P Diffraktometer in Transmissionsgeometrie bei 25°C vermessen. Ein gebogener Ge (111) Monochromator lieferte die verwendete Cu-Kα1 -Strahlung (λ = 1,5406 Å). Ein 2θ Bereich von 2,00° – 79,99° mit einer Schrittweite von 0,01° wurde vermessen. Der lineare ortsempfindliche Detektor detektierte jeweils 7800 Datenpunkte. Datenaufnahme und Reduktion erfolgte mit der Software WinXPow.

Strukturbestimmung

8.1.5 4,11-Difluorchinacridon (DFC)

Experimentelle Details zu Kapitel 4.1 Neues Programm FIDEL kombiniert mit Rietveld-Verfeinerung und PDF-Analyse: 4,11-Difluorchinacridon.

Kristallisation

Die Probe wurde von Clariant erhalten und ohne weitere Aufreinigung verwendet.

Röntgenbeugungsdiagramm

Die PDF G(r) wurde durch Untergrundkorrektur, Normalisierung und Fouriertransformation mit dem Programm PDFgetX3 berechnet. Für die PDF-Daten von DFC wurde ein optimaler Qmax-Wert von 15,02 Å⁻¹ berechnet, um Artefakte und eine schlechte Statistik auszuschließen.

Stoe & Cie: WinXPow (Computer Software), Darmstadt 2005.**

Strukturbestimmung/ Generierung der vier Strukturmodelle

Zufallsstrukturen in einem fine fit an das experimentelle Pulver angepasst. 18 Strukturmodelle wurden einer automatisierten robusten Verfeinerung mit dem Programm TOPAS Academic 6, aufgerufen durch FIDEL, unterzogen. Hieraus resultieren die verbleibenden unter Kapitel 4.1 beschriebenen fünf Strukturmodelle für die anschließende manuelle Rietveld-Verfeinerung und die Anpassung an die PDF-Daten.

Gitterenergieminimierung

Eigenbeitrag zu dem Projekt

8.1.6 2-Monomethylchinacridon (MMC)

Experimentelle Details zu Kapitel 4.2 Bestimmung der Fehlordnung durch Kombination von Rietveld-Verfeinerung, Gitterenergieminimierung, Elektronenbeugung und PDF Analyse: Monomethylchinacridon.

Kristallisation

60 mg des industriellen Produkt Sandorin Brilliantrot SBL von Clariant wurden mit 25 mL N-Methyl-2-pyrrolidon (NMP) für 30 Minuten bei 189°C unter Rückflusskühlung zum Sieden erhitzt. Die heiße Suspension wurde sofort abfiltriert und der Filterkuchen getrocknet. Die Kristallisation wurde von Dr. Sandor Bekö durchgeführt.

Röntgenbeugungsdiagramm

Für SDPD wurde die Probe in eine Glaskapillare mit 0,7 mm Durchmesser überführt und im Haus auf einem STOE-STADI-P Diffraktometer in Transmissionsgeometrie bei 25°C vermessen. Ein gebogener Ge (111) Monochromator lieferte die verwendete Cu-Kα1 -Strahlung (λ = 1,5406 Å). Ein 2θ Bereich von 2,00° – 79,99° mit einer Schrittweite von 0,01° wurde vermessen. Der lineare
positionssensitive Detektor detektierte jeweils 7800 Datenpunkte. Datenaufnahme und Reduktion erfolgte mit der Software WinXPow.

Die PDF G(r) wurde durch Untergrundkorrektur, Normalisierung und Fouriertransformation mit dem Programm PDFgetX3 berechnet. Für die PDF-Daten von MMC wurde ein optimaler Qmax-Wert von 15,14 Å⁻¹ berechnet, um Artefakte und eine schlechte Statistik auszuschließen.

Gitterenergieminimierung

8.1.7 Barbitursäure

Experimentelle Details zu Kapitel 5.2 Validierung und Testung des Globalfit: Barbitursäure als Beispiel

Kristallisation

Barbitursäure wurde von SigmaAldrich (99% Reinheit) gekauft und ohne weitere Aufreinigung verwendet. Die Probe wurde gemörsert, um Polymorph IV zu erhalten.

Röntgenbeugungsdiagramm

Die Probe wurde für die PDF-Messungen in Poliamid-Kapillaren (Durchmesser 1,0 mm) gefüllt und mit Knete verschlossen. Die Röntgenbeugungsexperimente für die PDF-Analyse wurden am National Synchrotron Light Source at Brookhaven National Laboratory der Beamline X17a bei Raumtemperatur durchgeführt. Der einfallende monochromatische Strahl wurde durch einen Si (311) Monochromator auf eine Energie von 67,42 keV ($\lambda = 0,1839 \, \text{Å}$) eingestellt. Der 2D Perkin Elmer Detektor wurde orthogonal zum Strahl montiert, mit einer Proben-Detektor-Distanz von 204,2 mm, kalibriert mit einer LaB$_6$ Standardprobe. Mehrere Scans wurden durchgeführt, um eine Gesamtmesszeit von 30 min zu erzielen. Die 2D Daten wurden integriert und mit der Software FIT2D konvertiert. Die PDF G(r) wurde durch Untergrundkorrektur, Normalisierung und Fouriertransformation mit dem Programm PDFgetX3 berechnet. Für die PDF-Daten der Barbitursäure wurde ein optimaler Q_{max}-Wert von 21,9 Å$^{-1}$ berechnet, um Artefakte und eine schlechte Statistik auszuschließen.

Strukturbestimmung

Die Strukturbestimmung erfolgt mit dem PDF-Global-Fit. Die Molekülstruktur wurde aus einer Geometrieoptimierung auf Level von B3LYP/6-31G* mit dem Programm Gaussian durchgeführt.
8.2 Vorarbeiten

Die Projekte „Neue Methode zur Bestimmung der absoluten Konfiguration pharmazeutischer Wirkstoffe durch Pulverdiffraktometrie“ (Kapitel 3.2.2) und „Bestimmung der Fehlordnung durch Kombination von Rietveld-Verfeinerung, Gitterenergieminimierung, Elektronenbeugung und PDF Analyse: Monomethylchinacridon“ (Kapitel 4.2) wurden bereits in einer vorangegangen Bachelor- bzw. Masterarbeit begonnen und im Rahmen dieser Doktorarbeit weitergeführt, bzw. beendet. Entsprechend der zeitlichen Abgrenzung wird hier dargestellt, welche Arbeiten während der Doktorarbeit durchgeführt wurden.

8.2.1 Zu Chiralitätsbestimmung

8.2.2 Zu Monomethylchinacridon

8.3 Eigenanteil an den Veröffentlichungen

Dieses Kapitel stellt einen Überblick meines persönlichen Beitrags zu den jeweiligen Veröffentlichungen/Manuskripten dar.

Fast die gesamte wissenschaftliche Arbeit von zwei der drei Verbindungen (1 und 3) wurde von mir durchgeführt, sowie das Verfassen des Manuskriptes bezüglich dieser Verbindungen, inklusive der Erstellung aller Abbildungen. Lediglich die Einkristallstrukturanalyse von einer der zwei Verbindungen wurde von Michael Bolte durchgeführt.

Mein wissenschaftlicher Beitrag zu diesen beiden Veröffentlichungen, war die Strukturbestimmung der Verbindungen R1a, 2c und 3c, sowie Anwendung der vorgestellten Methode zur Bestimmung der absoluten Konfiguration pharmazeutischer Wirkstoffe durch Röntgenpulverdiffraktometrie. Zudem wurden die Manuskripte größtenteils von mir verfasst, inklusive der Erstellung aller Abbildungen.

Mein Beitrag umfasste einen großen Teil der wissenschaftlichen Arbeiten: Durchführung der Rietveld-Verfeinerung und Gitterenergieminimierung mit der Kraftfeld-Methode von 4,11-Difluorochinacridon war mein Beitrag zu diesem Manuskript. Der Fit der Modelle an die PDF wurde von meinem Praktikanten Arnd Fitterer unter meiner Betreuung durchgeführt. Außerdem habe ich folgende Kapitel des Manuskriptes verfasst: Synopsis, Abstract, 1.3 Structure solution from powder data without previous indexing (FIDEL method), 1.4 Structure refinement by fit to the pair distribution function, 2.1 X-ray powder diffraction, 2.2 Structure solution by global optimization using FIDEL, 2.3 Rietveld Refinement, 3.1 Structure solution, 3.3 Rietveld refinements, 3.6 Force-field calculation.

Wissenschaftliche Anteil analog zu [CS08].

Das dargestellten Anwendungsbeispiel des PDF-Globalfits – Strukturbestimmung der Barbitursäure aus PDF Daten – wurde von mir durchgeführt, sowie das Verfassen des Manuskriptes, inklusive der Erstellung aller Abbildungen.
9. Eidesstattliche Erklärung

Frankfurt am Main, den ………………………………..

……………………………………………………

...

Carina Schlesinger