Untersuchungen zur Regulierung und Funktion der Mitogen-aktivierten Proteinkinase ERK5 = Regulation and Function of the Mitogen-activated Protein Kinase ERK5

  • Mitogen activated protein kinases (MAPKs) are found in all eukaryotic cells and represent crucial elements in the signal transduction from the plasma membrane to the nucleus. Although a broad variety of extracellular stimuli activate MAPKs, they evoke very distinct cellular responses. The amplitude and duration of MAPK activation determine signal identity and ultimately cell fate. A tight and finely tuned regulation is therefore critical for a specific cellular response. The role and the regulation of extracellular signal-regulated kinase 5 (ERK5), a MAPK with a large and unique C-terminal tail, were studied in different cellular systems. The study highlights two aspects of ERK5 regulation: control of the phosphorylation state and regulated protein stability. In analogy to other MAPKs ERK5 is activated by dual phosphorylation of threonine and tyrosine residues in its activation motif. A first part of the study concentrates on whether and how the protein tyrosine phosphatase PTP-SL is involved in the downregulation of the ERK5 signal. The direct interaction of both proteins is shown to result in mutual modulation of their enzymatic activities. PTP-SL is a substrate of ERK5 and, independent of its phosphorylation, binding to the kinase enhances its catalytic phosphatase activity. On the other hand, interaction with PTP-SL does not only downregulate enzymatic ERK5 activity but also effectively impedes its translocation to the nucleus. The second part of this study focuses on the interaction of ERK5 with c-Abl and its oncogenic variants Bcr/Abl and v-Abl. In this study these tyrosine kinases are demonstrated to regulate ERK5 by two mechanisms: first, by induction of kinase activity and secondly, by stabilisation of the ERK5 protein. Stabilisation involves the direct interaction of unique ERK5 domains with Abl kinases and is independent of MAPK cascade activation. The level of ERK5 and its intrinsic basal activity – rather than its activation – are essential for v-Abl-induced transformation as well as for survival of Bcr/Abl-positive leukaemia cells. Stabilisation of ERK5 thus contributes to cell survival and should therefore be considered as an additional aspect in therapy of chronic myeloid leukaemia. Taken together, the results obtained in this study demonstrate that diverse pathways regulate ERK5 signalling by affecting kinase activity, localisation and protein stability. While the phosphatase PTP-SL is involved in negative regulation of ERK5, Abl kinases potently activate ERK5 and increase its half-life. Protein stabilisation thus is presented as a novel mechanism in the regulation of MAPKs.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Marcus Buschbeck
URN:urn:nbn:de:hebis:30-0000003253
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2003/11/21
Year of first Publication:2003
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2003/09/05
Release Date:2003/11/21
HeBIS-PPN:115277145
Institutes:Biochemie, Chemie und Pharmazie / Biochemie und Chemie
Dewey Decimal Classification:6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Licence (German):License LogoDeutsches Urheberrecht