Neuropeptidergic control of synaptic vesicle filling and behavior in the nematode "Caenorhabditis elegans"

  • This thesis reports on the results obtained by expression photoactivatable adenylyl cyclase from Beggiatoa spp. (bPAC) in cholinergic neurons from Caenorhabditis elegans (C. elegans) and the characterization of the role of a single neuron, RIS, during locomotion in the adult animal. Pharmacological activation of adenylyl cyclases through Forskolin is known to induce increased neuronal output in diverse model organisms through a protein kinase A (PKA) dependent mechanism. Nevertheless, pharmacological assays are not spatially restricted, do not allow for precise and acute activation nor to cessation of the signal. Thus, an optogenetic approach for was selected trough the expression of photoactivatable adenylyl cyclase from Beggiatoa spp. (bPAC) in cholinergic neurons of Caenorhabditis elegans (C. elegans). This model organism was chosen due to its transparency, ease of maintenance, fast generation cycles as well as for being an eutelic animal. Further, its genome has been fully sequenced and the connectome of the neuronal network is known, thus allowing for precise analysis of neuronal function. Furthermore, the molecular mechanisms governing neuronal functions are well conserved up to primates. Mainly two optogenetical tools were applied, bPAC and the light gated cation channel channelrhodopsin 2 (ChR2). Behavioral assays of bPAC photostimulation in cholinergic neurons recapitulated previous work performed with the photoactivatable adenylyl cyclase from Euglena gracilis (EuPACa), in which swimming frequency and speed on solid substrate were increased. Electrophysiological recordings of body wall muscle (BWM) cells by Dr. Jana F. Liewald showed that bPAC photoactivation led to an increase in miniature postsynaptic current (mPSC) rate and, in contrast to ChR2 invoked depolarization, also amplitude. Analysis of mutants deficient in neuropeptidergic signaling (UNC- 31) via electrophysiology performed by Dr. Jana F. Liewald showed that the increase in mPSC amplitude due to bPAC photoactivation requires neuropeptide release. This was confirmed by co-expression of bPAC with the neuropeptide marker NLP-21::Venus and subsequent fluorescence analysis of release, exploiting the fact that released neuropeptides are ultimately degraded by scavenger cells (coelomocytes). These were enriched with NLP-21::Venus after bPAC photostimulation, but no fluorescence could be observed in the UNC-31 mutants. Additional analysis of the electrophysiological data performed by myself showed no modulation of mPSC kinetics dues to neuropeptidergic release induced by bPAC. Hence, neuropeptide release and action sites were in the cholinergic neurons, the latter including cholinergic motoneurons. Dr. Szi-chieh Yu provided electron microscopy images of high pressure frozen, bPAC or ChR2 expressing animals. These were tagged by myself for automatic analysis of ultrastructural properties of the cholinergic presynapse, also during photoactivation of both optogenetic tools. Photoactivation of both induced a reduction of synaptic vesicles, with ChR2 showing a more severe effect. In contrast to ChR2, though, bPAC also reduced the amount of dense core vesicles (DCV), the neuropeptide transporters. Additionally, long bPAC photoactivation as well as ChR2 photoactivation led to the appearance of large vesicles (LV), presumably in response to the increased SV fusion rate. bPAC photostimulation also induced an increase in SV size, not observed after ChR2 photostimulation. In UNC-31 mutants, bPAC photostimulation could not lead to the SV size increase, a further argument for the presynaptic effect of the released neuropeptide. Additional analysis of electrophysiology paired with pharmacology, performed by Dr. Jana F. Liewald, showed that mPSC amplitude increase requires the function of the vesicular acetylcholine transporter. A further effect observed in the ultrastructure of bPAC photostimulated cholinergic presynapses was a shift in the distribution of SV regarding the dense projection. An analysis of cAMP pathway mutants showed that synapsin is required for bPAC induced behavior effects. Synapsin is known to mediate SV tethering to the cytoskeleton. Here, I show evidence for a new role of synapsin in controlling the availability of DCVs for fusion and thus, in neuropeptidergic signaling. In the second part of my thesis I characterized the function of the GABAergic interneuron RIS in the neuronal network of C. elegans. RIS was shown to induce lethargus, a sleep-like state, during all larval molts, but its function in the adult animal was not yet described. Specific RIS expression of ChR2 achieved by a recombinase based system allowed to acutely depolarize the neuron during locomotion, which led to an acute behavioral stop. Diverse signal transduction pathway mutants were analyzed showing that the phenotype was induced by neuropeptidergic signaling. Through mutagenesis followed by whole genome sequencing data analysis as well as analysis of RIS specific RNA sequencing data further narrowed the signal transduction pathway to mediate the locomotion stop behavior. Since the neuropeptide and, to some extent, the neuron are conserved across nematodes, an argument is outlined in favor of the conservation of this sleep-like state. In addition, since ChR2 could induce neuropeptidergic signaling from RIS, secretion of vesicles is regulated by variable pathways depending on the neuronal identity. Nevertheless, expression of bPAC in RIS allowed to optogenetically increase the probability of short stops, as observed by expression of a calcium sensor (GCaMP) in RIS and analysis of its intrinsic activity in the adult animal.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Wagner Steuer CostaORCiDGND
URN:urn:nbn:de:hebis:30:3-445078
Place of publication:Frankfurt am Main
Referee:Alexander GottschalkORCiDGND, Martin GriningerORCiDGND, Amparo Acker-PalmerORCiDGND, Bernd LudwigGND, Tobias Moser
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2017/09/11
Date of first Publication:2016/12/22
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2017/06/12
Release Date:2017/11/14
Page Number:XXV, 314
Note:
Auf der CD-Ausgabe unter der Signatur: AV 21/6538 befinden sich zusätzlich technische Daten bzw. Programme, Arbeitsabläufe sowie Funktionen und Skripte als Anhang
HeBIS-PPN:421001984
Institutes:Biochemie, Chemie und Pharmazie
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlungen:Universitätspublikationen
Sammlung Biologie / Biologische Hochschulschriften (Goethe-Universität)
Licence (German):License LogoDeutsches Urheberrecht