• search hit 1 of 2
Back to Result List

Single-task and multi-task transfer learning in a multi-source context

  • When performing transfer learning in Computer Vision, normally a pretrained model (source model) that is trained on a specific task and a large dataset like ImageNet is used. The learned representation of that source model is then used to perform a transfer to a target task. Performing transfer learning in this way had a great impact on Computer Vision, because it worked seamlessly, especially on tasks that are related to each other. Current research topics have investigated the relationship between different tasks and their impact on transfer learning by developing similarity methods. These similarity methods have in common, to do transfer learning without actually doing transfer learning in the first place but rather by predicting transfer learning rankings so that the best possible source model can be selected from a range of different source models. However, these methods have focused only on singlesource transfers and have not paid attention to multi-source transfers. Multi-source transfers promise even better results than single-source transfers as they combine information from multiple source tasks, all of which are useful to the target task. We fill this gap and propose a many-to-one task similarity method called MOTS that predicts both, single-source transfers and multi-source transfers to a specific target task. We do that by using linear regression and the source representations of the source models to predict the target representation. We show that we achieve at least results on par with related state-of-the-art methods when only focusing on singlesource transfers using the Pascal VOC and Taskonomy benchmark. We show that we even outperform all of them when using single and multi-source transfers together (0.9 vs. 0.8) on the Taskonomy benchmark. We additionally investigate the performance of MOTS in conjunction with a multi-task learning architecture. The task-decoder heads of a multi-task learning architecture are used in different variations to do multi-source transfers since it promises efficiency over multiple singletask architectures and incurs less computational cost. Results show that our proposed method accurately predicts transfer learning rankings on the NYUD dataset and even shows the best transfer learning results always being achieved when using more than one source task. Additionally, it is further examined that even just using one task-decoder head from the multi-task learning architecture promises better transfer learning results, than using a single-task architecture for the same task, which is due to the shared information from different tasks in the multi-task learning architecture in previous layers. Since the MOTS rankings for selecting the MTI-Net task-decoder head with the highest transfer learning performance were very accurate for the NYUD but not satisfying for the Pascal VOC dataset, further experiments need to varify the generalizability of MOTS rankings for the selection of the optimal task-decoder head from a multi-task architecture.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Daniel Pietschmann, Yannic Vorpahl
URN:urn:nbn:de:hebis:30:3-689076
Place of publication:Frankfurt am Main
Referee:Gemma Roig NogueraORCiDGND, Karsten TolleORCiDGND
Document Type:Master's Thesis
Language:English
Date of Publication (online):2022/07/23
Date of first Publication:2021/12/21
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2021/12/21
Release Date:2022/07/23
Page Number:100
Last Page:85
HeBIS-PPN:499051831
Institutes:Informatik und Mathematik / Informatik
Dewey Decimal Classification:0 Informatik, Informationswissenschaft, allgemeine Werke / 00 Informatik, Wissen, Systeme / 004 Datenverarbeitung; Informatik
Sammlungen:Universitätspublikationen
Licence (German):License LogoDeutsches Urheberrecht