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Abstract. In this paper we propose a compositional semantics for lexicalized tree-adjoining
grammar (LTAG). Tree-local multicomponent derivations allow separation of the semantic contri-
bution of a lexical item into one component contributing to the predicate argument structure and a
second component contributing to scope semantics. Based on this idea a syntax-semantics interface
is presented where the compositional semantics depends only on the derivation structure. It is shown
that the derivation structure (and indirectly the locality of derivations) allows an appropriate amount
of underspecification. This is illustrated by investigating underspecified representations for quantifier
scope ambiguities and related phenomena such as adjunct scope and island constraints.
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1. Introduction

A lexicalized tree-adjoining grammar (LTAG) consists of a finite set of trees
(elementary trees) associated with lexical items and composition operations of
substitution (replacing a leaf with a new tree) and adjoining (replacing an internal
node with a new tree). The elementary trees represent extended projections of
lexical items and encapsulate syntactic/semantic arguments of the lexical anchor.
They are minimal in the sense that all, and only the syntactic/semantic arguments,
are encapsulated and further, all recursion is factored away. This factoring of recur-
sion is what leads to the trees being extended projections. The elementary trees of
LTAG are therefore said to possess an extended domain of locality.

The extended domain of locality of the trees in an LTAG gives a way to formu-
late a syntax-semantics interface on a more abstract level, namely as a relation
between elementary trees and semantic representations, without violating the prin-
ciple of compositionality. Consequently, semantic representations do not need to
reproduce the internal structure of elementary trees and therefore one can use
‘flat’ semantic representations in the style of Minimal Recursion Semantics (MRS,
Copestake et al., 1999). One advantage of the more flexible relation between syntax
and semantics is that, in contrast to phrase structure based approaches, elements
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such as quantifiers, whose semantic interpretation does not directly correspond to
their (syntactic) surface position, do not pose a problem.

LTAG derivations are represented by derivation trees that record the history of
how the elementary trees are put together. A derived tree is the result of carrying
out the substitutions and adjoinings. Because of the localization of the arguments
of a lexical item within elementary trees the proper way to define compositional
semantics for LTAG is with respect to the derivation tree rather than the derived tree
(Candito and Kahane, 1998a, b). We assume that each elementary tree is related to a
semantic representation. The derivation tree indicates how to combine the semantic
representations. As already mentioned, this contrasts with traditional approaches
where each node in the syntactic structure is associated with a semantic repre-
sentation. Although this insight has been present from the beginning of the work
on LTAG (Shieber and Schabes, 1990) a systematic formulation was begun only
recently by Joshi and Vijay-Shanker (Joshi and Vijay-Shanker, 1999). One of their
goals was to investigate the role of underspecification in compositional semantics;
they suggested that LTAG derivation trees provide just the right amount of under-
specification necessary for scope semantics. Their discussion was preliminary,
however.

In our approach we use a LTAG variant called multicomponent TAG (MC-
TAG). A MC-TAG consists of elementary sets of trees. The locality of composition
in LTAG is extended to MC-TAG as follows: Basically, when two multicomponent
tree sets are combined, the components of one set combine with only one of the
components of the other set. We use tree-local MC-TAG with at most two compo-
nents in each set. The key idea is that one of the components of a tree set contributes
to the predicate argument aspects of semantics and the other component contributes
to the scope semantics.

In order to obtain underspecified representations for scope ambiguities, we
adopt ideas from Hole Semantics (Bos, 1995) and enrich the semantic represen-
tations with propositional metavariables called holes. A partial order on holes and
propositional labels describes the scope structure of a semantic representation. A
disambiguation function maps holes to propositional labels in such a way that
the scope constraints are respected. We will see that the LTAG derivation trees
(restricted by the tree-locality of the grammar) provide the right amount of under-
specification to generate suitable representations for scope semantics. This will be
illustrated investigating phenomena such as quantifier scope and adjunct scope.

Among recent approaches to underspecified semantics, in particular Muskens
and Krahmer (1998) and Kallmeyer (1999b) are closely related to the work
presented in this paper. Both proposals also separate scope information from
predicate argument semantics. In Muskens and Krahmer (1998), however, there is
no locality constraint and therefore its use of underspecification is too general. Tree
descriptions and locality of TAGs are used in Kallmeyer (1999b). But in order to
control the amount of underspecification that comes with the use of descriptions,
rather complex formal definitions are necessary. This problem is avoided in our
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approach where syntactic structures are represented by trees and underspecifica-
tion is used only in a very limited way for scope relations between propositional
formulas.

The structure of the paper is as follows: In the next section, we will introduce
LTAG and, proposing an alternate perspective on adjoining, motivate the use of
tree-local MCTAG with elementary tree sets containing at most two trees. Section
3 explains the architecture of the syntax semantics interface we propose referring
in particular to quantifier and adjunct scope. The formal definitions underlying this
approach are then described in detail in Section 4. The last section we investigate
restrictions on quantifier scope such as island constraints.

2. Lexicalized Tree-Adjoining Grammar (LTAG)

2.1. LEXICALIZATION AND EXTENDED DOMAINS OF LOCALITY

Tree-adjoining grammar (TAG) is a formal tree rewriting system originally intro-
duced in Joshi et al. (1975). TAG and Lexicalized Tree-Adjoining Grammar
(LTAG) have been studied extensively both with respect to their formal properties
(see for example Vijay-Shanker and Joshi, 1985; Vijayashanker, 1987; Joshi, 1987)
and to their linguistic relevance (e.g., Joshi, 1985). TAG and LTAG are formally
equivalent. However, from the linguistic perspective, LTAG is the system we will
be concerned with in this paper. We will often use the terms TAG and LTAG
interchangeably.

The motivations for the study of LTAG are both linguistic and formal. The
elementary objects manipulated by LTAG are structured objects (trees or directed
acyclic graphs) and not strings. Using structured objects as the elementary objects
of the formal system, it is possible to construct formalisms whose properties relate
directly to the study of strong generative capacity (i.e., structural descriptions),
which is more relevant to the linguistic descriptions than the weak generative
capacity (sets of strings).

Each grammar formalism specifies a domain of locality, i.e., a domain over
which various dependencies (syntactic and semantic) can be specified. It turns out
that the various properties of a formalism (syntactic, semantic, computational, and
even psycholinguistic) follow, to a large extent, from the initial specification of the
domain of locality.

In a context-free grammar (CFG) the domain of locality is the one level tree
corresponding to a rule in a CFG (Figure 1). It is easily seen that in general, the
arguments of a predicate (for example, the two arguments of likes) are not in the
same local domain. The two arguments are distributed over the two rules (two
domains of locality) S → NP VP and VP → V NP. They can be brought together
by introducing a rule S → NP V NP. However, then the structure provided by the
VP node is lost.

We should also note here that not every rule (domain) in the CFG in Figure 1
is lexicalized. The three rules on the right are lexicalized, i.e., they have a lexical
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CFG G S → NP VP NP → Harry

VP → V NP NP → peanuts

VP → VP ADV V → likes

ADV → passionately

S VP NP NP

NP VP VP ADV peanuts Harry

VP V ADV

V NP likes passionately

Figure 1. Domain of locality of a context-free grammar.

anchor. The rules on the left are not lexicalized. The second and the third rules
on the left are almost lexicalized, in the sense that they each have a preterminal
category (V in the second rule and ADV in the third rule), i.e., by replacing V by
likes and ADV by passionately these two rules will become lexicalized. However,
the first rule on the left (S → NP VP) cannot be lexicalized. It can be shown (see
Joshi and Schabes, 1997) that CFGs cannot be lexicalized, i.e. that for a given CFG
G, it is in general not possible to construct another CFG G′, such that every rule in
G′ is lexicalized and T (G), the set of (sentential) trees (i.e., the tree language of G)
is the same as the tree language T (G′) of G′. Of course, if we require only the string
languages of G and G′ to be the same (i.e., G and G′ are weakly equivalent) then
any CFG can be lexicalized. This follows from the fact that any CFG can be put
in the Greibach normal form where each rule is of the form A → a B1 B2 . . . Bn

where a is a terminal symbol. The lexicalization we are interested in requires the
tree languages (i.e., the set of structural descriptions) to be the same, i.e., we are
interested in the ‘strong’ lexicalization. To summarize, in general, a CFG cannot
be strongly lexicalized by a CFG because the domain of locality is a one level tree
corresponding to a rule in the grammar.

Note that there are two issues we are concerned with here:

1. lexicalization of each elementary domain of locality, and
2. encapsulation of the the arguments of the lexical anchor in the elementary

domain.

The second issue, the so-called predicate argument co-occurrence, is inde-
pendent of the first issue. From the mathematical point of view the first issue,
i.e., the lexicalization of the elementary domains of locality is the crucial one.
We can obtain strong lexicalization without satisfying the requirement specified in
the second issue (encapsulation of the arguments of the lexical anchor). Of course,
from the linguistic point of view the second issue is very crucial. What this means
is that among all possible strong lexicalizations we should choose only those that
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Figure 2. Substitution.

CFG G S → NP VP NP → Harry

VP → V NP NP → peanuts

V → likes

TSG G′ α1 S α2 NP α3 NP

NP↓ VP Harry peanuts

V NP↓

likes

Figure 3. Tree substitution grammar.

meet the requirements of the second issue. For our discussions in this paper we will
assume that we always make such a choice.

Now we can ask the following question: Can we strongly lexicalize a CFG by
a grammar with a larger domain of locality? Figures 2 and 3 show a CFG and a
corresponding tree substitution grammar where the elementary objects (building
blocks) are the three trees in Figure 3 and the combining operation is the tree
substitution operation shown in Figure 2. (Leaves that need to be replaced by a
tree in a substitution operation, e.g., the two NP nodes in α1 in G′, are marked
with a vertical arrow). Note that each tree in the tree substitution grammar (TSG),
G′ is lexicalized, i.e., it has a lexical anchor. It is obvious that G′ indeed strongly
lexicalizes G. However, TSGs fail to strongly lexicalize CFGs in general. We show
this by an example. Consider the CFG, G, in Figure 4 and a proposed TSG, G′. It
is easily seen that although G and G′ are weakly equivalent they are not strongly
equivalent. In G′, suppose we start with the tree α1 then by repeated substitutions
of trees in G′ (a node marked with a vertical arrow denotes a substitution site) we
can grow the right side of α1 as much as we want but we cannot grow the left side.
Similarly for α2 we can grow the left side as much as we want but not the right side.
However, trees in G can grow on both sides. Hence, the TSG, G′, cannot strongly
lexicalize the CFG, G (Joshi and Schabes, 1997).
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CFG G S → S S (non-lexical)

S → a (lexical)

TSG G′ α1 S α2 S α3 S

S S↓ S↓ S a

a a

Figure 4. A tree substitution grammar.
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Figure 5. Adjoining.

We now introduce a new operation called ‘adjoining’ as shown in Figure 5.
Adjoining involves splicing (inserting) one tree into another. More specifically, a
tree β as shown in Figure 5 is inserted (adjoined) into a tree α at a node u with
label X resulting in the tree γ . The tree β, called an auxiliary tree, has a special

CFG G S → S S, S → a

TSG G′ α1 S α2 S α3 S

S S∗ S∗ S a

a a

Adjoining α2 at α3 at the S node and then
adjoining α1 at the root of the derived tree we
have γ .

γ S

S S

a S S

a a

Figure 6. Adjoining arises out of lexicalization.
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α1 S

NP↓ VP

V NP↓

likes

transitive

α2 S

NP(wh)↓ S

NP↓ VP

V NP

likes ε

object extraction

Figure 7. LTAG: Elementary trees for likes.

form. The root node is labelled with the same nonterminal as the node u in α and
on the frontier of β there is also a node labelled X called a foot node (marked
with *). There could be other nodes (terminal or nonterminal) on the frontier of β,
the nonterminal nodes will be marked as substitution sites (with a vertical arrow).
Thus if there is another occurrence of X (other than the foot node marked with *)
on the frontier of β, it will be marked with the vertical arrow, and that will be a
substitution site. Given this specification, adjoining of β to α at the node u in α is
uniquely defined. Adjoining can also be seen as a pair of substitutions as follows.
The subtree at u in α is detached, β is substituted at u and the detached subtree is
then substituted at the foot node of β. A tree substitution grammar when augmented
with the adjoining operation is called the tree-adjoining grammar (lexicalized tree-
adjoining grammar if each elementary tree is lexically anchored). In short, LTAG
consists of a finite set of elementary trees, each lexicalized with at least one lexical
anchor. The elementary trees are either initial or auxiliary trees. Auxiliary trees
have been defined already. Initial trees are those for which all nonterminal nodes
on the frontier are substitution nodes. It can be shown that any CFG can be strongly
lexicalized by an LTAG (Joshi and Schabes, 1997).

In Figure 6 we show a TSG, G′, augmented by the operation of adjoining, which
strongly lexicalizes the CFG, G. Note that the LTAG looks the same as the TSG
considered in Figure 4 before. However, now trees α1 and α2 are auxiliary trees
(marked with *) that can participate in adjoining. Since adjoining can insert a tree
in the interior of another tree it is possible to grow both sides of the trees α1 and
α2, which was not possible earlier with substitution alone.

In summary, we have shown that by increasing the domain of locality we have
achieved the following: (1) lexicalized each elementary domain, (2) introduced an
operation of adjoining, which would not be possible without the increased domain
of locality (note that with one level trees as elementary domains adjoining becomes
the same as substitution since there are no interior nodes to be operated upon), and
(3) achieved strong lexicalization of CFGs.
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β1 S

NP↓ VP

V S∗

think

β2 S

V S∗

does

α3 NP

who

α4 NP

Harry

α5 NP

Bill

Figure 8. LTAG: Sample elementary trees.

Rather than giving formal definitions for LTAG and derivations in LTAG we
will give a simple example to illustrate some key aspects of LTAG. We show
some elementary trees of a toy LTAG grammar of English. Figure 7 shows two
elementary trees for a verb such as likes. The tree α1 is anchored on likes and
encapsulates the two arguments of the verb. The tree α2 corresponds to the object
extraction construction. Since we need to encapsulate all the arguments of the verb
in each elementary tree for likes, for the object extraction construction, we need to
make the elementary tree associated with likes large enough so that the extracted
argument is in the same elementary domain. Thus, in principle, for each ‘minimal’
construction in which likes can appear (for example, subject extraction, topicaliza-
tion, subject relative, object relative, passive, etc.) there will be an elementary tree
associated with that construction. By ‘minimal’ we mean when all recursion has
been factored away. This factoring of recursion away from the domain over which
the dependencies have to be specified is a crucial aspect of LTAG as they are used
in linguistic descriptions. This factoring allows all dependencies to be localized in
the elementary domains. In this sense, there will, therefore, be no long distance
dependencies as such. They will all be local and will become long distance on
account of the composition operations, especially adjoining.

Figure 8 shows some additional trees. Trees α3, α4, and α5 are initial trees and
trees β1 and β2 are auxiliary trees with foot nodes marked with *. A derivation
using the trees in Figure 8 is shown in Figure 9. The trees for who and Harry
are substituted in the tree for likes at the respective NP nodes, the tree for Bill
is substituted in the tree for think at the NP node, the tree for does is adjoined
to the root node of the tree for think (adjoining at the root node is a special case
of adjoining), and finally the derived auxiliary tree (after adjoining β2 to β1) is
adjoined to the indicated interior S node of the tree α2. This derivation results in
the derived tree for who does Bill think Harry likes as shown in Figure 10. Note
that the dependency between who and the complement NP in α2 (local to that tree)
has been stretched in the derived tree in Figure 10. This tree is the conventional tree
associated with the sentence.



FACTORING PREDICATE ARGUMENT AND SCOPE SEMANTICS 11

α2 S

NP(wh)↓ S

NP↓ VP

V NP

likes ε

β1

S

NP↓ VP

V S∗

think

β2

S

V S∗

does

α3 NP

who

α4 NP

Harry

α5 NP

Bill

substitution

adjoining

Figure 9. LTAG derivation for who does Bill think Harry likes.

S

NP S

who V S

does NP VP

Bill V S

think NP VP

Harry V NP

likes ε

Figure 10. LTAG derived tree for who does Bill think Harry likes.

Besides the derived tree, in LTAG, there is also a derivation tree, the tree that
records the history of composition of the elementary trees associated with the
lexical items in the sentence. This derivation tree is shown in Figure 11. The
nodes of the tree are labelled by the tree labels such as α2 together with the
lexical anchor.1 Each edge is equipped with the position of the node at which the
corresponding operation takes place. E.g. β1 is adjoined at the node at position 01
(the daughter 1, counted from left to right and starting with 0, of the root node,
which has position 0) in α2. The derivation tree is the crucial derivation structure
for LTAG. We can obviously build the derived tree from the derivation tree. For
semantic computation the derivation tree (and not the derived tree) is the crucial
object. Compositional semantics is defined on the derivation tree. The idea is that
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α2(like s)

00 01 010

α3(who) β1(think ) α4(Harry)

0 00

β2(does) α5(Bill)

Figure 11. LTAG derivation tree.

for each elementary tree there is a semantic representation associated with it, and
these representations are composed using the derivation tree. Since the semantic
representation for each elementary tree is directly associated with it there is no
need to reproduce unnecessarily the internal hierarchy in the elementary tree. This
allows the so-called ‘flat’ semantic representation as well as helps in dealing with
some non-compositional aspects as in the case of rigid and flexible idioms.

2.2. SOME IMPORTANT PROPERTIES OF LTAG

The two properties of LTAG are (1) extended domain of locality (EDL) (for
example, as compared to CFG), which allows (2) factoring recursion from the
domain of dependencies (FRD), thus making all dependencies local. All other
properties of LTAG (mathematical, linguistic, and even psycholinguistic) follow
from EDL and FRD. TAGs (LTAGs) belong to the so-called class of mildly context-
sensitive grammars (Joshi, 1985; Weir, 1988). CFLs are properly contained in the
class of languages of LTAG, which in turn are properly contained in the class of
context-sensitive languages. There is a machine characterization for TAG (LTAG),
called embedded pushdown automaton (EPDA) (Vijaya-Shanker, 1987), i.e., for
every TAG language there is an EPDA which corresponds to this (and only this)
language and the language accepted by any EPDA is a TAG language. EPDA’s have
been used to model some psycholinguistic phenomena (Joshi, 1990). The class
of TAG languages enjoy all important properties of CFLs, including polynomial
parsing (with complexity O(n6)).

Large scale wide coverage grammars have been built using LTAG, the XTAG
system (LTAG grammar and lexicon for English and a parser) being the largest so
far (for further details see The XTAG Research Group, 1998). In the XTAG system,
each node in each LTAG tree is decorated with two feature structures (top and
bottom feature structures), in contrast with CFG based feature structure grammars,
because adjoining can augment a tree internally, while in a CFG based grammar
a tree can be augmented only at the frontier. It is possible to define adjoining and
substitution (as it is done in the XTAG system) in terms of appropriate unifica-
tions of the top and bottom feature structures (Vijay-Shanker and Joshi, 1988).
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Figure 12. Adjoining as Wrapping 1.
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Figure 13. Adjoining as Wrapping 2.

Because of FRD (factoring recursion from the domain of dependencies), there is
no recursion in the feature structures. Therefore, in principle, feature structures can
be eliminated. However, they are crucial for linguistic descriptions. Constraints on
substitution and adjoining are modelled via these feature structures. This way of
manipulating feature structures is a direct consequence of the extended domain of
locality of LTAG.

2.3. AN ALTERNATE PERSPECTIVE ON ADJOINING

In adjoining we insert an auxiliary tree, say with root and foot nodes labelled with
X in a tree at a node u with label X. In Figures 12 and 13 we present an alternate
perspective on adjoining. The tree α which receives adjunction at u (labelled X)
can be viewed as made up of two trees, the supertree at u and the subtree at u as
shown in Figure 12. Now, instead of the auxiliary tree β adjoined to the tree α at u

we can view this composition as a wrapping operation – the supertree of α and the
subtree of α are wrapped around the auxiliary tree β as shown in Figure 13. The
resulting tree γ is the same as before. Wrapping of the supertree at the root node of
β is like adjoining at the root (a special case of adjoining) and the wrapping of the
subtree at the foot node of β is like substitution. Hence, this wrapping operation
can be described in terms of substitution and adjoining.

As an example consider Figures 14 and 15. The auxiliary tree β can be adjoined
to the tree α at the indicated node as shown in Figure 14. Alternatively, we can view
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α S

NP(wh)↓ S

NP↓ VP

V NP

likes ε

β

S

NP↓ VP

V S∗

think

Figure 14. Wrapping as substitution and adjunction 1.

α

α1 S

NP(wh)↓ S

α2 S

NP↓ VP

V NP

likes ε

β

S

NP↓ VP

V S∗

think

Figure 15. Wrapping as substitution and adjunction 2.

this composition as adjoining the supertree α1 (the wh tree) at the root node of β

and substitution of the subtree α2 (the likes tree) at the foot node of β as shown in
Figure 15. The two ways of composing α and β are semantically coherent.

The wrapping perspective can be formalized in terms of the so-called multi-
component LTAG (MC-LTAG). They are called multi-component because the
elementary objects can be sets of trees. In our examples, we have two components
(in which α was split). When we deal with multi-components we can violate the
locality of the composition very quickly because the different components may
be ‘attached’ (by adjoining or substitution) to different nodes of a tree and these
nodes may or may not be part of an elementary tree, depending on whether the
tree receiving the multi-component attachments is an elementary or a derived tree.
We obtain so-called tree-local MC-LTAG if we adopt the constraint that the tree
receiving multi-component attachments must be an elementary tree. It is known
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α1 α3 S α2

α11 S∗ α21 S∗

NP↓ VP

α12 NP V NP↓ α22 NP

Det N↓ hates Det N↓

some every

α4 N α5 N

student course

Figure 16. Scope ambiguity: An example.

that tree-local MC-TAGs are weakly equivalent to LTAG, however they can give
rise to structural descriptions not obtainable by LTAG, i.e., they are more powerful
than LTAG in the sense of strong generative capacity (Weir, 1988). Thus the
alternate perspective leads to greater strong generative capacity, without increasing
the weak generative capacity.

We will now illustrate how this alternate perspective can be used to characterize
the scope ambiguity in some student hates every course as shown in Figures 16,
17 and 18. In Figure 16, we show a tree-local MC-LTAG for our example. The
trees for hates, student, and course are standard LTAG trees. The trees for some
and every are multi-component trees. For example, the tree α1 for some has two
components, α11 and α12, one of the components α11 is a degenerate tree in this
special case. The multi-component tree α1 is lexically anchored by some. Similarly,
for the tree α2 for every. The main idea here is that the α12 component corresponds
to the contribution of some to the predicate-argument structure of the tree for hates
and the α11 component contributes to the scope structure (Joshi and Vijay-Shanker,
1999; Kallmeyer and Joshi, 1999). Similarly for the two components of α2.

Figure 17 shows the derivation. The main point to note here is that the two
components of α1 are attached (by substitution or adjoining) to α3 at the appropriate
nodes simultaneously. This composition is tree local as α3 is an elementary tree.
Similarly for the tree α2. The two top components α11 and α21 are attached to the
same node (the root node) of α3. This may give the impression that the composition
is non-local because once α1 is attached to α3 we have a derived tree to which α2 is
attached. However, the two components, α11 and α21 are degenerate and it can be
shown that in this case the composition of α2 with α3 (after α1 has been composed
with α3) is still effectively tree-local (Kallmeyer and Joshi, 1999).

It is clear in this example that α2 could have been attached to α3 first and then
α1 attached to α3. Figure 18 shows the derivation tree for the derivation in Figure
17. Note that both α11 and α21, the scope information carrying components, are
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α1 α3 S α2

α11 S∗ S∗ α21

NP↓ VP

α12 NP V NP↓ NP α22

Det N↓ hates Det N↓

some every

α4 N α5 N

student course

Figure 17. Derivation with scope information.

α3(hates)

0 01 011 0

α11(some) α12(some) α22(every) α21(every)

01 01

α4(student) α5(course)

Figure 18. Derivation tree with scope underspecification.

attached to α3 at the same node, and they could be attached in any order (strictly
speaking, α1 and α2 could be attached to α3 in any order). Hence α11 and α21

behave in exactly the same way with respect to the derivation. The scope ambi-
guity is thus directly reflected in the derivation tree for some student hates every
course.2 This is in contrast to all other approaches (which are essentially CFG
based) where the scope ambiguity is represented at another level of representation.
It is possible to represent in LTAG, scope ambiguities at the level of the derivation
tree itself, because of the alternate perspective on adjoining, which in turn is due
to the extended domain of locality discussed in this section. We will explore these
ideas in detail later in this paper.

More recently, similar ideas have been explored in the context of other linguistic
phenomena such as scrambling and clitic climbing, both with respect to linguistic
coverage and certain psycholinguistic implications. A particularly interesting result
is that all word order variations up to two levels of embedding (i.e., three clauses in
all) can be correctly described by tree-local MC-LTAGs, correctly in the sense of
providing the appropriate structural descriptions. Beyond two levels of embedding
not all patterns of word order variation will be correctly described.
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3. Compositional Semantics with LTAG

In this section, we will develop the architecture of a syntax-semantics interface
for LTAG adopting the alternate perspective on adjoining as sketched in the last
section. Some of the ideas which form the basis of the work described in this paper
have been already investigated in Joshi and Vijay-Shanker (1999).

The overall approach is as follows. Each elementary tree is connected with a
semantic representation. The way these semantic representations combine with
each other depends on the combination of the elementary trees in a compositional
way, i.e., it depends on the derivation structure rather than the derived trees. Since
the local domains are extended compared to classical phrase structure grammars
(CFGs), the relation is less close than in more traditional Montagovian systems.
In this respect, the architecture resembles to earlier proposals as Shieber and
Schabes (1990) and also to Kallmeyer (1999b). However, in contrast to these two
approaches, in our proposal we will adopt ‘flat’ semantic representations (as in, for
example, Minimal Recursion Semantics MRS, (Copestake et al., 1999).

The fact that the relation between syntax and semantics is a relation between
elementary trees and semantic representations and not between single nodes
together with their daughters and semantic representations, allows a definition of
a monotonic semantics in spite of the nonmonotonicity of TAG derivations with
respect to structural properties of trees (see also Joshi and Vijay-Shanker, 1999).

3.1. DERIVATION TREES AND SEMANTIC DEPENDENCIES

In this paper we will follow a key idea in Joshi and Vijay-Shanker (1999) and
also Candito and Kahane (1998) that the semantics of a sentence can be built
from the derivation structure of LTAG. Underlying this is the observation that TAG
derivation trees express predicate argument dependencies.

The elementary trees of an LTAG represent extended projections of lexical
items and encapsulate syntactic/semantic arguments of the lexical anchor. They
are minimal in the sense that all and only the syntactic/semantic arguments are
encapsulated and further, all recursion is factored away. Because of this localization
of the arguments of a lexical item within elementary trees, the proper way to define
compositional semantics for LTAG is with respect to the derivation tree, rather than
the derived tree.

Each edge in a derivation tree represents one derivation step in the LTAG. In
the case of a substitution, a new argument is inserted. Therefore, if we assume that
a dependency relates a predicate to one of its arguments, the corresponding edge
in the derivation tree in these cases must be considered to be directed from the
mother to its daughter. However, in the case of an adjunction, we have an opposite
direction. The new auxiliary tree represents a predicate that is applied to the tree to
which it is adjoined. Therefore, in these cases, the dependency is directed from the
daughter to the mother.
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α1 S

NP↓ VP

V NP↓

loves

α2 NP

John

α3 NP

Mary

β

VP

ADV VP∗

always

Figure 19. Elementary trees for (1).

α1

00 011 01

α2 α3 β

Figure 20. Derivation structure for (1).

Viewing the edges in a derivation tree as directed dependency relations in this
way, the derivation tree specifies (independently from the order of the syntactic
derivation steps) how to combine the elementary representations corresponding to
the elementary trees in a derivation.

(1) John always loves Mary.

As an example, consider the derivation of the syntactic structure and the corre-
sponding compositional semantics for (1). The elementary trees needed to generate
(1) are shown in Figure 19.

The derivation starts with α1. The initial trees α2 and α3 are added by substi-
tution to α1 and β is added by adjunction to α1. In the corresponding derivation
structure, given in Figure 20, the direction of the edges expresses the direction of
the semantic dependencies.

The labels of the edges in the derivation tree are the positions of the nodes in the
old tree where the new trees are added. 0 is the root position, and for each position
p, pn for n ∈ IN is the position of the (n + 1)th daughter (from left to right) of the
node at positions p. α2 is substituted for the node at position 00 in α1, α3 for the
node at position 011 and β is adjoined to the node at position 01.3

The semantic representation of an elementary γ is called σ (γ ). (2) shows the
semantic representations of α1, α2, α3 and β.

(2)

σ (α1):
l1 : love(x1, x2)

arg: 〈x1, 00〉, 〈x2, 011〉 σ (α2):
john(x)

arg: –

σ (α3):
mary(y)

arg: –
σ (β):

always(s1)

arg: s1
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Roughly, a semantic representation consists of a conjunctively interpreted set of
formulas (typed lambda-expressions) and a set of argument variables. The formulas
may have propositional labels l1, l2, . . . . Argument variables may be linked to
positions in the elementary syntactic tree, as it is the case in σ (α1).

In each application of one semantic representation to another semantic repre-
sentation, a partial assignment function f maps some of the argument variables of
the first representation to labels or free variables of the second representation. This
assignment function f is restricted to the two elementary semantic representations
involved in this specific dependency relation. Furthermore, some of the argument
variables might be related to argument slots in the syntactic structure, which would
give a further restriction. After having applied the assignment f in a semantic
composition, the union of the two semantic representations is built.

The derivation structure, shown in Figure 20, indicates that σ (α1) is applied
to σ (α2) and σ (α3), and σ (β) is applied to σ (α1). In each step, with an edge in
the derivation tree directed from γ1 to γ2, σ (γ1) is applied to σ (γ2) depending on
an assignment function that maps some of the arguments of σ (γ1) to elements in
σ (γ2). The linking of argument variables and positions is supposed to restrict the
possible assignment functions as follows: In a substitution derivation step at a posi-
tion p, f is defined exactly for all argument variables linked to p. In an adjunction
step, f is defined for all argument variables that are not linked to any positions.
When applying σ (α1) to σ (α2), because of the linking between the position of the
subject NP and the variable x1 and since this NP is replaced by α2, the assignment
function f for this combination must be such that f (x1) = x, and for x2, f is not
defined. In the same way, the assignment for the other substitution step is restricted.
For the adjunction step, σ (β) is applied to σ (α1) assigning l1 to s1. As a result we
obtain the semantic representation shown in (3).

(3)

l1 : love(x, y)

john(x)

mary(y)

always(l1)

arg: –

(3) is conjunctively interpreted, i.e. roughly, (3) is true in some world w iff john(x)

and mary(y) and always(p) are true in w where p is true in some world w′ iff
love(x, y) is true in w′.

A formal definition of semantic representations and the way they combine
depending on the derivation structure is given in Section 4.
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3.2. SEPARATION OF SCOPE INFORMATION FROM PREDICATE ARGUMENT

RELATIONS

For a compositional semantics it is always a problem that in some cases the
semantic contribution of a lexical item is discontinuous in the logical semantic
representation. One of the problematic cases is the case of quantifiers. On the one
hand, the contribution of a quantifier is connected to its syntactic position because
corresponding to this position, an argument is added to the semantic representation.
On the other hand, quantifiers can rise and may have wide scope, even if they are
embedded in some other quantifier. So the syntactic structure does not directly
reflect the scope relations.

Following the Montagovian tradition (Montague, 1974), we will consider
quantifying phrases like every in every man, every in every student etc. as constants
of type 〈〈e, 〈s, t〉〉, 〈〈e, 〈s, t〉〉, 〈s, t〉〉〉. In other words, quantifying phrases take two
properties and then give a proposition.

As a notational variant, we will write quant (x, p1, p2) instead of
quant (λx.p1, λx.p2). (In particular, x is treated as a free variable and thereby
available as a possible value for argument variables.)

(4) Every dog barks
(5) every(x, dog(x), bark(x))

(5) shows the truth-conditional semantics for (4). The contribution of a quantifier
consists of two parts:
1. every(x, p1, p2) with propositions p1 and p2, and
2. P(x) and x (as argument of bark)

The first part can rise and is responsible for scope relations. The second part
contributes to the restriction of the quantifier and it inserts the semantic argument
corresponding to the quantified NP. Therefore, the first part is applied to the propo-
sition whereas the second part adds an argument, i.e. this is a downwards semantic
dependency.

For this reason we propose to separate the contribution of a quantifying phrase
into two elementary trees (and two corresponding semantic representations) that
are added in different ways:
1. One auxiliary tree bearing the scope contribution of the quantifier, and
2. one initial tree bearing the predicate argument contribution.

The auxiliary tree consists just of one single node with label S. Figure 21 shows
how the two elementary trees for every (the trees on the left) are added to the tree
of barks.

The semantic representations for quantifying phrases are introduced in the next
section.

The separation between scope information and contribution to the predicate
argument structure is partly inspired by Muskens and Krahmer (Muskens, 1998;
Muskens and Krahmer, 1998). These approaches also make use of the extended
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S∗ S

NP↓ VP

NP V

Det N↓ barks

every

substitution

adjoining

Figure 21. Combining every and barks.

local domains of TAG-like grammars where one can separate scope information
from predicate-argument information and thereby avoid extra-mechanisms like
quantifier raising to account for cases where the interpretation of a quantifier
does not correspond to the (surface) position of the corresponding NP. However,
Muskens and Krahmer do not make use of any locality restriction (as in tree-local
TAGs for example) in the process of generating underspecified representations.

3.3. UNDERSPECIFIED QUANTIFIER SCOPE

In order to describe underspecified representations for scope ambiguities, we will
apply the ideas in Hole Semantics (Bos, 1995) to our semantic representations,
i.e. besides the labels already use in Section 3.1 we will use additional proposi-
tional metavariables called holes. A partial order on holes and labels describes the
scope structure of a semantic representation. This way of underspecifying semantic
representations is also used in other approaches, e.g. Underspecified Discourse
Representation Structures (UDRS, Reyle, 1993). In this respect, our approach
differs from Kallmeyer, 1999a; Kallmeyer, 1999b) where tree descriptions instead
of trees are used, and the dominance relation can be directly interpreted as a
description of scope relations. However, a problem with tree descriptions is that this
is a very general approach, and a rather complicated system of axioms is needed
in order to make sure that the grammar generates only the things one wants to
have. Therefore, in our proposal, we will use trees (i.e. a lexicalized TAG) for the
syntactic analysis combined with flat semantic representations enriched with labels
and holes.

Although our approach has a resemblance to Hole Semantics, a crucial differ-
ence is that we have only propositional holes. As far as we can see, this might
be sufficient. Concerning labels, however, any type is allowed. Labels of non-
propositional type are necessary to make subformulas accessable, e.g. for modifi-
cation. Another concept similar to our labels and holes are handles in MRS
(Copestake et al., 1999). MRS, however, does not distinguish between handles
acting as labels and handles acting as holes although these two different types of
handles are present in MRS.
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As an example for the use of Hole Semantics in order to obtain underspecifica-
tion, we will consider the analysis of (6).

(6) Some student loves every course.

The elementary tree and elementary semantic representation for loves is shown
in (7). Compared to the one proposed for loves in the last section, the truth-
conditional formula corresponding to the whole proposition is labelled, and an
additional constraint says that there is a hole subordinated by this labelled formula.
The idea is that between this hole and the label, quantifiers might come in, i.e.
quantifiers having scope over loves(x1, x2). Or, if there is nothing between h1 and
l1, then in the end h1 will be identified with l1.

(7)

α1 S

NP↓ VP

V NP↓

loves

l1 : loves(x1, x2)

l1 ≤ h1

arg: 〈x1, 00〉, 〈x2, 011〉

The key idea of the analysis of quantifiers we adopt here is that the contribu-
tion of a quantifier is separated into one predicate argument component and one
scope component. Thereby, the scope of a quantifier does not strictly depend on
the surface position of the quantifier. However, since tree-locality of the grammar
must be respected, quantifiers cannot rise arbitrarily high. This locality restriction
allows just the right amount of underspecification needed to treat scope ambiguities
appropriately.

The elementary tree sets and semantic representations for the quantifying
phrases some and every are shown in (8).

(8)

⎧⎪⎨
⎪⎩

β1

S∗
l2 : some(x, h2, h3)
s1 ≤ h3

arg: s1

,

α2
NP

Det N↓
some

l3 : p1(x)
l3 ≤ h2

arg: 〈p1, 01〉

⎫⎪⎬
⎪⎭

⎧⎪⎪⎨
⎪⎪⎩

β2

S∗
l4 : every(y, h4, h5)
s2 ≤ h5

arg: s2

,

α3
NP

Det N↓
every

l5 : p2(y)
l5 ≤ h4

arg: 〈p2, 01〉

⎫⎪⎪⎬
⎪⎪⎭

The contribution of a quantifier consists of two parts: on the one hand a quanti-
fier adds an argument to the predicate-argument structure and on the other hand, it
contributes some information about scope. This is separated in our analysis. The
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α1

0 00 011 0

β1 α2 α3 β2

01 01

α4 α5

Figure 22. Derivation tree for (6).

auxiliary tree in the tree set of a quantifier, consisting of one single node, carries
information about the variable corresponding to the quantifier and it introduces
slots (h2 and h3 in the case of some) for the scope of the quantifier, i.e. its restriction
and body. The NP part of the tree set is inserted as a syntactic argument and it
contributes (a part of) the restriction of the quantifier. The argument variables p1

and p2 stand for the predicates denoted by the nouns in the NPs that will be added
by substitution.

The separation into two parts also provides a separation of the proposition
belonging to the restriction (l3 in the case of some) on the one hand and the
proposition belonging to the body on the other hand (s1 in the case of some). As
a consequence, when further adding, for example, a quantifier to the NP tree, the
restriction of the first quantifier will be part of the body of this new quantifier
since this is the only accessable proposition. The locality of derivations excludes to
locate the body of the first quantifier in the body of the second. This is important for
obtaining adequate constraints for quantifiers embedded in NPs. We will consider
such examples in Section 5.1.

The elementary trees and semantic representations for the nouns student and
course are shown in (9). They are very simple. q1 and q2 are labels. A noun denotes
a predicate that is added to a quantifier by substitution, i.e. that is an argument of a
quantifier.

(9)

⎧⎪⎨
⎪⎩

α4 N

student

q1 : student

arg: –

⎫⎪⎬
⎪⎭

⎧⎪⎨
⎪⎩

α5 N

course

q2 : course

arg: –

⎫⎪⎬
⎪⎭

The derivation tree for (6) is shown in Figure 22.
In standard TAG or MC-TAG a derivation structure as in Figure 22 is not

possible since one cannot adjoin more than one auxiliary tree at one and the same
node. However, as already proposed in Joshi and Vijay-Shanker (1999), we will
allow this kind of multiple adjunction for quantifiers in order to account for scope
ambiguities. The use of multiple adjunctions at a single node has already been
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introduced by Schabes and Shieber in (1994). But in contrast to Schabes and
Shieber (1994), we will allow multiple adjunctions in a much more restricted way.
There are two reasons to do so. The first is that in cases of adjunct scope, multiple
adjunctions are not linguistically adequate. We will look at this more closely in
Section 3.4. The second reason is that combined with multicomponent adjunction,
even in the tree-local case, unrestricted multiple adjunctions increase the generative
capacity of the grammar considerably. This issue will be discussed more detailed
in Section 3.5.

Figure 22 indicates that σ (α1) is applied to σ (α2) and σ (α3) where x1 is
replaced by x and x2 by y. Applying σ (β1) to σ (α1) means replacing s1 by l1, and
applying σ (β2) to σ (α1) means replacing s2 by l1. Furthermore, when applying
σ (α2) to σ (α4) and σ (α3) to σ (α5), p1 is replaced by (q1 : student) and p2 by
(q2 : course). The labels q1 and q2 make the predicates accessable for the assign-
ment function that maps p1 to q1 and p2 to q2 and thereby causes the replacing of
p1 and p2 by (q1 : student) and (q2 : course) respectively. As a result, the semantic
representation (10) is derived for (6).

(10)

l2 : some(x, h2, h3), l4 : every(y, h4, h5),

l1 : loves(x, y), l3 : (q1 : student)(x), l5 : (q2 : course)(y)

l3 ≤ h2, l1 ≤ h3, l5 ≤ h4, l1 ≤ h5, l1 ≤ h1

arg: –

The constraints for scope order in the third line indicate that student(x) must be
part of the restriction of some, course(y) must be part of the restriction of every,
and loves(x, y) must be part of the body of some and the body of every. This leaves
open whether some is in the body of every or every in the body of some. In other
words, (10) is an underspecified representation in the sense that it describes two
readings, wide scope of some student and wide scope of every course.

In order to obtain one of the readings described by the underspecified represen-
tation, a disambiguation mapping is needed. This is a bijection from holes to labels
that is such that after having applied this mapping, the transitive closure of the
resulting scope order is a partial order. In the case of (10), there are two possible
disambiguation mappings:

δ1 :

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

h1 → l2
h2 → l3
h3 → l4
h4 → l5
h5 → l1

, δ2 :

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

h1 → l4
h2 → l3
h3 → l1
h4 → l5
h5 → l2

δ1 corresponds to wide scope of some and δ2 to wide scope of every.
Formal definitions of the mechanisms sketched here can be found in Section 4.
In the approach presented here, the nuclear scope (i.e., the body) of a quantifier

is partly specified by the elementary tree to which the scope part is adjoined. But it
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does not depend on the specific node at which the adjunction takes place. However,
it might be useful to view the attachment site of the scope tree as an indicator for
scope and thereby perhaps to account for certain restrictions on relative quantifier
scope. This is an issue we want to pursue in the future.

3.4. ADJUNCT SCOPE

As we have seen in the example in the preceding section, in order to obtain
the desired syntactic derivations for quantifiers, it is necessary to allow multi-
component adjunction and, furthermore, also to allow the adjunction of more than
one auxiliary tree at one single node. For quantifiers, we need an elementary tree set
with two trees, one auxiliary tree for the part that is responsible for the scope rela-
tions this quantifier occurs in, and one part that contributes the syntactic argument.
Therefore we choose to use tree-local multicomponent TAGs instead of simple
TAGs.

In the following, we will argue that unrestricted multiple adjunctions together
with tree-local multicomponent derivations is not adequate and that we only need
a restricted use of multiple adjunctions.

3.4.1. Non-intersective modification

(11) Pat allegedly usually drives a cadillac.

(11) is an example of adjunct scope taken from Bouma et al. (1998) involving
two non-intersective adverbs. As pointed out in Bouma et al. (1998), the possible
readings of (11) are restricted by the constraint that usually must be in the scope of
allegedly. Considering only the readings where both adverbs are VP-modifiers, we
therefore get three different scope orders: allegedly must have scope over usually,
and the quantifier a cadillac can either have wide scope or be between the two
adverbs or it can have narrow scope.

In our system, (12) is a natural elementary representation for VP-modifiers as
usually:

(12)

β VP

ADV VP∗
NA

usually

l1 : usually(h1)

s ≤ h1

arg: s

Schabes and Shieber (1994) would argue that in (11), both adverbs are adjoined
to the VP-node of drives, i.e. they would prefer multiple adjunction in this case.
According to them, an adjunction of allegedly at the root of the auxiliary tree
of usually corresponds to the reading where allegedly modifies only the adverb
usually and not the whole VP. Schabes and Shieber propose to consider the fact that
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in (11), usually must be in the scope of allegedly in the case where both are VP-
modifiers as a consequence of the specific syntactic derivation order. However, one
of our underlying assumptions was that the composition of the semantic represen-
tation depends only on the dependencies expressed in the derivation structure. In
particular, it should be independent from syntactic derivation order.

Therefore, contrary to Schabes and Shieber, we assume that for tree sets
containing single auxiliary trees, multiple adjunctions of several such trees at one
and the same node are not allowed. The difference between adverbs modifying
the whole VP and adverbs modifying only an embedded adverb is accounted
for by adjoining in the first case at the VP-node and in the second case at
the node with label ADV. The restriction that several adverbial modifier trees
cannot be adjoined at the same node reflects our assumption about operator scope,
namely that operators adjoined at the same node (even the same elementary tree)
should be equivalent with respect to their scoping possibilities. In (11) where we
have different scope properties, adjunction at the same node therefore should be
excluded.

If multiple adjunction at the VP-node of drives is not allowed in this case, the
only possible derivation is to adjoin usually to the VP-node of drives, and then to
adjoin allegedly to usually. With this derivation, the desired restriction is obtained
since the argument of allegedly is the label of usually(h1). (13) shows how the
adverbs combine with the semantic representation σ1 of Pat drives a cadillac.

(13)

σ1

l1 : drive(e, x, y), Pat(x),

l2 : a(y, h2, h3), l3 : cadillac(y)

l1 ≤ h1, h3 ≤ h2, l1 ≤ h3

arg: –

σ2

l4 : usually(h4)

s ≤ h4

arg: s

σ3

l5 : allegedly(h5)

s ≤ h5

arg: s

[σ3([σ2(σ1)]f1)]f2

with f1(s) = l1 and f2(s) = l4:

l1 : drive(e, x, y), Pat(x),

l2 : a(y, h2, h3), l3 : cadillac(y)

l4 : usually(h4), l5 : allegedly(h5)

l1 ≤ h1, h3 ≤ h2, l1 ≤ h3, l1 ≤ h4, l4 ≤ h5

arg: –
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Similar examples are sentences like (14).

(14) Robin reboots the Mac frequently intentionally.

According to Bouma et al. (1998), the second adverb must have scope over the
first. This can be obtained in the same way as in (11) if multiple adjunctions for
single modifier trees are disallowed.

(15) shows examples of scope ambiguities between two modifiers.

(15) a. Usually, Pat allegedly drives a cadillac.

b. Sandy rarely visited a friend because of El Niño. (Bouma et al., 1998).

In (15)a. the relative scope of the two adverbial modifiers is not specified, and
in (15)b. both scope orders of rarely and because of El Niño are possible. With our
analysis, this is in fact the case, since in (15)a. and b. both modifiers adjoin to the
elementary tree of the matrix verb, one at the VP-node, and the other one at the
S-node. With respect to the derivation structure, these adjunctions are not distin-
guished except for the positions labeling the corresponding edges. In case of an
adjunction, the positions do not influence the choice of a semantic assignment, and
consequently there is no difference between the two modifiers concerning possible
scope relations.

We do not want to claim that there are no cases of scope restrictions at all
for non-adjacent adverbs, but (11) and (15) have clearly shown that in case of
adjacency we want to obtain a restriction whereas in case of non-adjacency this is
at least in general not the case.

A problem with the semantic representations proposed here for adverbs is that
they allow adverbs that are not blocked by another adverb to have arbitrarily wide
scope: in (11), l5 can be arbitrarily high, and this would even be the case for adverbs
occurring in embedded clauses. In order to overcome this problem, one needs to
modify the semantic representations such that an adverb takes scope over the label
of the proposition it adjoins to (this is already the case) and, additionally, the adverb
is blocked by the hole belonging to this proposition. To obtain this, the semantic
representations of adverbs might be as follows:

(16)

l1 : usually(h1)

l1 ≤ h′
1, h

′
1 ≤ h, s ≤ h1

arg: s, h

In the semantic representation in (16), h is a hole variable, i.e., a variable that takes
a hole as its value. The additional hole h′

1 above l1 is needed since it will be used
to block further adverbs adjoined to this adverb.
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The examples in this section have shown that multiple adjunctions with tree sets
containing only auxiliary trees would not be adequate.

Another reason to restrict the use of multiple adjunctions is that the idea behind
tree sets with one initial tree and one auxiliary tree allowing multiple adjunction is
the separation of predicate argument from scope semantics. Therefore, the scope
bearing part (the auxiliary tree) should not interfere with syntactic properties. In
particular, when adjoining such a scope bearing auxiliary tree, this should not
modify the features of the node involved in this adjunction. Therefore we propose
to restrict the use of multiple adjunctions such that it is allowed only for trees
consisting of one single node with completely unspecified feature structures. This
means that in the particular case of quantifiers, the auxiliary tree carrying the scope
information can be adjoined to an elementary tree whenever this elementary tree
also allows a substitution adding an initial NP tree. In Section 5.1 we will see that
this is in fact more adequate than saying that scope bearing auxiliary trees must be
adjoined at nodes with label S because there are cases where quantifiers are added
to non-sentential argument structures.

3.4.2. Recursive modifiers

The readings of (11) where allegedly recursively modifies usually and not the
whole VP usually drives a cadillac involve a different auxiliary tree and also a
different semantic representation for allegedly. The elementary tree of allegedly
does not adjoin at the VP-node but at the ADV-node of the elementary tree of
usually. In order to make usually accessable for modification, the semantic repre-
sentation of usually as VP-modifier must be slightly modified, we introduce a label
for the adverb.

(17)

β1 VP

ADV VP∗
NA

usually

l1 : (m1 : usually)(h1)

s ≤ h1

arg: s

(18)

β2 ADV

ADV ADV∗
NA

allegedly

m2 : allegedly(m)

arg: m

Adjoining β2 to the ADV-node of β1 (and thereby applying the semantic repre-
sentation of β2 to the one of β1) gives the semantic representation shown in
(19).
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(19) [σ (β2)(σ (β1))]f with f = {m → m1}:
l1 : (m2 : allegedly(usually))(h1)

s ≤ h1

arg: s

In the same way, examples like (20), (taken in a slightly simplified form from
(Kasper, 1998) are analyzed.

(20) Bob shows an [[apparently] simple] example.

(21)

β1 N

A N∗
NA

simple

λz[(q2 : simple)(z) ∧ p1(z)]

arg: p1

Adding this to σ1 in (22) with p1 → q1 gives σ2:

(22)

σ1

l1 : show(x, y), Bob(x),

l2 : a(y, h2, h3), l3 : (q1 : example)(y)

l1 ≤ h1, l3 ≤ h2, l1 ≤ h3

arg: –

σ2

l1 : show(x, y), Bob(x),

l2 : a(y, h2, h3), l3 : (q2 : simple)(y) ∧ example(y),

l1 ≤ h1, l3 ≤ h2, l1 ≤ h3

arg: –

For apparently. the elementary tree and semantic representation in (23)are
chosen. Applying this to σ2 with q2 assigned to p leads to (24).

(23)

β2 A

A A∗
NA

apparently

q3 : apparently(p)

arg: p



30 L. KALLMEYER AND A.K. JOSHI

α A1

a1 A2

a2 A3

a3 A4

a4 A5

a5

Elementary tree set:

{
β1 A1

a1 A∗
1

, . . . ,
β5 A5

a5 A∗
5

}

Figure 23. Combining multicomponent tree sets and multiple adjoining.

(24)

l1 : show(x, y), Bob(x),

l2 : a(y, h2, h3), l3 : (q3 : apparently(simple))(y) ∧ example(y),

l1 ≤ h1, l3 ≤ h2, l1 ≤ h3

arg: –

3.5. MATHEMATICAL MOTIVATION FOR RESTRICTIONS ON MULTIPLE

ADJUNCTION

It has been shown that tree-local MC-TAGs are strongly equivalent to TAGs, i.e.,
they both have the same strong generative capacity. In other words, the use of tree-
local multicomponent derivations instead of standard TAG-derivations does not
increase the generative capacity of the grammar.

More problematic is the issue of multiple adjunctions, i.e. adjunctions of several
auxiliary trees at the same node. More precisely, the combination of multiple
adjunctions with tree-local MC-TAGs causes problems. In certain cases, we need
this in order to deal adequately with scope. One assumption underlying our
approach is that the derivation structure reflects semantic dependencies. This means
that for the specific case of scope relations, two operators showing the same
properties concerning scope must be added to the same elementary tree.

Schabes and Shieber (1994) have shown that multiple adjunctions with TAGs
do not increase the generative capacity of the grammar. However, if we allowed
multiple adjunctions with tree-local MC-TAGs in a completely unrestricted way,
we would considerably extend the generative power of the grammar formalism. As
an example, consider the MC-TAG in Figure 23.

With the unrestricted version of multiple adjunction, in each derivation step in
Figure 23, the five auxiliary trees in the elementary tree set would be adjoined to
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the five nodes with nonterminal labels in α. This would generate {an
1 . . . an

5 | n ≥ 1}
which is no TAL. It is obvious, that such a grammar can be found for any language
{an

1 . . . an
k | n ≥ 1} for some k ∈ IN.

This example shows that, although tree-local multicomponent derivations and
multiple adjunctions do not increase the generative capacity when considered
separately, the combination of the two is a problem in this respect. For this
reason and for the reasons mentioned in the previous section, we will restrict
multiple adjunctions to certain kinds of auxiliary trees, so-called scope auxiliary
trees.

4. Formal Definition of the Syntax-Semantics Interface

In this section, we will give a formal definition of the objects and mechanisms
motivated in the previous section. Section 4.1 defines the possible derivation trees
for a given TAG in such a way that the derivation is tree-local and multiple adjunc-
tions are restricted. Furthermore, the construction of the derived tree from the
derivation tree is specified. In Section 4.2 semantic representations are defined
together with their composition operation, a disambiguation mechanism is intro-
duced, and the interpretation of disambiguated semantic representations is defined.
Section 4.3 finally specifies how to obtain a semantic representation for a specific
derivation structure.

4.1. TREE-LOCAL MC-TAG WITH RESTRICTED MULTIPLE ADJUNCTION

In the following, we will specify how to obtain a derived tree in a TAG from a
given derivation tree, we will define scope auxiliary trees, and then we will give a
definition of the derivation trees allowed in our MC-TAG. Scope auxiliary trees are
degenerate auxiliary trees, they consist just of a single node and do not contribute
anything to the syntactic structure. The derivation trees are such that the derivations
must be tree-local and multiple adjunction is only allowed for scope auxiliary
trees and only in cases where these trees occur together with one initial tree in
an elementary tree set.

4.1.1. Derivation Trees

In order to restrict multiple adjunctions to certain kinds of trees, we have to define
the possible derivation trees. Before doing this we will define scope auxiliary
trees. These are the only auxiliary trees for which multiple adjunctions are
allowed.

DEFINITION 4.1 (Scope auxiliary tree)
Let G be a TAG and β an auxiliary tree. β is a scope auxiliary tree iff
1. β consists of only one single node u, and
2. the top and bottom feature structures of u are empty.
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For the derivation trees we suppose that the underlying grammar is a multi-
component TAG (MC-TAG). This means that besides initial and auxiliary trees we
have a set of pairwise disjoint elementary tree sets, i.e. tree sets containing initial
and auxiliary trees that are added simultaneously.

A derivation tree must be such that the derivations are tree-local (all trees
belonging to the same elementary set must be added to the same elementary tree),
and multiple adjunction is only allowed for scope auxiliary trees that form a tree
set together with one initial tree.

DEFINITION 4.2 (Derivation tree)
Let G be a MC-TAG.

A tree T whose node labels are the union of certain elementary tree sets in G

and whose edges are labelled by positions of nodes in the tree that is label of the
mother node, is called a tree-local derivation tree with multiple scope adjunctions
iff
1. for each elementary tree set 	: if there is a γ ∈ 	 labeling a node u in T , then

for all γ ′ ∈ 	, γ 
= γ ′: γ ′ is label of a sister of u (tree-locality).
2. if there are trees γ, γ1, γ2 such that 〈γ, γ1〉 and 〈γ, γ2〉 are edges in T that are

labelled by the same position p, then for i ∈ {1, 2}, γi is a scope auxiliary tree
in G, and there is an initial tree α such that {γi, α} is an elementary tree set in
G (multiple scope adjunctions).

4.1.2. Derived trees

In the standard TAG definition of adjunction, a node u in the old tree is replaced
by an auxiliary tree. Consequently, after having performed the adjunction, u is
no longer there and in particular not available for further adjunctions. Therefore
we have to give a slightly different definition of adjunction. Roughly, after an
adjunction step, there is a node that is considered as being part of the old tree
and at the same time part of the adjoined auxiliary tree. We will follow Schabes
and Shieber (1994) with these definitions.

Schabes and Shieber (1994) define the derived tree on the basis of a derivation
tree. All substitutions and adjunctions take place at certain positions in the tree
that is already derived. Whether a node belongs to a specific elementary tree or not
is not considered in this definition.

DEFINITION 4.3 (Derived tree of a derivation tree)
Let T be an ordered derivation tree with respect to a TAG G. The derived tree of
T , written D(T ) is defined as follows:

D(T ) :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

γ if T is a trivial tree of one node labelled with the
elementary treeγ

γ [D(T1)/p1] . . . [D(Tn)/pn]
if T is a tree with root node labelled with the γ

elementary tree and withk child subtreesT1, . . . , Tn

whose edges are labelled with positionsp1, . . . , pn



FACTORING PREDICATE ARGUMENT AND SCOPE SEMANTICS 33

Here, γ [D(T1)/p1] . . . [D(Tn)/pn] specifies the adjunction or substitution
(depending on which elementary tree is added) of trees T1 through Tn at positions
p1 through pn (in this order). We suppose an appropriate updating of the tree
addresses of any later adjunction to reflect the effect of earlier adjunctions that
occur at addresses dominating the address of the later adjunction.

This definition does not exclude multiple adjunctions. Even if there are positions
pi, pj with i 
= j, 1 ≤ i, j ≤ n and pi = pj , the derived tree is well defined.

With the restricted use of multiple adjunctions, it is clear that even in combina-
tion with tree-local multicomponent derivations, the strong generative capacity of
the grammar is still the same as in the case of standard TAG.

For the derived tree of an ordered derivation tree satisfying the conditions for a
tree-local derivation tree with multiple scope adjunctions, the linear order between
sisters is not important. The derived tree is the same, no matter which linear order
is chosen for sisters. But for the corresponding semantic representation it might be
important.

4.2. FORMAL DEFINITIONS FOR SEMANTICS

4.2.1. Semantic Representations

The formulas in our semantic representations are typed. Types are defined in the
usual recursive way, starting from basic types e, v, s and t for individuals, events,
situations and truth values. For each type, there is not only a set of constants of
this type and a set of variables but also a set of labels. Suppose that for type T ,
CT is the set of constants, VT the set of variables and LT the set of labels of type
T .

The use of propositional labels has already been motivated in the preceding
section. Labels of other types can be useful in order to refer to subformulas, as in
the semantic representations of student and course in the following section or as in
terms like usually(hate(e, x, y)) where one might want to modify only usually and
not the whole proposition. This is possible when the subformula has a label, e.g.
(m : usually)(hate(e, x, y)) where m ∈ L〈〈s,t〉,〈s,t〉〉.

Following Bos (1995), we will enrich our formulas with holes. Holes can be
considered as a special kind of metavariables ranging over propositional labels
(i.e., labels of type 〈s, t〉). They differ from the variables in the sets VT since the
values of holes are specified by disambiguation mappings. Even for holes, we
need variables. An example is the semantic representation of simple in (21) (see
p. 29). Other examples will be considered later when dealing with relative clauses.
The use of hole variables is restricted in the following way: if a hole variable
occurs in a set of terms in a semantic representation, it must also be one of its
argument variables. This guarantees that hole variables disappear in the course of
a derivation because they are replaced by holes. The set of holes is called H and
the set of hole variables is VH .
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DEFINITION 4.4 (Terms with labels and holes)
1. For each type T , each cT ∈ CT and each vT ∈ VT is an unlabelled term of type

T .
2. For each type T , each unlabelled term τ of type T and each label l ∈ LT ,

(l : τ) is a labelled term of type T .
3. For all types T1, T2 and each (possibly labelled) terms τ1 of type 〈T1, T2〉 and

τ2 of type T1, τ1(τ2) is an unlabelled term of type T2.
4. For each type T , each term τ of type 〈〈s, t〉, T 〉, and each h ∈ H ∪ VH , τ(h) is

an unlabelled term of type T .
5. For all types T1, T2, each term τ of type T2 and each x ∈ VT1 , λx.τ is an

unlabelled term of type 〈T1, T2〉.
6. Nothing else is a term.

Brackets will be omitted in cases where the structure of a formula is still
unambiguously given.

A semantic representation is a set of such terms together with constraints
on scope order, i.e. subordination constraints, and a set of argument variables.
(The links between argument variables and positions of nodes are not part of the
semantic representations but part of the syntax-semantics interface.)

DEFINITION 4.5 (Semantic representation)
A semantic representation is a triple 〈T ,C,A〉 such that:
• T is a set of terms with labels and holes, such that each label, hole or hole

variable occurs at most once in T .
• C is a set of constraints x ≤ y where each z ∈ {x, y} is either a proposi-

tional label or a hole occurring in T or a propositional variable or a hole vari-
able.

• A is a subset of the union of the set of free variables of T and of the set of
variables occurring in C. Each hole variable occurring in T or C occurs also
in A.

A is called the argument set of 〈T ,C,A〉.

A variable is free in a term iff it is not bound by a λ-operator and it is free in a set
of terms iff it is free in one of the terms. This means in particular that quantifiers
like some in (10) (see p. 24), that are treated as constants do not bind variables in
this syntactic sense. Therefore, in (10), x and y are free variables.

The restriction that each label, hole and hole variable occurs at most once in T
is motivated by the intuition that labels and holes stand for subformulas and this
should be unique.

The constraints in C restrict the possible scope orders. Besides these constraints,
also the terms in T contain information about possible scope orders. A hole or label
that is in the scope of a hole h occurring in some term labelled l cannot have scope
over l. Furthermore, scope order is transitive. The ordering relation on holes and
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labels specified in such a way by C and T , is called subordination. Its definition is
more or less taken from Bos (1995).

DEFINITION 4.6 (Subordination)
Let σ = 〈T ,C,A〉 be a semantic representation with holes and hole variables Hσ ,
propositional labels Lσ and free propositional variables Vσ .

SUBσ ⊆ (Hσ ∪Lσ ∪Vσ)× (Hσ ∪Lσ ∪Vσ) is called the subordination relation
of σ iff
1. for all k ∈ Hσ ∪ Lσ ∪ Vσ : 〈k, k〉 ∈ SUBσ ,
2. for all k, k′ with k ≤ k′ ∈ C: 〈k, k′〉 ∈ SUBσ .
3. for all l ∈ Lσ and k ∈ Hσ ∪ Lσ ∪ Vσ such that there is a l : τ ∈ T , and k

occurs in τ : 〈k, l〉 ∈ SUBσ and 〈l, k〉 /∈ SUBσ , and
4. for all k, k′, k′′: if 〈k, k′〉 ∈ SUBσ and 〈k′, k′′〉 ∈ SUBσ , then 〈k, k′′〉 ∈ SUBσ .
5. Nothing else is in SUBσ .

4.2.2. Semantic Composition

Next, we have to define the way semantic representations are combined with each
other. The idea is that, when applying one semantic representation σ1 to another
semantic representation σ2, some of the arguments of σ1 are mapped to free
variables (except hole variables), holes or labels from σ2, and apart from this, the
union of the two semantic representations is built. The mapping from some of the
arguments of σ1 to values in σ2 is given by an assignment function f . The choice
of a suitable f depends on the specific derivation step. This issue will be treated
in Section 4.3.

DEFINITION 4.7 (Composition of semantic representations)
Let σ1 = 〈T1,C1,A1〉 and σ2 = 〈T2,C2,A2〉 be two semantic representations with
Vσ1 ∩ Vσ2 = ∅, and let f be a partial function from A1 to the set of free variables
(without hole variables), labels and holes occurring in σ2. Let f be defined for the
set Df .

The result of applying σ1 to σ2 under the assignment f (written [σ1(σ2)]f ) is
the semantic representation σ = 〈T ,C,A〉 with
1. Terms T :

(a) For all τ2 ∈ T2 that do not contain any v ∈ f (Df ): τ2 ∈ T .
(b) For all τ1 ∈ T1, a term τ ′

1 can be obtained as follows:

(i) τ ′
1 := τ1.

(ii) For all x ∈ Df occurring in τ ′
1 such that f (x) is a variable: τ ′

1 :=
[λ(x)τ ′

1](f (x)).
(iii) For all x ∈ Df occurring in τ ′

1 such that f (x) is a label, and
[λyτ ](f (x) : τ ′

2) is in T2 (perhaps after β-reduction) with τ

containing no further occurrence of f (x) : τ ′
2:

τ ′
1 := [λyτ ]([λxτ ′

1](τ ′
2)).
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For the resulting τ ′
1, τ ′

1 ∈ T holds.
(c) These are all terms in T .

2. Constraints C:
(a) For all constraints in c ∈ C1 ∪ C2 that do not contain an s ∈ Df : c ∈ C.
(b) For all constraints in c ∈ C1 ∪C2 that contain an s ∈ Df : c[s/f (s)] ∈ C,

where c[a/b] stands for the result of replacing a with b in c.
(c) These are all constraints in C.

3. The argument set of σ is (A1 ∪ A2) \ Df .

As a special case of (iii), namely when λyτ is the identical mapping, we get the
following: if f (x) is a label, and f (x) : τ ′

2 is in T2, then the new τ ′
1 is [λ(x)τ ′

1](τ ′
2),

i.e. all occurrences of x are simply replaced by τ ′
2.

We assume that all resulting formulas are transformed by β-reduction.
For this definition, we implicitly made the assumptions that f is such that the

resulting semantic representation contains only well typed terms. This means first
that for all x ∈ Df , x and the corresponding f (x) must be of the same type, and
second that (iii) only occurs with modifiers τ ′

1, i.e. with λxτ ′
1 of type 〈T , T 〉 where

x is of type T . The definition of suitable assignments f , given in Section 4.3, is
such that these assumptions hold.

The case (iii) is similar to adjunction on the syntactic level: a labelled sub-
formula is first removed, then a new subformula is inserted, and finally the removed
subformula becomes an argument of the subformula that has been added. The label
of the original subformula is removed. This is motivated by the observation that
terms of the form mod1(mod2(arg)) can be built by first modifying arg by mod2

and applying mod1 to the result mod2(arg). Therefore after having added the first
modifier, the label of arg can disappear since arg needs no longer to be accessable
for further modification. In other words, more than one modification of a labelled
term is not possible. This is similar to no adjunction constraints for foot nodes in
auxiliary trees.

As an example for the case (iii) consider (25):

(25) Some former student loves every course.

(26) σ

l2 : some(x, h2, h3), l4 : every(y, h4, h5),

l1 : loves(x, y),

l3 : (q1 : student)(x), l5 : (q2 : course)(y)

l3 ≤ h2, l1 ≤ h3, l5 ≤ h4, l1 ≤ h5, l1 ≤ h1

arg: –

σmod

q3 : (former(p))

arg: p

The semantic representation for (25) can be generated by applying a semantic
representation σmod for former in (26) to the semantic representation σ of some
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student loves every course. This application must be such that the assignment f

maps the argument variable of σmod to the label of student. The application of σmod

to σ with this assignment is shown in (27).

(27)

[σmod(σ )]f with f : {p → q1}:
l2 : some(x, h2, h3), l4 : every(y, h4, h5),

l1 : loves(x, y),

l3 : (q3 : (former(student)))(x), l5 : (q2 : course)(y)

l3 ≤ h2, l1 ≤ h3, l5 ≤ h4, l1 ≤ h5, l1 ≤ h1

arg: –

In the resulting semantic representation, the new predicate former(student) is
accessable via the label q3.

Labels as q3 in [σmod(σ )]f are sometimes left aside if they are not needed for
any further derivation steps.

Other examples for the case (iii) were shown in Section 3.4.2 where recursive
modification was considered.

Note that the result of a composition must be a semantic representation. In
particular, all propositional labels occurring in the constraint set must also occur
in the set of terms. This means that a propositional label l that occurs in a scope
constraint cannot be removed because of a modification of the proposition labelled
l. Instead of directly modifying this proposition, a term with a hole h is introduced
together with a new constraint l ≤ h.

4.2.3. Disambiguation and Interpretation

A disambiguation mapping for a given semantic representation σ is the same as a
possible plugging in Bos (1995), namely a bijection from the set of holes in σ to
the set of labels in σ that is such that the subordination constraints are respected.
This means that after mapping all holes to labels, the transitive closure of the
subordination in σ is a partial order. Furthermore, for each two labels there should
be a label subordinated by both of them. In other words, the resulting structure
must be a join semilattice. Additionally, for two holes or labels occurring in the
same formula there must not be any hole or label that subordinates both of them.
This last condition assures for example that nothing can be at the same time in the
restriction and the body of a quantifier.

Disambiguation is done only when the derivation process is finished. Therefore,
for the definition of a disambiguation mapping, we suppose that the argument set
is empty. This means in particular that all hole variables have been replaced by
holes.
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DEFINITION 4.8 (Disambiguation mapping)
Let σ = 〈T ,C,A〉 be a semantic representation with A = ∅. Let Lσ

〈s,t〉 be the set
of all propositional labels occurring in σ .
1. A bijection δ : Hσ → Lσ

〈s,t〉 is a disambiguation mapping of σ iff
for the homomorphism δ′ : 〈Hσ ∪ Lσ

〈s,t〉, SUBσ 〉 → 〈Lσ
〈s,t〉, SUB ′

σ 〉 with
δ′(h) := δ(h) for all h ∈ Hσ and δ′(l) := l for all l ∈ Lσ

〈s,t〉,
– the algebra 〈Lσ

〈s,t〉, SUB ′∗
σ 〉 (with SUB ′∗

σ being the transitive closure of
SUB ′

σ ) is a join semilattice,
– and for all x1, x2 ∈ Hσ ∪ Lσ

〈s,t〉: if there is an unlabelled term τ such that
τ ∈ T or l : τ ∈ T for some label l and x1 and x2 occur in τ , then there is
no x3 ∈ Hσ ∪ Lσ〈s,t〉 such that 〈δ′(x3), δ

′(x1)〉, 〈δ′(x3), δ
′(x2)〉 ∈ SUB ′∗

σ .

Then we define SUBδ := SUB ′∗
σ .

2. Let δ(T ) be the result of replacing all holes h occurring in T by δ(h), and let
δ(C) be the result of replacing all holes h occurring in C by δ(h). Then we
define δ(σ ) := 〈δ(T ), δ(C)〉.

For a disambiguated representation, we will give a model-theoretic semantics
in such a way that, roughly, sets of terms are conjunctively interpreted. Such a
model-theoretic semantics is defined only for semantic representations without
any argument variables and where all terms in T are of propositional type.

DEFINITION 4.9 (Interpretation of semantic representations)
Let σ = 〈T ,C,A〉 be a semantic representation with A = ∅ and T containing
only terms of type 〈s, t〉, and let δ be a disambiguation mapping of σ with δ(σ ) =
〈Tδ,Cδ〉.

Let I be an interpretation function for constants and g an assignment for
variables.

The interpretation of Tδ under SUBδ, I and g, written [[Tδ]]SUBδ

I,g , is recursively
defined. For a given situation s,
• [[T ]]SUBδ

I,g (s) = true iff [[τ ]]SUBδ,T
I,g (s) = true for all τ ∈ T such that either τ

is not labelled or its label is lτ and there is no l ∈ Lσ occurring inside some
τ ′ ∈ T with 〈lτ , l〉 ∈ SUBδ.

• for all l ∈ Lσ occurring inside some term: [[l]]SUBδ,T
I,g (s) = true iff

[[Tl]]SUBδ

I,g (s) = true

where Tl := {lτ : τ | lτ : τ ∈ T and 〈lτ , l〉 ∈ SUBδ}.
• for all types T and labelled terms lT : τT of type T , [[lT : τT ]]SUBδ,T

I,g :=
[[τT ]]SUBδ,T

I,g

• In all other cases, the interpretation is defined in the usual classical way with
I giving the interpretations of constants, and g as an assignment for variables.

In general, [[T ]]SUBδ

I (s) = true iff there is an assignment g such that
[[T ]]SUBδ

I,g (s) = true.
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The last part of this definition means that free variables are interpreted as
existentially bound.

4.3. RELATION BETWEEN SYNTAX AND SEMANTICS

In this section, we will define the syntax-semantics interface, i.e. the way the
syntactic tree sets are combined with semantic representations, and the way
semantic representations are compositionally built depending on the corresponding
syntactic derivation structure. In particular, the possible assignment functions f

that are used when applying one semantic representation to another are defined
depending on the corresponding derivation step in the syntactic TAG.

4.3.1. The Grammar

The syntax-semantics interface is a set of sets of triples, each of these triples
consisting of an elementary tree γ from the syntactic MC-TAG, a semantic
representation σ (γ ), and a relation ρ between the argument variables of σ (γ )

and positions of substitution nodes in γ . For each set of such triples, the trees
occurring in this set form one elementary tree set in the MC-TAG.

DEFINITION 4.10 (Syntax-semantics interface)
The syntax-semantics interface is a pair 〈G,�〉 such that
1. G is a MC-TAG.
2. � is a set of sets of triples such that for each S ∈ �

– for each 〈γ, σ, ρ〉 ∈ S,
• γ is an elementary tree in G,
• σ =: 〈T ,C,A〉 is a semantic representation, and
• ρ ⊂ A × {p |p is a position of a substitution node in γ } is a partial

function, such that:
if γ is an initial tree, then for all x ∈ A there is a position p with 〈x, p〉 ∈
ρ.

– the set {γ | there are σ and ρ such that〈γ, σ, ρ〉 ∈ S} is an elementary tree
set in G.

Notation: For an elementary tree γ occurring in one of the triples, σ (γ ) is the
corresponding semantic representation.

4.3.2. Semantic Assignments and Derivation Edges

The more interesting part of the syntax-semantics interface is the way the semantic
representations combine with each other depending on the syntactic derivation
structure. In order to obtain the semantic representation, it is not necessary
to consider the specific syntactic trees or tree sets. The derivation structure is
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sufficient to determine how to put the corresponding semantic representations
together.

First, we will define the (partial) assignments f for the combination of two
semantic representations that correspond to an edge in the derivation tree. We
suppose that we have a derivation structure and a set of semantic representa-
tions corresponding to the elementary trees in the derivation tree. These semantic
representations are such that without loss of generality the sets of variables
(including hole variables) occurring in the semantic representations of two different
elementary tree sets used in the derivation are disjoint.

Then, roughly, for each edge representing a substitution of some α for a node
at position p in an elementary tree γ , σ (γ ) is applied to σ (α) with an assignment
f that is defined for all argument variables in γ that are related to p. For each
edge corresponding to an adjunction of some β to some elementary tree γ , σ (β) is
applied to σ (γ ) with an assignment f that is defined for all argument variables of
β that are not related to any position in β.

The following definition specifies the assignments f of an edge in the
derivation tree.

DEFINITION 4.11 (Semantic assignment of a derivation edge)
Let 〈γ1, γ2〉 be an edge in a derivation tree that is labelled by p (p is a position in
γ1), and let σ1 := σ (γ1) and σ2 := σ (γ2) be the semantic representations of the
two elementary trees. Without loss of generality suppose that Vσ1 ∩ Vσ2 = ∅ holds.
Let ρ1 and ρ2 be the relations with 〈γ1, σ1, ρ1〉, 〈γ2, σ2, ρ2〉 in �.

A semantic assignment of this edge is then a (total) function f : Df → Vf

such that:
1. If γ2 is an initial tree, then

– Df := {x ∈ Vγ1 | 〈x, p〉 ∈ ρ1}, and
– Vf := Vσ2 ∪ Lσ2 ∪ Hσ2.

2. If γ2 is an auxiliary tree, then
– Df := {x ∈ Vγ2 | x is argument of σ2, and there is no p with 〈x, p〉 ∈ ρ2},

and
– Vf := Vσ1 ∪ Lσ1 ∪ Hσ1.

3. For all x ∈ Df ∩ VH , f (x) ∈ H holds.
4. For all x ∈ Df such that there is a type T with x ∈ VT , f (x) ∈ VT ∪LT holds.
5. For all x ∈ Df such that there is a type T with f (x) ∈ LT , and there is a

subformula labelled by f (x) in σ1 or σ2: There is exactly one term τ in σ1 and
σ2 containing x, and for this τ holds that λx(τ) is of type 〈T , T 〉.

Note that an edge in a derivation tree may at least theoretically have more than
one semantic assignment f : If there is more than one possible value for one of
the argument variables in Df , the choice of a semantic assignment for a derivation
edge is not deterministic. However, in all the cases in this paper, there is just one
possible assignment for each derivation edge.
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α1

0 00 011 0

β1 α2 α3 β2

01 01

α4 α5

Edge Assignment

〈α1, β1〉 {s1 → l1}
〈α1, α2〉 {x1 → x}
〈α1, α3〉 {x2 → y}
〈α1, β2〉 {s2 → l1}
〈α2, α4〉 {p1 → q1}
〈α3, α5〉 {p2 → q2}

Figure 24. Derivation tree for (6) and corresponding assignments.

As an example of a derivation tree and the corresponding assignment, consider
the derivation tree for (6) (Some student loves every course.) that was shown in
Figure 22 and that is repeated in Figure 24 together with the corresponding assign-
ments. (The elementary trees for (6) and their semantic representations are shown
in (7)–(9) (see pp. 23–24).

4.3.3. Semantic Representations of a Derivation Tree

With this definition, the semantic representations corresponding to a whole
derivation tree can be easily defined (there might be more than one for a specific
derivation tree):

DEFINITION 4.12 (Semantic representation of a derivation tree)
Let T be a derivation tree, and without loss of generality let the set of semantic
representations corresponding to the elementary trees in the derivation tree be such
that for all sets S1, S2 ∈ � involved in this derivation: (

⋃{Vσ ∪Lσ ∪Hσ | σ occurs
in S1}) ∩ (

⋃{Vσ ∪ Lσ ∪ Hσ | σ occurs in S2}) = ∅.
Suppose that for each edge in T , a semantic assignment has been chosen.
The semantic representation of T with respect to its semantic assignments,

S(T ), is defined as follows:

S(T ) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ (γ ) if T is a trivial tree of one node labelled with the
elementary treeγ

σ (γ ) ◦f1 S(T1) · · · ◦fn
S(Tn)

else whereT is a tree with root node u labelled with
the elementaryγ and withn child subtrees
T1, . . . , Tn,

fi is the semantic assignment of the edge fromu

to Ti for 1 ≤ i ≤ n,
and for all representations σ, σ ′ and all 1 ≤ i ≤ n:

σ ◦fi
σ ′ :=

⎧⎨
⎩

[σ (σ ′)]fi
if the edge from u to Ti

is a substitution edge
[σ ′(σ )]fi

else
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The choice of the semantic assignments for the edges is not always deterministic.
Therefore in general S(T ) is not unique. But in all cases considered in this paper,
S(T ) is uniquely specified.

S(T ) does not depend on the syntactic derivation order, i.e. on the linear prece-
dence among the nodes of T . The reason is that each label can be assigned at most
once to an argument variable occurring inside some term. After having performed
the corresponding composition of semantic representations the label disappears.

5. Restrictions on Quantifier Scope

In this section we are concerned with constraints for possible scope orders of
quantifiers. We only deal with constraints that are consequences of the specific
structure of a sentence and that are strictly respected, independently from the
specific quantifiers. Besides these constraints, there are several other factors that
cause preferences of some readings over other readings, but these problems are left
aside in this paper.

Furthermore, we do not consider referentially used quantifiers. It is well known
that indefinites can always have wide scope (see for example Reyle, 1993) because
they can be referentially used:

(28) John knows everybody who lives in a certain small town called XX.

Although relative clauses seem to constitute strict islands for quantifier raising,
wide scope of the indefinite in (28) is possible. In order to account for this, one
might adopt specific semantic representations for indefinites, at least for their
referential use. However, in this paper, we will not consider these cases.

When looking more closely at examples of quantifier constraints, it becomes
clear that two kinds of constraints can be distinguished, logical restrictions and
island constraints.

5.1. LOGICAL RESTRICTIONS ON SCOPE ORDER

With the term “logical restriction” we mean constraints on quantifier scope that
follow from the logical structure of the semantic representation. A well-known
example is (29) (see also Hobbs and Shieber, 1987).

(29) Every representative of some company saw most samples.

There are three quantifiers in (29). Without restrictions on scope orders, (29)
would therefore have 3! = 6 different readings. However, at least one of these
readings is excluded, namely the one where every representative has scope over
most samples, and most samples outscopes some company.

The exclusion of this reading can be explained as follows: Suppose that x is
the variable corresponding to the NP every representative, y corresponds to some
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some(restr.)(body) every(restr.)(body) most(restr.)(body)

company representative-of sample

saw

Figure 25. Scope restrictions for (29).

company and z corresponds to most samples. Then representative-of(x, y) is part
of the restriction of every, and saw(x, z) must be part of the body of every and
of the body of most. Consequently, if most samples is in the scope of every, it
must be part of the body of every. Furthermore, if some company was outscoped
by most samples, it also would be part of the body of every. But this is not
possible, because representative-of(x, y) (which is part of the restriction of every)
must be in the scope of some company, otherwise y would be a free variable in
representative-of(x, y). (Here the term “free variable” is used in a sense where
quantifiers like every bind variables.)

This constraint therefore can be considered as a result of the logical structure of
quantifiers. Quantifiers have a restriction and a body and nothing can be part of the
restriction and the body at the same time.

Sometimes it is claimed that in (29) some company outscoping most samples
and most samples having scope over every representative is excluded. More gener-
ally, in inverse linking configurations (a quantifier phrase B inside a quantifier
phrase A and B having scope over A) no other quantifier can be between B and
A with respect to scope. This constraint however seems to be of a different nature
than the constraints we examine in this paper and for the moment we leave it aside.
We plan to deal with inverse linking in future work. Logically, such a scope order
is possible since its semantic representation does not contain free variables:

(30)

some(y) (company(y))

(most(z) (sample(z))

(every(x) (representative-of(x)(y))

(saw(x)(z))))

When considering representative as being part of the restriction of every and
at the same time being part of the body of some, then we would obtain the scope
constraints depicted in Figure 25. (A downward dashed edge stands for “has scope
over”, e.g. the restriction of some has scope over company and its arguments.)
These constraints exclude exactly the reading we want to exclude.

With the semantic representations adopted above, we can get these constraints,
since the two constraints added with each quantifier take care of the separation
between restriction and body.
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Representative of is a binary predicate that takes an NP as argument and returns
a unary predicate. The elementary tree is the initial tree shown in (31) together with
its semantic representation. The semantic representation is such that it contributes
(1) a predicate p1 that will be assigned to the predicate variable in the NP tree
of every (similar to unary predicates as sample), and (2) a proposition labelled l6
that will be part of the body of any quantifier added to representative, e.g., some
company in this case. The constraint l6 ≤ h6 makes sure that the new proposition
is part of the predicate inserted in the proposition of the NP tree of every.

(31)

αrepr N

N PP

representative P NP↓

of

l6 : representative-of(x1, x2)

p1 : λx1h6

l6 ≤ h6

arg: 〈x2, 011〉

For the analysis of (29), first the syntactic tree and semantic representation for
every p saw most samples shown in (32) are generated. In the next step, αrepr is
added. This means that in the semantic representation p is replaced by the formula
labelled p1, namely λx1h6. This leads to (33).

(32)

S

NP VP

Det N↓ V NP

every saw Det N

most samples

l2 : every(x, h2, h3)

l4 : most(y, h4, h5)

l1 : saw(x, y)

l3 : p(x), l5 : sample(y)

l1 ≤ h1, l3 ≤ h2, l1 ≤ h3,

l5 ≤ h4, l1 ≤ h5

arg: 〈p, 01〉

(33)

S

NP VP

Det N saw most samples

every N PP

repr. P NP↓

of

l2 : every(x, h2, h3)

l4 : most(y, h4, h5)

l1 : saw(x, y)

l3 : (λx1h6)(x)

l5 : sample(y)

l6 : representative-of(x1, x2)

l1 ≤ h1, l3 ≤ h2, l1 ≤ h3,

l5 ≤ h4, l1 ≤ h5, l6 ≤ h6

arg: 〈x2, 011〉
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The quantifier some company is not added to the matrix clause but to the noun
of the subject NP (the root of αrepr). This shows that quantifiers can attach also
to nodes with category N. More generally, they can attach to any node in an
elementary tree γ as long as at the same time an NP tree is substituted for another
node in γ . For some in this case, the elementary tree and semantic representation
in (34) are adopted, and (35) shows the representation for company.

(34)
βsome

•∗

l7 : some(z, h7, h8)

s ≤ h8

arg: s

αsome

NP

Det N↓

some

l8 : p(z)

l8 ≤ h7

arg: 〈p, 01〉

(35)

αcomp N

company

p2 : company

arg: –

Adding βsome and αsome to αrepr and then adding αcomp to αsome gives the
semantic representation (36).

(36)

l7 : some(z, h7, h8), l2 : every(x, h2, h3), l4 : most(y, h4, h5)

l8 : company(z), l3 : (λx1h6)(x), l5 : sample(y), l1 : saw(x, y)

l6 : representative-of(x1, z)

l8 ≤ h7, l6 ≤ h8, l3 ≤ h2, l1 ≤ h3, l5 ≤ h4, l1 ≤ h5, l1 ≤ h1, l6 ≤ h6

arg: –

Wide scope of some, and most outscoping every (l7>l4>l2) is possible with the
disambiguation

δ :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h1 → l7
h2 → l3
h3 → l1
h4 → l5
h5 → l2
h6 → l6
h7 → l8
h8 → l4

l2>l4>l7 is excluded:
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Suppose that a corresponding bijection δ exists. Then (in the join semilattice)
l4 ≤ δ(h2) or l4 ≤ δ(h3) and l7 ≤ δ(h4) or l7 ≤ δ(h5).
Choosing a value for δ(h1): Given h2, h3<l2, h4, h5<l4<l2, h6 ≤ l3, l3 ≤ h2 and
h7, h8<l7<l2, hi<l2 for all 2 ≤ i ≤ 8 holds and therefore δ(h1) = l2.
Choosing a value for δ(h2): Given that for all labels or holes x: x 
≤ h2 or
x 
≤ h3:

– l1 ≤ h3, l1 ≤ h5, h5<l4<l2 ⇒ l1, l4 ≤ h3

– l5 ≤ h4<l4 ⇒ l5 ≤ h3

– l6 ≤ h8<l7<l4 ⇒ l6 ≤ h3

– l7<l4 ⇒ l7 ≤ h3

– l8 ≤ h7<l7<l4 ⇒ l8 ≤ h3

⇒ δ(h2) = l3

⇒ h6 ≤ h2 and for all li with i ∈ {1, 4, 5, 6, 7, 8}: li ≤ h3. Consequently there
is no possible value for δ(h6).

The crucial constraints are the two constraints, introduced in the semantic
representations of quantifiers, that express which of the two arguments of a quanti-
fier is its restriction and which is its body. (The definition of a disambiguation
mapping assures that nothing can subordinate two different holes of a term at the
same time.) In other words, the fact that one reading is excluded, follows in a
general way from the logical structure of quantifiers.

Note that the tree-locality of the grammar is important for the generation of
adequate scope constraints. The scope bearing tree βsome must be adjoined to a
node in αrepr because αsome is attached to αrepr . This leads to the constraint l6 ≤ h8,
i.e., to the constraint that representative-of(x1, z) must be part of the body of the
quantifying phrase some. Adjoining βsome to other trees, which would be possible
in a non-local MCTAG, would lead to incorrect constraints. E.g., adjoining to the
S node of the elementary tree for saw would lead to a constraint l1 ≤ h8 instead of
l6 ≤ h8. However, any scope order of the three quantifiers would then be possible.

This shows that the locality of the grammar restricts the possible scope orders,
i.e., it is crucial for obtaining the amount of underspecification that is adequate for
scope ambiguities.

5.2. ISLAND CONSTRAINTS FOR SCOPE ORDER

Besides logical constraints there are also other restrictions on quantifier raising that
seem to be very strict and that hold independently from the specific quantifiers.
These are island constraints. Island constraints for quantifier raising are probably
not exactly the same as island constraints for syntactical movement. But they seem
to be parallel to a certain extent as noted, for example, in Fauconnier (1976) and
Rodman (1976).

Relative clauses, in particular, are widely accepted to be islands for quantifier
scope in the sense that a quantifier inside the relative clause cannot have scope
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over the quantifier of the relativized NP (see Muskens, 1995; Muskens, 1998;
Kallmeyer, 1999a).

(37) a. Every representative of most of the companies saw this sample.

b. Every person who represents most of the companies saw this sample.

There clearly is a contrast between (37)a. and (37)b. In (36)a. most of the
companies can have wide scope, whereas in (37)b., wide scope of the embedded
quantifier most of the companies is not possible. This can be explained by assuming
that relative clauses constitute islands for quantifier scope.

Note that in some languages, particularly Scandinavian languages, relative
clauses are not always islands for syntactic movement (see Engdahl, 1997). It still
needs to be tested whether quantifiers extracted out of a relative clause (as it is
possible in these languages) can have wide scope. However, even if they can have
wide scope, this does not pose a problem for our analysis. In those cases where a
quantifier is moved out of a relative clause, the syntactic analysis would already
differ from the analysis of the relative clauses we are concerned with in this paper.
But then it should be no problem to obtain a semantic analysis that allows for wide
scope of the extracted quantifier. However, at this time, we will leave this issue for
further research.

5.2.1. Formalization of Island Constraints

In most other approaches to underspecified semantics, island constraints are either
not mentioned at all or they are explicitly stated as in Muskens (1995, 1998).
Only in Kallmeyer (1999a, 1999b), do island constraints arise as consequences
of more general properties of the grammar. We will partially follow these ideas in
assuming that the difference between (37)a. and (37)b. follows from different kinds
of derivations. The difference with respect to the derivation in TAG is that in (37)a.,
the elementary tree anchored by representative and of is an initial tree, whereas the
tree for the relative clause with anchor represents in (37)b. is an auxiliary tree added
by adjunction to the NP-tree of the quantifier every. This suggests that with respect
to quantifier scope, auxiliary trees constitute an island, whereas initial trees do not.
This observation coincides with the different dependencies we get in a derivation
tree depending on whether a node is labelled by an initial or an auxiliary tree. In the
dependency structure expressed by a derivation tree, auxiliary trees also constitute
some kind of islands in the following sense: Suppose that the edges in a derivation
tree are directed such that an edge goes from γ1 to γ2 iff γ2 is an argument of
γ1. Then, as long as we have only initial trees, the edges will always be directed
from the mother node to the daughters. But when a node has an auxiliary tree as
its daughter, then the edge will go from the daughter to the mother. In this sense,
when an auxiliary tree occurs, the chain of dependencies is interrupted and a new
dependency tree begins. This is illustrated in the sample derivation tree in Figure
26.
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α0

α1 α2

β1

α3 α4

Figure 26. Sample directed derivation tree.

This suggests that the assumption that auxiliary trees create islands not only
explains why relative clauses constitute islands but it really is a more general
principle since it is a consequence of the semantic dependencies in a derivation
structure.

In order to formalize this, we need the notion of the top of a semantic repre-
sentation. Following Bos (1995), the top is defined as the topmost element with
respect to subordination. In MRS (Copestake et al., 1999) the notion of a top is
used in a similar way.

DEFINITION 5.1 (Top) Let σ be semantic representation with holes Hσ , proposi-
tional labels Lσ

〈s,t〉 and free propositional or hole variables V σ
〈s,t〉. top(σ ) ∈ Hσ ∪

Lσ
〈s,t〉 ∪ V σ

〈s,t〉 is called the top of σ iff for all x ∈ Hσ ∪ Lσ
〈s,t〉 ∪ V σ

〈s,t〉, 〈x, top(σ )〉 ∈
SUBσ holds.

Now the additional constraints for quantifier scope arising from the derivation
structure can be formulated in the following way:

DEFINITION 5.2 (Island constraint)
Let T be a derivation tree and β ∈ A. For all occurrences of β in T :

For all γ1, . . . , γn ∈ I ∪ A such that 〈β, γ1〉, 〈γ1, γ2〉, . . . , 〈γn−1, γn〉 are edges
in T and σ (β) and σ (γn) both have a top, top(σ (γn)) ≤ top(σ (β)) is an island
constraint.

Here, σ (γ ) is a notation for the semantic representation of the specific occurrence
of γ .

With these constraints, auxiliary trees block raising in the following way:
everything that is added below an auxiliary tree β (by substitution or adjunction)
is blocked by the top of σ (β) (if β has a top at all), i.e. it cannot rise higher than
β. However, it might still be the case that β itself can rise, there are no general
constraints on the scope of the top of σ (β). Whether β really constitutes an island
or not depends on its specific semantic representation.4

This analysis predicts that relative clauses can constitute islands for quanti-
fiers whereas argument NPs as every representative of most of the companies in
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αlaugh

βevery αevery

βeat αboy

αwho αε βseveral αseveral

αchocolate

Figure 27. Derivation structure for (38).

(37)a. cannot. In other words, roughly said quantifiers can rise to higher trees
in the derivation structure as long as there is a downwards predicate-argument
dependency relation.

As an example consider (38).

(38) Every boy who eats several chocolates laughs.

Suppose that the derivation is done with the tree sets {αlaugh}, {βevery, αevery},
{αboy}, {βeat}, {αwho, αε}, {βseveral, αseveral}, {αchocolate}. The tree βeat is the tree
for the anchor of the relative clause and it is adjoined to the NP tree αevery of every
boy. Then the derivation structure for (38) is as shown in Figure 27.

First, for every boy laughs, (39) is generated.

(39)

l2 : every(x, h2, h3), l3 : boy(x), l1 : laugh(x)

l3 ≤ h2, l1 ≤ h3, l1 ≤ h1

arg: –

The relative clause must be adjoined to the NP tree of every because this gives
us access to the variable corresponding to the NP.

(40)

βeat NP

NP∗ S

Rel↓ S

NP↓ VP

V NP↓

eats

l4 : eat(p(x1), x2)

l4 ≤ h4, h4 ≤ h

arg: x1, h, 〈x2, 01111〉, 〈p, 010〉
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The argument variable x1 will be identified with the variable corresponding to
the NP modified by the relative clause (in this case this is x) and x2 is the second
argument of eat.The predicate p will be contributed by the relative pronoun. In the
case of (38) it is the identical mapping. But this is not always the case. If who in
(38) was replaced by whose friend, p would be different.

The part that is crucial for making relative clauses act as islands is the constraint
h4 ≤ h. The argument variable h will be identified with the hole in the semantic
representation of the predicate argument part of the NP (in this case h2, h3 is part
of the scope part of every and therefore not a possible value for h). This hole
represents the restriction of the quantifier of this NP. In other words, if a relative
clause is adjoined to a quantified NP, is must be in the scope of the restriction of
the quantifier. h is the top of the semantic representation of the relative clause,
i.e. everything added below the relative clause will be blocked by the value of h,
namely by h2.

(41)

l2 : every(x, h2, h3), l3 : boy(x), l1 : laugh(x), l4 : eat(p(x), x2)

l3 ≤ h2, l1 ≤ h3, l1 ≤ h1, h4 ≤ h2, l4 ≤ h4

arg: 〈x2, 01111〉, 〈p, 010〉

(41) is the result of adding the relative clause to (39). h2 now is an island for all
quantifiers inside the relative clause.

(42)

αrel Rel

who

p1 : λx1.x1

arg: –

αε NP

ε arg: –

In the next step, the tree set in (42) is added to βeat . The semantic assignment
maps p to p1. This means replacing p(x) by x in (41). The resulting semantic
representation is (43).

(43)

l2 : every(x, h2, h3), l3 : boy(x), l1 : laugh(x), l4 : eat(x, x2)

l3 ≤ h2, l1 ≤ h3, l1 ≤ h1, h4 ≤ h2, l4 ≤ h4

arg: 〈x2, 01111〉

When adding the elementary tree and semantic representation for the quantifier
inside the relative clause, its top must be below h2 because this is the top of the
elementary representation they are adjoined to. The result of the whole derivation
is (44).
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l2

every(h2, h3)
h1

l3

boy

l5

several(h5, h6)
h4

l1

laugh

l6

chocolate

l4

eat

Figure 28. Scope constraints for (38).

(44)

l2 : every(x, h2, h3), l3 : boy(x), l1 : laugh(x),

l4 : eat(x, y), l5 : several(y, h5, h6), l6 : chocolate(y)

l3 ≤ h2, l1 ≤ h3, l1 ≤ h1, h4 ≤ h2, l4 ≤ h4, l6 ≤ h5, l4 ≤ h6, l5 ≤ h2

arg: –

The last constraint is an island constraint as defined in Def. 5.2. As a
consequence of l5 ≤ h2 the quantifier cannot raise out of the relative clause.

The picture in Figure 28 shows the scope constraints in (44).
The interpretation corresponds to the intersective interpretation of restrictive

relative clauses: There is one possible disambiguation, namely

δ :

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

h1 → l2
h2 → l3
h3 → l1
h4 → l5
h5 → l6
h6 → l4

With this disambiguation, the whole semantic representation (44) is true in some
situation s iff every(x, restrx , bodyx) is true in s, where

– restrx is true in s iff
boy(x) is true in s and several(y, restry , bodyy) is true in s (with restriction
chocolate(y) and body eat(x, y)), and

– bodyx is true in s iff laugh(x) is true in s.
In other words, the restriction of every is not only boy(x) but the conjunc-

tion of boy(x) and the interpretation of the relative clause with x as vari-
able. This means that instead of the predicate boy, the predicate λx.(boy(x) ∧
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several(y, chocolate(y), eat(x, y))) is considered, i.e. the intersection of boy and
λx.several(y, chocolate(y), eat(x, y)) is built.

With the island constraints introduced in this section, the semantic representa-
tions of adverbial modifiers of the type of usually and allegedly in (11) must be
slightly modified: Besides the argument variable s for the label of the modified
proposition, a second argument variable h is needed for the hole of the modified
proposition. This second argument makes sure that the top of the old proposition
and the top of the modified proposition are the same.

(45)

l1 : usually(h1)

s ≤ h1, l1 ≤ h

arg: h, s

(45) shows the revised elementary semantic representation for usually.

5.2.2. Island Constraints and Logical Restrictions

A more complex example involving logical restrictions and also island constraints
is (46):

(46) Every man who thinks each girl loves some unicorn eats some fish.

(46) is taken from Muskens (1998). It has 12 readings because of the following two
constraints:
• A logical constraint: loves is part of the restriction of every whereas eats

belongs to the body of every. Therefore, if every has scope over some fish,
then also each girl and some unicorn must outscope some fish.

• An island constraint: because of the relative clause, each girl and some
unicorn both must be in the scope of every.

I.e., some fish either has wide scope or is in the scope of all the other quantifiers.
In each of the cases, there are still 6 possibilities inside the relative clause: each girl
can have scope over thinks or be inside the scope of thinks, and afterwards there are
three possible scope positions for some unicorn (above, between or below thinks
and each girl). Consequently there are 2 · 2 · 3 = 12 readings.

Going through the analysis of (46), we will show now how these island
constraints together with the logical restrictions following from the structure of
quantifiers give the desired 12 readings of (46). First, (47) is generated for every
man eats some fish.

(47)

l2 : every(x, h2, h3), l4 : some(y, h4, h5),

l1 : eats(x, y), l3 : man(x), l5 : fish(y)

l3 ≤ h2, l1 ≤ h3, l5 ≤ h4, l1 ≤ h5, l1 ≤ h1

arg: –
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The elementary tree of the relative clause must be adjoined to the NP tree of
every. For thinks as anchor of a relative clause as in (46), the elementary tree and
semantic representation in (48) are adopted.

(48)

βrel NP

NP∗ S

Rel↓ S

NP↓ VP

V S↓

thinks

l6 : think(p(x1), h
′)

h6 ≤ l6, h6 ≤ h

arg: x1, h, 〈p, 010〉, 〈h′, 01111〉

Here, x1, h and p are the same kind of variables as in the relative clause in
(38). The variable h′ is linked to the substitution node of the complement clause of
thinks, i.e. its value will be the hole of the complement clause.

The top of this semantic representation is h. When adjoining this to the NP node
of every man, i.e. when adjoining it to the initial tree in the tree set for every, h2

will be assigned to h. Adjoining βrel to the NP-node of every man and adding the
trees and semantic representations shown in (42) for who generates the semantic
representation (49).

(49)

l2 : every(x, h2, h3), l4 : some(y, h4, h5),

l1 : eats(x, y), l3 : man(x), l5 : fish(y)

l6 : think(x, h′)
l3 ≤ h2, l1 ≤ h3, l5 ≤ h4, l1 ≤ h5,

l1 ≤ h1, l6 ≤ h6, h6 ≤ h2

arg: 〈h′, 01111〉

Then for loves, (50) is added to βrel with h7 assigned to h′. The resulting
semantic representation is (51).

(50)

αloves S

NP1 ↓ VP

V NP2 ↓

loves

l7 : loves(x1, x2)

l7 ≤ h7

arg: 〈x1, 00〉, 〈x2, 011〉



54 L. KALLMEYER AND A.K. JOSHI

(51)

l2 : every(x, h2, h3), l4 : some(y, h4, h5),

l1 : eats(x, y), l3 : man(x), l5 : fish(y)

l6 : think(x, h7), l7 : loves(x1, x2)

l3 ≤ h2, l1 ≤ h3, l5 ≤ h4, l1 ≤ h5, l1 ≤ h1,

l6 ≤ h6, h6 ≤ h2, l7 ≤ h7, h7 ≤ h2

arg: 〈x1, 00〉, 〈x2, 011〉

After having added the elementary trees and semantic representations for the
two quantifiers inside the relative clause the semantic representation (52) is the
result.

(52)

l2 : every(x, h2, h3), l4 : some(y, h4, h5),

l1 : eats(x, y), l3 : man(x), l5 : fish(y)

l3 : think(x, h7), l7 : loves(z, u)

l8 : each(z, h8, h9), l10 : some(u, h10, h11),

l9 : girl(z), l11 : unicorn(u)

l3 ≤ h2, l1 ≤ h3, l5 ≤ h4, l1 ≤ h5, l1 ≤ h1,

l6 ≤ h6, h6 ≤ h2, l7 ≤ h7, h7 ≤ h2

l9 ≤ h8, l7 ≤ h9, l11 ≤ h10, l7 ≤ h11, l8 ≤ h2, l10 ≤ h2

arg: –

The last two constraints are island constraints. They cause the relative clause to
be an island for the two quantifiers each girl and some unicorn. A picture of the
scope constraints given by (52) is shown in Figure 29. The two kinds of constraints
listed in the beginning of this section are correctly derived: The logical constraints
l7 ≤ h2 and l1 ≤ h3 and the island constraints l8 ≤ h2 and l10 ≤ h2.

Note that the two quantifiers inside the relative clause may have scope over
think, i.e., inside the relative clause, a unicorn correctly has a de re as well as a de
dicto reading. This is due to the fact that the elementary tree for think is an initial
tree and therefore does not act as an island.

6. Conclusion

In this paper, we have presented a compositional semantics for LTAG based on the
idea of factoring predicate argument and scope semantics. The principal character-
istics of LTAG are the extended domain of locality of the elementary trees in a
grammar and the factoring away of recursion that comes with the adjoining opera-
tion. These two properties allow the localization of the arguments of a lexical item
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l2

every(h2, h3)
h1

l4

some(h4, h5)

l3

man
h6

l5
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l8

each(h8, h9)

l6

think(h7)

l10

some(h10, h11)

l1

eats

l9

girl

l7

loves

l11

unicorn

Figure 29. Scope constraints for (46).

within its elementary tree. Because of this localization of argument structures, it is
appropriate to define a compositional semantics with respect to the derivation trees
rather than the derived trees. In this system, each elementary tree is related to a
semantic representation and the way these representations are combined depends
only on the derivation structure. We have shown that the use of the derivation
structure as interface between syntax and semantics leads to a more flexible relation
(compared to traditional phrase structure based approaches) between syntax and
semantics, which has advantages for the treatment of quantifiers.

One of the key ideas of our approach is to separate the contribution of a quanti-
fier into a predicate argument part and a scope part. This leads to the use of tree-
local MCTAG with at most two trees per elementary tree set. The choice of this
extension of LTAG also arises out of an alternate perspective on adjoining, i.e., it
constitutes a natural variant of LTAG. In order to deal with quantifiers, we allow
multiple adjoinings in a very limited way. This does not influence the generative
capacity of the formalism.

We have developed formal definitions of semantic representations, and formal-
ized the way in which these representations combine with each oher depending
on the specific derivation structure. Because of the extended domains of the
elementary trees in LTAG, it was possible to abstract away from the specific
internal structure of the syntactic trees and to use ‘flat’ semantic representations. In
order to account for scope ambiguities, we enriched the semantic representations
with metavariables and with a partial order on these variables and propositional
labels. This partial order is interpreted as the scope order, and it enables the
generation of adequate underspecified representations for scope ambiguities.

We investigated several scope phenomena, namely adjunct scope and quanti-
fier scope, in particular restrictions on quantifier scope. We also showed that for
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quantifier scope, the tree-locality of the grammar gives a way to obtain just the
right amount of underspecification adequate for the analysis of scope ambiguities.
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Notes
1 The derivation trees of LTAG have a close relationship to the dependency trees, although there are
some crucial differences, however, the semantic dependencies are the same.
2 We should point out that this is not always the case. There are cases where the scope marking
components of multi-component quantifier trees will attach to different trees, i.e., they will
behave differently with respect to the derivation structure, although they show the same properties
concerning scope. However, whenever the scope marking components behave the same way with
respect to the derivation structure they have the same possibilities with respect to the scope.

Actually it is possible to develop a notion of flexible composition based on the observations that
both substitution and adjoining can be thought of as operations of “attachments” and can be seen
as going in either direction. We have seen this in the case of the alternate perspective on adjoining
(Section 2.3). Such a notion of flexible composition was investigated in Joshi and Vijay-Shanker
(1999). With this notion it is then possible to arrive at a derivation strucure such that the scope
marking component from a lower clause rises above and attaches to the root node of the embedding
clause along with another scope marking component in much the same way as in our previous
example. However, we will not pursue this approach in this paper.
3 The position of a node is its position in the elementary tree it belongs to. Positions do not refer to
derived trees.
4 If the top of β can rise arbitrarily high, β does not really represent an island. In this respect, the
analysis presented here differs from the one in Kallmeyer and Joshi (1999) that seems to strong. In
some cases, e.g. genitive NPs in German embedded into other NPs, quantifier raising out of these NPs
(that are adjoined to other NPs) is possible. A similar case are quantifiers occurring in PP-adjuncts
inside NPs. Our analysis allows the embedded quantifier in these cases to take wide scope.
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